This application relates to a bone conduction device, and more specifically, relates to methods and systems for reducing sound leakage by a bone conduction device.
A bone conduction speaker, which may be also called a vibration speaker, may push human tissues and bones to stimulate the auditory nerve in cochlea and enable people to hear sound. The bone conduction speaker is also called a bone conduction headphone.
An exemplary structure of a bone conduction speaker based on the principle of the bone conduction speaker is shown in
However, the mechanical vibrations generated by the transducer 122 may not only cause the vibration board 121 to vibrate, but may also cause the housing 110 to vibrate through the linking component 123. Accordingly, the mechanical vibrations generated by the bone conduction speaker may push human tissues through the bone board 121, and at the same time a portion of the vibrating board 121 and the housing 110 that are not in contact with human issues may nevertheless push air. Air sound may thus be generated by the air pushed by the portion of the vibrating board 121 and the housing 110. The air sound may be called “sound leakage.” In some cases, sound leakage is harmless. However, sound leakage should be avoided as much as possible if people intend to protect privacy when using the bone conduction speaker or try not to disturb others when listening to music.
Attempting to solve the problem of sound leakage, Korean patent KR10-2009-0082999 discloses a bone conduction speaker of a dual magnetic structure and double-frame. As shown in
However, in this design, since the second frame 220 is fixed to the first frame 210, vibrations of the second frame 220 are inevitable. As a result, sealing by the second frame 220 is unsatisfactory. Furthermore, the second frame 220 increases the whole volume and weight of the speaker, which in turn increases the cost, complicates the assembly process, and reduces the speaker's reliability and consistency.
The embodiments of the present application disclose methods and system of reducing sound leakage of a bone conduction speaker.
In one aspect, the embodiments of the present application disclose a method of reducing sound leakage of a bone conduction speaker, including:
providing a bone conduction speaker including a vibration board fitting human skin and passing vibrations, a transducer, and a housing, wherein at least one sound guiding hole is located in at least one portion of the housing;
the transducer drives the vibration board to vibrate;
the housing vibrates, along with the vibrations of the transducer, and pushes air, forming a leaked sound wave transmitted in the air;
the air inside the housing is pushed out of the housing through the at least one sound guiding hole, interferes with the leaked sound wave, and reduces an amplitude of the leaked sound wave.
In some embodiments, one or more sound guiding holes may locate in an upper portion, a central portion, and/or a lower portion of a sidewall and/or the bottom of the housing.
In some embodiments, a damping layer may be applied in the at least one sound guiding hole in order to adjust the phase and amplitude of the guided sound wave through the at least one sound guiding hole.
In some embodiments, sound guiding holes may be configured to generate guided sound waves having a same phase that reduce the leaked sound wave having a same wavelength; sound guiding holes may be configured to generate guided sound waves having different phases that reduce the leaked sound waves having different wavelengths.
In some embodiments, different portions of a same sound guiding hole may be configured to generate guided sound waves having a same phase that reduce the leaked sound wave having same wavelength. In some embodiments, different portions of a same sound guiding hole may be configured to generate guided sound waves having different phases that reduce leaked sound waves having different wavelengths.
In another aspect, the embodiments of the present application disclose a bone conduction speaker, including a housing, a vibration board and a transducer, wherein:
the transducer is configured to generate vibrations and is located inside the housing;
the vibration board is configured to be in contact with skin and pass vibrations;
At least one sound guiding hole may locate in at least one portion on the housing, and preferably, the at least one sound guiding hole may be configured to guide a sound wave inside the housing, resulted from vibrations of the air inside the housing, to the outside of the housing, the guided sound wave interfering with the leaked sound wave and reducing the amplitude thereof.
In some embodiments, the at least one sound guiding hole may locate in the sidewall and/or bottom of the housing.
In some embodiments, preferably, the at least one sound guiding sound hole may locate in the upper portion and/or lower portion of the sidewall of the housing.
In some embodiments, preferably, the sidewall of the housing is cylindrical and there are at least two sound guiding holes located in the sidewall of the housing, which are arranged evenly or unevenly in one or more circles. Alternatively, the housing may have a different shape.
In some embodiments, preferably, the sound guiding holes have different heights along the axial direction of the cylindrical sidewall.
In some embodiments, preferably, there are at least two sound guiding holes located in the bottom of the housing. In some embodiments, the sound guiding holes are distributed evenly or unevenly in one or more circles around the center of the bottom. Alternatively or additionally, one sound guiding hole is located at the center of the bottom of the housing.
In some embodiments, preferably, the sound guiding hole is a perforative hole. In some embodiments, there may be a damping layer at the opening of the sound guiding hole.
In some embodiments, preferably, the guided sound waves through different sound guiding holes and/or different portions of a same sound guiding hole have different phases or a same phase.
In some embodiments, preferably, the damping layer is a tuning paper, a tuning cotton, a nonwoven fabric, a silk, a cotton, a sponge, or a rubber.
In some embodiments, preferably, the shape of a sound guiding hole is circle, ellipse, quadrangle, rectangle, or linear. In some embodiments, the sound guiding holes may have a same shape or different shapes.
In some embodiments, preferably, the transducer includes a magnetic component and a voice coil. Alternatively, the transducer includes piezoelectric ceramic.
The design disclosed in this application utilizes the principles of sound interference, by placing sound guiding holes in the housing, to guide sound wave(s) inside the housing to the outside of the housing, the guided sound wave(s) interfering with the leaked sound wave, which is formed when the housing's vibrations push the air outside the housing. The guided sound wave(s) reduces the amplitude of the leaked sound wave and thus reduces the sound leakage. The design not only reduces sound leakage, but is also easy to implement, doesn't increase the volume or weight of the bone conduction speaker, and barely increase the cost of the product.
The meanings of the mark numbers in the figures are as followed:
110, open housing; 121, vibration board; 122, transducer; 123, linking component; 210, first frame; 220, second frame; 230, moving coil; 240, inner magnetic component; 250, outer magnetic component; 260; vibration board; 270, vibration unit; 10, housing; 11, sidewall; 12, bottom; 21, vibration board; 22, transducer; 23, linking component; 24, elastic component; 30, sound guiding hole.
Followings are some further detailed illustrations about this disclosure. The following examples are for illustrative purposes only and should not be interpreted as limitations of the claimed invention. There are a variety of alternative techniques and procedures available to those of ordinary skill in the art, which would similarly permit one to successfully perform the intended invention. In addition, the figures just show the structures relative to this disclosure, not the whole structure.
To explain the scheme of the embodiments of this disclosure, the design principles of this disclosure will be introduced here.
This disclosure applies above-noted the principles of sound wave interference to a bone conduction speaker and disclose a bone conduction speaker that can reduce sound leakage.
Furthermore, the vibration board 21 may be connected to the transducer 22 and configured to vibrate along with the transducer 22. The vibration board 21 may stretch out from the opening of the housing 10, and touch the skin of the user and pass vibrations to auditory nerves through human tissues and bones, which in turn enables the user to hear sound. The linking component 23 may reside between the transducer 22 and the housing 10, configured to fix the vibrating transducer 122 inside the housing. The linking component 23 may include one or more separate components, or may be integrated with the transducer 22 or the housing 10. In some embodiments, the linking component 23 is made of an elastic material.
The transducer 22 may drive the vibration board 21 to vibrate. The transducer 22, which resides inside the housing 10, may vibrate. The vibrations of the transducer 22 may drives the air inside the housing 10 to vibrate, producing a sound wave inside the housing 10, which can be referred to as “sound wave inside the housing.” Since the vibration board 21 and the transducer 22 are fixed to the housing 10 via the linking component 23, the vibrations may pass to the housing 10, causing the housing 10 to vibrate synchronously. The vibrations of the housing 10 may generate a leaked sound wave, which spreads outwards as sound leakage.
The sound wave inside the housing and the leaked sound wave are like the two sound sources in
In some embodiments, one sound guiding hole 30 is set on the upper portion of the sidewall 11. As used herein, the upper portion of the sidewall 11 refers to the portion of the sidewall 11 starting from the top of the sidewall (contacting with the vibration board 21) to about the ⅓ height of the sidewall.
Outside the housing 10, the sound leakage reduction is proportional to
(∫∫S
wherein Shole is the area of the opening of the sound guiding hole 30, Shousing is the area of the housing 10 (e.g., the sidewall 11 and the bottom 12) that is not in contact with human face.
The pressure inside the housing may be expressed as
P=Pa+Pb+Pc+Pe (2)
wherein Pa, Pb, Pc and Pe are the sound pressures of an arbitrary point inside the housing 10 generated by side a, side b, side c and side e (as illustrated in
The center of the side b, O point, is set as the origin of the space coordinates, and the side b can be set as the z=0 plane, so Pa, Pb, Pc and Pe may be expressed as follows:
wherein R(x′, y′)=√{square root over ((x−x′)2+(y−y′)2+z2)} is the distance between an observation point (x, y, z) and a point on side b (x′, y′, 0); Sa, Sb, Sc and Se are the areas of side a, side b, side c and side e, respectively;
R(xa′, ya′)=√{square root over ((x−xa′)2+(y−ya′)2+(z−za)z2)} is the distance between the observation point (x, y, z) and a point on side a (xa′, ya′, za);
R(xc′, yc′)=√{square root over ((x−xc′)2+(y−yc′)2+(z−zc)z2)} is the distance between the observation point (x, y, z) and a point on side c (xc′, yc′, zc);
R(xe′, ye′)=√{square root over ((x−xe′)2+(y−ye′)2+(z−ze)z2)} is the distance between the observation point (x, y, z) and a point on side e (xe′, ye′, ze);
k=ω/u (u is the velocity of sound) is wave number, ρ0 is an air density, ω is an angular frequency of vibration;
PaR, PbR, PcR and PeR are acoustic resistances of air, which respectively are:
wherein r is the acoustic resistance per unit length, r′ is the sound quality per unit length, za is the distance between the observation point and side a, zb is the distance between the observation point and side b, zc is the distance between the observation point and side c, ze is the distance between the observation point and side e.
Wa(x,y), Wb(x,y), Wc(x,y), We(x,y) and Wd(x,y) are the sound source power per unit area of side a, side b, side c, side e and side d, respectively, which can be derived from following formulas (11):
Fe=Fa=F−k1 cos ωt−∫∫S
Fb=−F+k1 cos ωt+∫∫S
Fc=Fd=Fb−k2 cos ωt−∫∫S
Fd=Fb−k2 cos ωt−∫∫S
wherein F is the driving force generated by the transducer 22, Fa, Fb, Fc, Fd, and Fe are the driving forces of side a, side b, side c, side d and side e, respectively. As used herein, side d is the outside surface of the bottom 12. Sd is the region of side d, f is the viscous resistance formed in the small gap of the sidewalls, and f=ηΔs(dv/dy).
L is the equivalent load on human face when the vibration board acts on the human face, γ is the energy dissipated on elastic element 24, k1 and k2 are the elastic coefficients of elastic element 23 and elastic element 24 respectively, η is the fluid viscosity coefficient, dv/dy is the velocity gradient of fluid, Δs is the cross-section area of a subject (board), A is the amplitude, :φ is the region of the sound field, and δ is a high order minimum (which is generated by the incompletely symmetrical shape of the housing);
The sound pressure of an arbitrary point outside the housing, generated by the vibration of the housing 10 is expressed as:
wherein R(xd′, yd′)=√{square root over ((x−xd′)2+(y−yd′)2+(z−zd)z2)} is the distance between the observation point (x, y, z) and a point on side d (xd′, yd′, zd).
Pa, Pb, Pc and Pe are functions of the position, when we set a hole on an arbitrary position in the housing, if the area of the hole is Shole, the sound pressure of the hole is ∫∫S
In the meanwhile, because the vibration board 21 fits human tissues tightly, the power it gives out is absorbed all by human tissues, so the only side that can push air outside the housing to vibrate is side d, thus forming sound leakage. As described elsewhere, the sound leakage is resulted from the vibrations of the housing 10. For illustrative purposes, the sound pressure generated by the housing 10 may be expressed as ∫∫S
The leaked sound wave and the guided sound wave interference may result in a weakened sound wave, i.e., to make ∫∫S
According to the formulas above, a person having ordinary skill in the art would understand that the effectiveness of reducing sound leakage is related to the dimensions of the housing of the bone conduction speaker, the vibration frequency of the transducer, the position, shape, quantity and size of the sound guiding hole(s) and whether there is damping inside the sound guiding hole(s). Accordingly, various configurations, depending on specific needs, may be obtained by choosing specific position where the sound guiding hole(s) is located, the shape and/or quantity of the sound guiding hole(s) as well as the damping material.
According to the embodiments in this disclosure, the effectiveness of reducing sound leakage after setting sound guiding holes is very obvious. As shown in
In the tested frequency range, after setting sound guiding holes, the sound leakage is reduced by about 10 dB on average. Specifically, in the frequency range of 1500 Hz˜3000 Hz, the sound leakage is reduced by over 10 dB. In the frequency range of 2000 Hz˜2500 Hz, the sound leakage is reduced by over 20 dB compared to the scheme without sound guiding holes.
A person having ordinary skill in the art can understand from the above-mentioned formulas that when the dimensions of the bone conduction speaker, target regions to reduce sound leakage and frequencies of sound waves differ, the position, shape and quantity of sound guiding holes also need to adjust accordingly.
For example, in a cylinder housing, according to different needs, a plurality of sound guiding holes may be on the sidewall and/or the bottom of the housing. Preferably, the sound guiding hole may be set on the upper portion and/or lower portion of the sidewall of the housing. The quantity of the sound guiding holes set on the sidewall of the housing is no less than two. Preferably, the sound guiding holes may be arranged evenly or unevenly in one or more circles with respect to the center of the bottom. In some embodiments, the sound guiding holes may be arranged in at least one circle. In some embodiments, one sound guiding hole may be set on the bottom of the housing. In some embodiments, the sound guiding hole may be set at the center of the bottom of the housing.
The quantity of the sound guiding holes can be one or more. Preferably, multiple sound guiding holes may be set symmetrically on the housing. In some embodiments, there are 6-8 circularly arranged sound guiding holes.
The openings (and cross sections) of sound guiding holes may be circle, ellipse, rectangle, or slit. Slit generally means slit along with straight lines, curve lines, or arc lines. Different sound guiding holes in one bone conduction speaker may have same or different shapes.
A person having ordinary skill in the art can understand that, the sidewall of the housing may not be cylindrical, the sound guiding holes can be arranged asymmetrically as needed. Various configurations may be obtained by setting different combinations of the shape, quantity, and position of the sound guiding. Some other embodiments along with the figures are described as follows.
In some embodiments, the leaked sound wave may be generated by a portion of the housing 10. The portion of the housing may be the sidewall 11 of the housing 10 and/or the bottom 12 of the housing 10. Merely by way of example, the leaked sound wave may be generated by the bottom 12 of the housing 10. The guided sound wave output through the sound guiding hole(s) 30 may interfere with the leaked sound wave generated by the portion of the housing 10. The interference may enhance or reduce a sound pressure level of the guided sound wave and/or leaked sound wave in the target region.
In some embodiments, the portion of the housing 10 that generates the leaked sound wave may be regarded as a first sound source (e.g., the sound source 1 illustrated in
where ω denotes an angular frequency, ρ0 denotes an air density, r denotes a distance between a target point and the sound source, Q0 denotes a volume velocity of the sound source, and k denotes a wave number. It may be concluded that the magnitude of the sound field pressure of the sound field of the point sound source is inversely proportional to the distance to the point sound source.
It should be noted that, the sound guiding hole(s) for outputting sound as a point sound source may only serve as an explanation of the principle and effect of the present disclosure, and the shape and/or size of the sound guiding hole(s) may not be limited in practical applications. In some embodiments, if the area of the sound guiding hole is large, the sound guiding hole may also be equivalent to a planar sound source. Similarly, if an area of the portion of the housing 10 that generates the leaked sound wave is large (e.g., the portion of the housing 10 is a vibration surface or a sound radiation surface), the portion of the housing 10 may also be equivalent to a planar sound source. For those skilled in the art, without creative activities, it may be known that sounds generated by structures such as sound guiding holes, vibration surfaces, and sound radiation surfaces may be equivalent to point sound sources at the spatial scale discussed in the present disclosure, and may have consistent sound propagation characteristics and the same mathematical description method. Further, for those skilled in the art, without creative activities, it may be known that the acoustic effect achieved by the two-point sound sources may also be implemented by alternative acoustic structures. According to actual situations, the alternative acoustic structures may be modified and/or combined discretionarily, and the same acoustic output effect may be achieved.
The two-point sound sources may be formed such that the guided sound wave output from the sound guiding hole(s) may interfere with the leaked sound wave generated by the portion of the housing 10. The interference may reduce a sound pressure level of the leaked sound wave in the surrounding environment (e.g., the target region). For convenience, the sound waves output from an acoustic output device (e.g., the bone conduction speaker) to the surrounding environment may be referred to as far-field leakage since it may be heard by others in the environment. The sound waves output from the acoustic output device to the ears of the user may also be referred to as near-field sound since a distance between the bone conduction speaker and the user may be relatively short. In some embodiments, the sound waves output from the two-point sound sources may have a same frequency or frequency range (e.g., 800 Hz, 1000 Hz, 1500 Hz, 3000 Hz, etc.). In some embodiments, the sound waves output from the two-point sound sources may have a certain phase difference. In some embodiments, the sound guiding hole includes a damping layer. The damping layer may be, for example, a tuning paper, a tuning cotton, a nonwoven fabric, a silk, a cotton, a sponge, or a rubber. The damping layer may be configured to adjust the phase of the guided sound wave in the target region. The acoustic output device described herein may include a bone conduction speaker or an air conduction speaker. For example, a portion of the housing (e.g., the bottom of the housing) of the bone conduction speaker may be treated as one of the two-point sound sources, and at least one sound guiding holes of the bone conduction speaker may be treated as the other one of the two-point sound sources. As another example, one sound guiding hole of an air conduction speaker may be treated as one of the two-point sound sources, and another sound guiding hole of the air conduction speaker may be treated as the other one of the two-point sound sources. It should be noted that, although the construction of two-point sound sources may be different in bone conduction speaker and air conduction speaker, the principles of the interference between the various constructed two-point sound sources are the same. Thus, the equivalence of the two-point sound sources in a bone conduction speaker disclosed elsewhere in the present disclosure is also applicable for an air conduction speaker.
In some embodiments, when the position and phase difference of the two-point sound sources meet certain conditions, the acoustic output device may output different sound effects in the near field (for example, the position of the user's ear) and the far field. For example, if the phases of the point sound sources corresponding to the portion of the housing 10 and the sound guiding hole(s) are opposite, that is, an absolute value of the phase difference between the two-point sound sources is 180 degrees, the far-field leakage may be reduced according to the principle of reversed phase cancellation.
In some embodiments, the interference between the guided sound wave and the leaked sound wave at a specific frequency may relate to a distance between the sound guiding hole(s) and the portion of the housing 10. For example, if the sound guiding hole(s) are set at the upper portion of the sidewall of the housing 10 (as illustrated in
Merely by way of example, the low frequency range may refer to frequencies in a range below a first frequency threshold. The high frequency range may refer to frequencies in a range exceed a second frequency threshold. The first frequency threshold may be lower than the second frequency threshold. The mid-low frequency range may refer to frequencies in a range between the first frequency threshold and the second frequency threshold. For example, the first frequency threshold may be 1000 Hz, and the second frequency threshold may be 3000 Hz. The low frequency range may refer to frequencies in a range below 1000 Hz, the high frequency range may refer to frequencies in a range above 3000 Hz, and the mid-low frequency range may refer to frequencies in a range of 1000-2000 Hz, 1500-2500 Hz, etc. In some embodiments, a middle frequency range, a mid-high frequency range may also be determined between the first frequency threshold and the second frequency threshold. In some embodiments, the mid-low frequency range and the low frequency range may partially overlap. The mid-high frequency range and the high frequency range may partially overlap. For example, the mid-high frequency range may refer to frequencies in a range above 3000 Hz, and the mid-low frequency range may refer to frequencies in a range of 2800-3500 Hz. It should be noted that the low frequency range, the mid-low frequency range, the middle frequency range, the mid-high frequency range, and/or the high frequency range may be set flexibly according to different situations, and are not limited herein.
In some embodiments, the frequencies of the guided sound wave and the leaked sound wave may be set in a low frequency range (e.g., below 800 Hz, below 1200 Hz, etc.). In some embodiments, the amplitudes of the sound waves generated by the two-point sound sources may be set to be different in the low frequency range. For example, the amplitude of the guided sound wave may be smaller than the amplitude of the leaked sound wave. In this case, the interference may not reduce sound pressure of the near-field sound in the low-frequency range. The sound pressure of the near-field sound may be improved in the low-frequency range. The volume of the sound heard by the user may be improved.
In some embodiments, the amplitude of the guided sound wave may be adjusted by setting an acoustic resistance structure in the sound guiding hole(s) 30. The material of the acoustic resistance structure disposed in the sound guiding hole 30 may include, but not limited to, plastics (e.g., high-molecular polyethylene, blown nylon, engineering plastics, etc.), cotton, nylon, fiber (e.g., glass fiber, carbon fiber, boron fiber, graphite fiber, graphene fiber, silicon carbide fiber, or aramid fiber), other single or composite materials, other organic and/or inorganic materials, etc. The thickness of the acoustic resistance structure may be 0.005 mm, 0.01 mm, 0.02 mm, 0.5 mm, 1 mm, 2 mm, etc. The structure of the acoustic resistance structure may be in a shape adapted to the shape of the sound guiding hole. For example, the acoustic resistance structure may have a shape of a cylinder, a sphere, a cubic, etc. In some embodiments, the materials, thickness, and structures of the acoustic resistance structure may be modified and/or combined to obtain a desirable acoustic resistance structure. In some embodiments, the acoustic resistance structure may be implemented by the damping layer.
In some embodiments, the amplitude of the guided sound wave output from the sound guiding hole may be relatively low (e.g., zero or almost zero). The difference between the guided sound wave and the leaked sound wave may be maximized, thus achieving a relatively large sound pressure in the near field. In this case, the sound leakage of the acoustic output device having sound guiding holes may be almost the same as the sound leakage of the acoustic output device without sound guiding holes in the low frequency range (e.g., as shown in
The sound guiding holes 30 are preferably set at different positions of the housing 10.
The effectiveness of reducing sound leakage may be determined by the formulas and method as described above, based on which the positions of sound guiding holes may be determined.
A damping layer is preferably set in a sound guiding hole 30 to adjust the phase and amplitude of the sound wave transmitted through the sound guiding hole 30.
In some embodiments, different sound guiding holes may generate different sound waves having a same phase to reduce the leaked sound wave having the same wavelength. In some embodiments, different sound guiding holes may generate different sound waves having different phases to reduce the leaked sound waves having different wavelengths.
In some embodiments, different portions of a sound guiding hole 30 may be configured to generate sound waves having a same phase to reduce the leaked sound waves with the same wavelength. In some embodiments, different portions of a sound guiding hole 30 may be configured to generate sound waves having different phases to reduce the leaked sound waves with different wavelengths.
Additionally, the sound wave inside the housing may be processed to basically have the same value but opposite phases with the leaked sound wave, so that the sound leakage may be further reduced.
In the embodiment, the transducer 22 is preferably implemented based on the principle of electromagnetic transduction. The transducer may include components such as magnetizer, voice coil, and etc., and the components may locate inside the housing and may generate synchronous vibrations with a same frequency.
In some embodiments, the sound guiding hole(s) at the lower portion of the sidewall of the housing 10 may also be approximately regarded as a point sound source. In some embodiments, the sound guiding hole(s) at the lower portion of the sidewall of the housing 10 and the portion of the housing 10 that generates the leaked sound wave may constitute two-point sound sources. The two-point sound sources may be formed such that the guided sound wave output from the sound guiding hole(s) at the lower portion of the sidewall of the housing 10 may interfere with the leaked sound wave generated by the portion of the housing 10. The interference may reduce a sound pressure level of the leaked sound wave in the surrounding environment (e.g., the target region) at a specific frequency or frequency range.
In some embodiments, the sound waves output from the two-point sound sources may have a same frequency or frequency range (e.g., 1000 Hz, 2500 Hz, 3000 Hz, etc.). In some embodiments, the sound waves output from the first two-point sound sources may have a certain phase difference. In this case, the interference between the sound waves generated by the first two-point sound sources may reduce a sound pressure level of the leaked sound wave in the target region. When the position and phase difference of the first two-point sound sources meet certain conditions, the acoustic output device may output different sound effects in the near field (for example, the position of the user's ear) and the far field. For example, if the phases of the first two-point sound sources are opposite, that is, an absolute value of the phase difference between the first two-point sound sources is 180 degrees, the far-field leakage may be reduced.
In some embodiments, the interference between the guided sound wave and the leaked sound wave may relate to frequencies of the guided sound wave and the leaked sound wave and/or a distance between the sound guiding hole(s) and the portion of the housing 10. For example, if the sound guiding hole(s) are set at the lower portion of the sidewall of the housing 10 (as illustrated in
In the embodiment, the transducer 21 may be implemented preferably based on the principle of electromagnetic transduction. The transducer 21 may include components such as magnetizer, voice coil, etc., which may be placed inside the housing and may generate synchronous vibrations with the same frequency.
It's illustrated that the effectiveness of reduced sound leakage can be adjusted by changing the positions of the sound guiding holes, while keeping other parameters relating to the sound guiding holes unchanged.
In the embodiment, the transducer 21 may be implemented preferably based on the principle of electromagnetic transduction. The transducer 21 may include components such as magnetizer, voice coil, etc., which may be placed inside the housing and may generate synchronous vibration with the same frequency.
The shape of the sound guiding holes on the upper portion and the shape of the sound guiding holes on the lower portion may be different; One or more damping layers may be arranged in the sound guiding holes to reduce leaked sound waves of the same wave length (or frequency), or to reduce leaked sound waves of different wave lengths.
In some embodiments, the sound guiding hole(s) at the upper portion of the sidewall of the housing 10 (also referred to as first hole(s)) may be approximately regarded as a point sound source. In some embodiments, the first hole(s) and the portion of the housing 10 that generates the leaked sound wave may constitute two-point sound sources (also referred to as first two-point sound sources). As for the first two-point sound sources, the guided sound wave generated by the first hole(s) (also referred to as first guided sound wave) may interfere with the leaked sound wave or a portion thereof generated by the portion of the housing 10 in a first region. In some embodiments, the sound waves output from the first two-point sound sources may have a same frequency (e.g., a first frequency). In some embodiments, the sound waves output from the first two-point sound sources may have a certain phase difference. In this case, the interference between the sound waves generated by the first two-point sound sources may reduce a sound pressure level of the leaked sound wave in the target region. When the position and phase difference of the first two-point sound sources meet certain conditions, the acoustic output device may output different sound effects in the near field (for example, the position of the user's ear) and the far field. For example, if the phases of the first two-point sound sources are opposite, that is, an absolute value of the phase difference between the first two-point sound sources is 180 degrees, the far-field leakage may be reduced according to the principle of reversed phase cancellation.
In some embodiments, the sound guiding hole(s) at the lower portion of the sidewall of the housing 10 (also referred to as second hole(s)) may also be approximately regarded as another point sound source. Similarly, the second hole(s) and the portion of the housing 10 that generates the leaked sound wave may also constitute two-point sound sources (also referred to as second two-point sound sources). As for the second two-point sound sources, the guided sound wave generated by the second hole(s) (also referred to as second guided sound wave) may interfere with the leaked sound wave or a portion thereof generated by the portion of the housing 10 in a second region. The second region may be the same as or different from the first region. In some embodiments, the sound waves output from the second two-point sound sources may have a same frequency (e.g., a second frequency).
In some embodiments, the first frequency and the second frequency may be in certain frequency ranges. In some embodiments, the frequency of the guided sound wave output from the sound guiding hole(s) may be adjustable. In some embodiments, the frequency of the first guided sound wave and/or the second guided sound wave may be adjusted by one or more acoustic routes. The acoustic routes may be coupled to the first hole(s) and/or the second hole(s). The first guided sound wave and/or the second guided sound wave may be propagated along the acoustic route having a specific frequency selection characteristic. That is, the first guided sound wave and the second guided sound wave may be transmitted to their corresponding sound guiding holes via different acoustic routes. For example, the first guided sound wave and/or the second guided sound wave may be propagated along an acoustic route with a low-pass characteristic to a corresponding sound guiding hole to output guided sound wave of a low frequency. In this process, the high frequency component of the sound wave may be absorbed or attenuated by the acoustic route with the low-pass characteristic. Similarly, the first guided sound wave and/or the second guided sound wave may be propagated along an acoustic route with a high-pass characteristic to the corresponding sound guiding hole to output guided sound wave of a high frequency. In this process, the low frequency component of the sound wave may be absorbed or attenuated by the acoustic route with the high-pass characteristic.
As shown in
As shown in
As shown in
In some embodiments, the interference between the leaked sound wave and the guided sound wave may relate to frequencies of the guided sound wave and the leaked sound wave and/or a distance between the sound guiding hole(s) and the portion of the housing 10. In some embodiments, the portion of the housing that generates the leaked sound wave may be the bottom of the housing 10. The first hole(s) may have a larger distance to the portion of the housing 10 than the second hole(s). In some embodiments, the frequency of the first guided sound wave output from the first hole(s) (e.g., the first frequency) and the frequency of second guided sound wave output from second hole(s) (e.g., the second frequency) may be different.
In some embodiments, the first frequency and second frequency may associate with the distance between the at least one sound guiding hole and the portion of the housing 10 that generates the leaked sound wave. In some embodiments, the first frequency may be set in a low frequency range. The second frequency may be set in a high frequency range. The low frequency range and the high frequency range may or may not overlap.
In some embodiments, the frequency of the leaked sound wave generated by the portion of the housing 10 may be in a wide frequency range. The wide frequency range may include, for example, the low frequency range and the high frequency range or a portion of the low frequency range and the high frequency range. For example, the leaked sound wave may include a first frequency in the low frequency range and a second frequency in the high frequency range. In some embodiments, the leaked sound wave of the first frequency and the leaked sound wave of the second frequency may be generated by different portions of the housing 10. For example, the leaked sound wave of the first frequency may be generated by the sidewall of the housing 10, the leaked sound wave of the second frequency may be generated by the bottom of the housing 10. As another example, the leaked sound wave of the first frequency may be generated by the bottom of the housing 10, the leaked sound wave of the second frequency may be generated by the sidewall of the housing 10. In some embodiments, the frequency of the leaked sound wave generated by the portion of the housing 10 may relate to parameters including the mass, the damping, the stiffness, etc., of the different portion of the housing 10, the frequency of the transducer 22, etc.
In some embodiments, the characteristics (amplitude, frequency, and phase) of the first two-point sound sources and the second two-point sound sources may be adjusted via various parameters of the acoustic output device (e.g., electrical parameters of the transducer 22, the mass, stiffness, size, structure, material, etc., of the portion of the housing 10, the position, shape, structure, and/or number (or count) of the sound guiding hole(s) so as to form a sound field with a particular spatial distribution. In some embodiments, a frequency of the first guided sound wave is smaller than a frequency of the second guided sound wave.
A combination of the first two-point sound sources and the second two-point sound sources may improve sound effects both in the near field and the far field.
Referring to
After comparison of calculation results and test results, the effectiveness of this embodiment is basically the same with that of embodiment one, and this embodiment can effectively reduce sound leakage.
The difference between this embodiment and the above-described embodiment three is that to reduce sound leakage to greater extent, the sound guiding holes 30 may be arranged on the upper, central and lower portions of the sidewall 11. The sound guiding holes 30 are arranged evenly or unevenly in one or more circles. Different circles are formed by the sound guiding holes 30, one of which is set along the circumference of the bottom 12 of the housing 10. The size of the sound guiding holes 30 are the same.
The effect of this scheme may cause a relatively balanced effect of reducing sound leakage in various frequency ranges compared to the schemes where the position of the holes are fixed. The effect of this design on reducing sound leakage is relatively better than that of other designs where the heights of the holes are fixed, such as embodiment three, embodiment four, embodiment five, etc.
The sound guiding holes 30 in the above embodiments may be perforative holes without shields.
In order to adjust the effect of the sound waves guided from the sound guiding holes, a damping layer (not shown in the figures) may locate at the opening of a sound guiding hole 30 to adjust the phase and/or the amplitude of the sound wave.
There are multiple variations of materials and positions of the damping layer. For example, the damping layer may be made of materials which can damp sound waves, such as tuning paper, tuning cotton, nonwoven fabric, silk, cotton, sponge or rubber. The damping layer may be attached on the inner wall of the sound guiding hole 30, or may shield the sound guiding hole 30 from outside.
More preferably, the damping layers corresponding to different sound guiding holes 30 may be arranged to adjust the sound waves from different sound guiding holes to generate a same phase. The adjusted sound waves may be used to reduce leaked sound wave having the same wavelength. Alternatively, different sound guiding holes 30 may be arranged to generate different phases to reduce leaked sound wave having different wavelengths (i.e., leaked sound waves with specific wavelengths).
In some embodiments, different portions of a same sound guiding hole can be configured to generate a same phase to reduce leaked sound waves on the same wavelength (e.g., using a pre-set damping layer with the shape of stairs or steps). In some embodiments, different portions of a same sound guiding hole can be configured to generate different phases to reduce leaked sound waves on different wavelengths.
The above-described embodiments are preferable embodiments with various configurations of the sound guiding hole(s) on the housing of a bone conduction speaker, but a person having ordinary skills in the art can understand that the embodiments don't limit the configurations of the sound guiding hole(s) to those described in this application.
In the past bone conduction speakers, the housing of the bone conduction speakers is closed, so the sound source inside the housing is sealed inside the housing. In the embodiments of the present disclosure, there can be holes in proper positions of the housing, making the sound waves inside the housing and the leaked sound waves having substantially same amplitude and substantially opposite phases in the space, so that the sound waves can interfere with each other and the sound leakage of the bone conduction speaker is reduced. Meanwhile, the volume and weight of the speaker do not increase, the reliability of the product is not comprised, and the cost is barely increased. The designs disclosed herein are easy to implement, reliable, and effective in reducing sound leakage.
The earphone core 1410 may be configured to process signals containing audio information, and convert the signals into sound signals. The audio information may include video or audio files with a specific data format, or data or files that may be converted into sound in a specific manner. The signals containing the audio information may include electrical signals, optical signals, magnetic signals, mechanical signals or the like, or any combination thereof. The processing operation may include frequency division, filtering, denoising, amplification, smoothing, or the like, or any combination thereof. The conversion may involve a coexistence and interconversion of energy of different types. For example, the electrical signal may be converted into mechanical vibrations that generates sound through the earphone core 1410 directly. As another example, the audio information may be included in the optical signal, and a specific earphone core may implement a process of converting the optical signal into a vibration signal. Energy of other types that may coexist and interconvert to each other during the working process of the earphone core 1410 may include thermal energy, magnetic field energy, and so on.
In some embodiments, the earphone core 1410 may include one or more acoustic drivers. The acoustic driver(s) may be used to convert electrical signals into sound for playback. For example, each of the acoustic driver(s) may include a transducer as described elsewhere in the present disclosure.
The auxiliary function module 1420 may be configured to receive auxiliary signals and execute auxiliary functions. The auxiliary function module 1420 may include one or more microphones (e.g., for detecting external sound), button modules, Bluetooth modules (e.g., for connecting the speaker 1400 to other devices (e.g., a user terminal of a user)), sensors, or the like, or any combination thereof. The auxiliary signals may include status signals (for example, on, off, hibernation, connection, etc.) of the auxiliary function module 1420, signals generated through user operations (for example, input and output signals generated by the user through keys, voice input, etc.), signals in the environment (for example, audio signals in the environment), or the like, or any combination thereof. In some embodiments, the auxiliary function module 1420 may transmit the received auxiliary signals through the flexible circuit board 1430 to the other components in the speaker 1400 for processing.
A button module may be configured to control the speaker 1400, so as to implement the interaction between the user and the speaker 1400. The user may send a command to the speaker 1400 through the button module to control the operation of the speaker 1400. In some embodiments, the button module may include a power button, a playback control button, a sound adjustment button, a telephone control button, a recording button, a noise reduction button, a Bluetooth button, a return button, or the like, or any combination thereof. The power button may be configured to control the status (on, off, hibernation, or the like) of the power source assembly 1440. The playback control button may be configured to control sound playback by the earphone core 1410, for example, playing information, pausing information, continuing to play information, playing a previous item, playing a next item, mode selection (e.g., a sport mode, a working mode, an entertainment mode, a stereo mode, a folk mode, a rock mode, a bass mode, etc.), playing environment selection (e.g., indoor, outdoor, etc.), or the like, or any combination thereof. The sound adjustment button may be configured to control a sound amplitude of the earphone core 1410, for example, increasing the sound, decreasing the sound, or the like. The telephone control button may be configured to control telephone answering, rejection, hanging up, dialing back, holding, and/or recording incoming calls. The record button may be configured to record and store the audio information. The noise reduction button may be configured to select a degree of noise reduction. For example, the user may select a level or degree of noise reduction manually, or the speaker 1400 may select a level or degree of noise reduction automatically according to a playback mode selected by the user or detected ambient sound. The Bluetooth button may be configured to turn on Bluetooth, turn off Bluetooth, match Bluetooth, connect Bluetooth, or the like, or any combination thereof. The return button may be configured to return to a previous menu, interface, or the like.
A sensor may be configured to detect information related to the speaker 1400. For example, the sensor may be configured to detect the user's fingerprint, and transmit the detected fingerprint to the controller 1450. The controller 1450 may match the received fingerprint with a fingerprint pre-stored in the speaker 1400. If the matching is successful, the controller 1450 may generate an instruction that may be transmitted to each component to initiate the speaker 1400. As another example, the sensor may be configured to detect the position of the speaker 1400. When the sensor detects that the speaker 1400 is detached from a user's face, the sensor may transmit the detected information to the controller 1450, and the controller 1450 may generate an instruction to pause or stop the playback of the speaker 1400. In some embodiments, exemplary sensors may include a ranging sensor (e.g., an infrared ranging sensor, a laser ranging sensor, etc.), a speed sensor, a gyroscope, an accelerometer, a positioning sensor, a displacement sensor, a pressure sensor, a gas sensor, a light sensor, a temperature sensor, a humidity sensor, a fingerprint sensor, an iris sensor, an image sensor (e.g., a vidicon, a camera, etc.), or the like, or any combination thereof.
The flexible circuit board 1430 may be configured to connect different components in the speaker 1400. The flexible circuit board 1430 may be a flexible printed circuit (FPC). In some embodiments, the flexible circuit board 1430 may include one or more bonding pads and/or one or more flexible wires. The one or more bonding pads may be configured to connect the one or more components of the speaker 1400 or other bonding pads. The one or more flexible wires may be configured to connect the components of the speaker 1400 with one bonding pad, two or more bonding pads, or the like. In some embodiments, the flexible circuit board 1430 may include one or more flexible circuit boards. Merely by ways of example, the flexible circuit board 1430 may include a first flexible circuit board and a second flexible circuit board. The first flexible circuit board may be configured to connect two or more of the microphone, the earphone core 1410, and the controller 1450. The second flexible circuit board may be configured to connect two or more of the power source assembly 1440, the earphone core 1410, the controller 1450, or the like. In some embodiments, the flexible circuit board 1430 may be an integral structure including one or more regions. For example, the flexible circuit board 1430 may include a first region and a second region. The first region may be provided with flexible wires for connecting the bonding pads on the flexible circuit board 1430 and other components on the speaker 1400. The second region may be configured to set one or more bonding pads. In some embodiments, the power source assembly 1440 and/or the auxiliary function module 1420 may be connected to the flexible circuit board 1430 (for example, the bonding pads) through the flexible wires of the flexible circuit board 1430. More details of the flexible circuit board 1430 may be disclosed elsewhere in the present disclosure, for example,
The power source assembly 1440 may be configured to provide electrical power to the components of the speaker 1400. In some embodiments, the power source assembly 1440 may include a flexible circuit board, a battery, etc. The flexible circuit board may be configured to connect the battery and other components of the speaker 1400 (for example, the earphone core 1410), and provide power for operations of the other components. In some embodiments, the power source assembly 1440 may also transmit its state information to the controller 1450 and receive instructions from the controller 1450 to perform corresponding operations. The state information of the power source assembly 1440 may include an on/off state, state of charge, time for use, a charging time, or the like, or any combination thereof.
According to information of the one or more components of the speaker 1400, the controller 1450 may generate an instruction to control the power source assembly 1440. For example, the controller 1450 may generate control instructions to control the power source assembly 1440 to provide power to the earphone core 1410 for generating sound. As another example, when the speaker 1400 does not receive input information within a certain time, the controller 1450 may generate a control instruction to control the power source assembly 1440 to enter a hibernation state. In some embodiments, the power source assembly 1440 may include a storage battery, a dry battery, a lithium battery, a Daniel battery, a fuel battery, or any combination thereof.
Merely by way of example, the controller 1450 may receive a sound signal from the user, for example, “play a song”, from the auxiliary function module 1420. By processing the sound signal, the controller 1450 may generate control instructions related to the sound signal. For example, the control instructions may control the earphone core 1410 to obtain information of songs from a storage module of the speaker 1400 (or other devices). Then an electric signal for controlling the vibration of the earphone core 1410 may be generated according to the information.
In some embodiments, the controller 1450 may include one or more electronic frequency division modules. The electronic frequency division modules may divide a frequency of a source signal. The source signal may come from one or more sound source apparatus (for example, a memory storing audio data) integrated in the speaker 1400. The source signal may also be an audio signal (for example, an audio signal received from the auxiliary function module 1420) received by the speaker 1400 in a wired or wireless manner. In some embodiments, the electronic frequency division modules may decompose an input source signal into two or more frequency-divided signals containing different frequencies. For example, the electronic frequency division module may decompose the source signal into a first frequency-divided signal with high-frequency sound and a second frequency-divided signal with low-frequency sound. Signals processed by the electronic frequency division modules may be transmitted to the earphone core 1410 in a wired or wireless manner for further processing.
In some embodiments, the controller 1450 may include a central processing unit (CPU), an application-specific integrated circuit (ASIC), an application-specific instruction-set processor (ASIP), a graphics processing unit (GPU), a physical processing unit (PPU), a digital signal processor (DSP), a field-programmable gate array (FPGA), a programmable logic device (PLD), a controller, a microcontroller unit, a reduced instruction set computer (RISC), a microprocessor, or the like, or any combination thereof.
In some embodiments, at least one of the earphone core 1410, the auxiliary function module 1420, the flexible circuit board 1430, the power source assembly 1430, and the controller 1450 may be disposed in a housing (e.g., housing 1401 as shown in
The description of the speaker 1400 may be for illustration purposes, and not intended to limit the scope of the present disclosure. For those skilled in the art, various changes and modifications may be made according to the description of the present disclosure. For example, the components and/or functions of the speaker 1400 may be changed or modified according to a specific implementation. For example, the speaker 1400 may include a storage component for storing signals containing audio information. As another example, the speaker 1400 may include one or more processors, which may execute one or more sound signal processing algorithms for processing sound signals. These changes and modifications may remain within the scope of the present disclosure.
The flexible circuit board 1430 may include one or more first bonding pads (i.e., first bonding pads 232-1, 232-2, 232-3, 232-4, 232-5, 232-6), one or more second bonding pads (i.e., second bonding pads 234-1, 234-2, 234-3, 234-4), and one or more flexible wires. At least one first bonding pad in the flexible circuit board 1430 may be connected to the at least one second bonding pad in a wired manner. Merely by way of example, the first bonding pad 232-1 and the second bonding pad 234-1 may be connected through a flexible wire. The first bonding pad 232-2 and the second bonding pad 234-2 may be connected through a flexible wire. The first bonding pad 232-5 and the second bonding pad 234-3 may be connected through a flexible wire. The first bonding pad 232-5 and the second bonding pad 234-3 may be connected through a flexible wire, and the first bonding pad 232-6 and the second bonding pad 234-4 may be connected through a flexible wire.
In some embodiments, each component in the speaker 1400 may be separately connected to one or more bonding pads. For example, the earphone core 1410 may be electrically connected to the first bonding pad 232-1 and the first bonding pad 232-2 through a wire 212-1 and a wire 212-2, respectively. The auxiliary function module 1420 may be connected to the first bonding pad 232-5 and the first bonding pad 232-6 through a wire 222-1 and a wire 222-2, respectively. The controller 1450 may be connected to the second bonding pad 234-1 through a wire 252-1, connected to the second bonding pad 234-2 through a wire 252-2, connected to the first bonding pad 234-3 through a wire 252-3, connected to the first bonding pad 232-4 through a wire 252-4, connected to the second bonding pad 234-3 through a wire 252-5, and connected to the second bonding pad 234-4 through a wire 252-6. The power source assembly 1440 may be connected to the first bonding pad 234-3 through a wire 242-1, and connected to the first bonding pad 232-4 through a wire 242-2. The wire mentioned above may be a flexible wire or an external wire. The external wire may include audio signal wires, auxiliary signal wires, or the like, or a combination thereof. The audio signal wire may include a wire connected to the earphone core 1410 for transmitting an audio signal to the earphone core 1410. The auxiliary signal wire may include a wire connected to the auxiliary function module 1420 for performing signal transmission with the auxiliary function module 1420. For example, the wire 212-1 and the wire 212-2 may be audio signal wires. As another example, the wire 222-1 and the wire 222-2 may be auxiliary signal wires. As another example, the wires 252-1 through 252-6 may include audio signal wires and auxiliary signal wires. In some embodiments, one or more grooves for burying wires may be provided in the speaker 1400 for placing the wires and/or the flexible wires.
Merely by way of example, a user of the speaker 1400 may send signals to the speaker 1400 by pressing a key (for example, a signal for playing music). The signals may be transmitted to the first bonding pad 232-5 and/or the first bonding pad 232-6 of the flexible circuit board 1430 through the wire 222-1 and/or the wire 222-2, then be transmitted to the second bonding pad 234-3 and/or second bonding pad 234-4 through a flexible wire. The signals may be transmitted to the controller 1450 through the wire 252-5 and/or the wire 252-6 that are connected to the second bonding pad 234-3 and/or the second bonding pad 234-4. The controller 1450 may analyze and process the received signals, and generate corresponding instructions according to the processed signals. The instructions generated by the controller 1450 may be transmitted to the flexible circuit board 1430 through one or more of the wires 252-1 through 252-6. The instructions generated by the controller 1450 may be transmitted to the earphone core 1410 through the wire 212-1 and/or the wire 212-2 that are connected to the flexible circuit board 1430, and may control the earphone core 1410 to play related music. The instructions generated by the controller 1450 may be transmitted to the power source assembly 1440 through the wire 242-1 and/or the wire 242-2 that are connected to the flexible circuit board 1430, and may control the power source assembly 1440 to provide other components with power required to play music. The connection through the flexible circuit board 1430 may simplify the wire routing of different components in the speaker 1400, reduce mutual influences between the wires, and save the space occupied by the inner wires in the speaker 1400.
As shown in
The battery 410 may include a body region 412 and a sealing region 414. In some embodiments, the sealing region 414 may be disposed between the flexible circuit board 420 and the body region 412, and may be connected to the flexible circuit board 420 and the body region 412. A connection manner of the sealing region 414 with the flexible circuit board 420 and the body region 412 may include a fixed connection and/or a movable connection. In some embodiments, the sealing region 414 and the body region 410 may be tiled, and the thickness of the sealing region 414 may be less than or equal to the thickness of the body region 412, such that the at least one side of the sealing region 414 and a surface of the body region 410 adjacent to the at least one side may have a shape of a stair. In some embodiments, the battery 410 may include a positive terminal and a negative terminal. The positive and negative terminals may be connected directly or indirectly (for example, through flexible circuit board 420) to other components in the speaker.
In some embodiments, the flexible circuit board 420 may include a first board 421 and a second board 422. The first board 421 may include a first bonding pad a second bonding pad, and a flexible wire. The first bonding pad may include a third bonding pad group 423-1, a third bonding pad group 423-2, a third bonding pad group 423-3, and a third bonding pad group 423-4. Each third bonding pad group may include one or more fourth bonding pads, for example, two fourth bonding pads. The second bonding pad may include a second bonding pad 425-1 and a second bonding pad 425-2. The one or more fourth bonding pads of each of the third bonding pad groups of the first bonding pad may connect two or more components of the speaker. For example, a fourth bonding pad in the third bonding pad group 423-1 may be connected to the earphone core (for example, earphone core 1410) through an external wire. A fourth bonding pad may be connected to another fourth bonding pad in the third bonding pad group 423-1 through a flexible wire disposed on the second board 422. Another fourth bonding pad in the third bonding pad group 423-1 may be connected to a controller (for example, the controller 1450) of the speaker through an external wire, thereby connecting an earphone core (e.g., the earphone core 1410) of the speaker and the controller for communication. As another example, a fourth bonding pad in the third bonding pad group 423-2 may be connected to a Bluetooth module of the speaker through an external wire. The fourth bonding pad in the third bonding pad group 423-2 may be connected to another fourth bonding pad in the third bonding pad group 423-2 through a flexible wire. The another fourth bonding pad in the third bonding pad group 423-2 may be connected to the earphone core through an external wire, thereby connecting the earphone core to the Bluetooth module, so that the speaker may play audio information through the Bluetooth connection. One or more second bonding pads (for example, the second bonding pads 425-1 and 425-2) may be used to connect the one or more components of the speaker to the battery 410. For example, the second bonding pad 425-1 and/or the second bonding pad 425-2 may be connected to the earphone core through an external wire. The second bonding pad 425-1 and/or the second bonding pad 425-2 may be connected to the battery 410 through a flexible wire provided on the second board 422, thereby connecting the earphone core and the battery 410.
There may be multiple arrangements of the first bonding pads 423 and the second bonding pads 425. For example, all the bonding pads may be arranged along a straight line, or be arranged at other shapes. In some embodiments, one or more groups of the first bonding pads 423 may be spaced apart along a length direction of the first board 421. One or more fourth bonding pads in each of the third bonding pad groups of the first bonding pad may be disposed along a width direction of the first board 421. The one or more fourth pads may be staggered and spaced along the length of the first bonding pad. One or more second bonding pads 425 may be disposed in the middle region of the first board 421. One or more second bonding pads 425 may be disposed along the length direction of the first board 421. In this way, on the one hand, it may be possible to avoid the formation of a flush interval region between adjacent two groups of third bonding pads, so that the strength distribution on the first board 421 may be uniform. Occurrence of bending between adjacent two groups of third bonding pads may be reduced, and a probability of the first board 421 being broken due to the bending may be reduced to protect the first board 421. On the other hand, it may increase the distance between the bonding pads, thereby facilitating the welding as well as reducing short circuits between different bonding pads.
In some embodiments, the second board 422 may be provided with one or more flexible wires 422 for connecting the bonding pads on the first board 421 to the battery 410. Merely by way of example, the second board 422 may include two flexible wires. One end of each of the two flexible wires may be connected to the positive terminal and the negative terminal of the battery 410, respectively, and the other end of each of the two flexible wires may be connected to a pad on the first board 421. Therefore, there may be no need to provide additional bonding pads to lead out the positive and negative electrodes of the battery 410, which may reduce the number of bonding pads and simplify structures and technologies used herein. Since only the flexible wire is provided on the first board 421, in some embodiments, the second board 422 may be bent similarly according to specific conditions. For example, the second board 422 may be bent to fix one end of the first board 421 to the battery 410, thereby reducing the volume of the power source assembly 1600, saving the space for housing the power source assembly 1600 in the speaker and improving a space utilization rate. As another example, by folding the second board 422, the first board 421 may be attached to the side surface of the battery 410, such that the second board 422 may be stacked with the battery 410, thereby reducing the space occupied by the power source assembly 1600 greatly.
In some embodiments, the flexible circuit board 420 may be an integral part, and the first board 421 and the second board 422 may be two regions of the flexible circuit board. In some embodiments, the flexible circuit board 420 may be divided into two independent parts, for example, the first board 421 and the second board 422 may be two independent boards. In some embodiments, the flexible circuit board 420 may be disposed in a space formed by the body region 412 and/or the sealing region 414 of the battery 410, so that there is no need to provide a separate space for the flexible circuit board 420, thereby further improving the space utilization.
In some embodiments, the power source assembly 1600 may further include a hard circuit board 416. The hard circuit board 416 may be disposed in the sealing region 414. The positive and negative terminals of a specific battery 410 may be disposed on the hard circuit board 416. Further, a protection circuit may be provided on the hard circuit board 416 to protect the battery 410 from overloading. An end of the second board 422 far away from the first board 421 may be fixedly connected to the hard circuit board 416, so that the flexible wires on the second board 422 may be connected to the positive terminal and the negative terminal of the battery 410, respectively. In some embodiments, the second board 422 and the hard circuit board 416 may be pressed together during fabrication.
In some embodiments, the shapes of the first board 421 and the second board 422 may be set according to actual conditions. The shapes of the first board 421 and the second board 422 may include a square, a rectangle, a triangle, a polygon, a circle, an oval, an irregular shape, or the like. In some embodiments, the shape of the second board 422 may match the shape of the sealing region 414 of the battery 410. For example, both the shapes of the sealing region 414 and the second board 422 may be rectangular, and the shape of the first board 421 may also be rectangular. And the first board 421 may be disposed at one end in the length direction of the second board 422 and be perpendicular to the second board 422 along the length direction. Further, the second board 422 may be connected to the middle region in the length direction of the first board 421, so that the first board 421 and the second board 422 may be disposed in a T shape.
In some embodiments, when the user wears the speaker (for example, the speaker 1400), the speaker may be on at least one side of the user's head, and be close to but not block the user's ear. The speaker may be worn on the user's head (for example, open earphones worn off the ears with glasses, headbands, or other means) or on other parts of the user's body, such as the user's neck/shoulders.
In some embodiments, the speaker described elsewhere in the present disclosure may further include a Bluetooth low energy (BLE) module for implementing Bluetooth modules used in the speaker.
The BLE module 1700 may facilitate communications between components of the speaker (e.g., one or more sensors such as a locating sensor, an orientation sensor, an inertial sensor, etc.) or a communication between the speaker and an external device (e.g., a terminal device of a user, a cloud data center, a peripheral device of the speaker, etc.) using BLE technology. BLE is a wireless communication technology published by the Bluetooth Special Interest Group (BT-SIG) standard as a component of Bluetooth Core Specification Version 4.0. BLE is a lower power, lower complexity, and lower cost wireless communication protocol, designed for applications requiring lower data rates and shorter duty cycles. Inheriting the protocol stack and star topology of classical Bluetooth, BLE redefines the physical layer specification, and involves new features such as a very-low power idle mode, a simple device discovery, and short data packets, etc.
The transceiver 4630 may receive data (e.g., an audio message) to be played by the speaker. The transceiver 4630 may include any suitable logic and/or circuitry to facilitate receiving signals from and/or transmitting signals to other components of the speaker or an external device wirelessly. In some embodiments, the transceiver 4630 may transmit the received data to the processor 4610 for processing. For example, the processor 4610 may perform a noise reduction on the received data. As another example, the processor 4610 may serve as an equalizer, which adjusts the volume, the tone, etc. of an audio message adaptively according to actual needs. In some embodiments, the processor 4610 may execute instructions embodied in software (including firmware) associated with the operations of BLE module 1700 for managing the operations of transceiver 4630. In some embodiments, the processor 4610 may facilitate processing and forwarding of received data from the transceiver 4630 and/or processing and forwarding of data to be transmitted by the transceiver 4630. The storage 4620 may store one or more instructions executed by the processor 4610, dated received from the transceiver 4630 and/or data to be transmitted by the transceiver 4630, or the like. The storage 4620 may include but is not limited to, RAM, ROM, flash memory, a hard drive, a solid state drive, or other volatile and/or non-volatile storage devices. The BLE module 1700 may interact with one or more modules or components of the speaker via the interface 4640.
It will be appreciated that, in some embodiments, the functionality of one or more of the processor 4610, the storage 4620, the transceiver 4630, and/or the interface 4640 may be integrated with one or more modules of the speaker on a same circuit board, such as a system on a chip (SOC), an application specific integrated circuit (ASIC), etc. In some embodiments, the BLE module 1700 or one or more components thereof may be integrated on a same circuit board with the earphone core 1410 and/or the controller 1450. The circuit board may connect to the power source assembly through the flexible circuit board 1430.
In 1810, data may be encoded. In some embodiments, a speaker (e.g., the speaker 1400) may transmit the data to another device through the BLE module 1700. The BLE module may encode the data to be transmitted. In some embodiments, the BLE module 1700 may encode the data using a Low Complexity Communications Codec (LC3).
In 1820, a BLE data packet may be generated. A BLE data packet may be generated based on the encoded data. In some embodiments, the BLE module 1700 may obtain parameters or attributes associated with the data before the BLE data packets are generated. The parameters or attributes associated with the data may include parameters for decoding the data (e.g., the codec of the data), parameters for demodulating the data, the volume of the data, the tone of the data, the content of the data, or the like, or any combination thereof. In some embodiments, the BLE data packets may also include the parameters or attributes associated with the data. In some embodiments, the data may be divided into multiple data segments of particular sizes if the data is oversized. A BLE data packet may be generated based on each data segment such that the transmission speed of the data may be improved.
In 1830, the BLE data packet may be modulated onto a BLE channel. In some embodiments, if the data is divided into multiple data segments, multiple BLE channels may be established, and each of the multiple data segments may be modulated onto a BLE channel.
In 1840, the modulated BLE data packet may be transmitted to another device through the BLE channel. In some embodiments, data transmission between the BLE module 1700 and the another device may be implemented according to a protocol suitable for BLE.
In some embodiments, the BLE module 1700 may determine a location of the speaker. The BLE module 1700 may function as a locating sensor. In some embodiments, the locating sensor may be omitted in the speaker, thus reducing the size, the weight, and the power consumption of the speaker. In some embodiments, the BLE module 1700 may determine the location of the speaker by performing the operations 1910 through 1940 in the process 1900.
In 1910, position tags around the speaker may be scanned. In some embodiments, a position tag refers to an identifier indicating a position of a BLE device. In some embodiments, the identifier may include a character string representing the position of the BLE device. In some embodiments, the identifier may further include character strings representing a name, a service, a device ID, etc., of the BLE device. In some embodiment, the BLE device may be a BLE transceiver set at a virtual or physical location. In some embodiments, the BLE device may be another BLE module implemented in a terminal device (e.g., a mobile phone, a smart wearable device, etc.) of a user. In some embodiments, the BLE module 1700 may scan for position tags in a certain range (for example, in a circular range centered by the acoustic output apparatus with a radius of 100 meters). In some embodiments, the manner in which the scanning operation is performed, a frequency of scanning operation, and a width of a scanning window (e.g., the certain range) of the scanning operation may be set by a user (e.g., a wearer of the speaker), according to default settings of the speaker, etc. Within the scanning window, the BLE module 1700 may detect position tags of multiple BLE devices sensed by the transceiver 4630.
In 1920, messages related to one or more detected position tags may be obtained within the scanning window. In some embodiments, the BLE module 1700 may detect multiple position tags, and obtain messages including identifiers from BLE devices corresponding to the multiple position tags. In some embodiments, the processor 4610 of the BLE module 1700 may determine if the messages are obtained from “allowed” BLE devices (e.g., qualified BLE transceivers). The BLE module 1700 may determine a value of an identifier contained in each message. In some embodiments, a value of an identifier contained in a message may be determined based on at least one of character strings of the position, the name, the service, the device ID, etc. of the identifier. The processor 4610 of the BLE module 1700 may compare the value with one or more preset values. In some embodiments, the BLE module 1700 may identify the one or more position tags and corresponding “allowed” BLE devices according to the comparison. In some embodiments, in order to provide a relatively precise position of the speaker, at least three position tags may be obtained within the scanning window.
In 1930, one or more parameters associated with the messages may be determined. When the BLE module 1700 confirms that the messages are obtained from the “allowed” BLE devices, the processor 4610 may instruct the BLE module 1700 to record a radio parameter associated with each message. In some embodiments, the radio parameter may include a received signal strength indicator (RSSI) value, a bit error rate (BER), etc. In some embodiments, the message, the radio parameter regarding the message, and the identifier obtained from the message may be stored in the storage 4620.
In 1940, the location of the speaker may be calculated based on the obtained messages and the one or more parameters associated with the messages. In some embodiments, the processor 4610 may calculate a relative location of the acoustic output apparatus relative to the“allowed” BLE devices from which the one or more position tags are obtained based on the messages and the one or more parameters associated with the messages. Since locations of the “allowed” BLE devices are known, the location of the speaker (e.g., in forms of coordinates of latitude and longitude) may be determined based on the relative location of the speaker relative to the “allowed” BLE devices. The determination of the location of the speaker may be performed using any suitable methods. In this way, the calculation of the location of the speaker may use less battery power. In some embodiments, if there are more than three position tags are detected, and messages related to the position tags are obtained, the processor 4610 may rank the messages according to the RSSI values associated with the messages. Messages corresponding to three highest RSSI values may be identified from the more than three messages, and the identified messages and the one or more parameters associated with the messages may be used to determine the location of the speaker.
In some embodiments, the location of the speaker may be determined at any suitable frequency. Determined locations of the speaker may be filtered in any suitable manner so as to minimize errors due to external factors, such as a person standing between the speaker and the “allowed” BLE devices.
It should be noted that the above description of the process 1900 is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations or modifications may be made under the teachings of the present disclosure. For example, the BLE module may also be used to determine a direction of the speaker relative to a BLE device nearby. However, those variations and modifications do not depart from the scope of the present disclosure.
It's noticeable that above statements are preferable embodiments and technical principles thereof. A person having ordinary skill in the art is easy to understand that this disclosure is not limited to the specific embodiments stated, and a person having ordinary skill in the art can make various obvious variations, adjustments, and substitutes within the protected scope of this disclosure. Therefore, although above embodiments state this disclosure in detail, this disclosure is not limited to the embodiments, and there can be many other equivalent embodiments within the scope of the present disclosure, and the protected scope of this disclosure is determined by following claims.
Number | Date | Country | Kind |
---|---|---|---|
201410005804.0 | Jan 2014 | CN | national |
201910364346.2 | Apr 2019 | CN | national |
201910888067.6 | Sep 2019 | CN | national |
201910888762.2 | Sep 2019 | CN | national |
The present application is a continuation-in-part of U.S. patent application Ser. No. 17/074,762 filed on Oct. 20, 2020, which is a continuation-in-part of U.S. patent application Ser. No. 16/813,915 (now U.S. Pat. No. 10,848,878) filed on Mar. 10, 2020, which is a continuation of U.S. patent application Ser. No. 16/419,049 (now U.S. Pat. No. 10,616,696) filed on May 22, 2019, which is a continuation of U.S. patent application Ser. No. 16/180,020 (now U.S. Pat. No. 10,334,372) filed on Nov. 5, 2018, which is a continuation of U.S. patent application Ser. No. 15/650,909 (now U.S. Pat. No. 10,149,071) filed on Jul. 16, 2017, which is a continuation of U.S. patent application Ser. No. 15/109,831 (now U.S. Pat. No. 9,729,978) filed on Jul. 6, 2016, which is a U.S. National Stage entry under 35 U.S.C. § 371 of International Application No. PCT/CN2014/094065 filed on Dec. 17, 2014, designating the United States of America, which claims priority to Chinese Patent Application No. 201410005804.0, filed on Jan. 6, 2014; the present application is a continuation-in-part of International Application No. PCT/CN2020/083631 filed on Apr. 8, 2020, which claims priority to Chinese Application No. 201910888067.6, filed on Sep. 19, 2019, Chinese Application No. 201910888762.2, filed on Sep. 19, 2019, and Chinese Application No. 201910364346.2, filed on Apr. 30, 2019. Each of the above-referenced applications is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2327320 | Shapiro | Aug 1943 | A |
4987597 | Haertl | Jan 1991 | A |
5327506 | Stites, III | Jul 1994 | A |
5430803 | Kimura et al. | Jul 1995 | A |
5572594 | Devoe et al. | Nov 1996 | A |
5692059 | Kruger | Nov 1997 | A |
5757935 | Kang et al. | May 1998 | A |
5790684 | Niino et al. | Aug 1998 | A |
6062337 | Zinserling | May 2000 | A |
6817440 | Kim | Nov 2004 | B1 |
6850138 | Sakai | Feb 2005 | B1 |
7639825 | Fukuda | Dec 2009 | B2 |
8141678 | Ikeyama et al. | Mar 2012 | B2 |
8340334 | Suyama | Dec 2012 | B2 |
8345915 | Shin et al. | Jan 2013 | B2 |
8891800 | Shaffer | Nov 2014 | B1 |
9036851 | Peng | May 2015 | B2 |
9226075 | Lee | Dec 2015 | B2 |
9729978 | Qi et al. | Aug 2017 | B2 |
9985596 | Litovsky et al. | May 2018 | B1 |
10149071 | Qi et al. | Dec 2018 | B2 |
10334372 | Qi et al. | Jun 2019 | B2 |
10375479 | Graber | Aug 2019 | B2 |
10499140 | Gong et al. | Dec 2019 | B2 |
10616696 | Qi et al. | Apr 2020 | B2 |
10897677 | Walraevens et al. | Jan 2021 | B2 |
11197106 | Qi et al. | Dec 2021 | B2 |
20030048913 | Lee et al. | Mar 2003 | A1 |
20060098829 | Kobayashi | May 2006 | A1 |
20060113143 | Ishida | Jun 2006 | A1 |
20070041595 | Carazo et al. | Feb 2007 | A1 |
20070098198 | Hildebrandt | May 2007 | A1 |
20070223735 | Lopresti et al. | Sep 2007 | A1 |
20070291971 | Halteren | Dec 2007 | A1 |
20080101589 | Horowitz et al. | May 2008 | A1 |
20090095613 | Lin | Apr 2009 | A1 |
20090147981 | Blanchard et al. | Jun 2009 | A1 |
20090208031 | Abolfathi | Aug 2009 | A1 |
20090285417 | Shin et al. | Nov 2009 | A1 |
20090290730 | Fukuda et al. | Nov 2009 | A1 |
20100054492 | Eaton et al. | Mar 2010 | A1 |
20100310106 | Blanchard et al. | Dec 2010 | A1 |
20100322454 | Ambrose et al. | Dec 2010 | A1 |
20110150262 | Nakama et al. | Jun 2011 | A1 |
20110170730 | Zhu | Jul 2011 | A1 |
20120020501 | Lee | Jan 2012 | A1 |
20120070022 | Saiki | Mar 2012 | A1 |
20120177206 | Yamagishi et al. | Jul 2012 | A1 |
20120263324 | Joyce et al. | Oct 2012 | A1 |
20130051585 | Karkkainen et al. | Feb 2013 | A1 |
20130108068 | Poulsen et al. | May 2013 | A1 |
20130169513 | Heinrich et al. | Jul 2013 | A1 |
20130329919 | He | Dec 2013 | A1 |
20140009008 | Li et al. | Jan 2014 | A1 |
20140064533 | Kasic, II | Mar 2014 | A1 |
20140185822 | Kunimoto et al. | Jul 2014 | A1 |
20140185837 | Kunimoto et al. | Jul 2014 | A1 |
20140274229 | Fukuda | Sep 2014 | A1 |
20140355777 | Nabata et al. | Dec 2014 | A1 |
20150030189 | Nabata et al. | Jan 2015 | A1 |
20150049893 | Heidenreich et al. | Feb 2015 | A1 |
20150256656 | Horii | Sep 2015 | A1 |
20150264473 | Fukuda | Sep 2015 | A1 |
20150326967 | Otani | Nov 2015 | A1 |
20160037243 | Lippert et al. | Feb 2016 | A1 |
20160119721 | Doshida et al. | Apr 2016 | A1 |
20160127841 | Horii | May 2016 | A1 |
20160329041 | Qi et al. | Nov 2016 | A1 |
20170195795 | Mei et al. | Jul 2017 | A1 |
20170201823 | Shetye et al. | Jul 2017 | A1 |
20170208395 | Wan et al. | Jul 2017 | A1 |
20170230741 | Matsuo et al. | Aug 2017 | A1 |
20170238096 | Nakagawa et al. | Aug 2017 | A1 |
20170353780 | Huang et al. | Dec 2017 | A1 |
20170353793 | Sun et al. | Dec 2017 | A1 |
20180048952 | Hong et al. | Feb 2018 | A1 |
20180091883 | Howes et al. | Mar 2018 | A1 |
20180167711 | Lin | Jun 2018 | A1 |
20180182370 | Hyde et al. | Jun 2018 | A1 |
20180227660 | Azmi et al. | Aug 2018 | A1 |
20180271383 | Lee | Sep 2018 | A1 |
20180367885 | Gong et al. | Dec 2018 | A1 |
20180376231 | Pfaffinger | Dec 2018 | A1 |
20190026071 | Tamaoki et al. | Jan 2019 | A1 |
20190052954 | Rusconi Clerici Beltrami et al. | Feb 2019 | A1 |
20190071011 | Konno et al. | Mar 2019 | A1 |
20190104352 | Ozawa et al. | Apr 2019 | A1 |
20190238971 | Wakeland et al. | Aug 2019 | A1 |
20190261080 | Gerber et al. | Aug 2019 | A1 |
20200137476 | Shinmen et al. | Apr 2020 | A1 |
20200169801 | Zhu | May 2020 | A1 |
20200252708 | Zhu | Aug 2020 | A1 |
20200367008 | Walsh et al. | Nov 2020 | A1 |
20210099027 | Larsson et al. | Apr 2021 | A1 |
20210219059 | Qi et al. | Jul 2021 | A1 |
20210219073 | Zhang | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
1270488 | Oct 2000 | CN |
101022678 | Aug 2007 | CN |
101098353 | Jan 2008 | CN |
201426167 | Mar 2010 | CN |
201616895 | Oct 2010 | CN |
201690580 | Dec 2010 | CN |
102014328 | Apr 2011 | CN |
102421043 | Apr 2012 | CN |
202435600 | Sep 2012 | CN |
103108268 | May 2013 | CN |
103167390 | Jun 2013 | CN |
103179483 | Jun 2013 | CN |
103209377 | Jul 2013 | CN |
103260117 | Aug 2013 | CN |
103347235 | Oct 2013 | CN |
203233520 | Oct 2013 | CN |
203301726 | Nov 2013 | CN |
204206450 | Mar 2015 | CN |
204377095 | Jun 2015 | CN |
104869515 | Aug 2015 | CN |
104883635 | Sep 2015 | CN |
204810512 | Nov 2015 | CN |
204948328 | Jan 2016 | CN |
204948329 | Jan 2016 | CN |
205336486 | Jun 2016 | CN |
205510154 | Aug 2016 | CN |
205754812 | Nov 2016 | CN |
106231462 | Dec 2016 | CN |
106303779 | Jan 2017 | CN |
106341752 | Jan 2017 | CN |
106792304 | May 2017 | CN |
206193360 | May 2017 | CN |
107231585 | Oct 2017 | CN |
206575566 | Oct 2017 | CN |
206640738 | Nov 2017 | CN |
206865707 | Jan 2018 | CN |
107820169 | Mar 2018 | CN |
207075075 | Mar 2018 | CN |
207340125 | May 2018 | CN |
108650597 | Oct 2018 | CN |
108712695 | Oct 2018 | CN |
207939700 | Oct 2018 | CN |
109032558 | Dec 2018 | CN |
109151680 | Jan 2019 | CN |
208572417 | Mar 2019 | CN |
208675298 | Mar 2019 | CN |
109640209 | Apr 2019 | CN |
208783039 | Apr 2019 | CN |
2765788 | Aug 2014 | EP |
2011367 | Dec 2014 | EP |
3404931 | Nov 2018 | EP |
H0993684 | Apr 1997 | JP |
2004343286 | Dec 2004 | JP |
2006332715 | Dec 2006 | JP |
2007251358 | Sep 2007 | JP |
20050030183 | Mar 2005 | KR |
20080103334 | Nov 2008 | KR |
20090082999 | Aug 2009 | KR |
0225990 | Mar 2002 | WO |
2004095878 | Nov 2004 | WO |
2005053351 | Jun 2005 | WO |
2015087093 | Jun 2015 | WO |
2016206764 | Dec 2016 | WO |
2018107141 | Jun 2018 | WO |
Entry |
---|
International Search Report in PCT/CN2020/088482 dated Aug. 5, 2020, 4 pages. |
Written Opinion in PCT/CN2020/088482 dated Aug. 5, 2020, 4 pages. |
International Search Report in PCT/CN2019/130880 dated Apr. 1, 2020, 6 pages. |
International Search Report in PCT/CN2019/130884 dated Mar. 20, 2020, 6 pages. |
International Search Report in PCT/CN2019/130886 dated Mar. 31, 2020, 6 pages. |
International Search Report in PCT/CN2019/130944 dated Mar. 26, 2020, 6 pages. |
International Search Report in PCT/CN2019/130921 dated Apr. 1, 2020, 6 pages. |
International Search Report in PCT/CN2019/130942 dated Mar. 26, 2020, 6 pages. |
International Search Report in PCT/CN2020/070540 dated Apr. 2, 2020, 6 pages. |
International Search Report in PCT/CN2020/070550 dated Mar. 27, 2020, 6 pages. |
International Search Report in PCT/CN2020/070545 dated Apr. 15, 2020, 6 pages. |
International Search Report in PCT/CN2020/070551 dated Mar. 27, 2020, 7 pages. |
International Search Report in PCT/CN2020/070542 dated Mar. 27, 2020, 6 pages. |
International Search Report in PCT/CN2020/070539 dated Apr. 7, 2020, 6 pages. |
International Search Report in PCT/CN2020/087002 dated Jul. 14, 2020, 4 pages. |
Written Opinion in PCT/CN2020/087002 dated Jul. 14, 2020, 5 pages. |
International Search Report in PCT/CN2020/087526 dated Jul. 23, 2020, 5 pages. |
Written Opinion in PCT/CN2020/087526 dated Jul. 23, 2020, 4 pages. |
International Search Report in PCT/CN2020/083631 dated Jun. 29, 2020, 4 pages. |
Written Opinion in PCT/CN2020/083631 dated Jun. 29, 2020, 4 pages. |
International Search Report in PCT/CN2020/087034 dated Jul. 22, 2020, 4 pages. |
Written Opinion in PCT/CN2020/087034 dated Jul. 22, 2020, 5 pages. |
International Search Report in PCT/CN2020/084161 dated Jul. 6, 2020, 4 pages. |
Written Opinion in PCT/CN2020/084161 dated Jul. 6, 2020, 4 pages. |
International Search Report in PCT/CN2020/088190 dated Jul. 30, 2020, 6 pages. |
International Search Report in PCT/CN2020/106759 dated Oct. 28, 2020, 6 pages. |
International Search Report in PCT/CN2020/116319 dated Dec. 11, 2020, 6 pages. |
International Search Report in PCT/CN2014/094065 dated Mar. 17, 2015, 5 pages. |
Written Opinion in PCT/CN2014/094065 dated Mar. 17, 2015, 10 pages. |
First Office Action in Chinese application No. 201410005804.0 dated Dec. 17, 2015, 10 pages. |
The Extended European Search Report in European Application No. 14877111.6 dated Mar. 17, 2017, 6 pages. |
First Examination Report in Indian Application No. 201617026062 dated Nov. 13, 2020, 6 pages. |
Notice of Reasons for Rejection in Japanese Application No. 2016-545828 dated Oct. 10, 2017, 6 pages. |
Notice of Preliminary Rejection in Korean Application No. 10-2022-7010046 dated Jun. 20, 2022, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20210168532 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16419049 | May 2019 | US |
Child | 16813915 | US | |
Parent | 16180020 | Nov 2018 | US |
Child | 16419049 | US | |
Parent | 15650909 | Jul 2017 | US |
Child | 16180020 | US | |
Parent | 15109831 | US | |
Child | 15650909 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17074762 | Oct 2020 | US |
Child | 17172007 | US | |
Parent | PCT/CN2020/083631 | Apr 2020 | US |
Child | 17074762 | US | |
Parent | 16813915 | Mar 2020 | US |
Child | 17074762 | US |