Systems and methods for synchronization mechanisms for magnetic cards and devices

Information

  • Patent Grant
  • 11941469
  • Patent Number
    11,941,469
  • Date Filed
    Friday, April 7, 2017
    7 years ago
  • Date Issued
    Tuesday, March 26, 2024
    a month ago
Abstract
A processor of a card may detect variations (e.g., position, velocity, acceleration and direction) of a read head in relation to the card. Based on certain parameters (e.g., card length, initially detected read head position, and read head velocity) a processor of a card may adjust synchronization bit patterns that may synchronize communications between the card and a read head of a magnetic stripe reader. A processor of a card may generate a number of leading synchronization bits that is different than a number of trailing synchronization bits.
Description
BACKGROUND OF THE INVENTION

This invention relates to magnetic cards and devices and related systems.


SUMMARY OF THE INVENTION

A card may include a dynamic magnetic communications device, which may take the form of a magnetic encoder or a magnetic emulator. A magnetic encoder, for example, may be utilized to modify information that is located on a magnetic medium, such that a magnetic stripe reader may then be utilized to read the modified magnetic information from the magnetic medium. A magnetic emulator, for example, may be provided to generate electromagnetic fields that directly communicate data to a read-head of a magnetic stripe reader. A magnetic emulator, for example, may communicate data serially to a read-head of the magnetic stripe reader. A magnetic emulator, for example, may communicate data in parallel to a read-head of the magnetic stripe reader.


All, or substantially all, of the front surface, as well as the rear surface, of a card may be implemented as a display (e.g., bi-stable, non bi-stable, LCD, or electrochromic display). Electrodes of a display may be coupled to one or more touch sensors, such that a display may be sensitive to touch (e.g., using a finger or a pointing device) and may be further sensitive to a location of the touch. The display may be sensitive, for example, to objects that come within a proximity of the display without actually touching the display.


A dynamic magnetic stripe communications device may be implemented on a multiple layer board (e.g., a two-layer flexible printed circuit board). A coil for each track of information that is to be communicated by the dynamic magnetic stripe communications device may then be provided by including wire segments on each layer and interconnecting the wire segments through layer interconnections to create a coil. For example, a dynamic magnetic stripe communications device may include two coils such that two tracks of information may be communicated to two different read-heads included in a read-head housing of a magnetic stripe reader. A dynamic magnetic stripe communications device may include, for example, three coils such that three tracks of information may be communicated to three different read-heads included in a read-head housing of a magnetic stripe reader.


Input and/or output devices may be included on a card, for example, to facilitate data exchange with the card. For example, an integrated circuit (IC) may be included on a card and exposed from the surface of the card. Such a chip (e.g., an EMV chip) may communicate information to a chip reader (e.g., an EMV chip reader). An RFID antenna or module may be included on a card, for example, to send and/or receive information between an RFID writer/reader and the RFID included on the card.


One or more detectors may be provided in a card, for example, to sense the presence of an external object, such as a person or device, which in turn, may trigger the initiation of a communication sequence with the external object. The sensed presence of the external object may then be communicated to a processor of the card, which in turn may direct the exchange of information between a card and the external object. Accordingly, timing aspects of the information exchange between an external object and the various I/O devices provided on a card may also be determined by circuitry (e.g., a processor) provided on a card.


The sensed presence of the external object or device may include the type of object or device that is detected and, therefore, may then determine the type of communication that is to be used with the detected object or device. For example, a detected object may include a determination that the object is a read-head housing of a magnetic stripe reader. Such an identifying detection, for example, may activate a dynamic magnetic stripe communications device so that information may be communicated to the read-head of the magnetic stripe reader. Information may be communicated by a dynamic magnetic stripe communications device, for example, by re-writing magnetic information on a magnetic medium that is able to be read by a magnetic stripe reader or electromagnetically communicating data to the magnetic stripe reader.


One or more read-head detectors, for example, may be provided on a card. The one or more read-head detectors may be provided as, for example, conductive pads that may be arranged along a length of a card having a variety of shapes. A property (e.g., a capacitance magnitude) of one or more of the conductive pads may, for example, change in response to contact with and/or the presence of an object. A card may be laminated such that all electronic circuitry and components (e.g., read-head detectors) are covered in a polymer. For example, an electronics package may be provided between two layers of polymer and a liquid polymer may be introduced between these layers and hardened to form a card.


A card may, for example, be swiped across a read-head of a magnetic stripe reader, such that a series of conductive pads arranged along a length of the card may be used to sequentially detect the presence of the read-head as the read-head moves in relation to the card. In doing so, a series of detections (e.g., the capacitance magnitude of each conductive pad may increase and/or decrease) may be generated, which may be indicative of a direction of a card swipe and/or a velocity of a card swipe and/or an acceleration of a card swipe. Changes in the velocity and/or acceleration of a card swipe during a card swipe may be detected by read-head detectors. Such information may be provided to circuitry (e.g., a processor) so that the information may be utilized to change the control of a dynamic magnetic stripe communications device. A dynamic magnetic stripe communications device may include, for example, multiple communication tracks such that multiple tracks of data may be communicated to a magnetic stripe reader.


A processor, or other circuitry, of a card may, for example, utilize a detection mechanism to determine a position of a read-head in relation to the card. Accordingly, a processor of a card may determine, for example, a relative position of a read head at the instant the read head is detected. Additionally, a processor of a card may determine, for example, a relative speed at which a read head may be moving across a card. In so doing, a processor of a card may determine an amount of time that the read head may remain over the card.


For example, a card length may, for example, be approximately 3.375 inches. The thickness of a card may be between, for example, approximately 27 to 33 thousandths of an inch thick (e.g., approximately 30-33 thousandths of an inch thick). By detecting a relative position of a read head and a relative velocity of the read head, for example, a processor of a card may determine a length of time that the read head may remain within a communication distance of the card.


A dynamic magnetic stripe communications device of a card may, for example, communicate a particular amount of data to a read head of a magnetic stripe reader. In addition, a dynamic magnetic stripe communications device of a card may communicate that amount of data serially to the read head. Multiple tracks of information may be communicated simultaneously to different read-heads of a read-head housing and each track of information may be communicated serially. Different tracks of information may be communicated to a read-head at different times with at least a portion of the information for each track being communicated simultaneously. Accordingly, for example, circuitry (e.g., a processor) of a card may determine a number of leading and/or trailing data bits (e.g., zero valued data bits) that may be necessary to communicate to a magnetic stripe reader to allow the magnetic stripe reader to synchronize with the information communicated by the processor of a card.


A processor of a card may, for example, initiate a serial communication using a predetermined number of leading data bits (e.g., leading zeros) to allow a magnetic stripe reader to determine a presence of the card. A processor of a card may, for example, initiate a serial communication using a predetermined number of leading zeros to allow a magnetic stripe reader to synchronize to track data that may be communicated by a processor of the card. The predetermined number of leading zeros may, for example, be determined by a processor of a card once the type of magnetic stripe reader is detected by the processor. Some magnetic stripe readers may, for example, require more or less leading zeros than other magnetic stripe readers in order to synchronize communications with a card.


Accordingly, for example, a magnetic stripe reader may detect a series of leading zeroes from a card so as to determine a bit rate and/or a bit period of data being communicated by the card. A processor of a card may, for example, determine a minimum number of leading and/or trailing zeroes that may be necessary to synchronize with the magnetic stripe reader. A processor of a card may, for example, determine a minimum number of leading and/or trailing zeroes to communicate to a magnetic stripe reader to minimize an amount of power required to communicate the leading and/or trailing zeroes to the magnetic stripe reader.


A processor of a card may, for example, conclude a serial communication using a predetermined number of data bits (e.g., trailing zeroes) to allow a magnetic stripe reader to determine that track data is no longer being communicated by a processor of a card. A processor of a card may, for example, provide a number of leading zeroes that is different (e.g., greater than) a number of trailing zeroes. A processor of a card may vary a number of leading and/or trailing zeros (e.g., may increase a number of leading zeros) if communication between a card and a magnetic stripe reader fails. Accordingly, for example, a processor of a card may increase a number of leading zeros in an attempt to increase a probability that communication may be successful on a subsequent communication attempt.





BRIEF DESCRIPTION OF THE DRAWINGS

The principles and advantages of the present invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which the same reference numerals denote the same structural elements throughout, and in which:



FIG. 1 is an illustration of a card constructed in accordance with the principles of the present invention;



FIG. 2 is an illustration of a card constructed in accordance with the principles of the present invention;



FIG. 3 is an illustration of circuitry, and associated waveforms, constructed in accordance with the principles of the present invention;



FIG. 4 is an illustration of a synchronization waveform constructed in accordance with the principles of the present invention;



FIG. 5 is an illustration of a synchronization waveform constructed in accordance with the principles of the present invention; and



FIG. 6 is an illustration of process flow charts constructed in accordance with the principles of the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows card 100 that may include, for example, a dynamic number that may be entirely, or partially, displayed using a display (e.g., display 106). A dynamic number may include a permanent portion such as, for example, permanent portion 104 and a dynamic portion such as, for example, dynamic portion 106. Card 100 may include a dynamic number having permanent portion 104 and permanent portion 104 may be incorporated on card 100 so as to be visible to an observer of card 100. For example, labeling techniques, such as printing, embossing, laser etching, etc., may be utilized to visibly implement permanent portion 104.


Card 100 may include a second dynamic number that may be entirely, or partially, displayed via a second display (e.g., display 108). Display 108 may be utilized, for example, to display a dynamic code such as a dynamic security code. Card 100 may also include third display 122 that may be used to display graphical information, such as logos and barcodes. Third display 122 may also be utilized to display multiple rows and/or columns of textual and/or graphical information.


Persons skilled in the art will appreciate that any one or more of displays 106, 108, and/or 122 may be implemented as a bi-stable display. For example, information provided on displays 106, 108, and/or 122 may be stable in at least two different states (e.g., a powered-on state and a powered-off state). Any one or more of displays 106, 108, and/or 122 may be implemented as a non-bi-stable display. For example, the display is stable in response to operational power that is applied to the non-bi-stable display. Other display types, such as LCD or electrochromic, may be provided as well.


Other permanent information, such as permanent information 120, may be included within card 100, which may include user specific information, such as the cardholder's name or username. Permanent information 120 may, for example, include information that is specific to card 100 (e.g., a card issue date and/or a card expiration date). Information 120 may represent, for example, information that includes information that is both specific to the cardholder, as well as information that is specific to card 100.


Card 100 may accept user input data via any one or more data input devices, such as buttons 110-118. Buttons 110-118 may be included to accept data entry through mechanical distortion, contact, or proximity. Buttons 110-118 may be responsive to, for example, induced changes and/or deviations in light intensity, pressure magnitude, or electric and/or magnetic field strength.



FIG. 1 shows architecture 150, which may include one or more processors 154. One or more processors 154 may be configured to utilize external memory 152, internal memory of processor 154, or a combination of external memory 152 and internal memory for dynamically storing information, such as executable machine language, related dynamic machine data, synchronization data, and user input data values. Driving circuitry 164 may, for example, receive synchronization data from processor 154 and may communicate the synchronization data to provide communication synchronization between a card (e.g., card 100 of FIG. 1) and a magnetic stripe reader. Such synchronization data may, for example, be stored in memory 152 and may be utilized by processor 154 to provide various synchronization patterns to a magnetic stripe reader.


One or more of the components shown in architecture 150 may be configured to transmit information to processor 154 and/or may be configured to receive information as transmitted by processor 154. For example, one or more displays 156 may be coupled to receive data from processor 154. The data received from processor 154 may include, for example, at least a portion of dynamic numbers and/or dynamic codes.


One or more displays 156 may be, for example, touch sensitive and/or proximity sensitive. For example, objects such as fingers, pointing devices, etc., may be brought into contact with displays 156, or in proximity to displays 156. Detection of object proximity or object contact with displays 156 may be effective to perform any type of function (e.g., transmit data to processor 154). Displays 156 may have multiple locations that are able to be determined as being touched, or determined as being in proximity to an object.


Input and/or output devices may be implemented on architecture 150. For example, integrated circuit (IC) chip 160 (e.g., an EMV chip) may be included within architecture 150, that may communicate information to a chip reader (e.g., an EMV chip reader). Radio frequency identification (RFID) module 162 may be included within architecture 150 to enable the exchange of information with an RFID reader/writer.


Other input and/or output devices 168 may be included within architecture 150, for example, to provide any number of input and/or output capabilities. For example, other input and/or output devices 168 may include an audio device capable of receiving and/or transmitting audible information.


Other input and/or output devices 168 may include a device that exchanges analog and/or digital data using a visible data carrier. Other input and/or output devices 168 may include a device, for example, that is sensitive to a non-visible data carrier, such as an infrared data carrier or an electromagnetic data carrier.


Persons skilled in the art will appreciate that a card (e.g., card 100 of FIG. 1) may, for example, be a self-contained device that derives its own operational power from one or more batteries 158. Furthermore, one or more batteries 158 may be included, for example, to provide operational power for a period of time (e.g., approximately 2-4 years). One or more batteries 158 may be included, for example, as rechargeable batteries.


Electromagnetic field generators 170-174 may be included within architecture 150 to communicate information to, for example, a read-head of a magnetic stripe reader via, for example, electromagnetic signals. For example, electromagnetic field generators 170-174 may be included to communicate one or more tracks of electromagnetic data to read-heads of a magnetic stripe reader. Electromagnetic field generators 170-174 may include, for example, a series of electromagnetic elements, where each electromagnetic element may be implemented as a coil wrapped around one or more materials (e.g., a magnetic material and/or a non-magnetic material). Additional materials (e.g., a magnetic material and/or a non-magnetic material) may be placed outside the coil.


Electrical excitation by processor 154 of one or more coils of one or more electromagnetic elements via, for example, driving circuitry 164 may be effective to generate electromagnetic fields from one or more electromagnetic elements. One or more electromagnetic field generators 170-174 may be utilized to communicate electromagnetic information to, for example, one or more read-heads of a magnetic stripe reader.


Timing aspects of information exchange between architecture 150 and the various I/O devices implemented within architecture 150 may be determined by processor 154. Detector 166 may be utilized, for example, to sense the proximity and/or actual contact, of an external device, which in turn, may trigger the initiation of a communication sequence. The sensed presence and/or touch of the external device may then be communicated to a controller (e.g., processor 154), which in turn may direct the exchange of information between architecture 150 and the external device. The sensed presence and/or touch of the external device may be effective to, for example, determine the type of device or object detected.


For example, the detection may include the detection of, for example, a read-head of a magnetic stripe reader. In response, processor 154 may activate one or more electromagnetic field generators 170-174 to initiate a communications sequence with, for example, one or more read-heads of a magnetic stripe reader. The timing relationships associated with communications between one or more electromagnetic field generators 170-174 and one or more read-heads of a magnetic stripe reader may be provided through use of the detection of the magnetic stripe reader.


The detection may, for example, include a detection of a read head and its location and/or speed and/or acceleration relative to various areas of a card (e.g., card 100 of FIG. 1). For example, detector 166 may first detect a presence of a read head close to an edge of a card. Detector 166 may, for example, detect a read head and its velocity and/or changes in velocity relative to a card to determine an amount of time that a read head may remain within a communication distance from the card.


Processor 154 may receive location and/or speed and/or acceleration information from detector 166. Processor 154 may determine location and/or speed and/or acceleration information based on information received from detector 166. For example, detector 166 may include several (e.g., approximately 10 to 20) capacitive sensors and processor 154 may determine location and/or speed and/or acceleration information based on information received from these capacitive sensors. For example, processor 154 may receive location and/or speed and/or acceleration information associated with a read head that may be in a proximity or touch relationship with a card. Processor 154 may, for example, use such location and/or speed and/or acceleration information to control driving circuitry 164. Driving circuitry 164 may, for example, receive synchronization data from a synchronization processor to provide an optimum number (e.g., a minimum number) of leading and/or trailing zeroes in a communication sequence. In so doing, for example, the synchronization controller may provide a synchronization sequence to a magnetic stripe reader such that the magnetic stripe reader may synchronize to a bit rate and/or bit period of track data received from a card (e.g., card 100 of FIG. 1).


Persons skilled in the art will appreciate that processor 154 may provide user-specific and/or card-specific information through utilization of any one or more of buttons 110-118, RFID 162, IC chip 160, electromagnetic field generators 170-174, and other input and/or output devices 168.



FIG. 2 shows card 200 having an orientation of detectors 226, whereby one or more detectors 202-216 may be, for example, arranged along a length of card 200. Detectors 202-216 may be included, for example, as conductive pads using, for example, an additive technique, whereby patterns of a conductive element (e.g., copper) may be applied to a PCB substrate according to a patterning mask definition layer. Detectors 202-216 may be included, for example, as conductive pads using, for example, a subtractive technique whereby patterns of a conductive element (e.g., copper) may be removed from a pre-plated PCB substrate according to an etching mask definition layer. Other non-PCB fabrication techniques may be used to implement conductive pads 202-216 as may be required by a particular application.


Synchronization controller 220 may be utilized in conjunction with conductive pads 202-216 to detect a location of an object (e.g., a read head of a magnetic card reader) in relation to conductive pads 202-216. In addition, by monitoring a characteristic change (e.g., a capacitance change) associated with one or more conductive pads 202-216 and by comparing a characteristic change of neighboring conductive pads, a position and/or velocity and/or acceleration estimate of an object moving in relation to conductive pads 202-216 may be obtained.


Synchronization controller 220 may calculate position and/or velocity and/or acceleration estimates that may be based on characteristic information. A position estimate, for example, may include an approximation of an initial location of a read head of a magnetic card reader that may be in proximity to, or in contact with, one or more of pads 202-216 as initially detected. A velocity estimate, for example, may include an approximation of a change in position of the read head as it moves across card 200 in either of directions 222 and/or 224. An acceleration estimate, for example, may include an approximation of a change in velocity of the read head as it moves across card 200 in either of directions 222 and/or 224.


Based upon position and/or velocity and/or acceleration estimates, synchronization controller 220 may estimate an amount of time that a detected read head may remain within a communication distance of card 200. In so doing, synchronization controller 220 may, for example, adjust an amount of synchronization information that may be communicated by dynamic magnetic stripe communication device 228. Accordingly, for example, an optimal amount of synchronization data that may be required by a read head of a magnetic card reader to synchronize to card 200 may be provided by synchronization controller 220. An amount of initial synchronization data (e.g., a number of leading zeroes) may be selected that is the same or different (e.g., greater) than an amount of final synchronization data (e.g., a number of trailing zeroes).



FIG. 3 shows a synchronization system that may be included on a card. A conductive pad may be utilized, for example, as a conductor of a capacitive device within a resistor/capacitor (RC) circuit to determine the capacitance of a conductive pad and determine whether it is below, equal to, or above one or more predetermined thresholds.


A conductive pad may, for example, form a portion of a capacitive element, such that plate 316 of capacitive element 314 may be implemented by a pad and the second plate of capacitive element 314 may be implemented by element 310. Element 310 may represent, for example, the device or object whose proximity or contact is sought to be detected.


The capacitance magnitude of capacitive element 314 may exhibit, for example, an inversely proportional relationship to the distance separation between plate 316 and object 310. For example, the capacitance magnitude of capacitive element 314 may be relatively low when the corresponding distance between plate 316 and object 310 may be relatively large. The capacitance magnitude of capacitive element 314 may be relatively large, for example, when the corresponding distance between plate 316 and object 310 may be relatively small.


Detection of the proximity or contact of an object may be accomplished, for example, via circuit 300 of FIG. 3. Through a sequence of charging and discharging events, an average capacitance magnitude for capacitive element 314 may be determined over time. In so doing, the spatial relationship (e.g., the proximity) between plate 316 and object 310 may be determined.


Charge sequence 350 may, for example, be invoked, such that charge circuit 304 may be activated at time T1, while discharge circuit 306 may remain deactivated. Accordingly, for example, current may flow through resistive element 308. In doing so, for example, an electrostatic field may be generated that may be associated with capacitive component 314. During the charge sequence, for example, the voltage at node 312 may be monitored by synchronization controller 318 to determine the amount of time required (e.g., TCHARGE=Δ1−T1) for the voltage at node 312, V312, to obtain a magnitude that is substantially equal to, below, or above a first threshold voltage (e.g., equal to V1).


Discharge sequence 360, for example, may be invoked, such that discharge circuit 306 may be activated at time T2, while charge circuit 304 may remain deactivated. During the discharge sequence, for example, the electric field associated with capacitive element 314 may be allowed to discharge through resistive element 308 to a reference potential (e.g., ground potential). The voltage at node 312 may be monitored by synchronization controller 318 to determine the amount of time required (e.g., TDISCHARGE=Δ2−T2) for the voltage at node 312, V312, to obtain a magnitude that is substantially equal to, below, or above a second threshold voltage (e.g., equal to V2).


Once the charge time, TCHARGE, and discharge time, TDISCHARGE, are determined, the charge and discharge times may be utilized to calculate a capacitance magnitude that may be exhibited by capacitive element 314. For example, given that the magnitude of voltage, V1, may be equal to approximately 63% of the magnitude of voltage, Vs, then a first relationship may be defined by equation (1) as:

TCHARGE=R308*C1,  (1)

where R308 is the resistance magnitude of resistive element 308 and C1 is proportional to a capacitance magnitude of a capacitive element (e.g., capacitive element 314).


Similarly, for example, given the magnitude of voltage, V2, is equal to approximately 37% of the magnitude of voltage, Vs, then a second relationship may be determined by equation (2) as:

TDISCHARGE=R308*C2,  (2)

where C2 is proportional to a capacitance magnitude of capacitive element 314. The capacitance magnitudes, C1 and C2, may then be calculated from equations (1) and (2), respectively, and averaged to determine an average capacitance magnitude that is exhibited by capacitive element 314.


Circuits 304 and 306 may be activated and deactivated by synchronization controller 318. Accordingly, for example, synchronization controller 318 may control when the charge and discharge events occur. Synchronization controller 318 may adjust a frequency at which circuits 304 and 306 may be activated and/or deactivated, thereby adjusting a sampling rate at which the capacitance magnitudes, C1 and C2, may be measured. In so doing, a sampling rate (e.g., a lower sampling rate) may be selected in order to select a power consumption rate (e.g., a lower power consumption rate) of a card.


Turning back to FIG. 2, a series of charge and discharge sequences for pads 202-216 may be executed to determine, for example, a relative capacitance magnitude that is exhibited by each of pads 202-216. A series of charge and discharge sequences for each of pads 202-216 may be executed, for example, in order to obtain a capacitance characteristic for each of pads 202-216 over time.


By comparing the time-based capacitance characteristic of each pad 202-216 to a threshold capacitance value, a determination may be made, for example, as to when pads 202-216 are in a proximity, or touch, relationship with a device whose presence is to be detected. For example, a sequential change (e.g., increase) in the relative capacitance magnitudes of pads 202-208, respectively, and/or pads 216-210, respectively, may be detected. In so doing, a determination may be made that a device is moving substantially in direction 222 relative to card 200. A sequential change (e.g., increase) in the relative capacitance magnitudes of pads 210-216, respectively, and/or 208-202, respectively, may be detected. In so doing, a determination may be made that a device is moving substantially in direction 224 relative to card 200.


Persons skilled in the art will appreciate that by electrically shorting pairs of pads together (e.g., pair 202/210, pair 204/212, pair 206/214, etc.) directional vectors 222 and 224 become insubstantial. For example, regardless of whether a device is moving substantially in direction 222 or substantially in direction 224 relative to card 200, a determination may nevertheless be made that a device is close to, or touching, card 200.


Synchronization controller 220 may be used in conjunction with and one or more pads 202-216, for example, to determine that a device (e.g., a read-head housing of a magnetic stripe reader) is in close proximity, or touching, one or more of pads 202-216. In addition, synchronization controller 220 may determine a velocity of the detected device in either of directions 222 and/or 224. In addition, synchronization controller 220 may determine an acceleration of the detected device in either of directions 222 and/or 224. Once a device is detected, synchronization controller 220 may prepare, for example, dynamic magnetic stripe communications device 228, for communications with the detected device.


Preparation for communication, for example, may include an estimate of an amount of time that an object (e.g., a read head) may remain within a communication distance of card 200. For example, a length of card 200 may be, for example, approximately equal to 3.375 inches. A communication distance may, for example, be defined as any distance between an edge of card 200 and a detected location of, for example, a read head of a magnetic card reader within distance 234. A velocity estimate may, for example, be calculated by synchronization controller 220 as a rate of change of the detected location of the read head relative to card 200 over a period of time. The communication distance may then be divided by the estimated velocity of the read head to determine a communication time window that may be used by dynamic magnetic stripe communications device 228 of card 200 to communicate to the read head.


If, for example, a read head was initially detected by synchronization controller 220 of card 200 at pad 202 moving in direction 222, then the communication distance may be maximized, since the read head may be estimated to be within a proximity to card 200 for nearly the full length 234 of card 200. The communication time window may similarly be maximized, since the ratio of communication distance to estimated velocity is maximized.


Conversely, for example, if a read head was initially detected by synchronization controller 220 of card 200 at pad 210 moving in direction 222, then the communication distance may be minimized, since the read head may be estimated to be within a proximity to card 200 for a relatively short distance (e.g., the distance between pad 210 and the edge of card 200). The communication time window may similarly be minimized, since the ratio of communication distance to velocity is minimized.


A velocity estimate may be computed by synchronization controller 220. For example, by measuring an amount of time that a read head moves in relation to card 200 from one pad (e.g., pad 202) to another pad (e.g., pad 204) and by dividing the distance that exists between pads 202 and 204 by that amount of time, a velocity of the detected read head may be estimated.


A number of data bits may, for example, be communicated by dynamic magnetic stripe communications device 228 of card 200 to an object (e.g., a read head of a magnetic card reader). For example, the communicated data may be magnetic stripe data (e.g., Track 1, Track 2, and/or Track 3 data) that may be communicated to a detected read head by dynamic magnetic stripe communications device 228. In addition, a synchronization sequence (e.g., a number of zeroes preceding the magnetic stripe data and a different number of zeroes trailing the magnetic stripe data) may be communicated by dynamic magnetic stripe communications device 228 of card 200 to a read head of a magnetic card reader.


A read head position, velocity and/or acceleration detection by synchronization controller 220 of card 200 may result in an estimated communication time window that may be used to communicate the magnetic stripe data and synchronization data. Such an estimate may be calculated by synchronization controller 220, for example, by determining that a read head may be moving in a certain direction at a certain velocity and that the read head's position may be first detected in proximity to a certain pad (e.g., pad 208). Given that a distance (e.g., two inches) may exist between pad 208 and the opposite edge of card 200, then an approximate communication time window may be calculated.


Accordingly, for example, synchronization controller 220 may compute a number of leading zeroes that may precede the magnetic stripe data and a number of trailing zeroes that may extend beyond the end of the magnetic stripe data to be compliant with a communication time window as may be calculated by synchronization controller 220. A number of leading zeroes may, for example, be selected by synchronization controller 220 to insure that a magnetic card reader synchronizes with track information communicated by card 200. A number of trailing zeroes may, for example, be selected by synchronization controller 220 to insure proper operation with a magnetic card reader while at the same time minimizing an amount of energy required to communicate the trailing zeroes.



FIG. 4 shows a communication sequence that may include preceding zeroes 402, magnetic track data 404, and succeeding zeros 406. The communication sequence of FIG. 4 may be computed by a synchronization controller (not shown) of a card where a minimum number of preceding zeroes (e.g., four) and a minimum number of succeeding zeroes (e.g., four) may be selected to precede and trail, respectively, magnetic track data 404 during a communication sequence. A synchronization controller (not shown) of a card may, for example, determine that only a minimum communication time window exists and that only a minimum synchronization sequence (e.g., a minimum number of preceding and succeeding zeroes) may be supported by the communication time window.



FIG. 5 shows a communication sequence that may include preceding zeroes 502, magnetic track data 504, and succeeding zeros 506. The communication sequence of FIG. 5 may be computed by a synchronization controller (not shown) of a card where a number of preceding zeroes and a number of succeeding zeroes may be selected to precede and trail, respectively, magnetic track data 504 during a communication sequence where the number of preceding zeroes 502 is different (e.g., greater) than a number of succeeding zeroes. A synchronization controller (not shown) of a card may, for example, determine that a communication time window exists that may support a synchronization sequence (e.g., a number of preceding and succeeding zeroes) that is greater than a minimum number of preceding and succeeding zeroes that may be required for a communication sequence.


Accordingly, for example, a synchronization controller (not shown) of a card may increase a number of preceding zeroes communicated to a magnetic stripe reader to insure synchronization with the magnetic stripe reader. A synchronization controller (not shown) of a card may decrease a number of succeeding zeroes communicated to a magnetic stripe reader to insure synchronization with the magnetic stripe reader while at the same time conserving an amount of power needed to maintain synchronization with the magnetic stripe reader.


A flow diagram of communication sequences is shown in FIG. 6. Step 611 of sequence 610 may, for example, detect a position of an object (e.g., a read head of a magnetic card reader) that may be in a proximity or touch relationship with a card. Step 612 may, for example, detect position variations of the object over time to determine a velocity of the object. Step 613 may, for example, detect velocity variations of the object over time to determine an acceleration of the object.


A communication time window may be calculated by a synchronization controller on a card (e.g., as in step 614) based upon several factors (e.g., length of a card, velocity of read head movement relative to the card, and initially detected position of a read head). In step 615, a synchronization controller of a card may, for example, determine a number of synchronization bits that may be communicated with magnetic track data to fit within the communication time window as may be calculated in step 614.


In step 621 of sequence 620, a communication time window may be calculated by a synchronization controller and a number of leading and trailing zeroes may be selected in steps 622 and 623. A number of trailing zeroes may be selected to be different than a number of leading zeroes. A number of leading zeroes may, for example, be selected to be greater than a number of trailing zeroes (e.g., the number of trailing zeroes may be decreased from an originally selected number to a minimally acceptable number). Accordingly, for example, synchronization between a card and a magnetic stripe reader may be maintained while preserving an amount of power that would have otherwise been expended in communicating an unnecessary number of trailing zeroes.


Persons skilled in the art will appreciate that the present invention is not limited to only the embodiments described. Instead, the present invention more generally involves dynamic information and the exchange thereof. Persons skilled in the art will also appreciate that the apparatus of the present invention may be implemented in other ways than those described herein. All such modifications are within the scope of the present invention, which is limited only by the claims that follow.

Claims
  • 1. A device comprising: a detector operable to sense an external device and provide a signal indicating a presence of the external device;a synchronization controller operable generate data and initialize communication based on the signal; anda communication device operable to communicate the data,wherein the data comprises a number of leading synchronization bits, andthe synchronization controller is operable to determine the number based on the signal.
  • 2. The device of claim 1, wherein the detector comprises a plurality of conductive pads.
  • 3. The device of claim 1, wherein the detector comprises a plurality of conductive pads arranged along the length of the device.
  • 4. The device of claim 1, wherein: the detector comprises a plurality of conductive pads arranged along the length of the device; andthe synchronization controller is operable to detect position variations of a read head in relation to the device based on signals from the plurality of conductive pads.
  • 5. The device of claim 1, wherein: the detector comprises a plurality of conductive pads arranged along the length of the device; andthe synchronization controller is operable to detect position variations of a read head in relation to the device based on signals from the plurality of conductive pads and calculate a time window to communicate the data to the read head based on said position variations.
  • 6. The device of claim 1, wherein the data comprises a number of trailing synchronization bits.
  • 7. The device of claim 1, wherein: the data comprises a number of trailing synchronization bits; andthe number of trailing synchronization bits is different than the number of leading synchronization bits.
  • 8. The device of claim 1, wherein: the data comprises a number of trailing synchronization bits; andthe number of leading synchronization bits is greater than the number of trailing synchronization bits.
  • 9. The device of claim 1, wherein: the detector comprises a plurality of conductive pads arranged along the length of the device; andthe synchronization controller is operable to detect position variations of a read head in relation to the device based on signals from the plurality of conductive pads and determine a velocity of the read head in relation to the device.
  • 10. The device of claim 1, wherein: the detector comprises a plurality of conductive pads arranged along the length of the device; andthe synchronization controller is operable to detect position variations of a read head in relation to the device based on signals from the plurality of conductive pads and determine an acceleration of the read head in relation to the device.
  • 11. The device of claim 1, wherein: the detector comprises a plurality of conductive pads arranged along the length of the device; andthe synchronization controller is operable to detect position variations of a read head in relation to the device based on signals from the plurality of conductive pads and determine a velocity and an acceleration of the read head in relation to the device.
  • 12. The device of claim 1, wherein: the detector comprises a plurality of conductive pads arranged along the length of the device; andthe synchronization controller is operable to detect position variations of a read head in relation to the device based on signals from the plurality of conductive pads and determine a position, a velocity, and an acceleration of the read head in relation to the device.
  • 13. The device of claim 1, wherein: the detector comprises a plurality of conductive pads arranged along the length of the device;the synchronization controller is operable to detect position variations of a read head in relation to the device based on signals from the plurality of conductive pads and determine a position, a velocity, and an acceleration of the read head in relation to the device;the position is an estimated position,the velocity is an estimated velocity, andthe acceleration is an estimated acceleration.
  • 14. The device of claim 1, wherein: the detector comprises a plurality of conductive pads arranged along the length of the device; andthe synchronization controller is operable to detect position variations of a read head in relation to the device based on signals from the plurality of conductive pads and calculate a time window to communicate the data to the read head based on said position variations; andthe time window is at least an estimated amount of time that the read head will remain within a communication distance of the device.
  • 15. The device of claim 1, wherein the leading synchronization bits are usable by a card reader to synchronize to the data.
  • 16. The device of claim 1, wherein: the data comprises a number of trailing synchronization bits; andthe leading synchronization bits and trailing synchronization bits are usable by a card reader to synchronize to the data.
  • 17. The device of claim 1, wherein the leading synchronization bits are usable by a card reader to synchronize to the data; anda synchronization, by the synchronization controller, is at least based on one selected from the group consisting of a bit rate, a bit period, and a combination thereof.
  • 18. The device of claim 1, wherein: the data comprises a number of trailing synchronization bits;the trailing synchronization bits are usable by a card reader to synchronize to the data; anda synchronization, by the synchronization controller, is at least based on one selected from the group consisting of a bit rate, a bit period, and a combination thereof.
  • 19. The device of claim 1, wherein: the data comprises a number of trailing synchronization bits;the leading synchronization bits and the trailing synchronization bits are usable by a card reader to synchronize to the data; anda synchronization, by the synchronization controller, is at least based on one selected from the group consisting of a bit rate, a bit period, and a combination thereof.
  • 20. The device of claim 1, wherein: the detector comprises a plurality of conductive pads arranged along the length of the device;the synchronization controller is operable to detect position variations of a read head in relation to the device based on signals from the plurality of conductive pads and calculate a time window to communicate the data to the read head based on said position variations;the number of leading synchronization bits is based on said time window.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 13/681,586, titled “SYSTEMS AND METHODS FOR SYNCHRONIZATION MECHANISMS FOR MAGNETIC CARDS AND DEVICES,” filed on Nov. 20, 2012, which claims the benefit of U.S. Provisional Patent Application No. 61/562,251, titled “SYSTEMS AND METHODS FOR SYNCHRONIZATION MECHANISMS FOR MAGNETIC CARDS AND DEVICES,” filed Nov. 21, 2011, each of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (484)
Number Name Date Kind
4284883 Schisselbauer Aug 1981 A
4353064 Stamm Oct 1982 A
4394654 Hofmann-Cerfontaine Jul 1983 A
4614861 Pavlov et al. Sep 1986 A
4667087 Quintana May 1987 A
4701601 Francini et al. Oct 1987 A
4720860 Weiss Jan 1988 A
4786791 Hodama Nov 1988 A
4791283 Burkhardt Dec 1988 A
4797542 Hara Jan 1989 A
5038251 Sugiyama et al. Aug 1991 A
5168520 Weiss Dec 1992 A
5237614 Weiss Aug 1993 A
5276311 Hennige Jan 1994 A
5347580 Molva et al. Sep 1994 A
5361062 Weiss et al. Nov 1994 A
5362952 Nair Nov 1994 A
5412199 Finkelstein et al. May 1995 A
5434398 Goldberg Jul 1995 A
5434405 Finkelstein et al. Jul 1995 A
5478994 Rahman Dec 1995 A
5479512 Weiss Dec 1995 A
5484997 Haynes Jan 1996 A
5485519 Weiss Jan 1996 A
5585787 Wallerstein Dec 1996 A
5591949 Bernstein Jan 1997 A
5608203 Finkelstein et al. Mar 1997 A
5623552 Lane Apr 1997 A
5650606 Baus et al. Jul 1997 A
5657388 Weiss Aug 1997 A
5834747 Cooper Nov 1998 A
5834756 Gutman Nov 1998 A
5856661 Finkelstein et al. Jan 1999 A
5864623 Messina et al. Jan 1999 A
5907142 Kelsey May 1999 A
5913203 Wong et al. Jun 1999 A
5937394 Wong et al. Aug 1999 A
5955021 Tiffany, III Sep 1999 A
5956699 Wong et al. Sep 1999 A
6025054 Tiffany, III Feb 2000 A
6045043 Bashan et al. Apr 2000 A
6076163 Hoffstein et al. Jun 2000 A
6085320 Kaliski Jul 2000 A
6095416 Grant et al. Aug 2000 A
6130621 Weiss Oct 2000 A
6145079 Mitty et al. Nov 2000 A
6157920 Jakobsson et al. Dec 2000 A
6161181 Haynes, III et al. Dec 2000 A
6176430 Finkelstein et al. Jan 2001 B1
6182894 Hackett et al. Feb 2001 B1
6189098 Kaliski Feb 2001 B1
6199052 Mitty et al. Mar 2001 B1
6206293 Gutman et al. Mar 2001 B1
6240184 Huynh et al. May 2001 B1
6241153 Tiffany, III Jun 2001 B1
6256873 Tiffany, III Jul 2001 B1
6269163 Rivest et al. Jul 2001 B1
6286022 Kaliski et al. Sep 2001 B1
6308890 Cooper Oct 2001 B1
6313724 Osterweil Nov 2001 B1
6389442 Yin et al. May 2002 B1
6393447 Jakobsson et al. May 2002 B1
6411715 Liskov et al. Jun 2002 B1
6446052 Juels Sep 2002 B1
6460141 Olden Oct 2002 B1
6592044 Wong et al. Jul 2003 B1
6607127 Wong Aug 2003 B2
6609654 Anderson et al. Aug 2003 B1
6631849 Blossom Oct 2003 B2
6655585 Shinn Dec 2003 B2
6681988 Stack et al. Jan 2004 B2
6705520 Pitroda et al. Mar 2004 B1
6755341 Wong et al. Jun 2004 B1
6764005 Cooper Jul 2004 B2
6769618 Finkelstein Aug 2004 B1
6805288 Routhenstein et al. Oct 2004 B2
6811082 Wong Nov 2004 B2
6813354 Jakobsson et al. Nov 2004 B1
6817532 Finkelstein Nov 2004 B2
6873974 Schutzer Mar 2005 B1
6902116 Finkelstein Jun 2005 B2
6908037 Kim Jun 2005 B2
6970070 Juels et al. Nov 2005 B2
6980969 Tuchler et al. Dec 2005 B1
6985583 Brainard et al. Jan 2006 B1
6991155 Burchette, Jr. Jan 2006 B2
7013030 Wong et al. Mar 2006 B2
7035443 Wong Apr 2006 B2
7039223 Wong May 2006 B2
7044394 Brown May 2006 B2
7051929 Li May 2006 B2
7083094 Cooper Aug 2006 B2
7100049 Gasparini et al. Aug 2006 B2
7100821 Rasti Sep 2006 B2
7111172 Duane et al. Sep 2006 B1
7114652 Moullette et al. Oct 2006 B2
7136514 Wong Nov 2006 B1
7140550 Ramachandran Nov 2006 B2
7163153 Blossom Jan 2007 B2
7195154 Routhenstein Mar 2007 B2
7197639 Juels et al. Mar 2007 B1
7219368 Juels et al. May 2007 B2
7225537 Reed Jun 2007 B2
7225994 Finkelstein Jun 2007 B2
7246752 Brown Jul 2007 B2
7298243 Juels et al. Nov 2007 B2
7334732 Cooper Feb 2008 B2
7337326 Palmer et al. Feb 2008 B2
7346775 Gasparini et al. Mar 2008 B2
7356696 Jakobsson et al. Apr 2008 B1
7357319 Lin et al. Apr 2008 B1
7359507 Kaliski Apr 2008 B2
7360688 Harris Apr 2008 B1
7363494 Brainard et al. Apr 2008 B2
7380710 Brown Jun 2008 B2
7398253 Pinnell Jul 2008 B1
7404087 Teunen Jul 2008 B2
7424570 D'Albore et al. Sep 2008 B2
7427033 Roskind Sep 2008 B1
7454349 Teunen et al. Nov 2008 B2
7461250 Duane et al. Dec 2008 B1
7461399 Juels et al. Dec 2008 B2
7472093 Juels Dec 2008 B2
7472829 Brown Jan 2009 B2
7494055 Fernandes et al. Feb 2009 B2
7502467 Brainard et al. Mar 2009 B2
7502933 Jakobsson et al. Mar 2009 B2
7503485 Routhenstein Mar 2009 B1
7516492 Nisbet et al. Apr 2009 B1
7523301 Nisbet et al. Apr 2009 B2
7530495 Cooper May 2009 B2
7532104 Juels May 2009 B2
7543739 Brown et al. Jun 2009 B2
7559464 Routhenstein Jul 2009 B2
7562221 Nystrom et al. Jul 2009 B2
7562222 Gasparini et al. Jul 2009 B2
7580898 Brown et al. Aug 2009 B2
7584153 Brown et al. Sep 2009 B2
7591426 Osterweil et al. Sep 2009 B2
7591427 Osterweil Sep 2009 B2
7602904 Juels et al. Oct 2009 B2
7631804 Brown Dec 2009 B2
7639537 Sepe et al. Dec 2009 B2
7641124 Brown et al. Jan 2010 B2
7660902 Graham et al. Feb 2010 B2
7784687 Mullen et al. Aug 2010 B2
7793851 Mullen Sep 2010 B2
7828207 Cooper Nov 2010 B2
7828220 Mullen Nov 2010 B2
7931195 Mullen Apr 2011 B2
7954705 Mullen Jun 2011 B2
D643063 Mullen et al. Aug 2011 S
8011577 Mullen et al. Sep 2011 B2
8020775 Mullen et al. Sep 2011 B2
8066191 Cloutier et al. Nov 2011 B1
D651237 Mullen et al. Dec 2011 S
D651238 Mullen et al. Dec 2011 S
8074877 Mullen et al. Dec 2011 B2
D651644 Mullen et al. Jan 2012 S
D652075 Mullen et al. Jan 2012 S
D652076 Mullen et al. Jan 2012 S
D652448 Mullen et al. Jan 2012 S
D652449 Mullen et al. Jan 2012 S
D652450 Mullen et al. Jan 2012 S
D652867 Mullen et al. Jan 2012 S
D653288 Mullen et al. Jan 2012 S
8172148 Cloutier et al. May 2012 B1
8226001 Foo Jul 2012 B1
D665022 Mullen et al. Aug 2012 S
D665447 Mullen et al. Aug 2012 S
D666241 Mullen et al. Aug 2012 S
8282007 Cloutier et al. Oct 2012 B1
8286876 Mullen et al. Oct 2012 B2
D670329 Mullen et al. Nov 2012 S
D670330 Mullen et al. Nov 2012 S
D670331 Mullen et al. Nov 2012 S
D670332 Mullen et al. Nov 2012 S
D670759 Mullen et al. Nov 2012 S
8302872 Mullen Nov 2012 B2
8317103 Foo Nov 2012 B1
D672389 Mullen et al. Dec 2012 S
8322623 Mullen et al. Dec 2012 B1
D674013 Mullen et al. Jan 2013 S
8348172 Cloutier et al. Jan 2013 B1
D676904 Mullen et al. Feb 2013 S
8382000 Mullen et al. Feb 2013 B2
8393545 Mullen et al. Mar 2013 B1
8393546 Yen et al. Mar 2013 B1
8413892 Mullen et al. Apr 2013 B2
8424773 Mullen et al. Apr 2013 B2
8459548 Mullen et al. Jun 2013 B2
D687094 Mullen et al. Jul 2013 S
8485437 Mullen et al. Jul 2013 B2
8485446 Mullen et al. Jul 2013 B1
8511574 Yen et al. Aug 2013 B1
8517276 Mullen et al. Aug 2013 B2
8523059 Mullen et al. Sep 2013 B1
8561894 Mullen et al. Oct 2013 B1
8567679 Mullen et al. Oct 2013 B1
8573503 Cloutier et al. Nov 2013 B1
8579203 Lambeth et al. Nov 2013 B1
8590796 Cloutier et al. Nov 2013 B1
8602312 Cloutier et al. Dec 2013 B2
8608083 Mullen et al. Dec 2013 B2
8622309 Mullen et al. Jan 2014 B1
8628022 Rhoades et al. Jan 2014 B1
8668143 Mullen et al. Mar 2014 B2
8727219 Mullen May 2014 B1
8733638 Mullen et al. May 2014 B2
8746579 Cloutier et al. Jun 2014 B1
8757483 Mullen et al. Jun 2014 B1
8757499 Cloutier et al. Jun 2014 B2
8814050 Mullen et al. Aug 2014 B1
8827153 Rhoades et al. Sep 2014 B1
8875999 Mullen et al. Nov 2014 B2
8881989 Mullen et al. Nov 2014 B2
8931703 Mullen et al. Jan 2015 B1
8944333 Mullen et al. Feb 2015 B1
8960545 Batra Feb 2015 B1
8973824 Mullen et al. Mar 2015 B2
8994984 Yamamoto Mar 2015 B2
9004368 Mullen et al. Apr 2015 B2
9010630 Mullen et al. Apr 2015 B2
9053398 Cloutier Jun 2015 B1
9064255 Mullen et al. Jun 2015 B1
9292843 Mullen et al. Mar 2016 B1
9306666 Zhang et al. Apr 2016 B1
9329619 Cloutier May 2016 B1
9349089 Rhoades et al. May 2016 B1
9361569 Mullen et al. Jun 2016 B2
9373069 Cloutier et al. Jun 2016 B2
9384438 Mullen et al. Jul 2016 B2
9547816 Mullen et al. Jan 2017 B2
9639796 Mullen et al. May 2017 B2
9646240 Mullen et al. May 2017 B1
9652436 Yen et al. May 2017 B1
9684861 Mullen et al. Jun 2017 B2
D792511 Mullen et al. Jul 2017 S
D792512 Mullen et al. Jul 2017 S
D792513 Mullen et al. Jul 2017 S
9697454 Mullen et al. Jul 2017 B2
9704088 Mullen et al. Jul 2017 B2
9704089 Mullen et al. Jul 2017 B2
9721201 Mullen et al. Aug 2017 B1
9727813 Mullen et al. Aug 2017 B2
9805297 Mullen et al. Oct 2017 B2
9818125 Mullen et al. Nov 2017 B2
9836680 Cloutier Dec 2017 B1
9852368 Yen et al. Dec 2017 B1
9875437 Cloutier et al. Jan 2018 B2
9881245 Rhoades et al. Jan 2018 B1
9928456 Cloutier et al. Mar 2018 B1
9953255 Yen et al. Apr 2018 B1
10022884 Cloutier Jul 2018 B1
10032100 Mullen et al. Jul 2018 B2
10055614 Cloutier et al. Aug 2018 B1
10095970 Mullen Oct 2018 B1
10095974 Mullen et al. Oct 2018 B1
10169692 Mullen et al. Jan 2019 B2
10169693 Batra Jan 2019 B1
10176419 Cloutier et al. Jan 2019 B1
10176423 Mullen et al. Jan 2019 B1
10181097 Mullen et al. Jan 2019 B1
10198687 Mullen et al. Feb 2019 B2
10223631 Mullen et al. Mar 2019 B2
10255545 Mullen et al. Apr 2019 B2
10325199 Mullen et al. Jun 2019 B2
10430704 Mullen et al. Oct 2019 B2
10467521 Mullen et al. Nov 2019 B2
10482363 Cloutier et al. Nov 2019 B1
10496918 Mullen et al. Dec 2019 B2
10504105 Mullen et al. Dec 2019 B2
10579920 Mullen et al. Mar 2020 B2
10693263 Mullen et al. Jun 2020 B1
10936926 Rhoades et al. Mar 2021 B1
10948964 Cloutier Mar 2021 B1
10997489 Mullen et al. May 2021 B2
11062195 Mullen Jul 2021 B2
11144909 Mullen et al. Oct 2021 B1
11238329 Mullen et al. Feb 2022 B2
11494606 Mullen et al. Nov 2022 B2
20010034702 Mockett et al. Oct 2001 A1
20010047335 Arndt et al. Nov 2001 A1
20020017559 Mos et al. Feb 2002 A1
20020059114 Cockrill et al. May 2002 A1
20020082989 Fife et al. Jun 2002 A1
20020096570 Wong et al. Jul 2002 A1
20020120583 Keresman, III et al. Aug 2002 A1
20030034388 Routhenstein et al. Feb 2003 A1
20030034544 May et al. Feb 2003 A1
20030052168 Wong Mar 2003 A1
20030057278 Wong Mar 2003 A1
20030116635 Taban Jun 2003 A1
20030152253 Wong Aug 2003 A1
20030163287 Vock et al. Aug 2003 A1
20030173409 Vogt et al. Sep 2003 A1
20030179909 Wong et al. Sep 2003 A1
20030179910 Wong Sep 2003 A1
20030212985 Chan et al. Nov 2003 A1
20030226899 Finkelstein Dec 2003 A1
20040035942 Silverman Feb 2004 A1
20040133787 Doughty Jul 2004 A1
20040162732 Rahim et al. Aug 2004 A1
20040172535 Jakobsson Sep 2004 A1
20040177045 Brown Sep 2004 A1
20050043997 Sohata et al. Feb 2005 A1
20050080747 Anderson et al. Apr 2005 A1
20050086160 Wong et al. Apr 2005 A1
20050086177 Anderson et al. Apr 2005 A1
20050116026 Burger et al. Jun 2005 A1
20050119940 Concilio et al. Jun 2005 A1
20050154643 Doan et al. Jul 2005 A1
20050167495 Morley et al. Aug 2005 A1
20050228959 D'Albore et al. Oct 2005 A1
20060000900 Fernandes et al. Jan 2006 A1
20060037073 Juels et al. Feb 2006 A1
20060041759 Kaliski et al. Feb 2006 A1
20060085328 Cohen et al. Apr 2006 A1
20060091223 Zellner May 2006 A1
20060161435 Atef et al. Jul 2006 A1
20060163353 Moulette et al. Jul 2006 A1
20060174104 Crichton et al. Aug 2006 A1
20060196931 Holtmanns et al. Sep 2006 A1
20060256961 Brainard et al. Nov 2006 A1
20070034700 Poidomani et al. Feb 2007 A1
20070067540 Bunker Mar 2007 A1
20070114274 Gibbs et al. May 2007 A1
20070124321 Szydlo May 2007 A1
20070152070 D'Albore Jul 2007 A1
20070152072 Frallicciardi et al. Jul 2007 A1
20070153487 Frallicciardi et al. Jul 2007 A1
20070174614 Duane et al. Jul 2007 A1
20070192249 Biffle et al. Aug 2007 A1
20070241183 Brown et al. Oct 2007 A1
20070241201 Brown et al. Oct 2007 A1
20070256123 Duane et al. Nov 2007 A1
20070291753 Romano Dec 2007 A1
20080005510 Sepe et al. Jan 2008 A1
20080008315 Fontana et al. Jan 2008 A1
20080008322 Fontana et al. Jan 2008 A1
20080010675 Massascusa et al. Jan 2008 A1
20080016351 Fontana et al. Jan 2008 A1
20080019507 Fontana et al. Jan 2008 A1
20080028447 O'Malley et al. Jan 2008 A1
20080029607 Mullen Feb 2008 A1
20080035738 Mullen Feb 2008 A1
20080036573 Tsukamoto Feb 2008 A1
20080040271 Hammad et al. Feb 2008 A1
20080040276 Hammad et al. Feb 2008 A1
20080054068 Mullen Mar 2008 A1
20080054079 Mullen Mar 2008 A1
20080054081 Mullen Mar 2008 A1
20080058016 Di Maggio et al. Mar 2008 A1
20080059379 Ramaci et al. Mar 2008 A1
20080065555 Mullen Mar 2008 A1
20080096326 Reed Apr 2008 A1
20080126398 Cimino May 2008 A1
20080128515 Di Iorio Jun 2008 A1
20080148394 Poidomani et al. Jun 2008 A1
20080201264 Brown et al. Aug 2008 A1
20080209550 Di Iorio Aug 2008 A1
20080288699 Chichierchia Nov 2008 A1
20080294930 Varone et al. Nov 2008 A1
20080302869 Mullen Dec 2008 A1
20080302876 Mullen Dec 2008 A1
20080302877 Musella et al. Dec 2008 A1
20090013122 Sepe et al. Jan 2009 A1
20090036147 Romano Feb 2009 A1
20090046522 Sepe et al. Feb 2009 A1
20090108064 Fernandes et al. Apr 2009 A1
20090150295 Hatch et al. Jun 2009 A1
20090152365 Li et al. Jun 2009 A1
20090159663 Mullen et al. Jun 2009 A1
20090159667 Mullen et al. Jun 2009 A1
20090159668 Mullen et al. Jun 2009 A1
20090159669 Mullen et al. Jun 2009 A1
20090159670 Mullen et al. Jun 2009 A1
20090159671 Mullen et al. Jun 2009 A1
20090159672 Mullen et al. Jun 2009 A1
20090159673 Mullen et al. Jun 2009 A1
20090159680 Mullen et al. Jun 2009 A1
20090159681 Mullen Jun 2009 A1
20090159682 Mullen et al. Jun 2009 A1
20090159688 Mullen et al. Jun 2009 A1
20090159689 Mullen et al. Jun 2009 A1
20090159690 Mullen et al. Jun 2009 A1
20090159696 Mullen Jun 2009 A1
20090159697 Mullen et al. Jun 2009 A1
20090159698 Mullen et al. Jun 2009 A1
20090159699 Mullen et al. Jun 2009 A1
20090159700 Mullen et al. Jun 2009 A1
20090159701 Mullen et al. Jun 2009 A1
20090159702 Mullen Jun 2009 A1
20090159703 Mullen et al. Jun 2009 A1
20090159704 Mullen et al. Jun 2009 A1
20090159705 Mullen et al. Jun 2009 A1
20090159706 Mullen et al. Jun 2009 A1
20090159707 Mullen et al. Jun 2009 A1
20090159708 Mullen et al. Jun 2009 A1
20090159709 Mullen Jun 2009 A1
20090159710 Mullen et al. Jun 2009 A1
20090159711 Mullen et al. Jun 2009 A1
20090159712 Mullen et al. Jun 2009 A1
20090159713 Mullen et al. Jun 2009 A1
20090160617 Mullen et al. Jun 2009 A1
20090242648 Di Sirio et al. Oct 2009 A1
20090244858 Di Sirio et al. Oct 2009 A1
20090253460 Varone et al. Oct 2009 A1
20090255996 Brown et al. Oct 2009 A1
20090290704 Cimino Nov 2009 A1
20090303885 Longo Dec 2009 A1
20090308921 Mullen Dec 2009 A1
20100085325 King-Smith et al. Apr 2010 A1
20110006112 Mueller Jan 2011 A1
20110028184 Cooper Feb 2011 A1
20110116534 Seibert May 2011 A1
20110272465 Mullen et al. Nov 2011 A1
20110272466 Mullen et al. Nov 2011 A1
20110272467 Mullen et al. Nov 2011 A1
20110272471 Mullen Nov 2011 A1
20110272472 Mullen Nov 2011 A1
20110272473 Mullen et al. Nov 2011 A1
20110272474 Mullen et al. Nov 2011 A1
20110272475 Mullen et al. Nov 2011 A1
20110272476 Mullen et al. Nov 2011 A1
20110272477 Mullen et al. Nov 2011 A1
20110272478 Mullen Nov 2011 A1
20110272479 Mullen Nov 2011 A1
20110272480 Mullen et al. Nov 2011 A1
20110272481 Mullen et al. Nov 2011 A1
20110272482 Mullen et al. Nov 2011 A1
20110272483 Mullen et al. Nov 2011 A1
20110272484 Mullen et al. Nov 2011 A1
20110276380 Mullen et al. Nov 2011 A1
20110276381 Mullen et al. Nov 2011 A1
20110276416 Mullen et al. Nov 2011 A1
20110276424 Mullen Nov 2011 A1
20110276425 Mullen Nov 2011 A1
20110276436 Mullen et al. Nov 2011 A1
20110276437 Mullen et al. Nov 2011 A1
20110278364 Mullen et al. Nov 2011 A1
20110282753 Mullen et al. Nov 2011 A1
20110284632 Mullen et al. Nov 2011 A1
20110284640 Mullen et al. Nov 2011 A1
20120028702 Mullen et al. Feb 2012 A1
20120037709 Cloutier et al. Feb 2012 A1
20120104095 Terlouw et al. May 2012 A1
20120197708 Mullen et al. Aug 2012 A1
20120209744 Mullen et al. Aug 2012 A1
20120254037 Mullen Oct 2012 A1
20120254038 Mullen Oct 2012 A1
20120286037 Mullen et al. Nov 2012 A1
20120286928 Mullen et al. Nov 2012 A1
20120286936 Mullen et al. Nov 2012 A1
20120290449 Mullen et al. Nov 2012 A1
20120290472 Mullen et al. Nov 2012 A1
20120318871 Mullen et al. Dec 2012 A1
20120326013 Cloutier et al. Dec 2012 A1
20130020396 Mullen et al. Jan 2013 A1
20130282573 Mullen et al. Oct 2013 A1
20130282575 Mullen et al. Oct 2013 A1
20140054384 Cloutier et al. Feb 2014 A1
20150186766 Mullen et al. Jul 2015 A1
20160162713 Cloutier et al. Jun 2016 A1
20160180209 Mullen et al. Jun 2016 A1
20160239735 Mullen et al. Aug 2016 A1
20160283837 Mullen et al. Sep 2016 A1
20160307085 Mullen et al. Oct 2016 A1
20160335529 Mullen et al. Nov 2016 A1
20160342876 Mullen et al. Nov 2016 A1
20160342877 Mullen et al. Nov 2016 A1
20160342878 Mullen et al. Nov 2016 A1
20160342879 Mullen et al. Nov 2016 A1
20160342880 Mullen et al. Nov 2016 A1
20170286817 Mullen et al. Oct 2017 A1
20170300796 Mullen et al. Oct 2017 A1
20180053079 Cloutier et al. Feb 2018 A1
20180060881 Mullen et al. Mar 2018 A1
20190042903 Cloutier et al. Feb 2019 A1
20190065928 Mullen et al. Feb 2019 A1
20190197387 Mullen et al. Jun 2019 A1
20190340484 Mullen et al. Nov 2019 A1
20200082383 Mullen et al. Mar 2020 A1
20220172020 Mullen et al. Jun 2022 A1
Foreign Referenced Citations (8)
Number Date Country
05210770 Aug 1993 JP
WO9852735 Nov 1998 WO
WO0247019 Jun 2002 WO
WO06066322 Jun 2006 WO
WO06080929 Aug 2006 WO
WO06105092 Oct 2006 WO
WO06116772 Nov 2006 WO
WO08064403 Jun 2008 WO
Non-Patent Literature Citations (6)
Entry
U.S. Appl. No. 60/594,300, Poidomani et al.
U.S. Appl. No. 60/675,388, Poidomani et al.
The Bank Credit Card Business. Second Edition, American Bankers Association, Washington, D.C., 1996.
A Day in the Life of a Flux Reversal. http://www.phrack/org/issues.html?issue=37&id=6#article. As viewed on Apr. 12, 2010.
Dynamic Virtual Credit Card Numbers. http://homes.cerias.purdue.edu/˜jtli/paper/fc07.pdf. As viewed on Apr. 12, 2010.
English translation of JP 05210770 A.
Provisional Applications (1)
Number Date Country
61562251 Nov 2011 US
Continuations (1)
Number Date Country
Parent 13681586 Nov 2012 US
Child 15482392 US