Systems and methods for synchronization event building and/or collapsing by a synchronization component of a cloud-based platform

Information

  • Patent Grant
  • 9633037
  • Patent Number
    9,633,037
  • Date Filed
    Friday, June 13, 2014
    10 years ago
  • Date Issued
    Tuesday, April 25, 2017
    7 years ago
Abstract
Techniques for monitoring local and/or remote file systems by a synchronization component (e.g., client/server) of a cloud-based platform are disclosed. In some embodiments, a method of building synchronization events by a synchronization component (e.g., a synchronization server/client) includes obtaining a set of items that have been changed and their new states and retrieving last known states of the set of items that are stored in a reference snapshot inside a filesystem scanner. The method further includes generating differences between the new states and the last known states of the set of items as item changes and utilizing information provided by the item changes to translate the item changes into synchronization events for execution on the opposing file system. A method of handling failed synchronization events by a synchronization component of the cloud-based platform by collapsing a subsequent event with the failed synchronization event is also disclosed.
Description
BACKGROUND

In a sharing and collaboration environment, multiple users share, access and otherwise perform actions or tasks on content and files in a shared workspace, where any number of users may have access to a given file or may want to or need to perform an action on the file at any given time. Content such as audio/video files, documents or email messages on a user device can be synced with a cloud server and content from the cloud server can be synced with a user device. The syncing occurs when a new content arrives at the server, or when a user makes a request. Syncing can result in new content, updated content and/or deleted content.





BRIEF DESCRIPTION OF DRAWINGS

The present embodiments are illustrated by way of example and are not intended to be limited by the figures of the accompanying drawings. In the drawings:



FIG. 1 illustrates an example diagram of an environment suitable for operating a system implementing a synchronization component (e.g., a synchronization client or a server) for synchronization event building and/or collapsing.



FIG. 2 depicts an example diagram of a web-based or online collaboration platform deployed in an enterprise or other organizational setting for organizing work items and workspaces;



FIG. 3A depicts an example diagram of a workspace in a cloud-based platform such as an online or web-based collaboration environment accessible by multiple collaborators through various devices;



FIG. 3B depicts an abstract diagram illustrating an example data structure of the folders and files in the workspace of FIG. 3A;



FIG. 4A depicts an example system block diagram showing the interaction between server-side components for incrementally updating a remote client with events or actions that occurred via a cloud-based platform;



FIG. 4B depicts an example block diagram showing the interaction of remote clients and with a distributed database cluster for incremental updates of events/actions which occurred at a cloud-based environment;



FIG. 5 depicts an example system block diagram showing action log entries recorded from actions/interactions on or with files/content stored in a database of a cloud-based environment;



FIG. 6 depicts a diagram illustrating local event monitoring in a first embodiment of the synchronization client of the cloud-based platform;



FIG. 7 depicts a diagram illustrating local event monitoring in a second embodiment of the synchronization client of the cloud-based platform.



FIG. 8A depicts a block diagram illustrating example components of a device having a synchronization client of the cloud-based platform for synchronization event building using a single mode and/or synchronization event collapsing.



FIG. 8B depicts a block diagram illustrating example components of the synchronization client of FIG. 8A.



FIG. 9 depicts a block diagram illustrating example components of a synchronization server of a cloud-based platform for synchronization event building using a single mode and/or synchronization event collapsing.



FIG. 10A depicts a logic flow diagram illustrating an example method of generating item changes for synchronization event building



FIG. 10B depicts a logic flow diagram illustrating item change ordering and raw event generation for synchronization event building



FIG. 11 depicts a logic flow diagram illustrating an example method of collapsing a failed event into a subsequent event to handle synchronization event failures.



FIG. 12 depicts a diagrammatic representation of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, can be executed.





The same reference numbers and any acronyms identify elements or acts with the same or similar structure or functionality throughout the drawings and specification for ease of understanding and convenience.


DETAILED DESCRIPTION

The following description and drawings are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in certain instances, well-known or conventional details are not described in order to avoid obscuring the description. References to one or an embodiment in the present disclosure can be, but not necessarily are, references to the same embodiment; and, such references mean at least one of the embodiments.


Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not other embodiments.


The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. Certain terms that are used to describe the disclosure are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner regarding the description of the disclosure. For convenience, certain terms may be highlighted, for example using italics and/or quotation marks. The use of highlighting has no influence on the scope and meaning of a term; the scope and meaning of a term is the same, in the same context, whether or not it is highlighted. It will be appreciated that same thing can be said in more than one way.


Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, nor is any special significance to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms discussed herein is illustrative only, and is not intended to further limit the scope and meaning of the disclosure or of any exemplified term. Likewise, the disclosure is not limited to various embodiments given in this specification.


Without intent to limit the scope of the disclosure, examples of instruments, apparatus, methods and their related results according to the embodiments of the present disclosure are given below. Note that titles or subtitles may be used in the examples for convenience of a reader, which in no way should limit the scope of the disclosure. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions will control.


1. Event Building


The present disclosure includes technology for event building by a synchronization client (“sync client”) of a cloud-based collaboration and/or storage service (“cloud-based platform”).


Local event monitoring by the synchronization client (“sync client”), in some embodiments can be performed in multiple modes. For example, in a full scan mode, the synchronization client examines the entire sync directory and generates differences between what is present in file system and what is in the local database. In the listen mode, a third party library (e.g., ‘watchdog’) is used to turn file system changed notifications into events.


Events generated by the listen mode and full scan mode have different information, which can break a contract required in event processing that events from both generators are the same and may weaken the system's abstractions. The process of converting a file system change notification to an actual event may require that watchdog perform a full scan of a synchronization directory, making the code less DRY (don't repeat yourself principal) and making bug fixing and optimizations far more complicated. Finally, the logic for switching between the full scan and listen modes can be complicated, error prone, and/or difficult to test.


These challenges can be compounded in some embodiments when local event monitoring is considered alongside the cloud-based platform server event monitoring. For example, the situation of turning a set of differences between trees into a set of events that can be consistently applied has been solved both for the server side and the local side in totally different ways in some embodiments. In addition to algorithmic or process differences, there can also be differences in the data structures used to represent various stages of processing and in the architecture of how events are generated in some embodiments.


The process and architectural differences may not be reflective of true differences between the cloud-based platform (e.g., cloud-based collaboration and/or storage services) server and local storage (of which there are some) and serve to reduce the leveragability of and maintainability of the synchronization codebase.


Various embodiments of the disclosed technology refactors (i.e., applies behavior preserving code transformations that improve source code) event monitoring (event generation and the filter pipeline) systems and methods to address these problems. Some embodiments can maximize code maintainability through encapsulation and reuse. Specifically, various embodiments of the disclosed technology can quickly and incrementally implement critical pieces of the refactoring without delay, while deferring implementation of the less critical pieces for later.


Various embodiments of the disclosed technology can:

  • 1. Remove duplicated full scan logic between the sync client and a watchdog (“watchdog” as used herein refers to the “watchdog” process found in various operating systems (e.g., including MAC operating systems)).
  • 2. Collapse the full scan and listen modes into one mode.
  • 3. Add support for partial scanning of only affected folders.
  • 4. Ensure with high confidence that events are only released into filter pipelines when they are fully consistent and no longer subject to race conditions. In particular, filter pipeline inconsistencies can be considered unrecoverable errors in some embodiments.
  • 5. Provide strongly defined contracts for the information and behavior guarantees on data structures used in the filter pipeline.
  • 6. Move file system access into the initial scanner and out of the filter pipeline in order to strengthen contracts and limit race conditions.
  • 7. Reuse common algorithms and data structures between the cloud-based platform server and the local device.


Example embodiments can be encapsulated so developers can largely defer optimizations for later.


Example Considerations


Event monitoring is the process of turning file system notifications from the file system observers into synchronization events that are suitable for executing on the opposite file system (e.g. remote cloud based storage or local storage). This can be done in some embodiments through a series of transformations on data structures that are outlined here.


File System Notifications


In some embodiments, file system notifications can be generated by file system observers and contain information about the file or folder that changed. In some embodiments, on the cloud-based platform server, action log framework (ALF) events can include information about the new item state and minimal information about the type of change that occurred. On the local side, in some embodiments, notifications can contain only the parent folder of the item that has changed. Accordingly, these notifications may need to be processed in order to be useable.


Item Change


In some embodiments, an item change represents that a specific item changes and can contain the full new state of the item. In some embodiments, on the local filesystem, item changes can be generated by taking a consistent snapshot of the folder whose children have changed and comparing the new snapshot with a reference snapshot. In some embodiments, on the cloud-based platform (e.g., cloud-based collaboration and/or storage services), the item changes can be generated either in a similar manner during full scans or by directly passing through the ALF event. These changes can contain only information about the state of the item and do not convey any information about the order in which the changes must be applied in some embodiments.


Raw Events


Raw events can be generated, in some embodiments, by ordering item changes and producing a set of executable actions that will bring the reference into sync with the new state of the file system. Raw events can be defined relative to the file system identifier of the item. In some embodiments there is no guarantee that produced events will actually be executed.


Sync Events


In some embodiments, synchronization events can be generated by mapping filesystem-specific identifiers to logical identifiers so that the event can be executed directly on the opposite filesystem. In some embodiments, once a sync event is produced, synchronization is committed to either executing the sync event action or marking the item as a problem item.


Item Change Generation


In some embodiments, this component builds item changes with one or more of the following properties:

  • 1. An item change provides all of the information about the new state on the filesystem required for turning the change into a sync event. In other words, no parts of the component will need to access the filesystem once the item change is produced.
  • 2. An item change provides a consistent picture of what actually existed on the file system at some point in time. For example, if there is an item change with new state name ‘foo’ and parent ‘bar’, at some point in time, this item really was named ‘foo’ and at the same time had parent ‘bar’
  • 3. The ordering of item changes returned by this component has no meaning. Thus, if a scan of a folder generates a number of changes, there is no guarantee that these changes can be applied in order without generating an inconsistent state (e.g., like two different inodes having the same path at the same time). An inode or an index node is a file structure on a file system that includes all file information except the file contents and the file name). The inode of each file uses a pointer to point to the specific file, directory or object and is typically a unique number.


On both the remote cloud-based platform and the local storage, the process for item change generation in some embodiments, is to obtain a set of dirty items and to then difference the new state of those items against their last known state, which is stored in a reference snapshot inside the filesystem scanner. A dirty item is generally an item (e.g., file, folder, directory, etc.) that has been written to or modified and the modifications are yet to be written to the underlying file system. In some embodiments, on the remote file system, the list of dirty items can be obtained by listening to the ALF stream, which either directly provides dirty items and their new states or provides notifications that specific folders are recursively dirty, requiring a scan of the affected folder to obtain the resulting dirty items. On the local system in some embodiments, the filesystem observer may only provide notifications about dirty folders. Accordingly, the local system may have to perform a partial scan in order to determine the full set of dirty items. On startup, both sides can be initialized with an event marking the root folder as recursively dirty in some embodiments.


In some embodiments, partial scanning is achieved through the following method at least in part:

  • 1. Generate a consistent snapshot


a. On the cloud-based platform, this can be achieved through the folders endpoint with transactional GAT (get account tree).


b. On the local storage or device, a snapshot can be built by walking or traversing the directory and recording all entries. If there are no dirty folders added to the queue for a certain period of time (e.g., ˜100 ms), the snapshot can be called consistent. If there is a new file system notification, a snapshot can be built for that notification, and a new snapshot is built by merging the snapshot for the dirty folder on top of the original snapshot.

  • 2. Generate differences between the reference snapshot and the current snapshot
    • a. Generate a list of all item ids that are in the reference snapshot and in the domain of the current snapshot


b. Loop through all elements in the current snapshot, and yield item changes for everything that has a different item state in the reference snapshot. Further, remove all observed items from the all item id list.


c. Yield item changes with delete set to true for all items remaining in the all item id list.

  • 3. Update the reference snapshot by applying the new snapshot on top of it. Note that for the first run, the reference snapshot can be built from the persisted Last Sync Item Store (LSIS) in some embodiments.


In some embodiments, item changes can be fed by the monitor into the filter pipeline using the same rules about flushing buffers as before. In some embodiments, however, there are no state transitions in the monitor, as there is no difference between full scan and listening mode.


In some embodiments the reference snapshot used for determining which items have changed during the partial scan must reflect not only the changes detected during the last partial scan but also any changes made by the sync executors on the monitored file system. This may be necessary in some embodiments because it is possible for the changes performed by the sync executors to be undone by other operations on the monitored filesystem before they can be detected by a scan. For example, a newly created item can be immediately deleted or a newly renamed item can be immediately renamed back to its original name. If the reference snapshot is not aware of the change made by the sync executors, it will not know to generate an item change for these items since nothing has changed about the item since the last scan. As a result, the file systems will fall out of sync. Another benefit of pushing the most up to date information about the monitored filesystem into the scanners is that it gives a completely state based means of handling echoback events. Because the scanner already has the information about the changes made to the monitored filesystem by the sync executors, it will not pick up those changes during its next partial scan.


An example pseudo code for building a reference snapshot for the file system and on a new notification, generating item changes using a diffing algorithm. In some embodiments, the algorithm for the cloud-based platform uses ALF instead of file system observers and has no requirement for a settle time.

















class LocalFSScanner:









def _on_start( ):









# Launch the observer that will feed dirty folders into the









queue.









self._launch_fs_observer( )









def _get_next_item_change( ):









while not should_stop:









dirty_dir, recursive = self._dirty_dir_queue.get( )



consistent_snapshot = None



while dirty_dir:









consistent_snapshot = FSSnapshot(list_dir,









item_state_callback, dirty_dir, recursive)









dirty_dir, recursive =









self._dirty_dir_queue.get(0.1) # 100 ms









difference = FSSnapshotDiffer(self._reference,









consistent_snapshot)









for item_change in difference.events( ):









yield item_change









# Update the reference - this is built to begin with









from LSIS in init









self._reference = consistent_snapshot










An example pseudo code for building a snapshot of the file system at a point in time is provided below. Whether or not the snapshot is consistent can be left to the caller to deal with in some embodiments.














class FSSnapshot:









# list_dir_callback −> map a path to a list of path, item_state







for children










#
Note that it needs the parent id to build







the item_state









# item_state_callback −> map a path to an item_state



# path −> the path to start with



# recursive −> whether to recurse or not



def ——init——(list_dir_callback, item_state_callback, path,







recursive):









self._update_for_path(‘’, True)









def _update_for_path(path, recursive, item_id=None):









item_id = item_id or







self._item_state_callback(path).item_id









for item_path, item_state in self._list_dir_callback(path,







item_id):









# Record the entry (e.g., in a dictionary)



self._record_item_state_for_item_id(item_state,







item_state.item_id)









# Recurse



if recursive and item_state.item_type ==







ItemType.FOLDER:









self._update_for_path(item_path, True,







item_state.item_id)









# Public accessors:



def item_states( ) # return all item states in the dictionary



def item_state_for_item_id(item_id) # return the item state for







the item_id









def contains_item_id(item_id) # returns whether there's an entry







for item_id or not









An example pseudo code for building item change events from a pair of snapshots is provided below.














class FSSnapshotDiffer:









def events( ):









# Build a set of all the item ids in the reference snapshot



all_reference_item_ids = set([item_state.item_id for







item_state in self._ref_snapshot.item_states( )])









# Loop through all the item ids in the new snapshot and







check for changes









for new_item_state in self._new_snapshot.item_states( ):









# Remove it from the list of all item ids. Be







careful as you may see an item_id more than once due to hard links









if new_item_state.item_id in all_reference_item_ids:









all_reference_item_ids.remove(new_item_state.item_id)









if







self._ref_snapshot.contains_item_id(new_item_state.item_id):









# If the reference contains this item id, we







need to check









# if there have been any changes to the item



ref_item_state =







self._ref_snapshot.item_state_for_item_id(new_item_id)









# If the item states differ, return an item







change









if ref_item_state != new_item_state:









yield ItemChange(new_item_state)









else:









# if the reference does not contain it, then







it's a create









yield ItemChange(new_item_state)









# Lastly, process all the deletes (the items that are not







in the new snapshot)









for item_id in all_reference_item_ids:









ref_item_state =







self._ref_snapshot.item_state_for_item_id(item_id)









yield







ItemChange(ref_item_state.copy_with_changes(is_deleted=True)










Item Change Ordering


In some embodiments, the item changes emitted by the filesystem scanners will occur in order per item but will not have a well-defined inter-item ordering. In some embodiments, it is the responsibility of the item change re-orderer to detect inter-item event dependencies and re-order the changes as necessary. It can do this by checking each change against a snapshot of the monitored filesystem to see if the new state brought about by the change is consistent with the rest of the filesystem. If it is, the change can be passed on to the rest of the filter pipeline and the snapshot can be updated to reflect the change. Otherwise, the change can be buffered until another item change alters the snapshot in such a way as to make the buffered change consistent. In some embodiments, if an item change remains buffered for longer than a filesystem specific timeout, then it is assumed that either a change has been missed by the filesystem scanner or the filesystem scanner has returned corrupt changes, and in either case, an assertion is raised and the application is taken down.


For each change, the re-orderer can perform the following checks in some embodiments to determine if the change is consistent with the existing snapshot:

  • 1) If the change is for a deleted folder, the snapshot is checked to see that the folder does not contain any children.
  • 2) If the change is for a non-deleted item, the snapshot is checked to see that the parent folder of the item exists and that no other item with the same name exists in the parent folder.
  • 3) If the change represents a move, the snapshot is checked to see that the item is not an ancestor of its new parent.


In addition to performing these checks, in some embodiments, the re-orderer can also be capable of detecting and handling circular renames by manufacturing an item change for one of the items that moves the item to a temporary location.


Like the filesystem snapshot used in the scanner for generating raw events, the filesystem snapshot used when re-ordering the raw events can reflect both the changes made by raw events emitted from the generator as well as the changes made by the sync executors on the monitored filesystem in some embodiments. This can be performed because the re-orderer will now no longer receive information about echoback events from the scanner and so it needs to get that information directly from the executor in order to have a full picture of the monitored filesystem.


Raw Event Generation


Following the item change ordering, raw events can be produced by diffing the new item state in the item change against the old state in the re-orderer's snapshot (i.e., comparing the new item state with the old state to determine how and whether the two items differ). This can include detecting when an item has transitioned from syncable to unsyncable or vice versa and generating create and delete events as appropriate. The raw events produced can have the following properties in some embodiments:

  • 1. They describe executable actions like create, delete, etc. However, no guarantees are made as to whether or not the business logic dictates that they should be executed.
  • 2. Raw events are produced in an order that can be consistently applied to a frozen file system without generating any inconsistencies. This means that the actions represented by a raw event can only fail during actual execution (because of changes to the file system) and not during processing. In particular, a filter pipeline inconsistency is considered an unrecoverable error.
  • 3. Raw events refer to the file system id, rather than the logical id. On the cloud-based platform, these two are the same, but on local, there is a difference between inode and the logical id.


    Sync Event Building


In some embodiments, raw events can then be processed into sync events suitable for execution. On the cloud-based platform, this can be a straight translation in some embodiments since the filesystem id on the cloud-based platform can be suitable for use as a logical id for the item. On the local storage system or the local device, the filesystem id can change while the item remains logically the same and so the atomic save filter can be necessary in order to maintain the mapping between logical ids and their underlying filesystem ids. No other filters may be required on the local storage system to do this conversion in some embodiments. Sync events can have the following properties in some embodiments:

  • 1. They describe executable actions like create, delete, etc., that sync is committed to at least attempting to execute.
  • 2. They are produced in an order that can be consistently applied to a frozen file system, and should only be validated by actually executing their action on the appropriate filesystem.
  • 3. They refer to logical ids rather than file system ids.


    Event Collapsing


The present disclosure also includes technology for event collapsing by a sync client and/or a sync server of a cloud-based platform.


In some embodiments, event collapsing can be part of how the Sync Event Queue handles the failed events that are not intermittent (e.g. the create event which failed due to a name conflict on the opposite file system). For those kinds of failures, simply repeating the same event does not solve the problem in some embodiments. Instead, it relies on some later event (either from the user or from the sync client) to succeed. For example, “Create A” which fails due to name conflict has to be collapsed with “Rename A to A-copy” (which is generated by Conflict Recovery Manager) before Sync Event Queue retries this event.


Embodiments of the sync event collapsing system can include the following features in some embodiments:

  • 1. Make the name conflicts recovery behave correctly.
  • 2. Make the failure recovery behave correctly.


In some embodiments this may require that the system should only do the collapsing if it is necessary. For example, the system should not collapse two edit events.


Examples of Collapsing Rules:


In some embodiments, recovery of the following example failure scenarios may need collapsing:

  • 1. Name conflicts: For all the events that failed because of the name conflicts on the opposite file system, use a rename event after the original event when retrying the failed event. For those events, collapse to the original one.


a. Create(x), Rename(x, y)->Create(y) (Collapse to original);


b. Rename(x, y), Rename(x, z)->Rename(x, z) (Collapse to original);


c. Move(q.x, r.x), Rename(r.x, r.y)->Move(q.x, r.y) (Collapse to original);

  • 2. Item does not exist on the source filesystem during execution: For these events, sync client usually has a delete event after the failed event when we retry the failed event.


a. Create(x), Delete(x)->NoOp (Discard both);


b. Rename(x), Delete(x)->Delete(x) (Discard original);


c. Edit(x), Delete(x)->Delete(x) (Discard original);


d. Move(q.x, r.x), Delete(r.x)->Delete(x) (Discard original);

  • 3. Item has been changed when delete the item on the opposite file system: For those, events, use a create event to restore the deleted item on the source file system.
    • a. Delete(x), Create(x)->NoOp (Discard both);


An example pseudo code for collapsing sync events is provided below.














def _try_collapsing_sync_event(self, original_sync_event):









#Go through the later events associated with the same sync item







until a successful collapse









sync_events - _item_id_to_sync_events get_list







(original_sync_event item_id)









for sync_event in copy.copy (sync_events):









if sync_event.event_state != SyncEventState IN_PROCESS



and







original_sync_event.seq_no <sync_event. sef_no:









if successfully collapse original_sync_event and







sync_event:









break











2. Local Event Monitoring Refactor


The present disclosure also includes technology for local event monitoring refactor by a sync client of a cloud-based platform.


The local event monitoring can be either in, for example, the listening or full scan mode in some embodiments. In the listening mode, the system receives events for items that are changing on the filesystem. On Mac OS-based clients, the OS can notify the sync client about directories that have changes. The sync client can re-scan the directories to manufacture or generate the events. On Windows OS-based clients, for example, the OS gives the sync clients the actual or real events except for moves and renames which are reported as delete+create events.


In the full scan mode, the system can compare the state of the filesystem with the Last Sync Item Store (LSIS) to manufacture or generate events for the changes that have occurred. The raw events that are generated by the listener/full scanner can be fed into a filter pipeline that normalizes the stream of raw events and produces sync events that then the rest of the system can apply on the other filesystem in some embodiments. Because of the difference in the way the events are generated on each platform (for example the delete+create for moves), the filter pipeline configuration can vary based on the platform.


With the above described state, there are two implementations of full scan and both operate with different sets of data. Each implementation can manufacture a different set of events, bug duplication, code duplication, etc. The events can also be different across different platforms. This can have cascading effects—e.g. the filter pipeline may be different. The event generator on a MAC platform has the filesystem information but on Windows platform it does not and so it may be necessary to have one filter to collect the filesystem information and add it to the raw events (which can introduces race condition because the item may have changed). Accordingly, some embodiments refactor the Local Event Monitor so that the system only has one full scanner implementation. Some embodiments always use full scan mode for all platforms.


In the listening mode, example embodiments use a third party library called Watchdog. Some embodiments merge the two full scanner implementations with the system in one of two ways—

  • 1. remove the existing full scanner and use the Watchdog, or
  • 2. remove the Watchdog and implement the system's own full scanner.



FIG. 1 illustrates an example diagram of an environment suitable for operating a system implementing any of the disclosed technologies. As shown in FIG. 1, a host server 100 of a cloud-based service, collaboration and/or cloud storage platform (“cloud-based platform”) can incrementally update remote sync clients (e.g., clients 110, 120, 130, 140, 160, 170) at devices 102 with events that occurred via the platform hosted by the server 100. Similarly, the devices 102 can update a sync server 122 and/or the host server 100 of the cloud-based platform with events that occurred locally on the devices via the sync clients (e.g., clients 110, 120, 130, 140, 160, 170) on the devices.


The client devices 102 can be any system and/or device, and/or any combination of devices/systems that is able to establish a communication or a connection, including wired, wireless, cellular connections with another device, a server and/or other systems such as host server 100, the sync server 122 and/or a notification server 150. Client devices 102 typically include a display and/or other output functionalities to present information and data exchanged between among the devices 102, the notification server 150, and/or the host server 100.


For example, the client devices 102 can include mobile, hand held or portable devices or non-portable devices and can be any of, but not limited to, a server desktop, a desktop computer, a computer cluster, or portable devices including, a notebook, a laptop computer, a handheld computer, a palmtop computer, a mobile phone, a cell phone, a PDA, a smart phone (e.g., a BlackBerry device such as BlackBerry Z10/Q10, an iPhone, Nexus 4, etc.), a Treo, a handheld tablet (e.g. an iPad, iPad Mini, a Galaxy Note, Galaxy Note II, Xoom Tablet, Microsoft Surface, Blackberry PlayBook, Nexus 7, 10 etc.), a phablet (e.g., HTC Droid DNA, etc.), a tablet PC, a thin-client, a hand held console, a hand held gaming device or console (e.g., XBOX live, Nintendo DS, Sony PlayStation Portable, etc.), mobile-enabled powered watch (e.g., iOS, Android or other platform based), Google Glass, a Chromebook and/or any other portable, mobile, hand held devices, etc. running on any platform or any operating system (e.g., Mac-based OS (OS X, iOS, etc.), Windows-based OS (Windows Mobile, Windows 7, Windows 8, etc.), Android, Blackberry OS, Embedded Linux platforms, Palm OS, Symbian platform, Google Chrome OS, and the like. In one embodiment, the client devices 102, host server 100, and/or the notification server 150 (e.g., a server hosting application 120) are coupled via a network 106. In some embodiments, the devices 102 and host server 100 and/or notification server 150 may be directly connected to one another.


The input mechanism on client devices 102 can include touch screen keypad (including single touch, multi-touch, gesture sensing in 2D or 3D, etc.), a physical keypad, a mouse, a pointer, a track pad, motion detector (e.g., including 1-axis, 2-axis, 3-axis accelerometer, etc.), a light sensor, capacitance sensor, resistance sensor, temperature sensor, proximity sensor, a piezoelectric device, device orientation detector (e.g., electronic compass, tilt sensor, rotation sensor, gyroscope, accelerometer), or a combination of the above.


Signals received or detected indicating user activity at client devices 102 through one or more of the above input mechanism, or others, can be used by various users or collaborators (e.g., collaborators 108) for accessing, through network 106, a web-based collaboration environment or online collaboration platform (e.g., hosted by the host server 100). The collaboration environment or platform can have one or more collective settings 125 for an enterprise or an organization that the users belong, and can provide an user interface 104 for the users to access such platform under the settings 125.


The collaboration platform or environment hosts workspaces with work items that one or more users can access (e.g., view, edit, update, revise, comment, download, preview, tag, or otherwise manipulate, etc.). A work item can generally include any type of digital or electronic content that can be viewed or accessed via an electronic device (e.g., device 102). The digital content can include .pdf files, .doc, slides (e.g., PowerPoint slides), images, audio files, multimedia content, web pages, blogs, etc. A workspace can generally refer to any grouping of a set of digital content in the collaboration platform. The grouping can be created, identified, or specified by a user or through other means. This user may be a creator user or administrative user, for example.


In general, a workspace can be associated with a set of users or collaborators (e.g., collaborators 108) which have access to the content included therein. The levels of access (e.g., based on permissions or rules) of each user or collaborator to access the content in a given workspace may be the same or may vary among the users. Each user may have their own set of access rights to every piece of content in the workspace, or each user may be different access rights to different pieces of content. Access rights may be specified by a user associated with a workspace and/or a user who created/uploaded a particular piece of content to the workspace, or any other designated user or collaborator.


In general, the collaboration platform allows multiple users or collaborators to access or collaborate efforts on work items such each user can see, remotely, edits, revisions, comments, or annotations being made to specific work items through their own user devices. For example, a user can upload a document to a workspace for other users to access (e.g., for viewing, editing, commenting, signing-off, or otherwise manipulating). The user can login to the online platform and upload the document (or any other type of work item) to an existing workspace or to a new workspace. The document can be shared with existing users or collaborators in a workspace.


In general, network 106, over which the client devices 102 and the host server 100 communicate may be a cellular network, a telephonic network, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet, or any combination or variation thereof. For example, the Internet can provide file transfer, remote log in, email, news, RSS, cloud-based services, instant messaging, visual voicemail, push mail, VoIP, and other services through any known or convenient protocol, such as, but is not limited to the TCP/IP protocol, Open System Interconnections (OSI), FTP, UPnP, iSCSI, NSF, ISDN, PDH, RS-232, SDH, SONET, etc.


The network 106 can be any collection of distinct networks operating wholly or partially in conjunction to provide connectivity to the client devices 102 and the host server 100 and may appear as one or more networks to the serviced systems and devices. In one embodiment, communications to and from the client devices 102 can be achieved by, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet. In one embodiment, communications can be achieved by a secure communications protocol, such as secure sockets layer (SSL), or transport layer security (TLS).


In addition, communications can be achieved via one or more networks, such as, but are not limited to, one or more of WiMax, a Local Area Network (LAN), Wireless Local Area Network (WLAN), a Personal area network (PAN), a Campus area network (CAN), a Metropolitan area network (MAN), a Wide area network (WAN), a Wireless wide area network (WWAN), or any broadband network, and further enabled with technologies such as, by way of example, Global System for Mobile Communications (GSM), Personal Communications Service (PCS), Bluetooth, WiFi, Fixed Wireless Data, 2G, 2.5G, 3G (e.g., WCDMA/UMTS based 3G networks), 4G, IMT-Advanced, pre-4G, LTE Advanced, mobile WiMax, WiMax 2, WirelessMAN-Advanced networks, enhanced data rates for GSM evolution (EDGE), General packet radio service (GPRS), enhanced GPRS, iBurst, UMTS, HSPDA, HSUPA, HSPA, HSPA+, UMTS-TDD, 1xRTT, EV-DO, messaging protocols such as, TCP/IP, SMS, MMS, extensible messaging and presence protocol (XMPP), real time messaging protocol (RTMP), instant messaging and presence protocol (IMPP), instant messaging, USSD, IRC, or any other wireless data networks, broadband networks, or messaging protocols.


A diagrammatic illustration of the cloud-based environment (e.g., collaboration environment) and the relationships between workspaces and users/collaborators are illustrated with further reference to the example of FIG. 2. A diagrammatic illustration of a workspace having multiple work items with which collaborators can access through multiple devices is illustrated with further reference to the example of FIG. 3A.


Embodiments of the present disclosure provide event building, collapsing, or monitoring by a synchronization component (e.g., sync client or a sync server) of a cloud-based platform hosted by the host server 100.


In general, multiple users collaborate in the cloud-based environment hosted by server 100, and the user devices 102 of these users need to be appropriately updated such that the most current versions of data/content are synchronized with the relevant user devices and that notification of events are sent to the relevant devices/users in a timely and orderly fashion. Any given user can utilize any number and types of clients (e.g., synchronization client, real time web client, mobile synchronization client, mobile application, email client, server synchronization client, etc.) at any given time. Thus, the host server 100 and the remote synchronization clients 110-170 described herein together can implement the disclosed techniques in facilitating the orderly synchronizing or updating of the remote clients 110-170 which a given user/collaborator may use to access the cloud platform via any number of user devices 102.


In general, when a user action takes place, the user action is processed (e.g., as described in FIGS. 4A-4B below) to become a plurality of event entries each corresponding to a collaborator 175, and each event entry can be read by a remote client of the collaborator to reflect the user action.


Various embodiments of the synchronization client (e.g., client 110) can ensure the correctness of the synchronized tree and other synchronized items (e.g., folders or files) completely independent from the order in which the client receives events from the action log framework (“ALF”) system. In other words, so long as the ALF system correctly delivers all events to the synchronization client, the synchronization client can end up in the correct final state.


More implementation details regarding the synchronization clients 110-170, the host server 100, the repository 130, distributed data cluster 180, and various techniques in implementing event building, collapsing and monitoring by a sync client and/or a sync server are discussed below.



FIG. 2 depicts an example diagram of a web-based or online collaboration platform deployed in an enterprise or other organizational setting 250 for organizing work items 215, 235, 255 and workspaces 205, 225, 245.


The web-based platform for collaborating on projects or jointly working on documents can be used by individual users and shared among collaborators. In addition, the collaboration platform can be deployed in an organized setting including but not limited to, a company (e.g., an enterprise setting), a department in a company, an academic institution, a department in an academic institution, a class or course setting, or any other types of organizations or organized setting.


When deployed in an organizational setting, multiple workspaces (e.g., workspace A, B C) can be created to support different projects or a variety of work flows. Each workspace can have its own associate work items. For example, workspace A 205 can be associated with work items 215, workspace B 225 can be associated with work items 235, and workspace N can be associated with work items 255. The work items 215, 235, and 255 can be unique to each workspace but need not be. For example, a particular word document can be associated with only one workspace (e.g., workspace A 205) or it can be associated with multiple workspaces (e.g., Workspace A 205 and workspace B 225, etc.).


In general, each workspace has a set of users or collaborators associated with it. For example, workspace A 205 is associated with multiple users or collaborators 206. In some instances, workspaces deployed in an enterprise can be department specific. For example, workspace B can be associated with department 210 and some users shown as example user A 208 and workspace N 245 can be associated with departments 212 and 216 and users shown as example user B 214.


Each user associated with a workspace can generally access the work items associated with the workspace. The level of access depends on permissions associated with the specific workspace, and/or with a specific work item. Permissions can be set for the workspace or set individually on a per work item basis. For example, the creator of a workspace (e.g., one of user A 208 who creates workspace B) can set one permission setting applicable to all work items 235 for other associated users and/or users associated with the affiliate department 210, for example. Creator user A 208 can also set different permission settings for each work item, which can be the same for different users, or varying for different users.


In each workspace A, B . . . N, when an action is performed on a work item by a given user or any other activity is detected in the workspace, other users in the same workspace can be notified (e.g., in real time or in near real time, or not in real time). Activities which trigger real time notifications can include, by way of example but not limitation, adding, deleting, or modifying collaborators in the workspace, uploading, downloading, adding, deleting a work item in the workspace, creating a discussion topic in the workspace.


In some embodiments, items or content downloaded or edited can cause notifications to be generated. Such notifications can be sent to relevant users to notify them of actions surrounding a download, an edit, a change, a modification, a new file, a conflicting version, an upload of an edited or modified file.


In one embodiment, in a user interface to the web-based collaboration platform where notifications are presented, users can, via the same interface, create action items (e.g., tasks) and delegate the action items to other users including collaborators pertaining to a work item 215, for example. The collaborators 206 can be in the same workspace A 205 or the user can include a newly invited collaborator. Similarly, in the same user interface where discussion topics can be created in a workspace (e.g., workspace A, B or N, etc.), actionable events on work items can be created and/or delegated/assigned to other users such as collaborators of a given workspace 206 or other users. Through the same user interface, task status and updates from multiple users or collaborators can be indicated and reflected. In some instances, the users can perform the tasks (e.g., review or approve or reject, etc.) via the same user interface.



FIG. 3A depicts an example diagram of a workspace 302 in an online or web-based collaboration environment accessible by multiple collaborators 322 through various devices.


Each of users 316, 318, and 320 can individually use multiple different devices to access and/or manipulate work items 324 in the workspace 302 with which they are associated with. For example users 316, 318, 320 can be collaborators on a project to which work items 324 are relevant. Since the work items 324 are hosted by the collaboration environment (e.g., a cloud-based environment), each user can access the work items 324 anytime, and from any physical location using any device (e.g., including devices they own or any shared/public/loaner device).


Work items to be edited or viewed can be accessed from the workspace 302. Users can also be notified of access, edit, modification, and/or upload related-actions performed on work items 324 by other users or any other types of activities detected in the workspace 302. For example, if user 316 modifies a document, one or both of the other collaborators 318 and 320 can be notified of the modification in real time, or near real-time, or not in real time. The notifications can be sent through any of all of the devices associated with a given user, in various formats including, one or more of, email, SMS, or via a pop-up window in a user interface in which the user uses to access the collaboration platform. In the event of multiple notifications, each notification can be depicted preferentially (e.g., ordering in the user interface) based on user preferences and/or relevance to the user (e.g., implicit or explicit).


For example, a notification of a download, access, read, write, edit, or uploaded related activities can be presented in a feed stream among other notifications through a user interface on the user device according to relevancy to the user determined based on current or recent activity of the user in the web-based collaboration environment.


In one embodiment, the notification feed stream further enables users to create or generate actionable events (e.g., as task) which are or can be performed by other users 316 or collaborators 322 (e.g., including admin users or other users not in the same workspace), either in the same workspace 302 or in some other workspace. The actionable events such as tasks can also be assigned or delegated to other users via the same user interface.


For example, a given notification regarding a work item 324 can be associated with user interface features allowing a user 316 to assign a task related to the work item 324 (e.g., to another user 316, admin user 318, creator user 320 or another user). In one embodiment, a commenting user interface or a comment action associated with a notification can be used in conjunction with user interface features to enable task assignment, delegation, and/or management of the relevant work item or work items in the relevant workspaces, in the same user interface.



FIG. 3B depicts an abstract diagram illustrating an example data structure of the folders and files in the workspace 302 of FIG. 3A. As illustrated in FIG. 3B, work items 324 of FIG. 3A can be further organized into groups using one or more folders 342 within workspace 302. The folders 342 can have more than one levels of hierarchy including, for example, parent/ascendant folder(s), child/descendant folder(s) or subfolder(s), and/or sibling folder(s). A person having ordinary skill in the art will understand that terminologies describing the hierarchy of the folders are used in a relative sense. For example, a parent folder can be a child folder of a grandparent folder, a particular child folder can be a parent folder of a grandchild folder, and so on. It is noted that the illustration of the folders are merely exemplary; depending on the embodiments, there can be more than one level of hierarchy between the illustrated folders.


Further, in some of the present embodiments, the synchronization state of a folder can be: (i) synchronized, (ii) partially synchronized, or (iii) unsynchronized. For purposes of discussion herein, a folder is synchronized when all items (e.g., folders and files) under the folder are synchronized. Likewise, a folder is unsynchronized when all items (e.g., folders and files) under the folder are unsynchronized. A folder is partially synchronized when it is neither synchronized nor unsynchronized.



FIG. 4A depicts an example system block diagram showing the interaction between server-side components for incrementally updating a remote client with events or actions that occurred via a cloud-based platform.


The server-side includes front end components 402A-N, a database 410, a dispatcher 430, one or more processors 440A-N, and a second database (e.g., HBase 460). The front end components 402A-N can interface with client devices/end user devices to detect/identify actions or transactions or events. The data or file change that occur as a result of the event is effectuated in the database 410 of the cloud-based platform (e.g., the relevant changes are made in the file table 411 of the database).


Depending on the type of action or event, an action log entry can be created and stored in the action log table or action log 416. In general, the front end 402 determines whether an action log entry is created from a given action or transaction. In general, an action log entry can be created for an action or event if certain durability requirements are to be met. The dispatcher 430 reads the action log entries from the action log 416 and sends them to the processors 440A-N where the fan-out, or collaborators to be notified of the event or to receive the file/data change as a result of the event is determined. Based on the computed fan-out or identified collaborators, the processors 440A-N writes the events/transactions to the relevant queues in the second database 460, from which remote clients can read.


It is noted also that the action log 416, the dispatcher 430, the processors 440A-N, the HBase 460, and one or more real time clients 470A-N (see FIG. 4B) are generally referred to as an “action log framework (ALF) 490.” More specifically, HBase 460 is a primary data repository of the ALF 490. User actions initiated (e.g., via the web application or the API) result in rows (or action log entries) being written to the action log 416 (or action log table 416). Then, in some embodiments, the action log entries are read from action log 416 by the ALF dispatcher 430, de-normalized into separate entries per user that needs to be notified of the action by an ALF processor (e.g., processor 440A), and written to the HBase 460. The HBase 460 is in turn read (e.g., via an API web service call) by real time clients 470A-N to notify a collaborator of the new change.



FIG. 4B depicts an example block diagram showing the interaction of remote clients 470A-N and 480A-N with a distributed database cluster 460 for incremental updates of events/actions which occurred at a cloud-based environment. The remote clients can include, for example real time clients 470A-N(e.g., real-time web clients launched via a web browser, mobile application), and synchronization clients 480A-N(e.g., desktop synchronization, mobile synchronization, server synchronization, etc.) that users or collaborators use to interface/access the cloud-based platform including, but not limited to, a collaboration environment. Other types of clients may also read from the database cluster 460.


The queues in the database 460 (e.g., the distributed database cluster) are usually client type specific. For example, each queue is for a given client type for one given user. So, a user ‘A’ may have a synchronization client queue that all of the synchronization clients that user “A” uses reads from since user “A” may have multiple devices on which synchronization clients are installed. In general, the queues for clients in the database 460 are read only queues such that multiple clients can read from the same queue without making modifications. In this manner, if a user utilizes multiple synchronization clients, each client can still receive and detect the respective updates such that multiple devices can be synchronized. The remote clients also typically individually track the location in the queue from which they last read such that only the most recent events are updated at the client, and that the events read from a queue is specific to a given client, dependent on what has previously been synchronized or read.


In one embodiment, synchronization clients 480 connect to both real-time 470 and API front end 490 machines. The real time machines 470 can notify a synchronization client 480 when there has been an update in a user's account. The synchronization client 480 can then connect to API front end machine 490 to obtain the actual change/content. Alternatively, in some instances, the synchronization clients 480 can also obtain the changes/content/updates from the real time machines 470 simultaneous with the notification, or after being notified.



FIG. 5 depicts an example system block diagram showing action log entries 516 recorded from actions/interactions on or with files/content 511 stored in a database 510 of a cloud-based environment.


The front ends 502A-N detect, identify, or receive the various actions or events on data or content performed by users or collaborators in a cloud-based environment. For example, events/actions can include by way of example but not limitation, file renames, file uploads/downloads, file edits, comments, etc. Based on the type of event, the front end 502 determines whether the action/event is to be created into a log entry to be stored in the action log 516. In creating a log entry, each action/event is recorded as a transaction with the file system change for asynchronous processing. In recording the transaction, the relevant file/folder row in the file 511 of the database 510 is inserted, updated, deleted, or otherwise modified according to the action. In one embodiment, the row is inserted in to the action log table 516 simultaneously with the write to the file 511 and also with the performance of action itself. Note that each entry includes an owner ID 514 in the file 511 and in the action log 516 to represent the owner of the item upon which an action occurred.


In one embodiment, action log entries are created in the same database 510 as the file table 511 such that file/content rollback can be performed if the file/data/content change results in an error or failure. As such, the action log entry creation in the action log table 516 can be created, in part, to meet durability (e.g., longevity) requirements of a given event/transaction (e.g., write events, or other edit events typically have higher durability requirements than a comment event, or a share event, etc.).


Action log entries can be created for select types of events or all events. For example, events/transactions such as file renames, file uploads may have higher durability requirements than a comment event, or a share event, in a sense that the changes from a file rename/file upload need to be maintained and updated at various respective clients for the relevant collaborators and the implication for missing a file rename or file upload is potentially more severe than missing a comment event or a share event, etc.


In general, action log entries are generally created for actions/events with higher durability requirements. Such a determination can be made by the front ends 502 as to whether a given event type is to be writing into the action log table 516. Action log entries may also be created for all events with durability requirements carried out downstream at event queues stored in the second database (e.g., the database 460 of FIG. 4B). Table 516 shows the action log entries created from the events stored in the file table 511.


The action log entries can be identified by the action ID 517. In addition, each action log entry can be associated with a user (e.g., owner) identifier 518, a data entry 519, and/or a revision identifier 520. The user identifier 518 can identify a user who is to a recipient as a result of an event (e.g., upload file to User 1). The owner identifier 518 represents the owner of the item upon which an action (e.g., represented by action ID 517) occurred and in general, each work item has no more than one owner. The data field 519 can identify the type of action/event (e.g., rename, upload, edit, comment, share, send, download, etc.).


The revision identifier 520 can indicate the version of any change made to a given file (e.g., edit, rename, upload, etc.). In one embodiment, the revision identifier 520 is derived from version tracking mechanisms (e.g., via revision ID 515) inherent to the database 510. The revision identifier 520 can be used by remote clients to resolve conflicts in view of potentially conflicting events/transactions. For example, if a file is re-named twice and both events are synchronized/updated at a remote client, the client can use the rename event associated with the latest revision ID to make the necessary updates. This can ensure that the client is updated with the most current change regardless of when the events are read from the queue. Thus, even if the two rename events are writing to the queue for the client out of order, the client can still make the ‘correct’ update using the revision ID in case of conflicting changes.



FIG. 6 depicts a diagram illustrating local event monitoring in some embodiments of the sync client of the cloud-based platform. As illustrated, the local event monitoring can operate in two modes, the listening mode 605 and the full scan mode 615. In the listening mode 605, the local event monitor receives events for items that are changing on the filesystem. On Mac OS-based clients, the OS can notify the sync client about directories that have changes. The sync client can then re-scan the directories to manufacture the events. On Windows OS-based clients, for example, the OS gives the sync clients the actual or real events except for moves and renames which are reported as delete+create events.


In the full scan mode 615, the local event monitor can compare the state of the filesystem with the Last Sync Item Store (LSIS) to manufacture or generate events for the changes that have occurred. The raw events 620/625 that are generated by the listener or the full scanner can be fed into a filter pipeline that normalizes the stream of raw events and produces sync events that the rest of the system can apply on the opposite filesystem in some embodiments. Because of the difference in the way the events are generated on each platform (for example the delete+create for moves), the filter pipeline configuration can vary based on the platform (e.g., Windows, Mac).


With the above described state, there are in effect two implementations of full scan and both operate with different sets of data. Each implementation can manufacture a different set of events, bug duplication, code duplication, etc. The events can also be different across different platforms. This can have cascading effects—e.g. the filter pipeline may be different. The event generator on a Mac platform has the filesystem information but on Windows platform it does not and so it may be necessary to have one filter to collect the filesystem information and add it to the raw events (which can introduce race condition because the item may have changed). Accordingly, some embodiments refactor the Local Event Monitor so that only one full scanner is implemented (i.e., the listening mode 605 or the full scan mode 615). Other embodiments can use the full scan mode 615 for all platforms. For example, in some embodiments, a watchdog (used by the listening mode) can be used and the full scanner can be removed. Alternately, the watchdog can be removed and the full scanner can be implemented.



FIG. 7 depicts a diagram illustrating local event monitoring in some embodiments of the sync client of the cloud-based platform. The event monitoring as described with respect to FIG. 6 is refactored to maximize code maintainability through encapsulation and reuse of common methods and data structures across the local file system and the remote file system at the cloud-based platform server. The listen and full scan modes described with respect to FIG. 6 are collapsed into one full scan mode implemented by the file system scanning mode 735, thereby removing duplication of full scan logic between the sync client and the watchdog.


On the local file system, the file system scanning mode 735, as part of the event monitoring process, turns file system notifications about files or folders that have changed from file system observers into raw events 745 by determining item changes and ordering the item changes. On the cloud-based platform, the file system scanning mode 735 listens to the ALF stream, which can directly provide a list of files or folders that have changed or notifications about the files or folders that have changed, determines item changes and orders the item changes to produce raw events 745 that are then processed by the filter pipeline 740 into sync events 750 suitable for execution on the opposing file system.



FIG. 8A depicts a block diagram illustrating example components of a device 800 (e.g., devices 102 in FIG. 1) having a sync client 810 of the cloud-based platform for sync event building using a single mode and/or sync event collapsing.


The device 800 can include, for example, a bus 802, and a memory 804 among other components. The memory 804 can include, among others, a sync client 810 and a communication module 806. The communication module 806 facilitates communication among the device 800, the host server 100, and other components discussed herein (e.g., the ALF system 490) using any of the communication protocols that are supported. The memory 804 may also include other device modules (not shown in FIG. 8A for simplicity) such as a GPS module for determining and providing location information, text input module for accepting and processing inputs provided using different input mechanisms of the mobile device, and the like for handling various functions of the device 800. It is noted that the aforementioned modules are intended for purposes of enabling the present embodiments, rather than limiting. As such, a person of ordinary skill in the art will understand that the present disclosure covers apparent alternatives, modifications, and equivalents (e.g., combining or separating the modules) made to the techniques described herein. Additional or less components/modules/engines can be included in the device 800 and each illustrated component.


As used herein, a “module,” “a manager,” an “interface,” “observer,” “builder,” “scanner,” “pipeline,” “filter,” “detector,” “generator,” “re-orderer,” or an “engine” includes a general purpose, dedicated or shared processor and, typically, firmware or software modules that are executed by the processor. Depending upon implementation-specific or other considerations, the module, manager, interface, or engine can be centralized or its functionality distributed. The module, manager, interface, observer, builder, scanner, pipeline, filter, detector, generator, re-orderer or engine can include general or special purpose hardware, firmware, or software embodied in a computer-readable (storage) medium for execution by the processor. As used herein, a computer-readable medium or computer-readable storage medium is intended to include all media that are statutory (e.g., in the United States, under 35 U.S.C. §101), and to specifically exclude all media that are non-statutory in nature to the extent that the exclusion is necessary for a claim that includes the computer-readable (storage) medium to be valid. Known statutory computer-readable mediums include hardware (e.g., registers, random access memory (RAM), non-volatile (NV) storage, to name a few), but may or may not be limited to hardware.


The bus 802 is a subsystem for transferring data between the components of the mobile device 800. For example, the bus 802 facilitates the transfer of data between the memory 804 and other components of the device 800 such as the processor and/or the input/output components that utilize the data.


Example components of the sync client 810 are illustrated in the block diagram of FIG. 8B. In some embodiments, the sync client 810 can include a local event monitor 820 (or raw event processor) having a local file system scanner 825 including a partial scanner 855, a file system observer 830, an item change generator 835, a file system snapshot builder 840, a file system snapshot differ module 845 and a re-orderer 850, among others. The local event monitor 820 can also include an event filter pipeline 860 having an atomic save filter 862 and an item change buffer 870. The sync client can also include a sync execution controller 875, a sync event queue manager 880 and a conflict manager 890 having a conflict detector 892 and a conflict recovery manager 895 having an event collapsing module 885. Other embodiments may include more or less components.


In one embodiment of the present disclosure, during normal operations, the sync client 780 can operate in a single mode. The file system observers 830 can generate file system notifications when a file or folder changes on the local file system. The file system notifications can include information about the changed file or folder (i.e., dirty file or folder). Generally, the file system observer 830 provides notifications about dirty folders. The local event monitor 825 then triggers the partial scanner 855 to perform a partial scan of the local file system to obtain the full set of dirty items.


In some embodiments, the partial scanner 855 performs partial scanning of the affected or dirty folder by leverage the item change generator 835. The item change generator 835 generates a consistent snapshot (e.g., via the file system snapshot builder 840) and compares the consistent snapshot with a reference snapshot to generate differences between the two snapshots (e.g., file system snapshot differ 845). In other words, the item change generator 835 can determine item changes based on a consistent snapshot of a folder whose children have changed and a reference snapshot of the folder in response to the file system notifications. The partial scanner 855 then updates the reference snapshot by applying the new (consistent) snapshot on top. In some embodiments, a snapshot can be built or generated by walking or traversing the directory (or dirty folder tree) and recording all entries. If there are no dirty folders added to the queue for a settle time (e.g., 100 ms), the snapshot is called consistent. If there is a new file system notification, a snapshot is built for that notification, and a new snapshot is built by merging the snapshot for the dirty folder on top of the original snapshot. In some embodiments, the differences between a reference snapshot and the current snapshot are obtained by the file system snapshot differ 845. The reference snapshot can pertain to the last known state of the dirty folder. It should be noted that for the first run, the reference snapshot is built from the persisted LSIS. Via the partial scanning process, the differences between the reference and current snapshots can be determined by generating a list of all item ids that are in the reference snapshot and in the domain of the current snapshot. The process loops through all elements in the current snapshot and obtains item changes for everything that has a different item state in the reference snapshot. All the observed items are then removed from the all item id list. The process then yields item changes with delete set to true for all items remaining in the all item id list. The process then updates the reference snapshot by applying the new snapshot on top of it.


In some embodiments, the re-orderer 850 can detect inter-item event dependencies and re-order the changes as necessary before feeding the item changes to the filter pipeline 860. The re-orderer 850 can reorder items by checking each change against a snapshot of the monitored filesystem to see if the new state brought about by the change is consistent with the rest of the filesystem. If it is, the change is passed on to the event filter pipeline 860 and the snapshot is updated to reflect the change. Otherwise, the change is buffered (e.g., in the item change buffer 870) until another item change alters the snapshot in such a way as to make the buffered change consistent. If an item change remains buffered for longer than a filesystem specific timeout, which can be configurable in some embodiments, then it is assumed that either a change has been missed by the filesystem scanner or the filesystem scanner has returned corrupt changes. In such instances, a notification can be generated for error handling, the change can be dropped, or other process can be initiated to resolve the inconsistency. In one example embodiment, the re-orderer 850 can perform a number of checks to determine if the change is consistent with the existing snapshot.


For example, if the change is for a deleted folder, the re-orderer 850 can check the snapshot to see that the folder does not contain any children. If the change is for a non-deleted item, the re-orderer 850 can check the snapshot to see that the parent folder of the item exists and that no other item with the same name exists in the parent folder. If the change represents a move, the re-orderer 850 can check the snapshot to see that the item is not an ancestor of its new parent. In some embodiments, the re-orderer 850 can also detect and handle circular renames by manufacturing an item change for one of the items that moves the item to a temporary location.


Raw events are produced by the local file system scanner by ordering the item changes and producing a set of executable actions like create, delete, etc. The raw events are processed by the event filter pipeline 860 into sync events that can be executed directly on the opposite file system (i.e., the cloud-based platform file system). In some embodiments, processing the raw events into sync events include translating the file system identifiers of items to logical identifiers so that the events can be executed directly on the opposite file system. An atomic save filter 862 can maintain the mapping between the logical identifiers and the underlying file system identifiers. The mapping and translation of file system identifiers into logical identifiers is needed as the raw events refer to the file system identifier, rather than the logical identifier and on the local file system, the file system identifier of an item can change while the item remains logically the same. The sync events describe executable actions like create, delete, etc., and the sync client is committed to at least attempting to execute the sync events as the sync events are produced in an order that can be consistently applied to the opposite file system.


Some embodiments of the sync client 810 include a sync event queue manager 880 that places sync events on a sync event queue for serialized execution. The sync execution controller 875 gets the next event to execute from the sync event queue. The execution controller 875 can have a list based or priority based implementation. For example, in the list based implementation, the next event candidate is checked against the items that are in progress and if the item already has an in progress sync event, the next event candidate is skipped. In the priority based implementation, unprocessed events are managed in a priority queue of sync event containers. A sync event container is a set of all unprocessed sync events for a given item, weighted by the lowest weight sync event in the container. When one sync event from this sync event container is executed, then all sync events for that item are no longer in the priority queue and so the remaining sync events in the sync event container will not be executed on subsequent get_next_sync_event( ) calls. When the in-process sync event is completed, it is removed from the sync event container which is returned back into the priority queue if not empty.


Some embodiments of the sync client 810 include a conflict manager 890. The conflict manager, via the conflict detector 892, can identify when a sync has failed or when a conflict has occurred (e.g., a file or work item/folder has been changed at both the server sync folder and the local sync folder) which caused the sync to fail. A sync event can fail for various reasons which may be conflict related or unrelated. Example failure reasons that are related to conflict include, but are not limited to: item not found, item name in use, item name not valid, item name too long, item locked, version mismatch, or the like. Other failure reasons can include, for example, communication failure (e.g., network goes down), authentication failure (e.g., auth token expired), quota failure, or the like. Some of these sync failures are local to a particular sync event (e.g., item not found is local to a sync event relating to the item) while others are global (e.g., communication failure can impact all sync events). The conflict detector 892 can in general detect sync failures that are conflict related or unrelated.


The conflict manager 890 includes a conflict recovery manager 895 to determine how to resolve the conflict, resolve the conflict using the determined strategy and try to sync again when one or more retry conditions are met. The conflict recovery manager 895 can include several conflict resolvers to resolve various conflict cases. The conflict recovery manager 895 selects a conflict resolver that is mapped to the event type, file system and/or failure reason triple to resolve a conflict related to a sync event. A conflict resolver resolves the conflict by calling a rules engine to determine what action to take to resolve the conflict. When the specified action or actions is taken, the file system is restored back to its consistent state.


In some embodiments, one example conflict resolver includes an event collapsing module 885. The event collapsing module 885 can collapse a failed event into a later event to successfully execute the original event. When the conflict detector 892 detects name conflict as the failure reason for a sync event, the event collapsing module 885 can use a later rename event to collapse into the original event before retrying the failed event. Similarly, when the conflict detector 892 detects as the item not found on the source filesystem during execution as a reason for failure of a sync event, the event collapsing module 885 collapses a later delete event into the failed event before retrying the failed event. By way of another example, when the conflict detector 892 detects an item change when deleting the item on the opposite file system as a reason for failure of a sync event, the event collapsing module 885 collapses a later create event into the failed event before retrying the failed event. After collapsing a failed event into a later or subsequent event, the resulting event is placed in the sync event queue 980 for execution.



FIG. 9 depicts example components of a sync server 910 of a cloud-based platform. The sync server 910, in some embodiments, includes many of the same components as the sync client 810 described in FIG. 8B for sync event building and event collapsing. For example, the sync server 910 can include a file system monitor 915 having an event monitor 920 and an event filter pipeline 960. The event monitor 920 can include a file system scanner 925 having an ALF listener 930, an item generator 935, a file system snapshot builder 940, a file system snapshot differ 945, a partial scanner 955 and a re-orderer 950. The sync server 910 can also include a sync execution controller 975, a sync event queue manager 980 and a conflict manager 990 having a conflict detector 992 and a conflict recovery manager 995. The conflict recovery manager 995 can include an event collapsing module 985.


The ALF listener 930, in some embodiments, can detect ALF events. The ALF events can include information about a new item state and minimal information about the type of change that occurred on an item. In some embodiments, the ALF listener 930, by listening to ALF stream, can directly obtain items that have been changed and their new states. Alternatively, the ALF listener 930 can obtain notifications that specific folders are recursively dirty. The partial scanner 955 can then be invoked to scan the affected folders to obtain the items that have been changed. The partial scanner 955 employs a method substantially similar to the method employed by the partial scanner 855 to generate differences between a reference snapshot and a current snapshot to obtain item changes and update the reference snapshot by applying the new snapshot on top of it. In some embodiments, the file system snapshot builder 940 of the sync server 910 can use an application programming interface (API) call to obtain an account tree and using the account tree data obtained as a response to generate a consistent snapshot of a folder that has been changed (or is dirty).


In some embodiments, the file system identifier of an item on the cloud-based platform is suitable for use as a logical identifier for the item. This enables the event filter pipeline 960 to generate sync events from raw events without requiring a translation between the logical identifiers and the file system identifiers.



FIG. 10A depicts a logic flow diagram illustrating an example method of generating item changes for sync event building. The example method includes a sync component (e.g., sync client, sync server) detecting a notification that a specific folder is dirty (i.e., the folder has been changed in the workspace) at block 1010. In some embodiments, the sync server receives the notification from the ALF stream. In some embodiments, instead of the notification, the sync server can receive a set of dirty items and their new states representing a current snapshot. In some embodiments, the sync client can receive the notification from a file system observer. Upon receiving the notification, the sync component can perform a partial scan of the affected folder. Performing a partial scan can include generating a new consistent snapshot of the affected folder at block 1022. The new consistent snapshot of the affected folder can include a list of dirty items and their new states. In some embodiments, the sync server can generate a consistent snapshot using an API call such as a transaction GAT request which returns a set of dirty items. In some embodiments, the sync client can generate a consistent snapshot by traversing through the dirty folder and recording all the entries to obtain a set of dirty items and their new states.


At block 1025, the sync component retrieves a reference snapshot of the dirty folder. The reference snapshot inside a file system scanner stores the last known states of the dirty items. At block 1030, the sync component generates differences between the reference snapshot and the new snapshot to determine item changes. In some embodiments, generating the differences between the two snapshots includes generating a list of all item identifiers that are in the reference snapshot (“all item ID list”). The sync component then processes each item identifier in the new snapshot to determine item changes for all item identifiers in the new snap shot that have a different item state in the reference snapshot. All the item identifiers that have been observed or evaluated are then removed from the all item ID list. The sync client further determines item changes with delete set to true for all item identifiers remaining in the all item ID list. At block 1035, the sync client updates the reference snapshot using the new snapshot. In some embodiments, the reference snapshot is updated using not only the changes detected from the partial scan but also from any changes made by sync executors on the monitored file system.



FIG. 10B depicts a logic flow diagram illustrating item change ordering and raw event generation for sync event building. Once the item changes have been determined and the reference snapshot is updated, the sync component can check each item change against a current snapshot of the file system to determine an order in which item changes should be applied at block 1040. For example, if the change is for a deleted folder, the snapshot can be checked to see that the folder does not contain any children. If the change is for a non-deleted item, the snapshot can be checked to see that the parent folder of the item exists and that no other item with the same name exists in the parent folder. If the change represents a move, the snapshot can be checked to see that the item is not an ancestor of its new parent. Like the filesystem snapshot described in FIG. 10A, the filesystem snapshot for ordering item changes can also include changes made by the sync executor and the file system scanner. At block 1045, based on the results of the check against the current snapshot of the filesystem, the sync component orders the item changes so that the item changes are consistent with the existing snapshot. In some embodiments, item changes that are not consistent with the existing snapshot are buffered until another item change alters the snapshot of the filesystem. At block 1050, the sync component generates raw events by using the ordered item changes to produce a set of executable actions. At block 1055, the sync component generates sync events by mapping file system identifiers to logical identifiers to enable syncing between the local file system and the remote file system.


Some embodiments of the present disclosure include a method of building synchronization events by a synchronization component associated with a cloud-based platform. The method can obtain a set of items that have been changed and new states of the set of items and retrieve last known states of the set of items. The last known states of the set of items are stored in a reference snapshot inside a filesystem scanner. The method can generate differences between the new states and the last known states of the set of items as item changes and utilize information provided by the item changes to translate the item changes into synchronization events.


The synchronization component can receive a notification of a change in a folder (e.g., the file system observer 830) and in response scan the folder to obtain the set of items that have been changed (e.g., partial scanner 855, item change generator 835). In some implementations, event dependencies between the item changes can be detected and the item changes can be ordered based on the detected event dependencies to allow the new state brought about by applying each item change is consistent with a filesystem (e.g., re-orderer 850). In some implementations, the synchronization component (e.g., re-orderer 850) can check each item change against a snapshot of a filesystem monitored by the synchronization component to determine if the new state brought about by the item change is consistent with the filesystem. If the new state brought about by the item change is not consistent with the filesystem, the synchronization component (e.g., item change buffer 870) can buffer the item change until another item change alters the snapshot of the filesystem. Similarly, if the new state brought about by the item change is consistent with the filesystem, the synchronization component can provide the item change to a filter pipeline (e.g., filter pipeline 860) for generating the synchronization events. In some implementations, the synchronization events include actions arranged in a predetermined order for execution on an opposing file system and the predetermined order allows the synchronization events to be executed without generating any inconsistencies. The synchronization component can be one of a synchronization client on a device or a synchronization server remote from the device and each can have an associated filesystem.


Some embodiments of the present disclosure includes a method of generating synchronization events associated with a synchronization component of a cloud-based platform. The method includes detecting that a folder on a filesystem has been changed, generating a new snapshot of the filesystem that is consistent, retrieving a reference snapshot of the filesystem, generating item changes by differencing the new snapshot from the reference snapshot and using the item changes to generate the synchronization events for execution on an opposing file system. The method can also include updating the reference snapshot using the new snapshot. In some implementations, the method includes checking each item change against a current snapshot of the filesystem to determine an order for executing the item changes and generating raw events in the determined order as executable actions to be applied to the opposing filesystem without generating inconsistencies. In some implementations, the method includes processing the raw events to generate the synchronization events for execution. Processing the raw events can include translating file system identifiers of items associated with the item changes to logical identifiers. In some implementations, differencing the new snapshot from the reference snapshot can further comprise generating a list of all item identifiers that are in the reference snapshot, processing each item in the new snapshot to obtain item changes for items that have different item states in the reference snapshot, removing all items involved in the processing from the list and obtaining item changes with delete set to true for all items remaining in the list.



FIG. 11 depicts a logic flow diagram illustrating an example method of collapsing a failed event into a subsequent event to handle sync event failures. The method starts at block 1105, when the sync component (e.g., a sync client or a sync server) attempts to execute a sync event on an opposite file system. At decision block 1110, if the sync event fails, the sync component can detect the failure event and determine a failure reason at block 1115. If the sync event is a success, the next sync event 1150 in the sync event queue is executed. In some embodiments, the failure reason can be a name conflict 1125a. In the event of a name conflict, the sync component can wait for a subsequent rename event and collapse the rename event into the failed event at block 1130. Collapsing the failed event into the rename event creates a new or resulting event that can then be re-executed by the sync component on the opposite file system at block 1145. In some embodiments, the failure reason can be that the item does not exist on source file system during execution 1125b. In this scenario, the sync component can wait for a subsequent delete event and collapse the delete event into the failed event at block 1135 and re-execute the resulting event at the opposing file system at block 1145. In some other embodiments, the failure reason can be that the item has been changed when deleting the item on the opposite file system 1125c. In this scenario, the sync component can collapse the failed event into a subsequent create event to restore the deleted item on the source file system and re-execute the resulting event on the opposing file system at block 1145.


Some embodiments of the present disclosure include a method of handling failed synchronization events by a synchronization component of a cloud-based platform. The method includes detecting a failed synchronization event associated with a synchronization item, identifying a subsequent synchronization event associated with the synchronization item to collapse with the failed synchronization event and re-executing the collapsed synchronization event on an opposing file system. In some implementations, the method can include determining a failure reason associated with the failed synchronization event and identifying the subsequent synchronization event based on the failure reason. In some implementations, when the failure reason includes name conflict, the subsequent synchronization event includes a rename event. Similarly, when the failure reason includes missing synchronization item on a source filesystem, the subsequent synchronization event includes a delete event. In some implementations, when the failure reason includes change in the synchronization item when deleting the synchronization item on the opposing file system, the subsequent synchronization event includes a create event. In some implementations, collapsing the subsequent synchronization event with the failed synchronization event can result in a single operation or no operation. The single operation can include a create operation, a rename operation, a move operation or a delete operation.



FIG. 12 shows a diagrammatic representation 1200 of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, can be executed.


In alternative embodiments, the machine operates as a standalone device or can be connected (e.g., networked) to other machines. In a networked deployment, the machine can operate in the capacity of a server or a client machine in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.


The machine can be a server computer, a client computer, a personal computer (PC), a user device, a tablet, a phablet, a laptop computer, a set-top box (STB), a personal digital assistant (PDA), a thin-client device, a cellular telephone, an iPhone, an iPad, a Blackberry, a processor, a telephone, a web appliance, a network router, switch or bridge, a console, a hand-held console, a (hand-held) gaming device, a music player, any portable, mobile, hand-held device, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.


While the machine-readable medium or machine-readable storage medium is shown in an exemplary embodiment to be a single medium, the term “machine-readable medium” and “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” and “machine-readable storage medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the presently disclosed technique and innovation.


In general, the routines executed to implement the embodiments of the disclosure, can be implemented as part of an operating system or a specific application, component, program, object, module or sequence of instructions referred to as “computer programs.” The computer programs typically comprise one or more instructions set at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processing units or processors in a computer, cause the computer to perform operations to execute elements involving the various aspects of the disclosure.


Moreover, while embodiments have been described in the context of fully functioning computers and computer systems, those skilled in the art will appreciate that the various embodiments are capable of being distributed as a program product in a variety of forms, and that the disclosure applies equally regardless of the particular type of machine or computer-readable media used to actually effect the distribution.


Further examples of machine-readable storage media, machine-readable media, or computer-readable (storage) media include, but are not limited to, recordable type media such as volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives, optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital Versatile Disks, (DVDs), etc.), among others, and transmission type media such as digital and analog communication links.


The network interface device enables the machine 1200 to mediate data in a network with an entity that is external to the host server, through any known and/or convenient communications protocol supported by the host and the external entity. The network interface device can include one or more of a network adaptor card, a wireless network interface card, a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, bridge router, a hub, a digital media receiver, and/or a repeater.


The network interface device can include a firewall which can, in some embodiments, govern and/or manage permission to access/proxy data in a computer network, and track varying levels of trust between different machines and/or applications. The firewall can be any number of modules having any combination of hardware and/or software components able to enforce a predetermined set of access rights between a particular set of machines and applications, machines and machines, and/or applications and applications, for example, to regulate the flow of traffic and resource sharing between these varying entities. The firewall can additionally manage and/or have access to an access control list which details permissions including for example, the access and operation rights of an object by an individual, a machine, and/or an application, and the circumstances under which the permission rights stand.


Other network security functions can be performed or included in the functions of the firewall, can be, for example, but are not limited to, intrusion-prevention, intrusion detection, next-generation firewall, personal firewall, etc. without deviating from the novel art of this disclosure.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof, means any connection or coupling, either direct or indirect, between two or more elements; the coupling of connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number can also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The above detailed description of embodiments of the disclosure is not intended to be exhaustive or to limit the teachings to the precise form disclosed above. While specific embodiments of, and examples for, the disclosure are described above for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments can perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks can be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes or blocks can be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks can instead be performed in parallel, or can be performed at different times. Further, any specific numbers noted herein are only examples: alternative implementations can employ differing values or ranges.


The teachings of the disclosure provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.


Any patents and applications and other references noted above, including any that can be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the disclosure can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments of the disclosure.


These and other changes can be made to the disclosure in light of the above Detailed Description. While the above description describes certain embodiments of the disclosure, and describes the best mode contemplated, no matter how detailed the above appears in text, the teachings can be practiced in many ways. Details of the system can vary considerably in its implementation details, while still being encompassed by the subject matter disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the disclosure should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the disclosure with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the disclosure to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the disclosure encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the disclosure under the claims.


While certain aspects of the disclosure are presented below in certain claim forms, the inventors contemplate the various aspects of the disclosure in any number of claim forms. For example, while only one aspect of the disclosure is recited as a means-plus-function claim under 35 U.S.C. §112, ¶6, other aspects can likewise be embodied as a means-plus-function claim, or in other forms, such as being embodied in a computer-readable medium. (Any claim intended to be treated under 35 U.S.C. §112, ¶6 begins with the words “means for”.) Accordingly, the applicant reserves the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the disclosure.

Claims
  • 1. A method of building synchronization events by a synchronization component associated with a cloud-based platform, the method comprising: obtaining, at a client device, a set of items that have been changed and new states of the set of items;retrieving last known states of the set of items, wherein the last known states of the set of items are stored in a reference snapshot inside a filesystem scanner;generating differences between the new states and the last known states of the set of items as item changes;utilizing information provided by the item changes to translate the item changes into synchronization events, wherein a filter pipeline included in the synchronization component generates the synchronization event; andupon determining, at the client device, that the synchronization component lacks access to filesystem Information, collecting the filesystem information andadding the file system information into the filter pipeline for generating the synchronization events.
  • 2. The method of claim 1, further comprising receiving a notification of a change in a folder and in response scanning the folder to obtain the set of items that have been changed.
  • 3. The method of claim 1, further comprising: detecting event dependencies between the item changes;ordering the item changes based on the detected event dependencies to allow the new state brought about by applying each item change is consistent with a filesystem.
  • 4. The method of claim 1, further comprising: checking each item change against a snapshot of a filesystem monitored by the synchronization component to determine if the new state brought about by the item change is consistent with the filesystem.
  • 5. The method of claim 4, further comprising: if the new state brought about by the item change is not consistent with the filesystem, buffering the item change until another item change alters the snapshot of the filesystem.
  • 6. The method of claim 4, further comprising: if the new state brought about by the item change is consistent with the filesystem, providing the item change to the filter pipeline for generating the synchronization events.
  • 7. The method of claim 1, wherein the synchronization events include actions arranged in a predetermined order for execution on an opposing file system, wherein the predetermined order allows the synchronization events to be executed without generating any inconsistencies.
  • 8. The method of claim 1, wherein the synchronization component is one of a synchronization client on a device or a synchronization server remote from the device, each associated with a respective filesystem.
  • 9. A method of generating synchronization events associated with a synchronization component of a cloud-based platform, the method comprising: detecting that a folder on a filesystem has been changed;generating a new snapshot of the filesystem that is consistent;retrieving a reference snapshot of the filesystem;generating item changes by differencing the new snapshot from the reference snapshot;using the item changes to generate the synchronization events for execution on an opposing file system, wherein a filter pipeline included in the synchronization component generates the synchronization event; andupon determining that the synchronization component lacks access to filesystem information: collecting the filesystem information andadding the filesystem information into the filter pipline for generating the synchronization events.
  • 10. The method of claim 9, further comprising: updating the reference snapshot using the new snapshot.
  • 11. The method of claim 9, further comprising: checking each item change against a current snapshot of the filesystem to determine an order for executing the item changes.
  • 12. The method of claim 11, further comprising: generating raw events in the determined order as executable actions to be applied to the opposing filesystem without generating inconsistencies.
  • 13. The method of claim 12, further comprising: processing the raw events to generate the synchronization events for execution.
  • 14. The method of claim 13, wherein processing the raw events includes translating file system identifiers of items associated with the item changes to logical identifiers.
  • 15. The method of claim 9, wherein differencing the new snapshot from the reference snapshot further comprises: generating a list of all item identifiers that are in the reference snapshot;processing each item in the new snapshot to obtain item changes for items that have different item states in the reference snapshot;removing all items involved in the processing from the list; andobtaining item changes with delete set to true for all items remaining in the list.
  • 16. A non-transitor computer readable medium storing instructions configured to, when executed by a computing device, cause the computing device to perform a method of building synchronization events by a synchronization component associated with a cloud-based platform, the method comprising: generating file system notifications, wherein the notifications include information about files or folders that have been changed;determining item changes based on a consistent snapshot of a folder whose children have changed and a reference snapshot of the folder in response to the file system notifications;generating raw events by ordering the item changes and producing a set of executable actions;generating synchronization events by mapping file system identifiers to logical identifiers for execution on an opposing file system, wherein a filter pipeline included in the synchronization component generates the synchronization events; andupon determining that the synchronization component lacks access to filesystem information: collecting the filesystem information andadding the filesystem information into the filter pipeline for generating the synchronization events.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and benefit from U.S. Provisional Application Ser. No. 61/834,756 titled “SYSTEMS AND METHODS FOR EVENT BUILDING, COLLAPSING, OR MONITORING BY A SYNCHRONIZATION CLIENT OF A CLOUD-BASED PLATFORM” filed on Jun. 13, 2013, the entire content of which is expressly incorporated by reference herein.

US Referenced Citations (647)
Number Name Date Kind
858619 O'Farrell Jul 1907 A
5043876 Terry Aug 1991 A
5748735 Ganesan May 1998 A
5774717 Porcaro Jun 1998 A
5787175 Carter Jul 1998 A
5799320 Klug Aug 1998 A
5848415 Guck Dec 1998 A
5864870 Guck Jan 1999 A
5926816 Bauer Jul 1999 A
5999908 Abelow Dec 1999 A
6016467 Newsted et al. Jan 2000 A
6034621 Kaufman Mar 2000 A
6055543 Christensen et al. Apr 2000 A
6073161 DeBoskey et al. Jun 2000 A
6098078 Gehani et al. Aug 2000 A
6226618 Downs et al. May 2001 B1
6233600 Salas et al. May 2001 B1
6260040 Kauffman et al. Jul 2001 B1
6279109 Brundridge Aug 2001 B1
6289345 Yasue Sep 2001 B1
6292803 Richardson et al. Sep 2001 B1
6336124 Alam et al. Jan 2002 B1
6342906 Kumar et al. Jan 2002 B1
6345386 Delo et al. Feb 2002 B1
6370543 Hoffert et al. Apr 2002 B2
6374260 Hoffert et al. Apr 2002 B1
6385606 Inohara et al. May 2002 B2
6396593 Laverty et al. May 2002 B1
6441641 Pang et al. Aug 2002 B1
6446091 Noren et al. Sep 2002 B1
6449622 LaRue et al. Sep 2002 B1
6515681 Knight Feb 2003 B1
6539381 Prasad et al. Mar 2003 B1
6584466 Serbinis et al. Jun 2003 B1
6636872 Heath et al. Oct 2003 B1
6636897 Sherman et al. Oct 2003 B1
6654737 Nunez Nov 2003 B1
6662186 Esquibel et al. Dec 2003 B1
6687878 Eintracht et al. Feb 2004 B1
6714968 Prust Mar 2004 B1
6735623 Prust May 2004 B1
6742181 Koike et al. May 2004 B1
6760721 Chasen et al. Jul 2004 B1
6947162 Rosenberg et al. Sep 2005 B2
6952724 Prust Oct 2005 B2
6996768 Elo et al. Feb 2006 B1
7003667 Slick et al. Feb 2006 B1
7010752 Ly Mar 2006 B2
7020697 Goodman et al. Mar 2006 B1
7039806 Friedman et al. May 2006 B1
7069393 Miyata et al. Jun 2006 B2
7080104 Ring et al. Jul 2006 B2
7130831 Howard et al. Oct 2006 B2
7133834 Abelow Nov 2006 B1
7143136 Drenan et al. Nov 2006 B1
7149787 Mutalik et al. Dec 2006 B1
7152182 Ji et al. Dec 2006 B2
7155483 Friend et al. Dec 2006 B1
7165107 Pouyoul et al. Jan 2007 B2
7171468 Yeung et al. Jan 2007 B2
7178021 Hanna et al. Feb 2007 B1
7222078 Abelow May 2007 B2
7275244 Bell et al. Sep 2007 B1
7296025 Kung et al. Nov 2007 B2
7337193 Mills et al. Feb 2008 B1
7346778 Guiter et al. Mar 2008 B1
7353252 Yang et al. Apr 2008 B1
7362868 Madoukh et al. Apr 2008 B2
7363330 Ellman et al. Apr 2008 B1
7370269 Prabhu et al. May 2008 B1
7380120 Garcia May 2008 B1
7386535 Kalucha et al. Jun 2008 B1
7401117 Dan et al. Jul 2008 B2
7523276 Shankar Apr 2009 B1
7543000 Castro et al. Jun 2009 B2
7581221 Lai et al. Aug 2009 B2
7620565 Abelow Nov 2009 B2
7647559 Yozell-Epstein et al. Jan 2010 B2
7650367 Arruza Jan 2010 B2
7653668 Shelat et al. Jan 2010 B1
7661088 Burke Feb 2010 B2
7665093 Maybee et al. Feb 2010 B2
7676542 Moser et al. Mar 2010 B2
7698363 Dan et al. Apr 2010 B2
7734600 Wise et al. Jun 2010 B1
7739411 Messer et al. Jun 2010 B2
7756843 Palmer Jul 2010 B1
7774412 Schnepel Aug 2010 B1
7814426 Huesken et al. Oct 2010 B2
7886287 Davda Feb 2011 B1
7886295 Burger et al. Feb 2011 B2
7890964 Vogler-Ivashchanka et al. Feb 2011 B2
7937663 Parker et al. May 2011 B2
7958353 Matsuzaki et al. Jun 2011 B2
7958453 Taing Jun 2011 B1
7979296 Kruse et al. Jul 2011 B2
7996374 Jones et al. Aug 2011 B1
8027976 Ding et al. Sep 2011 B1
RE42904 Stephens, Jr. Nov 2011 E
8065739 Bruening et al. Nov 2011 B1
8090361 Hagan Jan 2012 B2
8103662 Eagan et al. Jan 2012 B2
8117261 Briere et al. Feb 2012 B2
8140513 Ghods et al. Mar 2012 B2
8151183 Chen et al. Apr 2012 B2
8185830 Saha et al. May 2012 B2
8200582 Zhu Jun 2012 B1
8201230 Day et al. Jun 2012 B2
8214747 Yankovich et al. Jul 2012 B1
8230348 Peters et al. Jul 2012 B2
8239918 Cohen Aug 2012 B1
8326814 Ghods et al. Dec 2012 B2
8347276 Schadow Jan 2013 B2
8358701 Chou et al. Jan 2013 B2
8370803 Holler et al. Feb 2013 B1
8429540 Yankovich et al. Apr 2013 B1
8447820 Gay May 2013 B1
8464161 Giles et al. Jun 2013 B2
8473775 Helmick et al. Jun 2013 B1
8515902 Savage Aug 2013 B2
8527549 Cidon Sep 2013 B2
8549066 Donahue et al. Oct 2013 B1
8549511 Seki et al. Oct 2013 B2
8582777 Urivskiy et al. Nov 2013 B2
8583619 Ghods et al. Nov 2013 B2
8607306 Bridge et al. Dec 2013 B1
8650498 Mihovilovic Feb 2014 B1
8719445 Ko May 2014 B2
8719810 Oh May 2014 B2
8745267 Luecke et al. Jun 2014 B2
8782637 Khalid Jul 2014 B2
8825597 Houston et al. Sep 2014 B1
8849955 Prahlad et al. Sep 2014 B2
8868574 Kiang et al. Oct 2014 B2
8892679 Destagnol et al. Nov 2014 B1
8914856 Velummylum et al. Dec 2014 B1
8914900 Smith et al. Dec 2014 B2
8918387 Sokolov Dec 2014 B1
8949179 Besen et al. Feb 2015 B2
8949939 Peddada Feb 2015 B2
8955103 Kline, III et al. Feb 2015 B2
8959579 Barton et al. Feb 2015 B2
8966062 Giese et al. Feb 2015 B1
8990307 Barreto et al. Mar 2015 B2
8990955 Hymel et al. Mar 2015 B2
9015248 Barreto et al. Apr 2015 B2
9054919 Kiang et al. Jun 2015 B2
9239846 Besen et al. Jan 2016 B2
9244934 Besen et al. Jan 2016 B2
9396216 Barreto et al. Jul 2016 B2
9396245 Mackenzie et al. Jul 2016 B2
9495364 Savage et al. Nov 2016 B2
9507795 Dorman et al. Nov 2016 B2
9535924 Mackenzie et al. Jan 2017 B2
20010027492 Gupta Oct 2001 A1
20020029218 Bentley et al. Mar 2002 A1
20020091738 Rohrabaugh et al. Jul 2002 A1
20020099772 Deshpande et al. Jul 2002 A1
20020116544 Barnard et al. Aug 2002 A1
20020133509 Johnston et al. Sep 2002 A1
20020147770 Tang Oct 2002 A1
20020194177 Sherman et al. Dec 2002 A1
20030041095 Konda et al. Feb 2003 A1
20030084306 Abburi et al. May 2003 A1
20030093404 Bader et al. May 2003 A1
20030108052 Inoue et al. Jun 2003 A1
20030110264 Whidby et al. Jun 2003 A1
20030115326 Verma et al. Jun 2003 A1
20030135536 Lyons Jul 2003 A1
20030135565 Estrada Jul 2003 A1
20030154306 Perry Aug 2003 A1
20030204490 Kasriel Oct 2003 A1
20030217171 Von Stuermer et al. Nov 2003 A1
20030228015 Futa et al. Dec 2003 A1
20040003104 Boskovic et al. Jan 2004 A1
20040021686 Barberis Feb 2004 A1
20040076187 Peled Apr 2004 A1
20040088647 Miller et al. May 2004 A1
20040098361 Peng May 2004 A1
20040103147 Flesher et al. May 2004 A1
20040111415 Scardino et al. Jun 2004 A1
20040117438 Considine et al. Jun 2004 A1
20040122949 Zmudzinski et al. Jun 2004 A1
20040128359 Horvitz et al. Jul 2004 A1
20040162836 Aronoff et al. Aug 2004 A1
20040177138 Salle et al. Sep 2004 A1
20040181579 Huck et al. Sep 2004 A1
20040196307 Zak et al. Oct 2004 A1
20040201604 Kraenzel et al. Oct 2004 A1
20040218214 Kihara et al. Nov 2004 A1
20040230624 Frolund et al. Nov 2004 A1
20040230652 Estrada et al. Nov 2004 A1
20040246532 Inada Dec 2004 A1
20040260977 Ji et al. Dec 2004 A1
20040267836 Armangau et al. Dec 2004 A1
20050005276 Morgan Jan 2005 A1
20050010860 Weiss et al. Jan 2005 A1
20050022175 Sliger et al. Jan 2005 A1
20050022229 Gabriel et al. Jan 2005 A1
20050028006 Leser et al. Feb 2005 A1
20050033777 Moraes et al. Feb 2005 A1
20050038831 Souder et al. Feb 2005 A1
20050038997 Kojima et al. Feb 2005 A1
20050050228 Perham et al. Mar 2005 A1
20050055306 Miller et al. Mar 2005 A1
20050063083 Dart et al. Mar 2005 A1
20050097061 Shapiro et al. May 2005 A1
20050097225 Glatt et al. May 2005 A1
20050097434 Storisteanu May 2005 A1
20050102328 Ring et al. May 2005 A1
20050108406 Lee et al. May 2005 A1
20050114305 Haynes et al. May 2005 A1
20050114378 Elien et al. May 2005 A1
20050138118 Banatwala et al. Jun 2005 A1
20050172284 Dandekar et al. Aug 2005 A1
20050182966 Pham et al. Aug 2005 A1
20050198299 Beck et al. Sep 2005 A1
20050198452 Watanabe Sep 2005 A1
20050234864 Shapiro Oct 2005 A1
20050234943 Clarke Oct 2005 A1
20050261933 Magnuson Nov 2005 A1
20060005163 Huesken et al. Jan 2006 A1
20060026502 Dutta Feb 2006 A1
20060026535 Hotelling et al. Feb 2006 A1
20060036568 Moore et al. Feb 2006 A1
20060041603 Paterson et al. Feb 2006 A1
20060041752 Tuvell et al. Feb 2006 A1
20060047804 Fredricksen et al. Mar 2006 A1
20060053380 Spataro et al. Mar 2006 A1
20060070083 Brunswig et al. Mar 2006 A1
20060075071 Gillette Apr 2006 A1
20060117247 Fite et al. Jun 2006 A1
20060123062 Bobbitt et al. Jun 2006 A1
20060133340 Rybak et al. Jun 2006 A1
20060168550 Muller et al. Jul 2006 A1
20060173952 Coyle Aug 2006 A1
20060174051 Lordi et al. Aug 2006 A1
20060174054 Matsuki Aug 2006 A1
20060179070 George et al. Aug 2006 A1
20060179309 Cross et al. Aug 2006 A1
20060242204 Karas et al. Oct 2006 A1
20060242206 Brezak et al. Oct 2006 A1
20060259524 Horton Nov 2006 A1
20060265719 Astl et al. Nov 2006 A1
20060271510 Harward et al. Nov 2006 A1
20060288043 Novak et al. Dec 2006 A1
20070016680 Burd et al. Jan 2007 A1
20070028291 Brennan et al. Feb 2007 A1
20070038934 Fellman Feb 2007 A1
20070067349 Jhaveri et al. Mar 2007 A1
20070079242 Jolley et al. Apr 2007 A1
20070100830 Beedubail et al. May 2007 A1
20070115845 Hochwarth et al. May 2007 A1
20070118598 Bedi et al. May 2007 A1
20070124460 McMullen et al. May 2007 A1
20070124737 Wensley et al. May 2007 A1
20070124781 Casey et al. May 2007 A1
20070126635 Houri Jun 2007 A1
20070130143 Zhang et al. Jun 2007 A1
20070130163 Perez et al. Jun 2007 A1
20070162610 Un et al. Jul 2007 A1
20070179993 Arruza Aug 2007 A1
20070195779 Judge et al. Aug 2007 A1
20070198609 Black et al. Aug 2007 A1
20070208878 Barnes-Leon et al. Sep 2007 A1
20070214180 Crawford Sep 2007 A1
20070220016 Estrada et al. Sep 2007 A1
20070220590 Rasmussen et al. Sep 2007 A1
20070240057 Satterfield et al. Oct 2007 A1
20070250762 Mansfield Oct 2007 A1
20070256065 Heishi et al. Nov 2007 A1
20070266304 Fletcher et al. Nov 2007 A1
20070282848 Kiilerich et al. Dec 2007 A1
20070283443 McPherson et al. Dec 2007 A1
20070288290 Motoyama et al. Dec 2007 A1
20080005135 Muthukrishnan et al. Jan 2008 A1
20080005195 Li Jan 2008 A1
20080016146 Gan et al. Jan 2008 A1
20080021959 Naghi et al. Jan 2008 A1
20080028323 Rosen et al. Jan 2008 A1
20080040173 Aleong et al. Feb 2008 A1
20080040503 Kleks et al. Feb 2008 A1
20080040560 Hall et al. Feb 2008 A1
20080046828 Bibliowicz et al. Feb 2008 A1
20080059656 Saliba et al. Mar 2008 A1
20080063210 Goodman et al. Mar 2008 A1
20080065881 Dawson et al. Mar 2008 A1
20080077631 Petri Mar 2008 A1
20080091763 Devonshire et al. Apr 2008 A1
20080091790 Beck Apr 2008 A1
20080104277 Tian May 2008 A1
20080114720 Smith et al. May 2008 A1
20080133674 Knauerhase et al. Jun 2008 A1
20080140732 Wilson et al. Jun 2008 A1
20080147790 Malaney et al. Jun 2008 A1
20080151817 Fitchett et al. Jun 2008 A1
20080154873 Redlich et al. Jun 2008 A1
20080182628 Lee et al. Jul 2008 A1
20080183467 Yuan et al. Jul 2008 A1
20080184130 Tien et al. Jul 2008 A1
20080194239 Hagan Aug 2008 A1
20080195673 Hamel et al. Aug 2008 A1
20080215883 Fok et al. Sep 2008 A1
20080222654 Xu et al. Sep 2008 A1
20080243855 Prahlad et al. Oct 2008 A1
20080250333 Reeves et al. Oct 2008 A1
20080250348 Alimpich et al. Oct 2008 A1
20080263099 Brady-Kalnay et al. Oct 2008 A1
20080271095 Shafton Oct 2008 A1
20080276158 Lim et al. Nov 2008 A1
20080281972 Gupta et al. Nov 2008 A1
20080294899 Gazzetta et al. Nov 2008 A1
20090015864 Hasegawa Jan 2009 A1
20090019093 Brodersen et al. Jan 2009 A1
20090019426 Baeumer et al. Jan 2009 A1
20090030710 Levine Jan 2009 A1
20090043848 Kordun Feb 2009 A1
20090044128 Baumgarten et al. Feb 2009 A1
20090049131 Lyle et al. Feb 2009 A1
20090119322 Mills et al. May 2009 A1
20090125469 Mcdonald et al. May 2009 A1
20090132651 Roger et al. May 2009 A1
20090138808 Moromisato et al. May 2009 A1
20090150417 Ghods et al. Jun 2009 A1
20090150627 Benhase et al. Jun 2009 A1
20090158142 Arthursson et al. Jun 2009 A1
20090164438 Delacruz Jun 2009 A1
20090171983 Samji et al. Jul 2009 A1
20090172201 Carmel Jul 2009 A1
20090177754 Brezina et al. Jul 2009 A1
20090193107 Srinivasan et al. Jul 2009 A1
20090193345 Wensley et al. Jul 2009 A1
20090198772 Kim et al. Aug 2009 A1
20090210459 Nair et al. Aug 2009 A1
20090214115 Kimura et al. Aug 2009 A1
20090235167 Boyer et al. Sep 2009 A1
20090235181 Saliba et al. Sep 2009 A1
20090235189 Aybes et al. Sep 2009 A1
20090249224 Davis et al. Oct 2009 A1
20090254589 Nair et al. Oct 2009 A1
20090260060 Smith et al. Oct 2009 A1
20090265430 Bechtel et al. Oct 2009 A1
20090276771 Nickolov et al. Nov 2009 A1
20090282212 Peterson Nov 2009 A1
20090282483 Bennett Nov 2009 A1
20090300356 Crandell Dec 2009 A1
20090300527 Malcolm et al. Dec 2009 A1
20090327358 Lukiyanov et al. Dec 2009 A1
20090327405 FitzGerald et al. Dec 2009 A1
20090327961 De Vorchik et al. Dec 2009 A1
20100011292 Marinkovich et al. Jan 2010 A1
20100011447 Jothimani Jan 2010 A1
20100017262 Iyer et al. Jan 2010 A1
20100017619 Errico Jan 2010 A1
20100036929 Scherpa et al. Feb 2010 A1
20100042720 Stienhans et al. Feb 2010 A1
20100057560 Skudlark et al. Mar 2010 A1
20100057785 Khosravy et al. Mar 2010 A1
20100076946 Barker et al. Mar 2010 A1
20100082396 Caldwell et al. Apr 2010 A1
20100082534 Sagar et al. Apr 2010 A1
20100082634 Leban Apr 2010 A1
20100083136 Komine et al. Apr 2010 A1
20100088150 Mazhar et al. Apr 2010 A1
20100092126 Kaliszek et al. Apr 2010 A1
20100093310 Gbadegesin et al. Apr 2010 A1
20100107225 Spencer et al. Apr 2010 A1
20100122184 Vonog et al. May 2010 A1
20100131868 Chawla et al. May 2010 A1
20100151431 Miller Jun 2010 A1
20100153835 Xiong et al. Jun 2010 A1
20100162365 Del Real Jun 2010 A1
20100162374 Nair Jun 2010 A1
20100179940 Gilder et al. Jul 2010 A1
20100185463 Noland et al. Jul 2010 A1
20100185932 Coffman et al. Jul 2010 A1
20100191689 Cortes et al. Jul 2010 A1
20100198783 Wang et al. Aug 2010 A1
20100198871 Stiegler et al. Aug 2010 A1
20100198944 Ho et al. Aug 2010 A1
20100205392 Schnapp et al. Aug 2010 A1
20100205537 Knighton et al. Aug 2010 A1
20100212010 Stringer et al. Aug 2010 A1
20100218237 Ferris et al. Aug 2010 A1
20100223378 Wei Sep 2010 A1
20100229085 Nelson et al. Sep 2010 A1
20100235526 Carter et al. Sep 2010 A1
20100235539 Carter et al. Sep 2010 A1
20100241611 Zuber Sep 2010 A1
20100241972 Spataro et al. Sep 2010 A1
20100242028 Weigert Sep 2010 A1
20100250120 Waupotitsch et al. Sep 2010 A1
20100251340 Martin et al. Sep 2010 A1
20100257457 De Goes Oct 2010 A1
20100262582 Garcia-Ascanio et al. Oct 2010 A1
20100267588 Nelson et al. Oct 2010 A1
20100274765 Murphy et al. Oct 2010 A1
20100274772 Samuels Oct 2010 A1
20100281118 Donahue et al. Nov 2010 A1
20100290623 Banks et al. Nov 2010 A1
20100306379 Ferris Dec 2010 A1
20100312615 Murphy et al. Dec 2010 A1
20100318893 Matthews et al. Dec 2010 A1
20100322252 Suganthi et al. Dec 2010 A1
20100325155 Skinner et al. Dec 2010 A1
20100325527 Estrada et al. Dec 2010 A1
20100325559 Westerinen et al. Dec 2010 A1
20100325655 Perez Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20100332818 Prahlad et al. Dec 2010 A1
20100332962 Hammer et al. Dec 2010 A1
20100333116 Prahlad et al. Dec 2010 A1
20110001763 Murakami Jan 2011 A1
20110016409 Grosz et al. Jan 2011 A1
20110022559 Andersen et al. Jan 2011 A1
20110022812 van der Linden et al. Jan 2011 A1
20110029883 Lussier et al. Feb 2011 A1
20110040812 Phillips Feb 2011 A1
20110041083 Gabai et al. Feb 2011 A1
20110047413 McGill et al. Feb 2011 A1
20110047484 Mount et al. Feb 2011 A1
20110052155 Desmarais et al. Mar 2011 A1
20110054968 Galaviz Mar 2011 A1
20110055299 Phillips Mar 2011 A1
20110055721 Jain et al. Mar 2011 A1
20110061045 Phillips Mar 2011 A1
20110061046 Phillips Mar 2011 A1
20110065082 Gal et al. Mar 2011 A1
20110066951 Ward-Karet et al. Mar 2011 A1
20110078243 Carpenter et al. Mar 2011 A1
20110083167 Carpenter et al. Apr 2011 A1
20110093567 Jeon et al. Apr 2011 A1
20110099006 Sundararaman et al. Apr 2011 A1
20110107088 Eng et al. May 2011 A1
20110107205 Chow et al. May 2011 A1
20110113320 Neff et al. May 2011 A1
20110119313 Sung et al. May 2011 A1
20110125847 Cocheu et al. May 2011 A1
20110131299 Sardary Jun 2011 A1
20110137991 Russell Jun 2011 A1
20110142410 Ishii Jun 2011 A1
20110145187 Himmelsbach et al. Jun 2011 A1
20110145282 Moore et al. Jun 2011 A1
20110145589 Camenisch et al. Jun 2011 A1
20110145744 Haynes et al. Jun 2011 A1
20110154180 Evanitsky et al. Jun 2011 A1
20110161289 Pei et al. Jun 2011 A1
20110167125 Achlioptas Jul 2011 A1
20110167353 Grosz et al. Jul 2011 A1
20110167435 Fang Jul 2011 A1
20110185292 Chawla et al. Jul 2011 A1
20110202424 Chun et al. Aug 2011 A1
20110202599 Yuan et al. Aug 2011 A1
20110208958 Stuedi et al. Aug 2011 A1
20110209064 Jorgensen et al. Aug 2011 A1
20110213765 Cui et al. Sep 2011 A1
20110219419 Reisman Sep 2011 A1
20110225417 Maharajh et al. Sep 2011 A1
20110238458 Purcell et al. Sep 2011 A1
20110238621 Agrawal Sep 2011 A1
20110238759 Spataro et al. Sep 2011 A1
20110239135 Spataro et al. Sep 2011 A1
20110246294 Robb et al. Oct 2011 A1
20110246950 Luna et al. Oct 2011 A1
20110252071 Cidon Oct 2011 A1
20110252312 Lemonik et al. Oct 2011 A1
20110252320 Arrasvuori et al. Oct 2011 A1
20110252339 Lemonik et al. Oct 2011 A1
20110258461 Bates Oct 2011 A1
20110258561 Ladouceur et al. Oct 2011 A1
20110277027 Hayton et al. Nov 2011 A1
20110282710 Akkiraju et al. Nov 2011 A1
20110289433 Whalin et al. Nov 2011 A1
20110296022 Ferris et al. Dec 2011 A1
20110313803 Friend et al. Dec 2011 A1
20110314145 Raleigh et al. Dec 2011 A1
20110320197 Conejero et al. Dec 2011 A1
20110320936 Mohan et al. Dec 2011 A1
20120036370 Lim et al. Feb 2012 A1
20120057696 Chew Mar 2012 A1
20120064879 Panei Mar 2012 A1
20120072436 Pierre et al. Mar 2012 A1
20120079095 Evans et al. Mar 2012 A1
20120089610 Agrawal et al. Apr 2012 A1
20120089659 Halevi et al. Apr 2012 A1
20120089710 Rakowski et al. Apr 2012 A1
20120096521 Peddada Apr 2012 A1
20120101995 Agetsuma et al. Apr 2012 A1
20120110005 Kuo et al. May 2012 A1
20120110436 Adler, III et al. May 2012 A1
20120110443 Lemonik et al. May 2012 A1
20120117626 Yates et al. May 2012 A1
20120124306 Abercrombie et al. May 2012 A1
20120124547 Halbedel May 2012 A1
20120130900 Tang et al. May 2012 A1
20120134491 Liu May 2012 A1
20120136936 Quintuna May 2012 A1
20120143825 Boehm et al. Jun 2012 A1
20120144283 Hill et al. Jun 2012 A1
20120150888 Hyatt et al. Jun 2012 A1
20120151265 Bender et al. Jun 2012 A1
20120151551 Readshaw et al. Jun 2012 A1
20120158908 Luna et al. Jun 2012 A1
20120159178 Lin et al. Jun 2012 A1
20120159310 Chang et al. Jun 2012 A1
20120166516 Simmons et al. Jun 2012 A1
20120173612 Vegesna-Venkata et al. Jul 2012 A1
20120173625 Berger Jul 2012 A1
20120179802 Narasimhan et al. Jul 2012 A1
20120179981 Whalin et al. Jul 2012 A1
20120185355 Kilroy Jul 2012 A1
20120185913 Martinez et al. Jul 2012 A1
20120192055 Antebi et al. Jul 2012 A1
20120192086 Ghods et al. Jul 2012 A1
20120203670 Piersol Aug 2012 A1
20120203908 Beaty et al. Aug 2012 A1
20120204032 Wilkins et al. Aug 2012 A1
20120206653 Graves et al. Aug 2012 A1
20120207449 Angquist et al. Aug 2012 A1
20120209815 Carson et al. Aug 2012 A1
20120209889 Agnoli et al. Aug 2012 A1
20120214444 McBride et al. Aug 2012 A1
20120218885 Abel et al. Aug 2012 A1
20120221789 Felter Aug 2012 A1
20120224691 Purohit Sep 2012 A1
20120226767 Luna et al. Sep 2012 A1
20120233155 Gallmeier et al. Sep 2012 A1
20120233205 McDermott Sep 2012 A1
20120233543 Vagell et al. Sep 2012 A1
20120240061 Hillenius et al. Sep 2012 A1
20120240183 Sinha Sep 2012 A1
20120257249 Natarajan Oct 2012 A1
20120259964 Lin et al. Oct 2012 A1
20120263166 Cho et al. Oct 2012 A1
20120266203 Elhadad et al. Oct 2012 A1
20120284638 Cutler et al. Nov 2012 A1
20120284664 Zhao Nov 2012 A1
20120291011 Quine Nov 2012 A1
20120296790 Robb Nov 2012 A1
20120309540 Holme et al. Dec 2012 A1
20120311157 Erickson et al. Dec 2012 A1
20120317239 Mulder et al. Dec 2012 A1
20120317487 Lieb et al. Dec 2012 A1
20120328259 Seibert, Jr. et al. Dec 2012 A1
20120331177 Jensen Dec 2012 A1
20120331441 Adamson Dec 2012 A1
20130007245 Malik et al. Jan 2013 A1
20130007471 Grab et al. Jan 2013 A1
20130007894 Dang et al. Jan 2013 A1
20130013560 Goldberg et al. Jan 2013 A1
20130014023 Lee et al. Jan 2013 A1
20130042106 Persaud et al. Feb 2013 A1
20130054634 Chakraborty et al. Feb 2013 A1
20130055127 Saito et al. Feb 2013 A1
20130067232 Cheung et al. Mar 2013 A1
20130073403 Tuchman et al. Mar 2013 A1
20130073621 Waddoups et al. Mar 2013 A1
20130080765 Mohanty et al. Mar 2013 A1
20130080919 Kiang et al. Mar 2013 A1
20130110565 Means, Jr. et al. May 2013 A1
20130110961 Jadhav May 2013 A1
20130117226 Jain et al. May 2013 A1
20130117337 Dunham May 2013 A1
20130117376 Filman et al. May 2013 A1
20130124458 Barreto et al. May 2013 A1
20130124638 Barreto et al. May 2013 A1
20130124984 Kuspa May 2013 A1
20130138608 Smith May 2013 A1
20130138615 Gupta et al. May 2013 A1
20130151690 Shah et al. Jun 2013 A1
20130159411 Bowen Jun 2013 A1
20130163289 Kim et al. Jun 2013 A1
20130167253 Seleznev et al. Jun 2013 A1
20130179947 Kline, III et al. Jul 2013 A1
20130185347 Romano Jul 2013 A1
20130185558 Seibert et al. Jul 2013 A1
20130191339 Haden et al. Jul 2013 A1
20130198600 Lockhart et al. Aug 2013 A1
20130212067 Piasecki et al. Aug 2013 A1
20130212486 Joshi et al. Aug 2013 A1
20130218978 Weinstein et al. Aug 2013 A1
20130226876 Gati et al. Aug 2013 A1
20130227522 Lerum et al. Aug 2013 A1
20130239049 Perrodin et al. Sep 2013 A1
20130246901 Massand Sep 2013 A1
20130246932 Zaveri et al. Sep 2013 A1
20130254699 Bashir et al. Sep 2013 A1
20130262210 Savage et al. Oct 2013 A1
20130262862 Hartley Oct 2013 A1
20130268480 Dorman Oct 2013 A1
20130268491 Chung et al. Oct 2013 A1
20130268999 Kiang et al. Oct 2013 A1
20130275398 Dorman et al. Oct 2013 A1
20130275429 York et al. Oct 2013 A1
20130275509 Micucci et al. Oct 2013 A1
20130282658 Besen et al. Oct 2013 A1
20130282830 Besen et al. Oct 2013 A1
20130283106 King et al. Oct 2013 A1
20130304679 Fleming et al. Nov 2013 A1
20130304694 Barreto et al. Nov 2013 A1
20130304697 Movida Nov 2013 A1
20130305039 Gauda Nov 2013 A1
20130325803 Akirav Dec 2013 A1
20130326344 Masselle et al. Dec 2013 A1
20140006357 Davis et al. Jan 2014 A1
20140006465 Davis et al. Jan 2014 A1
20140007205 Oikonomou Jan 2014 A1
20140013112 Cidon et al. Jan 2014 A1
20140019497 Cidon et al. Jan 2014 A1
20140019498 Cidon et al. Jan 2014 A1
20140032489 Hebbar et al. Jan 2014 A1
20140032616 Nack Jan 2014 A1
20140033277 Xiao et al. Jan 2014 A1
20140033291 Liu Jan 2014 A1
20140033324 Kiang et al. Jan 2014 A1
20140040182 Gilder et al. Feb 2014 A1
20140040206 Ramakrishnan et al. Feb 2014 A1
20140047509 Bhogal et al. Feb 2014 A1
20140052939 Tseng et al. Feb 2014 A1
20140059002 Lockhart et al. Feb 2014 A1
20140059217 Pizurica Feb 2014 A1
20140068589 Barak Mar 2014 A1
20140074629 Rathod Mar 2014 A1
20140082071 Rexer Mar 2014 A1
20140150023 Gudorf et al. May 2014 A1
20140156373 Roberts et al. Jun 2014 A1
20140172595 Beddow et al. Jun 2014 A1
20140172783 Suzuki et al. Jun 2014 A1
20140172799 Dorman Jun 2014 A1
20140188798 Mackenzie et al. Jul 2014 A1
20140195485 Dorman Jul 2014 A1
20140201138 Dorman et al. Jul 2014 A1
20140201145 Dorman et al. Jul 2014 A1
20140244600 Schmidt et al. Aug 2014 A1
20140280605 Zhang Sep 2014 A1
20140298420 Barton et al. Oct 2014 A1
20140337291 Dorman et al. Nov 2014 A1
20140337491 Barreto et al. Nov 2014 A1
20140344456 Buzbee et al. Nov 2014 A1
20140359286 Wen et al. Dec 2014 A1
20140379647 Smith et al. Dec 2014 A1
20150019723 Kweon et al. Jan 2015 A1
20150039556 Mackenzie et al. Feb 2015 A1
20150186668 Whaley et al. Jul 2015 A1
20150237406 Ochoa et al. Aug 2015 A1
20150339113 Dorman et al. Nov 2015 A1
20160065672 Savage et al. Mar 2016 A1
Foreign Referenced Citations (43)
Number Date Country
2724521 Nov 2009 CA
101997924 Mar 2011 CN
102264063 Nov 2011 CN
0348614 Jan 1990 EP
0921661 Jun 1999 EP
1349088 Oct 2003 EP
1528746 May 2005 EP
1933242 Jun 2008 EP
2372574 Oct 2011 EP
2610776 Jul 2013 EP
2453924 Apr 2009 GB
2471282 Dec 2010 GB
09-101937 Apr 1997 JP
11-025059 Jan 1999 JP
2003273912 Sep 2003 JP
2004310272 Nov 2004 JP
09-269925 Oct 2007 JP
2008250944 Oct 2008 JP
20020017444 Mar 2002 KR
20040028036 Apr 2004 KR
20050017674 Feb 2005 KR
20060070306 Jun 2006 KR
20060114871 Nov 2006 KR
20070043353 Apr 2007 KR
20070100477 Oct 2007 KR
20100118836 Nov 2010 KR
20110074096 Jun 2011 KR
20110076831 Jul 2011 KR
WO-0007104 Feb 2000 WO
WO-0219128 Mar 2002 WO
WO-2004097681 Nov 2004 WO
WO-2006028850 Mar 2006 WO
WO-2007024438 Mar 2007 WO
WO-2007035637 Mar 2007 WO
WO-2007113573 Oct 2007 WO
WO-2008011142 Jan 2008 WO
WO-2008076520 Jun 2008 WO
WO-2011109416 Sep 2011 WO
WO-2012167272 Dec 2012 WO
WO-2013009328 Jan 2013 WO
WO-2013013217 Jan 2013 WO
WO-2013041763 Mar 2013 WO
WO-2013166520 Nov 2013 WO
Non-Patent Literature Citations (282)
Entry
Wei, et al., “Managing Security of Virtual Machine Images in a Cloud Environment,” CCSW'09, Nov. 13, 2009, pp. 91-96.
Ivens, “Using and Troubleshooting Offline Files,” Jun. 23, 2002, Windows IT Pro, Figure 1.
Ivens, “Configuring Offline Files,” Apr. 21, 2002, Windows IT Pro, pp. 1-5.
U.S. Appl. No. 60/992,656, filed Dec. 5, 2007 Methods and Systems for Open Source Collaboration in an Application Service Provider Environment.
U.S. Appl. No. 61/055,901, filed May 23, 2008 Methods and Systems for Open Source Integration.
U.S. Appl. No. 13/646,339, filed Oct. 5, 2012 File Management System and Collaboration Service and Integration Capabilities With Third Party Applications.
U.S. Appl. No. 14/073,502, filed Nov. 6, 2013 Methods and Systems for Open Source Collaboration in an Application Service Provider Environment.
U.S. Appl. No. 61/434,810, filed Jan. 20, 2011 Real Time Notifications of Activity and Real-Time Collaboration in a Cloud-Based Environment With Applications in Enterprise Settings.
U.S. Appl. No. 13/152,982, filed Jun. 3, 2011 Real Time Notification of Activities that Occur in a Web-Based Collaboration Environment.
U.S. Appl. No. 13/166,733, filed Jun. 22, 2011 Multimedia Content Preview Rendering in a Cloud Content Management System.
U.S. Appl. No. 61/551,894, filed Oct. 26, 2011 Enhanced Multimedia Content Preview Rendering in a Cloud Content Management System.
U.S. Appl. No. 13/590,012, filed Aug. 20, 2012 Preview Pre-Generation Based on Heuristics and Algorithmic Prediction/Assessment of Predicted User Behavior for Enhancement of User Experience.
U.S. Appl. No. 13/297,230, filed Nov. 15, 2011 Enhanced Multimedia Content Preview Rendering in a Cloud Content Management.
U.S. Appl. No. 61/592,567, filed Jan. 30, 2012 Preview Pre-Generation Based on Heuristics and Algorithmic Prediction/Assessment of Predicted User Behavior for Enhancement of User Experience.
U.S. Appl. No. 61/506,013, filed Jul. 8, 2011 Collaboration Sessions in a Workspace on a Cloud-Based Content Management System.
U.S. Appl. No. 13/208,615, filed Aug. 12, 2011 Collaboration Sessions in a Workspace on a Cloud-Based Content Management System.
U.S. Appl. No. 61/592,394, filed Jan. 30, 2012 Extended Applications of Multimedia Content Previews in the Cloud-Based Content Management System.
U.S. Appl. No. 13/588,356, filed Aug. 17, 2012 Extended Applications of Multimedia Content Previews in the Cloud-Based Content Management System.
U.S. Appl. No. 13/968,357, filed Aug. 15, 2013 Automatic and Semi-Automatic Tagging Features of Work Items in a Shared Workspace for Metadata Tracking in a Cloud-Based Content Management System With Selective or Optional User Contribution.
U.S. Appl. No. 61/538,782, filed Sep. 23, 2011 Central Management and Control of User-Contributed Content in a Web-Based Collaboration Environment and Management Console Thereof.
U.S. Appl. No. 13/547,264, filed Jul. 12, 2012 Central Management and Control of User-Contributed Content in a Web-Based Collaboration Environment and Management Console Thereof.
U.S. Appl. No. 13/165,725, filed Jun. 21, 2011 Batch Uploading of Content to a Web-Based Collaboration Environment.
U.S. Appl. No. 61/554,450, filed Nov. 1, 2011 Platform and Application Independent Method for Document Editing and Version Tracking via a Web Browser.
U.S. Appl. No. 13/332,319, filed Dec. 20, 2011, Platform and Application Independent System and Method for Networked File Access and Editing.
U.S. Appl. No. 13/414,480, filed Mar. 7, 2012 Universal File Type Preview for Mobile Devices.
U.S. Appl. No. 13/345,502, filed Jan. 6, 2012 System and Method for Actionable Event Generation for Task Delegation and Management via a Discussion Forum in a Web-Based Collaboration Environment.
U.S. Appl. No. 13/619,439, filed Sep. 14, 2012 Batching Notifications of Activities That Occur in a Web-Based Collaboration Environment.
U.S. Appl. No. 61/579,551, filed Dec. 22, 2011 System Status Monitoring and Data Health Checking in a Collaborative Environment.
U.S. Appl. No. 13/464,813, filed Apr. 4, 2012 Health Check Services for Web-Based Collaboration Environments.
U.S. Appl. No. 13/405,164, filed Feb. 24, 2012 System and Method for Promoting Enterprise Adoption of a Web-Based Collaboration Environment.
U.S. Appl. No. 13/431,645, filed Mar. 27, 2012 Cloud Service or Storage Use Promotion via Partnership Driven Automatic Account Upgrades.
U.S. Appl. No. 61/649,869, filed Mar. 21, 2012 Selective Application Access Control via a Cloud-Based Service for Security Enhancement.
U.S. Appl. No. 13/493,783, filed Jun. 11, 2012 Security Enhancement Through Application Access Control.
U.S. Appl. No. 61/702,948, filed Sep. 19, 2012 Cloud-Based Platform Enabled With Media Content Indexed for Text-Based Searches and/or Metadata Extraction.
U.S. Appl. No. 13/829,663, filed Mar. 14, 2013 Cloud-Based Platform Enabled With Media Content Indexed for Text-Based Searches and/or Metadata Extraction.
U.S. Appl. No. 61/702,662, filed Sep. 18, 2012 Sandboxing Individual Applications to Specific User Folders in a Cloud-Based Service.
U.S. Appl. No. 13/830,016, filed Mar. 14, 2013 Sandboxing Individual Applications to Specific User Folders in a Cloud-Based Service.
U.S. Appl. No. 61/620,568, filed Apr. 5, 2012 Synchronization Client Selective Subfolder Syncing in a Cloud-Based Environment.
U.S. Appl. No. 13/856,607, filed Apr. 4, 2013 Method and Apparatus for Selective Subfolder Synchronization in a Cloud-Based Environment.
U.S. Appl. No. 61/641,824, filed May 2, 2012 Platform and Application Agnostic Method for Seamless File Access in a Mobile Environment.
U.S. Appl. No. 61/650,840, filed May 23, 2012 Platform and Application Agnostic Method for Seamless File Access in a Mobile Environment.
U.S. Appl. No. 61/653,876, filed May 31, 2012 Platform and Application Agnostic Method for Seamless File Access in a Mobile Environment.
U.S. Appl. No. 13/886,147, filed May 2, 2013 System and Method for a Third-Party Application to Access Content Within a Cloud-Based Platform.
U.S. Appl. No. 13/897,421, filed May 19, 2013 Methods, Architectures and Security Mechanisms for a Third-Party Application to Access Content in a Cloud-Based Platform.
U.S. Appl. No. 13/898,200, filed May 20, 2013 Metadata Enabled Third-Party Application Access of Content at a Cloud-Based Platform via a Native Client to the Cloud-Based Platform.
U.S. Appl. No. 13/898,242, filed May 20, 2013 Identification Verification Mechanisms for a Third-Party Application to Access Content in a Cloud-Based Platform.
U.S. Appl. No. 61/667,909, Jul. 3, 2012 Highly Available Ftp Servers for a Cloud-Based Service.
U.S. Appl. No. 13/565,136, filed Aug. 2, 2012 Load Balancing Secure Ftp Connections Among Multiple Ftp Servers.
U.S. Appl. No. 61/668,626, filed Jul. 6, 2012 Online Shard Migration.
U.S. Appl. No. 13/937,060, filed Jul. 8, 2013 System and Method for Performing Shard Migration to Support Functions of a Cloud-Based Service.
U.S. Appl. No. 61/668,698, filed Jul. 6, 2012 Identification of People as Search Results From Key-Word Based Searches of Content.
U.S. Appl. No. 13/937,101, filed Jul. 8, 2013 Identification of People as Search Results From Key-Word Based Searches of Content in a Cloud-Based Environment.
U.S. Appl. No. 61/668,791, filed Jul. 6, 2012 Systems and Methods for Specifying User and Item Identifiers Within an Email Address for Securely Submitting Comments via Email.
U.S. Appl. No. 13/937,124, filed Jul. 8, 2013 Systems and Methods for Securely Submitting Comments Among Users via External Messaging Applications in a Cloud-Based Platform.
U.S. Appl. No. 61/673,671, filed Jul. 19, 2012 Data Loss Prevention Methods and Architectures in a Cloud Service.
U.S. Appl. No. 13/944,184, filed Jul. 17, 2013 Data Loss Prevention (Dlp) Methods and Architectures by a Cloud Service.
U.S. Appl. No. 13/944,241, filed Jul. 17, 2013 Data Loss Prevention (Dlp) Methods by a Cloud Service Including Third Party Integration Architectures.
U.S. Appl. No. 61/694,492, filed Aug. 29, 2012 Method of Streaming File Encryption and Decryption to/From a Collaborative Cloud.
U.S. Appl. No. 13/975,827, filed Aug. 26, 2013 Method of Streaming File Encryption and Decryption to/From a Collaborative Cloud.
U.S. Appl. No. 61/701,823, filed Sep. 17, 2012 Use of a Status Bar Interface Element as a Handle for Revealing Additional Details.
U.S. Appl. No. 13/737,577, filed Jan. 9, 2013 System and Method of a Manipulative Handle in an Interactive Mobile User Interface.
U.S. Appl. No. 61/697,437, filed Sep. 6, 2012 Secure File Portability Between Mobile Applications Using a Server-Based Key Generation Service.
U.S. Appl. No. 13/776,358, filed Feb. 25, 2013 Secure File Portability Between Mobile Applications Using a Server-Based Key Generation Service.
U.S. Appl. No. 61/697,469, filed Sep. 6, 2012 Force Upgrade of a Mobile Application via Server Side Configuration Files.
U.S. Appl. No. 13/776,467, filed Feb. 25, 2013 Force Upgrade of a Mobile Application via Server Side Configuration File.
U.S. Appl. No. 61/697,477, filed Sep. 6, 2012 Disabling the Self-Referential Appearance of a Mobile Application in an Intent via a Background Registration.
U.S. Appl. No. 13/794,401, filed Mar. 11, 2013 Disabling the Self-Referential Appearance of a Mobile Application in an Intent via a Background Registration.
U.S. Appl. No. 61/697,511, filed Sep. 6, 2012 Channel for Openting and Editing Files From a Cloud Service Provider Based on Intents.
U.S. Appl. No. 13/776,535, filed Feb. 25, 2013 System and Method for Creating a Secure Channel for Inter-Application Communication Based on Intents.
U.S. Appl. No. 61/694,466, filed Aug. 12, 2012 Optimizations for Client and/or Server Feedback Information Enabled Real Time or Near Real Time Enhancement of Upload/Download Performance.
U.S. Appl. No. 61/702,154, filed Sep. 17, 2012 Optimizations for Client and/or Server Feedback Information Enabled Real Time or Near Real Time Enhancement of Upload/Download Performance.
U.S. Appl. No. 61/703,699, filed Sep. 20, 2012 Optimizations for Client and/or Server Feedback Information Enabled Real Time or Near Real Time Enhancement of Upload/Download Performance.
U.S. Appl. No. 14/293,685, filed Jun. 2, 2014 Enhancement of Upload and/or Download Performance Based on Client and/or Server Feedback Information.
U.S. Appl. No. 61/715,208, filed Oct. 17, 2012 Adaptive Architectures for Encryption Key Management in a Cloud-Based Environment.
U.S. Appl. No. 14/056,899, filed Oct. 17, 2013 Remote Key Management in a Cloud-Based Environment.
U.S. Appl. No. 61/709,086, filed Oct. 2, 2012 Visibility, Access Control, Advanced Reporting Api, and Enhanced Data Protection and Security Mechanisms for Administrators in an Enterprise.
U.S. Appl. No. 14/044,261, filed Oct. 2, 2013 System and Method for Enhanced Security and Management Mechanisms for Enterprise Administrators in a Cloud-Based Environment.
U.S. Appl. No. 61/709,653, filed Oct. 4, 2012 Corporate User Discover and Identification of Recommended Collaborators in a Cloud Platform.
U.S. Appl. No. 14/046,294, filed Oct. 4, 2013 Corporate User Discovery and Identification of Recommended Collaborators in a Cloud Platform.
U.S. Appl. No. 61/709,866, filed Oct. 4, 2012 Enhanced Quick Search Features, Low-Barrier Commenting/Interactive Features in a Collaboration Platform.
U.S. Appl. No. 14/046,523, filed Oct. 4, 2013 Enhanced Quick Search Features, Low-Barrier Commenting/Interactive Features in a Collaboration Platform.
U.S. Appl. No. 61/709,407, filed Oct. 4, 2012 Seamless Access, Editing, and Creation of Files in a Web Interface or Mobile Interface to a Cloud Platform.
U.S. Appl. No. 14/046,726, filed Oct. 4, 2013 Seamless Access, Editing, and Creation of Files in a Web Interface or Mobile Interface to a Collaborative Cloud Platform.
U.S. Appl. No. 61/70,182, filed Oct. 5, 2012 Embedded Html Folder Widget for Accessing a Cloud Collaboration Platform and Content From Any Site.
U.S. Appl. No. 14/047,223, filed Oct. 7, 2013 System and Method for Generating Embeddable Widgets Which Enable Access to a Cloud-Based Collaboration Platform.
U.S. Appl. No. 61/753,761, Conflict Resolution, Retry Condition Management, and Handling of Problem Files for the Synchronization Client to a Cloud-Based Platform.
U.S. Appl. No. 61/839,325, filed Jun. 23, 2013 Systems and Methods for Improving Performance of a Cloud-Based Platform.
U.S. Appl. No. 14/314,887, filed Jun. 25, 2014 Systems and Methods for Managing Upgrades, Migration of User Data and Improving Performance of a Cloud-Based Platform.
U.S. Appl. No. 61/839,331, filed Jun. 25, 2013 Systems and Methods for Providing Shell Communication in a Cloud-Based Platform.
U.S. Appl. No. 14/314,677, filed Jun. 25, 2014 Systems and Methods for Providing Shell Communication in a Cloud-Based Platform.
U.S. Appl. No. 13/954,680, filed Jul. 30, 2013 System and Method for Advanced Control Tools for Administrators in a Cloud-Based Service.
U.S. Appl. No. 14/194,091, filed Feb. 28, 2014, Scalability Improvement in a System Which Incrementally Updates Clients With Events That Occurred in a Cloud-Based Collaboration Platform.
U.S. Appl. No. 13/953,668, filed Jul. 29, 2013 System and Method for Advanced Search and Filtering Mechanisms for Enterprise Administrators in a Cloud-Based Environment.
U.S. Appl. No. 14/026,674, filed Sep. 13, 2013 Configurable Event-Based Automation Architecture for Cloud-Based Collaboration Platforms.
U.S. Appl. No. 61/877,917, filed Sep. 13, 2013 Systems and Methods for Configuring Event-Based Automation in Cloud-Based Collaboration Platforms.
U.S. Appl. No. 14/075,849, filed Nov. 8, 2013 Systems and Methods for Configuring Event-Based Automation in Cloud-Based Collaboration Platforms.
U.S. Appl. No. 14/027,149, filed Sep. 13, 2013 Simultaneous Editing/Accessing of Content by Collaborator Invitation Through a Web-Based or Mobile Application to a Cloud-Based Collaboration Platform.
U.S. Appl. No. 14/042,473, filed Sep. 30, 2013 Simultaneous Editing/Accessing of Content by Collaborator Invitation Through a Web-Based or Mobile Application to a Cloud-Based Collaboration Platform.
U.S. Appl. No. 14/026,837, filed Sep. 13, 2013 Mobile Device, Methods and User Interfaces Thereof in a Mobile Device Platform Featuring Multifunctional Access and Engagement in a Collaborative Environment Provided by a Cloud-Based Platform.
U.S. Appl. No. 14/166,414, filed Jan. 28, 2014 System and Method of a Multi-Functional Managing User Interface for Accessing a Cloud-Based Platform via Mobile Devices.
U.S. Appl. No. 14/027,147, filed Sep. 13, 2013 System and Method for Rendering Document in Web Browser or Mobile Device Regardless of Third-Party Plug-In Software.
U.S. Appl. No. 61/877,938, filed Sep. 13, 2013 High Availability Architecture for a Cloud-Based Concurrent-Access Collaboration Platform.
U.S. Appl. No. 14/474,507, filed Sep. 2, 2014 High Availability Architecture for a Cloud-Based Concurrent-Access Collaboration Platform.
U.S. Appl. No. 14/472,540, filed Aug. 29, 2014 Enhanced Remote Key Management for an Enterprise in a Cloud-Based Environment.
U.S. Appl. No. 14/474,008, filed Aug. 28, 2014 Configurable Metadata-Based Automation and Content Classification Architecture for Cloud-Based Collaboration Platforms.
“Average Conversion Time for a D60 RAW file?” http://www.dpreview.com, Jul. 22, 2002, 4 pages.
“Conceptboard”, One-Step Solution for Online Collaboration, retrieved from websites http://conceptboard.com and https://www.youtube.com/user/ConceptboardApp?feature=watch, printed on Jun. 13, 2013, 9 pages.
“How-to Geek, How to Sync Specific Folders With Dropbox,” downloaded from the internet http://www.howtogeek.com, Apr. 23, 2013, 5 pages.
“Microsoft Office SharePoint 2007 User Guide,” Feb. 16, 2010, pp. 1-48.
“PaperPort Professional 14,” PC Mag. Com review, published Feb. 2012, Ziff Davis, Inc., 8 pages.
“PaperPort,” Wikipedia article (old revision), published May 19, 2012, Wikipedia Foundation, 2 pages.
“Quickoffice Enhances Android Mobile office Application for Improved Productivity on latest Smartphone and Table Devices,” QuickOffice Press Release, Nov. 21, 2011, QuickOffice Inc., 2 pages.
“QuickOffice,” Wikipedia Article (old revision), published May 9, 2012, Wikipedia Foundation, 2 pages.
“Revolving sync conflicts; frequently asked questions,” Microsoft Tech Support, Jul. 16, 2012, retrieved from the Internet: http://web.archive.org/web, 2 pages.
“Troubleshoot sync problems,” Microsoft Tech Support: May 2, 2012, retrieved from the internet, http://web.Archive.org/web, 3 pages.
“Tulsa TechFest 2012—Agenda,” retrieved from the website, http://web.archive.org, Oct. 2, 2012, 2 pages.
“Understanding Metadata,” National Information Standards Organization, NISO Press, 2004, 20 pages.
Burns, “Developing Secure Mobile Applications for Android,” Oct. 2008, Version 1.0, 1-28 pages.
Cisco, “FTP Load Balancing on ACE in Routed Mode Configuration Example,” DocWiki, Jun. 2011, 7 pages.
Cohen, “Debating the Definition of Cloud Computing Platforms,” retrieved from the internet, http://forbes.com, Feb. 3, 2014, 7 pages.
Comes, “MediaXchange User's Manual,” Version 1.15.15, Feb. 1, 2009, pp. 1-90.
Conner, “Google Apps: The Missing Manual,” published by O'Reilly Media, May 27, 2008, 24 pages.
Delendik, “Evolving with Web Standards—The Story of PDF.JS,” retrieved from the internet, http://people.mozilla.org, Oct. 12, 2012, 36 pages.
Delendik, “My PDF.js talk slides from Tulsa TechFest,” retrieved from the internet, http://twitter.com, Oct. 12, 2012, 2 pages.
Duffy, “The Best File-Syncing Services,” pcmag.com, retrieved from the internet: http://www.pcmag.com, Sep. 28, 2012, 7 pages.
Exam Report for EP13158415.3, Applicant: Box, Inc. Mailed Jun. 4, 2013, 8 pages.
Exam Report for EP13168784.0, Applicant: Box, Inc. Mailed Nov. 21, 2013, 7 pages.
Exam Report for EP13177108.1, Applicant: Box, Inc. Mailed May 26, 2014, 6 pages.
Exam Report for EP13185269.1, Applicant: Box, Inc. Mailed Jan. 28, 7 pages.
Exam Report for GB1300188.8, Applicant: Box, Inc. Mailed May 31, 2013, 8 pages.
Exam Report for GB1306011.6, Applicant: Box, Inc. Mailed Apr. 18, 2013, 8 pages.
Exam Report for GB1308842.2, Applicant: Box, Inc. Mailed Mar. 10, 2014, 4 pages.
Exam Report for GB1309209.3, Applicant: Box, Inc. Mailed Oct. 30, 2013, 11 pages.
Exam Report for GB1310666.1, Applicant: Box, Inc. Mailed Aug. 30, 2013, 10 pages.
Exam Report for GB1311417.8, Applicant: Box, Inc. Mailed Dec. 23, 2013, 5 pages.
Exam Report for GB1312095.1, Applicant: Box, Inc. Mailed Dec. 12, 2013, 7 pages.
Exam Report for GB1312264.3, Applicant: Box, Inc. Mailed Mar. 24, 2014, 7 pages.
Exam Report for GB1312874.9, Applicant: Box, Inc. Mailed Dec. 20, 2013, 11 pages.
Exam Report for GB1313559.5, Applicant: Box, Inc., Mailed Aug. 22, 2013, 19 pages.
Exam Report for GB1316532.9, Applicant: Box, Inc. Mailed Oct. 31, 2013, 10 pages.
Exam Report for GB1316533.7, Applicant: Box, Inc. Mailed Oct. 8, 2013, 9 pages.
Exam Report for GB1316971.9, Applicant: Box, Inc. Mailed Nov. 26, 2013, 10 pages.
Exam Report for GB1317600.3, Applicant: Box, Inc. Mailed Nov. 21, 2013, 8 pages.
Exam Report for GB1318373.6, Applicant: Box, Inc. Mailed Dec. 17, 2013, 4 pages.
Exam Report for GB1318792.7, Applicant: Box, Inc. Mailed May 22, 2014, 2 pages.
Exam Report for GB1320902.8, Applicant: Box, Inc. Mailed Dec. 20, 2013, 6 pages.
Gedymin, “Cloud computing with an emphasis on Google App Engine,” Master Final Project, Sep. 2011, 146 pages.
Google Docs, http://web.Archive.org/web/20100413105758/http://en.wikipedia.org/wiki/Google—docs, Apr. 13, 2010, 6 pages.
International Search Report and Written Opinion for PCT/US2008/012973 dated Apr. 30, 2009, pp. 1-11.
International Search Report and Written Opinion for PCT/US2011/039126 mailed on Oct. 6, 2011, pp. 1-13.
International Search Report and Written Opinion for PCT/US2011/041308 Mailed Jul. 2, 2012, pp. 1-16.
International Search Report and Written Opinion for PCT/US2011/047530, Applicant: Box, Inc., Mailed Mar. 22, 2013, pp. 1-10.
International Search Report and Written Opinion for PCT/US2011/056472 mailed on Jun. 22, 2012, pp. 1-12.
International Search Report and Written Opinion for PCT/US2011/057938, Applicant: Box, Inc., Mailed Mar. 29, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2012/056955, Applicant: Box, Inc., Mailed Mar. 27, 2013, pp. 1-11.
International Search Report and Written Opinion for PCT/US2012/063041, Applicant: Box, Inc., Mailed Mar. 29, 2013, 12 pages.
International Search Report and Written Opinion for PCT/US2012/065617, Applicant: Box, Inc., Mailed Mar. 29, 2013, 9 pages.
International Search Report and Written Opinion for PCT/US2012/067126, Applicant: Box, Inc., Mailed Mar. 29, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2012/070366, Applicant: Box, Inc., Mailed Apr. 24, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/020267, Applicant: Box, Inc., Mailed May 7, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/023889, Applicant: Box, Inc., Mailed Jun. 24, 2013, 13 pages.
International Search Report and Written Opinion for PCT/US2013/029520, Applicant: Box, Inc., Mailed Jun. 26, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/034662, Applicant: Box, Inc., Mailed May 31, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/034765, Applicant: Box, Inc., Mailed Jan. 20, 2014, 15 pages.
International Search Report and Written Opinion for PCT/US2013/035404, Applicant: Box, Inc., Mailed Jun. 26, 2013, 11 pages.
International Search Report and Written Opinion for PCT/US2013/039782, Applicant: Box, Inc., Mailed Aug. 28, 2013, 15 pages.
Internet Forums, http://web.archive.org/web/20100528195550/http://en.wikipedia.org/wiki/Internet—forums, Wikipedia, May 30, 2010, pp. 1-20.
John et al., “Always Sync Support Forums—View topic—Allway sync funny behavior,” Allway Sync Support Forum at http://sync-center.com, Mar. 28, 2011, XP055109680, 2 pages.
Langfeld L. et al., “Microsoft SharePoint 2003 Unleashed,” Chapters 11 and 15, Jun. 2004, pp. 403-404, 557-561, 578-581.
Lars, “35 Very Useful Online Tools for Improving your project Management and Team Collaboration,” Apr. 31, 2010, tripwiremagazine.com, pp. 1-32.
Palmer, “Load Balancing FTP Servers,” BlogNav, Oct. 2008, 2 pages.
Parr, “Google Docs Improves Commenting, Adds E-mail Notifications,” Apr. 16, 2011, mashable.com, pp. 1-6.
Partial International Search Report for PCT/US2011/041308 dated Feb. 27, 2012, pp. 1-2.
Partial Search Report for EP131832800, Applicant: Box, Inc. Mailed May 8, 2014, 5 pages.
Patent Court Document of Approved Judgment for GB0602349.3 and GB0623571.7; Mar. 3, 2009, 17 pages.
Pyle et al., “How to enable Event logging for Offline Files (Client Side Caching) in Windows Vista,” Feb. 18, 2009, retrieved from the internet: http://blogs.technet.com, 3 pages.
Rao, “Box Acquires Crocodoc to Add HTML5 Document Converter and Sleek Content Viewing Experience to Cloud Storage Platform,” retrieved from the internet, http://techcrunch.com, May 9, 2013, 8 pages.
Search Report for EP 11729851.3, Applicant: Box, Inc. Mailed Feb. 7, 2014, 9 pages.
Search Report for EP13187217.8, Applicant: Box, Inc. Mailed Apr. 15, 2014, 12 pages.
Search Report for EP141509422, Applicant: Box, Inc. Mailed May 8, 2014, 7 pages.
Search Report for EP14151588.2, Applicant: Box, Inc. Mailed Apr. 15, 2014, 12 pages.
Search Report for EP14153783.7, Applicant: Box, Inc. Mailed Apr. 3, 2014, 6 pages.
Sommerer, “Presentable Document Format: Improved On-demand PDF to HTML Conversion,” retrieved from the internet, http://research.microsoft.com, 8 pages.
Supplementary European Search Report European Application No. EP 08 85 8563 dated Jun. 20, 2011 pp. 1-5.
Tulloch et al., “Windows Vista Resource Kit,” Apr. 8, 2007, Microsoft Press, XP055113067, 6 pages.
Walker, “PDF.js project meeting notes,” retrieved from the internet, http://groups.google.com, May 15, 2014, 1 page.
Wayback, “Wayback machine,” Wayback, Jun. 1, 2011, 1 page.
Wiki, http://web.archive.org/web/20100213004936/http://en.wikipedia.org/wiki/Wiki, Feb. 13, 2010, pp. 1-16.
Yahoo! Groups, http://web.archive.org/web/20090320101529/http://en.wikipedia.org/wiki/Yahoo!—Groups, Wikipedia, Mar. 20, 2009, pp. 1-6.
Exam Report for GB1311459.0 Applicant: Box, Inc. Mailed Aug. 19, 2013, 6 pages.
“Dropbox: Sync only specific folders,” posted on Feb. 9, 2012, available online at http://www.tech-recipes.com/rx/20865/dropbox-sync-only-specific-folders/, 4 pages.
Exam Report for GB1220644.7 Applicant: Box, Inc. Mailed May 1, 2015, 4 pages.
Invens, “Using and Troubleshooting Offline Files,” Jun. 23, 2002, Windows IT Pro, pp. 1-5.
Invens, “Using and Troubleshooting Offline Files,” Jun. 23, 2002, Windows IT Pro, Figures 1 and 2, 2 pages.
Exam Report for GB1309209.3 Applicant: Box, Inc. Mailed Jan. 19, 2015, 6 pages.
“Agilewords—How to Request Approval,” YouTube, http://www.youtube.com/watch?v=3-Ov3DYNN3Q, Jan. 31, 2011, 2 pages.
“Agilewords—Features, Powerful Features Yet Simple,” Jun. 1, 2011, http://web.archive.org/web/20110601223756/http://agilewords.com/product/features, 3 pages.
Conner, “Google Apps: The Missing Manual,” published by O'Reilly Media, May 27, 2008, 42 pages.
Exam Report for EP 13177108.1, Applicant: Box, Inc. Mailed Feb. 17, 2015, 6 pages.
Exam Report for GB1312264.3 Applicant: Box, Inc. Mailed Jan. 30, 2015, 5 pages.
Exam Report for GB1312874.9 Applicant: Box, Inc. Mailed Feb. 10, 2015, 7 pages.
Exam Report for GB1316685.5 Applicant: Box, Inc. Mailed Feb. 17, 2015, 5 pages.
Exam Report for EP 13185269.1, Applicant: Box, Inc. Mailed Feb. 13, 2015, 8 pages.
Exam Report for GB1410569.6 Applicant: Box, Inc. Mailed Jul. 11, 2014, 9 pages.
Extended Search Report for EP131832800, Applicant: Box, Inc. Mailed Aug. 25, 2014, 7 pages.
Extended Search Report for EP141509422, Applicant: Box, Inc. Mailed Aug. 26, 2014, 12pages.
Search Report for EP 13189144.2 Applicant: Box, Inc. Mailed Sep. 1, 2014, 9 pages.
Exam Report for GB1312874.9 Applicant: Box, Inc. Mailed Sep. 26, 2014, 2 pages.
Exam Report for GB1415126.0 Applicant: Box, Inc. Mailed Oct. 2, 2014, 8 pages.
Exam Report for GB1415314.2 Applicant: Box, Inc. Mailed Oct. 7, 2014, 6 pages.
Exam Report for GB1309209.3 Applicant: Box, Inc. Mailed Oct. 7, 2014, 3 pages.
Exam Report for GB1315232.7 Applicant: Box, Inc. Mailed Oct. 9, 2014, 5 pages.
Exam Report for GB1318789.3 Applicant: Box, Inc. Mailed Oct. 30, 2014, 6 pages.
Microsoft Windows XP Professional Product Documentation: How Inheritance Affects File and Folder Permissions, Apr. 11, 2014, 2 pages.
Sommerer, “Presentable Document Format: Improved On-demand PDF to HTML Conversion,” retrieved from the internet, http://research.microsoft.com, Nov. 2004, 8 pages.
U.S. Appl. No. 61/592,567, filed Jan. 30, 2012 Preview Pre-Generation Based on Heuristics and Algorithmic Predictions/Assessment of Predicted User Behavior for Enhancement of User Experience.
U.S. Appl. No. 13/332,319, filed Dec. 20, 2011 Platform and Application Independent System and Method for Networked File Access and Editing.
U.S. Appl. No. 13/524,501, Jun. 15, 2012 Resource Effective Incremental Updating of a Remote Client With Events Which Occurred via a Cloud-Enabled Platform.
U.S. Appl. No. 61/620,554, Apr. 5, 2012 Device Pinning Capability for Enterprise Cloud Service and Storage Accounts.
U.S. Appl. No. 61/649,869, filed Mar. 21, 2012, Selective Application Access Control via a Cloud-Based Service for Security Enhancement.
U.S. Appl. No. 61/667,909, filed Jul. 3, 2012 Highly Available Ftp Servers for a Cloud-Based Service.
U.S. Appl. No. 13/937,124, filed Jul. 8, 2013 Systems and Methods for Securely Submitting Comments Among Users via External Messaging Application in a Cloud-Based Platform.
U.S. Appl. No. 13/794,401, Mar. 11, 2013 Disabling the Self-Referential Appearance of a Mobile Application in an Intent via a Background Registration.
U.S. Appl. No. 61/697,511, filed Sep. 6, 2012 Channel for Opening and Editing Files From a Cloud Service Provider Based on Intents.
U.S. Appl. No. 61/709,086 filed Oct. 2, 2012 Visibility, Access Control, Advanced Reporting Api, and Enhanced Data Protection and Security Mechanisms for Administrators in an Enterprise.
U.S. Appl. No. 61/709,653, filed Oct. 4, 2012 Corporate User Discovery and Identification of Recommended Collaborators in a Cloud Platform.
U.S. Appl. No. 61/710,182, filed Oct. 5, 2012 Embedded Html Folder Widget for Accessing a Cloud Collaboration Platform and Content From any Site.
U.S. Appl. No. 14/135,311, filed Dec. 19, 2012 Methods and Apparatus for Synchronization of Items With Read-Only Permissions in a Cloud-Based Environment.
U.S. Appl. No. 61/877,938, filed Sep. 13, 2013 High-Availability Architecture for a Cloud-Based Concurrent-Access Collaboration Platform.
“How-to Geek, How to Sync Specific Folders With Dropbox,” originally written on Jun. 1, 2010 and archived version retrieved from WaybackMachine as published online on Jul. 4, 2014 at http://www.howtogeek.com/howto/18285/sync-specific-folders-with-dropbox, 5 pages.
Exam Report for GB1413461.3; Applicant: Box, Inc. Mailed Aug. 21, 2015, 6 pages.
Fu et al., “Efficient and Fine-Grained Sharing of Encrypted Files,” Quality of Service (IWQos), 2010 18th International Workshop on year 2010, pp. 1-2.
U.S. Appl. No. 61/751,578, filed Jan. 11, 2013 Functionalities, Features and User Interface of a Synchronization Client to a Cloud-Based Environment.
U.S. Appl. No. 14/153,726, filed Jan. 13, 2014 Functionalities, Features and User Interface of a Synchronization Client to a Cloud-Based Environment.
U.S. Appl. No. 14/158,626, Conflict Resolution, Retry Condition Management, and Handling of Problem Files for the Synchronization Client to a Cloud-Based Platform.
Exam Report for GB1317393.5 Applicant: Box, Inc. Mailed Nov. 7, 2014, 6 pages.
Exam Report for GB1311417.8 Applicant: Box, Inc. Mailed Nov. 7, 2014, 2 pages.
Exam Report for GB1311421.0 Applicant: Box, Inc. Mailed Nov. 7, 2014, 4 pages.
Exam Report for GB1316682.2 Applicant: Box, Inc. Mailed Nov. 19, 2014, 6 pages.
Exam Report for GB1312095.1 Applicant: Box, Inc. Mailed Nov. 19, 2014, 5 pages.
Exam Report for GB1313559.5 Applicant: Box, Inc. Mailed Nov. 4, 2014, 2 pages.
User's Guide for Smart Board Software for Windows, published Dec. 2004, 90 pages.
Zambonini et al., “Automated Measuring of Interaction with User Interfaces,” Published as WO2007113573 Oct. 2007, 19 pages.
U.S. Appl. No. 61/505,999, filed Jul. 11, 2011 Desktop Application for Access and Interaction with Workspaces in a Cloud-Based Content Management System and Synchronization Mechanisms Thereof.
U.S. Appl. No. 13/282,427, filed Oct. 26, 2011 Desktop Application for Access and Interaction with Workspaces in a Cloud-Based Content Management System and Synchronization Mechanisms Thereof.
U.S. Appl. No. 61/564,425, filed Nov. 29, 2011 Mobile Platform Folder Synchronization and Offline Synchronization.
U.S. Appl. No. 61/568,430, filed Dec. 8, 2011 Mobile Platform File and Folder Selection Functionalities for Offline Access and Synchronization.
U.S. Appl. No. 13/689,544, filed Nov. 29, 2012 Mobile Platform File and Folder Selection Functionalities for Offline Access and Synchronization.
U.S. Appl. No. 61/560,685, filed Nov. 16, 2011 Temporal and Spatial Processing and Tracking of Events in a Web-Based Collaboration Environment for Asynchronous Delivery in an Ordered Fashion.
U.S. Appl. No. 13/524,501, filed Jun. 15, 2012 Resource Effective Incremental Updating of a Remote Client With Events Which Occurred via a Cloud-Enabled Platform.
U.S. Appl. No. 13/526,437, filed Jun. 18, 2012 Managing Updates at Clients Used by a User to Access a Cloud-Based Collaboration Service.
U.S. Appl. No. 14/658,423, filed Mar. 16, 2015 Managing Updates at Clients Used by a User to Access a Cloud-Based Collaboration Service.
U.S. Appl. No. 61/620,554, filed Apr. 5, 2012 Device Pinning Capability for Enterprise Cloud Service and Storage Accounts.
U.S. Appl. No. 13/493,922, filed Jun. 11, 2012 Device Pinning Capability for Enterprise Cloud Service and Storage Accounts.
U.S. Appl. No. 61/622,868, filed Apr. 11, 2012 Web and Desktop Client Synchronization of Mac Packages With a Cloud-Based Platform.
U.S. Appl. No. 13/618,993, filed Sep. 14, 2012 Cloud Service Enabled to Handle a Set of Files Depicted to a User As a Single File in a Native Operating System.
U.S. Appl. No. 61/643,116, filed May 4, 2012 Hbase Redundancy Implementation for Action Log Framework.
U.S. Appl. No. 13/890,172, filed May 8, 2013 Repository Redundancy Implementation of a System Which Incrementally Updates Clients With Events That Occurred via a Cloud-Enabled Platform.
U.S. Appl. No. 13/888,308, filed May 6, 2013 Repository Redundancy Implementation of a System Which Incrementally Updates Clients With Events That Occurred via a Cloud-Enabled Platform.
U.S. Appl. No. 61/693,521, filed Aug. 27, 2012 Backend Implementation of Synchronization Client Selective Subfolder Syncing in a Cloud-Based Environment.
U.S. Appl. No. 14/010,851, filed Aug. 27, 2013 Server Side Techniques for Reducing Database Workload in Implementing Selective Subfolder Synchronization in a Cloud-Based Environment.
U.S. Appl. No. 61/751,578, filed Jan. 11, 2013 Functionalities, Features, and User Interface of a Synchronization Client to a Cloud-Based Environment.
U.S. Appl. No. 14/153,726, filed Jan. 13, 2014 Functionalities, Features, and User Interface of a Synchronization Client to a Cloud-Based Environment.
U.S. Appl. No. 61/750,474, filed Jan. 9, 2013 File System Event Monitor and Event Filter Pipeline for a Cloud-Based Platform.
U.S. Appl. No. 14/149,586, filed Jan. 7, 2014 File System Monitoring in a System Which Incrementally Updates Clients With Events That Occurred in a Cloud-Based Collaboration Platform.
U.S. Appl. No. 61/753,761 Conflict Resolution, Retry Condition Management, and Handling of Problem Files for the Synchronization Client to a Cloud-Based Platform.
U.S. Appl. No. 14/158,626 Conflict Resolution, Retry Condition Management, and Handling of Problem Files for the Synchronization Client to a Cloud-Based Platform.
U.S. Appl. No. 61/739,296, filed Dec. 19, 2012 Synchronization of Read-Only Files/Folders by a Synchronization Client With a Cloud-Based Platform.
U.S. Appl. No. 14/135,311, filed Dec. 19, 2013 Method and Apparatus for Synchronization of Items With Read-Only Permissions in a Cloud-Based Environment.
U.S. Appl. No. 61/748,399, filed Jan. 2, 2013 Handling Action Log Framework Race Conditions for a Synchronization Client to a Cloud-Based Environment.
U.S. Appl. No. 14/146,658, filed Jan. 2, 2014 Race Condition Handling in a System Which Incrementally Updates Clients With Events That Occurred in a Cloud-Based Collaboration Platform.
U.S. Appl. No. 61/822,170, filed May 10, 2013 Identification and Handling of Items to Be Ignored for Synchronization With a Cloud-Based Platform by a Synchronization Client.
U.S. Appl. No. 14/275,890, filed May 13, 2014 Identification and Handling of Items to Be Ignored for Synchronization With a Cloud-Based Platform by a Synchronization Client.
U.S. Appl. No. 61/822,191, filed May 10, 2013 Systems and Methods for Depicting Item Synchronization With a Cloud-Based Platform by a Synchronization Client.
U.S. Appl. No. 14/275,401, filed May 12, 2014 Top Down Delete or Unsynchronization on Delete of and Depiction of Item Synchronization With a Synchronization Client to a Cloud-Based Platform.
U.S. Appl. No. 61/834,756, filed Jun. 13, 2013 Systems and Methods for Event Building, Collapsing, or Monitoring by a Synchronization Client of a Cloud-Based Platform.
U.S. Appl. No. 61/838,176, filed Jun. 21, 2013 Maintaining and Updating File System Shadows on a Local Device by a Synchronization Client of a Cloud-Based Platform.
U.S. Appl. No. 14/312,482, filed Jun. 23, 2014 Maintaining and Updating File System Shadows on a Local Device by a Synchronization Client of a Cloud-Based Platform.
U.S. Appl. No. 61/860,050, filed Jul. 30, 2013 Scalability Improvement in a System Which Incrementally Updates Clients With Events That Occurred in a Cloud-Based Collaboration Platform.
U.S. Appl. No. 14/194,091, filed Feb. 28, 2014 Scalability Improvement in a System Which Incrementally Updates Clients With Events That Occurred in a Cloud-Based Collaboration Platform.
Exam Report for GB1316532.9; Applicant: Box, Inc., Mailed Mar. 8, 2016, 3 pages.
Cicnavi, “Offline Files in XP,” Nov. 29, 2010, UtilizeWindows, pp. 1-6.
Related Publications (1)
Number Date Country
20140372376 A1 Dec 2014 US
Provisional Applications (1)
Number Date Country
61834756 Jun 2013 US