Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information

Information

  • Patent Grant
  • 9955070
  • Patent Number
    9,955,070
  • Date Filed
    Wednesday, September 7, 2016
    8 years ago
  • Date Issued
    Tuesday, April 24, 2018
    6 years ago
Abstract
Systems and methods for synthesizing high resolution images using image deconvolution and depth information in accordance embodiments of the invention are disclosed. In one embodiment, an array camera includes a processor and a memory, wherein an image deconvolution application configures the processor to obtain light field image data, determine motion data based on metadata contained in the light field image data, generate a depth-dependent point spread function based on the synthesized high resolution image, the depth map, and the motion data, measure the quality of the synthesized high resolution image based on the generated depth-dependent point spread function, and when the measured quality of the synthesized high resolution image is within a quality threshold, incorporate the synthesized high resolution image into the light field image data.
Description
FIELD OF THE INVENTION

The present invention relates to systems and methods for image deconvolution and more specifically to synthesizing high resolution images using image deconvolution processes.


BACKGROUND

Imaging devices, such as cameras, can be used to capture images of portions of the electromagnetic spectrum, such as the visible light spectrum, incident upon an image sensor. For ease of discussion, the term light is generically used to cover radiation across the entire electromagnetic spectrum. In a typical imaging device, light enters through an opening (aperture) at one end of the imaging device and is directed to an image sensor by one or more optical elements such as lenses. The image sensor includes pixels or sensor elements that generate signals upon receiving light via the optical element. Commonly used image sensors include charge-coupled device (CCDs) sensors and complementary metal-oxide semiconductor (CMOS) sensors. Each pixel in an image sensor is capable of capturing light and converting the captured light into electrical signals. In order to separate the colors of light and capture a color image, a Bayer filter is often placed over the image sensor, filtering the incoming light into its red, blue, and green (RGB) components that are then captured by the image sensor. The RGB signal captured by the image sensor using a Bayer filter can then be processed and a color image can be created.


SUMMARY OF THE INVENTION

Systems and methods for synthesizing high resolution images using image deconvolution and depth information in accordance embodiments of the invention are disclosed. In one embodiment, an array camera includes a processor and a memory connected to the processor and configured to store an image deconvolution application, wherein the image deconvolution application configures the processor to obtain light field image data, where the light field image data includes a synthesized high resolution image having a plurality of pixels, a depth map, and metadata describing the motion associated with a capturing device that captured the light field image data, determine motion data based on the metadata contained in the light field image data, generate a depth-dependent point spread function based on the synthesized high resolution image, the depth map, and the motion data, where the depth-dependent point spread function describes the blurriness of points within the synthesized high resolution image based on the motion of the capturing device and the depth of the pixels described in the depth map, measure the quality of the synthesized high resolution image based on the generated depth-dependent point spread function, when the measured quality of the synthesized high resolution image is within a quality threshold, incorporate the synthesized high resolution image into the light field image data, and when the measured quality of the synthesized high resolution image is outside the quality threshold, determine updated motion data based on the measured quality and the depth-dependent point spread function, generate an updated depth-dependent point spread function based on the updated motion data, and synthesize a new high resolution image based on the updated depth-dependent point spread function.


In an additional embodiment of the invention, the array camera further includes an array camera module including an imager array having multiple focal planes and an optics array configured to form images through separate apertures on each of the focal planes, wherein the array camera module is configured to communicate with the processor, and wherein the obtained light field image data includes image data captured by the imager array.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a system diagram of an array camera including a 5×5 imager array with storage hardware connected with a processor in accordance with an embodiment of the invention.



FIG. 2 is a functional block diagram of an image deconvolution device configured to perform image deconvolution processes on synthesized images in accordance with an embodiment of the invention.



FIG. 3 is a flow chart illustrating a process for blind image deconvolution of a synthesized image using depth information in accordance with an embodiment of the invention.



FIG. 4 is a flow chart illustrating a process for image deconvolution of a synthesized image using estimated camera motion in accordance with an embodiment of the invention.



FIG. 5 is a flow chart illustrating a process for image deconvolution of a synthesized image using measured camera motion in accordance with an embodiment of the invention.



FIG. 6 is a flow chart illustrating a process for determining an a priori rigid motion transformation of an imager array in accordance with an embodiment of the invention.



FIG. 7 is a flow chart illustrating a process for generating a depth-dependent point spread function in accordance with an embodiment of the invention.





DETAILED DESCRIPTION

Turning now to the drawings, systems and methods for performing image deconvolution processes utilizing depth information in accordance with embodiments of the invention are illustrated. Array cameras, such as those described in U.S. patent application Ser. No. 12/935,504, entitled “Capturing and Processing of Images using Monolithic Camera Array with Heterogeneous Imagers” to Venkataraman et al., can be utilized to capture light fields and store the captured light fields. In a variety of embodiments, a light field is captured by obtaining image data forming a two dimensional array of image data of a scene captured from multiple viewpoints. In accordance with many embodiments of the invention, images, including high resolution images, may be synthesized from image data captured by an appropriately configured array camera using a super-resolution process. Systems and methods for performing super-resolution processing on image data captured by an array camera in accordance with embodiments of the invention are disclosed in U.S. patent application Ser. No. 12/967,807 entitled “System and Methods for Synthesizing High Resolution Images Using Super-Resolution Processes” to Lelescu et al. In many instances, the process of synthesizing a high resolution image may result in a single image, a stereoscopic pair of images that can be used to display three dimensional (3D) information via an appropriate 3D display, and/or a variety of images from different viewpoints. The process of synthesizing high resolution images from lower resolution image data captured by an imager array in an array camera typically involves performing parallax detection and correction to reduce disparity between the images captured by each of the cameras in the array camera module. Processes for parallax detection and correction in accordance with embodiments of the invention are disclosed in U.S. patent application Ser. No. 13/972,881 entitled “Systems and Methods for Parallax Detection and Correction in Images Captured Using Array Cameras that Contain Occlusions using Subsets of Images to Perform Depth Estimation” to Venkataraman et al. In many embodiments, processes for performing parallax detection and correction yield depth information. Therefore, processes for synthesizing high resolution images using lower resolution image data using super-resolution processes can also involve the generation of a depth map describing the depth information. The term depth map refers to metadata that describes the distance from the camera to the portion of the scene captured in the pixels (or a subset of the pixels) of an image.


Image data captured using a camera are often blurry due to the quality of the sensor, movement of the camera, hand jitter, and/or other factors affecting the quality of the captured image data. The flaws in blurry images can be further exacerbated when the blurry images are used to synthesize images using super-resolution processes, resulting in images containing flaws influencing the blurriness and quality of the synthesized image. In particular, the flaws in the captured image data affect the quality of the synthesized image depend based in part on the depth of the flaws within the synthesized image. Note that, in a variety of embodiments, the synthesized image need not be synthesized using super-resolution processes; rather any image synthesized from image data containing depth information can be affected by flaws in the captured light field due to the motion of the capturing device during the capture.


Image deconvolution devices (such as array cameras configured to via software to perform image deconvolution processes) in accordance with embodiments of the invention are configured to perform image deconvolution processes on synthesized images to improve the quality of the synthesized image by compensating for the motion of the device during the capturing of a light field from multiple viewpoints from which the image is synthesized. Image deconvolution devices are configured to perform image deconvolution processes by generating a depth-dependent (and/or motion dependent) point spread function (PSF) based on the motion of the array camera capturing the image data utilized in the synthesis of the image being deconvoluted and the depth information determined in the performance of parallax detection and correction in synthesizing the image. A depth-dependent PSF describes the sharpness and/or blurriness of points within a synthesized image based on the motion of the capturing device and the depth of the points. PSFs utilize blur kernels to describe the blur for the points within the synthesized image. A blur kernel is a function describing the sharpness (and/or blur) of the area surrounding a point within a synthesized image. The motion of the array camera can be determined using a blind motion estimation process, an ego-motion estimation of the array camera motion, and/or the motion of the array camera as measured by the array camera. Although the processes described herein are in reference to performing image deconvolution processes on entire images, it should be noted that the processes described herein can be performed on tiles or patches of images in accordance with embodiments of the invention.


The disclosures of each of U.S. patent application Ser. Nos. 12/935,504, 12/967,807, and 13/972,881 are hereby incorporated by reference in their entirety. Although the systems and methods described are with respect to array cameras configured to both capture and process captured light fields, devices (including image deconvolution devices that are not configured to capture light fields) that are configured to obtain captured light fields captured using a different device and process the received data can be utilized in accordance with the requirements of a variety of embodiments of the invention. Additionally, any of the various systems and processes described herein can be performed in sequence, in alternative sequences, and/or in parallel (e.g. on different computing devices) in order to achieve similar results in a manner that is more appropriate to the requirements of a specific application of the invention. Systems and methods for performing image deconvolution processes on synthesized images in accordance with embodiments of the invention are described below.


Array Camera Architectures


Array cameras in accordance with many embodiments of the invention include sensors such as, but not limited to, an inertial movement sensor system or inertial measurement unit, configured to measure the motion of the array camera at the time a light field is captured. An array camera including an imager array in accordance with an embodiment of the invention is illustrated in FIG. 1. The array camera 100 includes an array camera module including an imager array 102 having multiple focal planes 104 and an optics array configured to form images through separate apertures on each of the focal planes. The imager array 102 is configured to communicate with a processor 108. In accordance with many embodiments of the invention, the processor 108 is configured to read out image data captured by the imager array 102 and synthesize images using super-resolution processes. Imager arrays including multiple focal planes are discussed in U.S. patent application Ser. No. 13/106,797, entitled “Architectures for System on Chip Array Cameras” to McMahon et al., the entirety of which is hereby incorporated by reference.


In the illustrated embodiment, the focal planes are configured in a 5×5 array. In other embodiments, any of a variety of array configurations can be utilized including linear arrays and subsets of the array. Each focal plane 104 of the imager array is capable of capturing image data from an image of the scene formed through a distinct aperture. Typically, each focal plane includes a plurality of rows of pixels that also forms a plurality of columns of pixels, and each focal plane is contained within a region of the imager that does not contain pixels from another focal plane. The pixels or sensor elements utilized in the focal planes can be individual light sensing elements such as, but not limited to, traditional CIS (CMOS Image Sensor) pixels, CCD (charge-coupled device) pixels, high dynamic range sensor elements, multispectral sensor elements and/or any other structure configured to generate an electrical signal indicative of light (e.g. any electromagnetic signal) incident on the structure. In many embodiments, the sensor elements of each focal plane have similar physical properties and receive light via the same optical channel and color filter (where present). In other embodiments, the sensor elements have different characteristics and, in many instances, the characteristics of the sensor elements are related to the color filter applied to each sensor element. In a variety of embodiments, a Bayer filter pattern of light filters can be applied to one or more of the focal planes 104. Similarly, the sensor elements can be configured to capture information from non-visible light sources, such as infrared as appropriate to the specific requirements of embodiments of the invention.


In a variety of embodiments, the processor 108 is connected to an inertial movement sensor system 110 that is configured to capture motion information related to the rotation and/or translation of the array camera. A variety of inertial measurement sensors can be utilized in accordance with a number of embodiments of the invention including, but not limited to, gyroscopes and microelectromechanical system (MEMS) accelerometers. In several embodiments, the inertial movement sensor system 110 is configured to measure the rotation and/or translation of the imager array 102. In many embodiments, measuring the rotation and/or translation of the imager array 102 involves measuring the rotation and/or translation of the focal planes 104. In a number of embodiments, the inertial movement sensor 110 is integrated into or connected to the imager array 102 and the processor 108 is configured to receive the rotation and/or translation information from the imager array 102. In order to calibrate the inertial movement sensor system 110 to the imager array 102 (and/or focal planes 104), an a priori rigid motion transformation is determined that calibrates the motion data determined using the inertial movement sensor 110 to the movement of the imager array 102. Processes for determining an a priori rigid motion transformation in accordance with embodiments of the invention are discussed below.


In several embodiments, information captured by one or more focal planes 104 is read out of the imager array 102 as packets of image data. In several embodiments, a packet of image data contains one or more pixels from a row of pixels captured from each of one or more of the focal planes 104. Packets of image data may contain other groupings of captured pixels, such as one or more pixels captured from a column of pixels in each of one or more focal planes and/or a random sampling of pixels. Systems and methods for reading out image data from array cameras that can be utilized in array cameras configured in accordance with embodiments of the invention are described in U.S. Pat. No. 8,305,456 entitled “Systems and Methods for Transmitting and Receiving Array Camera Image Data” to McMahon, the disclosure of which is incorporated by reference herein in its entirety.


In a number of embodiments, the captured packets of image data are associated with an image packet timestamp. In many embodiments, inertial movement data captured using the inertial movement sensor system 110 is associated with an inertial movement measurement timestamp. In several embodiments, the processor 108 associates one or more packets of image data with inertial movement measurement data based upon the image packet timestamp(s) and the inertial movement measurement timestamp. In several embodiments, there is a delay in the capture between the first pixel captured by the focal plane 104 and the last pixel captured. As is discussed further below, image deconvolution processes in accordance with embodiments of the invention utilize the timestamps associated with the image data and the inertial measurement data to accommodate variations in motion during the period in time in which image data utilized in synthesizing a high resolution image is captured.


Array cameras are configured to create a light field image data file containing a synthesized high resolution image and metadata generated using the captured light field image data. One such file format is the JPEG-DX extension to ISO/IEC 10918-1 described in U.S. patent application Ser. No. 13/631,731, titled “Systems and Methods for Encoding Light Field Image Files” to Venkataraman et al, the entirety of which is hereby incorporated by reference. The metadata can include a variety of data captured and/or generated by the array camera, including, but not limited to, the generated depth information, the timestamp information, and/or motion data describing the motion of the array camera during the capture of the image data.


Although a specific array camera utilized in array camera configured to perform image deconvolution processes is illustrated in FIG. 1, alternative architectures can also be utilized as appropriate to the requirements of specific applications in accordance with embodiments of the invention. Systems and methods for synthesizing high resolution images using image deconvolution processes in accordance with embodiments of the invention are discussed below.


Image Deconvolution Devices


A variety of devices can be configured to synthesize high resolution images using captured light fields and image deconvolution processes, including array cameras and other devices that are not capable of capturing image data using an imager array. A diagram of an image deconvolution device in accordance with an embodiment of the invention is illustrated in FIG. 2. The image deconvolution device 200 contains a processor 210 capable of being configured via software (e.g. an image deconvolution application) to load and manipulate light field image data files. In many embodiments of the invention, the processor 210 is connected to an imager array 220 capable of capturing light fields. In a variety of embodiments, the imager array 220 is configured to capture light field image data utilizing processes similar to those described above.


In many embodiments, the processor 210 is connected to a display 212 capable of displaying two dimensional images synthesized using a captured light field. In several embodiments, the display 212 is capable of displaying three dimensional images. In a number of embodiments, the processor 210 is connected to a user interface 214, such as a touchscreen interface, a pointing device, and/or a keyboard. In many embodiments, the user interface 214 can be a camera or array camera capable of tracking user movements. In several embodiments, the processor 210 is connected to a storage device 216. The storage device 216 is capable of storing light field image data files and synthesized images and delivering the stored data to the processor 210 for manipulation. In a number of embodiments, the processor 210 is connected to a network interface 218 capable of communication via a network. The network communication involves receiving and transmitting light field image data files and/or synthesized images, where the light field image data files and/or synthesized images can be stored in storage device 216 (if present) or can be loaded directly into the processor 210.


In several embodiments, the processor 210 is configured to synthesize images using image data captured using the imager array utilizing super-resolution processes as described above. The processor 210 can perform image deconvolution processes on the synthesized images (or any other images including depth information) using a depth-dependent point spread function (PSF) determined using motion and depth information. The processor 210 can determine the motion information using a variety of processes, including, but not limited to, blind motion estimation, ego-motion estimation, or using measured motion information contained in metadata in the light field image data files. Processes for determining depth-dependent point spread functions and measuring the motion of an array camera are described in detail below. In a number of embodiments, input received from the user interface 214 can be utilized in the image deconvolution process.


Although a specific example of an array camera configured to perform image deconvolution processes is described above with respect to FIG. 2, any device capable performing image deconvolution processes on images having depth information can be used in accordance with embodiments of the invention. Processes for image deconvolution of synthesized images in accordance with embodiments of the invention are discussed below.


Blind Image Deconvolution


In order to create a sharp image, image deconvolution devices are configured to perform image deconvolution processes on images having depth information. However, many images do not have information regarding the motion of the capturing device. Image deconvolution devices in accordance with embodiments of the invention are configured to perform a blind estimation of the motion of the capturing device utilized in the image deconvolution process. A process for performing blind image deconvolution in accordance with an embodiment of the invention is illustrated in FIG. 3. The process 300 includes obtaining (310) light field image data. An image is synthesized (312). A depth-dependent point spread function is generated (314) and image deconvolution is performed (316) on the synthesized image. If the quality of the synthesized image is within (318) a threshold value, the process completes. If the quality of the synthesized image is not within (318) the threshold, the motion estimation is adjusted (320) and a new depth-dependent point spread function is generated (314).


In a variety of embodiments, the light field image data is obtained (310) directly from an array camera utilizing processes similar to those described above. In a number of embodiments, the light field image data is obtained (310) from a light field image data file. In several embodiments, the synthesized (312) image is contained in the light field image data. In many embodiments, an image is synthesized (312) using the light field image data. The synthesized (312) image contains metadata, where the metadata includes a depth map describing depth information related to the points within the synthesized image. A depth-dependent PSF is generated (314) using the depth map and a motion estimation. Processes for generating depth-dependent PSF in accordance with embodiments of the invention are discussed below. The camera motion estimation can be any predefined value (including no motion at all) as appropriate to the requirements of a specific application in accordance with embodiments of the invention. Image deconvolution is performed (316) using the depth-dependent PSF and the quality of the resulting image is analyzed. If the quality of the image is within (318) a quality threshold, the image is considered of sufficient quality and the process 300 completes. The quality threshold can be dependent on any visual properties of the image as appropriate to the requirements of a specific application in accordance with embodiments of the invention, including the sharpness of the image. The quality threshold can be pre-determined and/or determined dynamically. If the image quality is not within the threshold (318), the motion estimation is adjusted (320). A number of processes can be utilized to adjust (320) the motion estimation, such as gradient ascent, gradient descent, or any other iterative optimization technique as appropriate to the requirements of a specific application in accordance with embodiments of the invention.


Although a specific process for performing blind image deconvolution of synthesized images having depth information in accordance with an embodiment of the invention is described above with respect to FIG. 3, processes appropriate to the requirements of specific applications can be utilized in accordance with embodiments of the invention. Processes for performing image deconvolution using estimated and/or measured camera motion in accordance with embodiments of the invention are discussed below.


Image Deconvolution with Estimated Motion Information


A variety of image deconvolution devices are configured to estimate the motion of the camera capturing the image being deconvoluted. A process for performing image deconvolution using estimated motion information in accordance with an embodiment of the invention is illustrated in FIG. 4. The process 400 includes obtaining (410) light field image data. Images from multiple viewpoints are synthesized (412). Camera motion is estimated (414), a depth-dependent point spread function is generated (416), and image deconvolution is performed (418).


In several embodiments, obtaining (410) light field image data using processes similar to those described above. Synthesizing (412) images from multiple viewpoints includes performing a number of super-resolution processes using the light field image data and the associated depth map to create multiple views of the same scene. Estimating (414) camera motion is performed using ego-motion techniques in accordance with embodiments of the invention. Ego-motion techniques estimate camera motion by detecting features in a first image and matching those features to a second image. This matching process is performed using pairs of the synthesized (412) images. Based on the matching of the features, an optical flow field is generated; the optical flow field describes the estimate of the motion of the camera. Other techniques for estimating (414) camera motion can be utilized as appropriate to the requirements of a specific application in accordance with embodiments of the invention. The depth-dependent point spread function is generated (416) using the estimated camera motion and the depth map. Image deconvolution is performed (418) using processes similar to those described above.


A specific process for performing image deconvolution using estimated camera motion in accordance with an embodiment of the invention is described above with respect to FIG. 4; however, a variety of processes can be utilized in accordance with embodiments of the invention. Processes for performing image deblurring using depth information, determining the motion of array cameras, and generating point spread functions are described below.


Image Deconvolution with Measured Motion Information


Array cameras in accordance with embodiments of the invention are configured to capture motion data describing the motion of the array camera at the time image data is captured. A process for performing image deconvolution using measured motion information in accordance with an embodiment of the invention is illustrated in FIG. 5. The process 500 includes obtaining (510) light field image data and synthesizing (512) an image. The measured camera motion is determined (514), a depth-dependent point spread function is determined (516), and image deconvolution is performed (518).


In a number of embodiments, obtaining (510) light field image data and synthesizing (512) an image are performed utilizing processes similar to those described above. The measured camera motion is determined (514) using motion information contained in the light field image data. In many embodiments, the motion information is directly stored as metadata in the light field image data. In a variety of embodiments, the motion information is determined (514) by correlating motion information along with time information contained in the light field image data. The correlation of the motion information with the time information describes how quickly the array camera moved as packets of image data included in the light field image data were read from the focal planes in the imager array of the array camera. The determined (514) measured motion information and the depth map are utilized to generate (516) the depth-dependent point spread function. In several embodiments, image deconvolution is performed (518) utilizing processes similar to those described above.


A specific process for performing image deconvolution of light field images using depth and camera motion information in accordance with an embodiment of the invention is described above with respect to FIG. 5; however, a variety of processes can be utilized in accordance with embodiments of the invention. Processes for determining the motion of array cameras and generating point spread functions are described below.


Calibrating the Motion of an Array Camera


As discussed above, the motion of an array camera capturing image data is utilized in the deconvolution of images captured using the array camera. Many array cameras include motion sensors configured to determine the motion of the array camera as image data is captured. In order to align the motion sensor to the captured image data, an a priori rigid motion transformation is determined to calibrate the motion data captured by the sensor with the actual movement of the array camera. This a priori rigid motion transformation can be stored in a variety of manners, including as metadata associated with a captured light field, for use in later image processing. A process for determining an a priori rigid motion transformation for use in an array camera configured to perform image deconvolution processes in accordance with an embodiment of the invention is illustrated in FIG. 6. The process 600 includes calibrating (610) the location of an imager array contained in an array camera. The array camera is moved (612). The path of the array camera is correlated (614) with motion information obtained from an inertial measurement sensor. The a priori rigid motion transformation is determined (616).


In a number of embodiments, calibrating (610) the array camera includes performing intrinsic and extrinsic camera calibration. Systems and methods for calibrating a camera module in an array camera are disclosed in U.S. Provisional Patent Application Ser. No. 61/780,748, titled “Systems and Methods for Calibration of an Array Camera” and filed Mar. 13, 2013, the entirety of which is hereby incorporated by reference. In a variety of embodiments, the movement (612) of the camera can be random and/or a pre-determined path. In accordance with many embodiments of the invention, captured light fields contain a two dimensional array of two dimensional images. These two dimensional images contain a plurality of pixels, where each pixel is associated with a coordinate representing where that pixel exists in the captured light field and/or a timestamp representing the time that the pixel was captured. In many embodiments, the array camera captures one or more light fields while the array camera is moved (612). In a variety of embodiments, the path of the array camera as it is moved (612) is determined by mapping the motion of one or more pixels between the captured light fields. In several embodiments, the path of the array camera as it is moved (612) is determined using one or more pixels in a captured light field.


In a variety of embodiments, correlating (614) the motion information to the pixel motion utilizes motion timestamps associated with the captured motion information and pixel timestamps associated with the captured pixels. In a number of embodiments, determining (616) the a priori rigid motion transformation is a function that correlates (614) the motion information to the mapped pixel motion within a predefined error threshold. In many embodiments, the error threshold is dynamically determined. The a priori rigid motion transformation includes, but is not limited to, rotation information and translation information.


In several embodiments, inertial measurement sensors include, but are not limited to, gyroscopes, accelerometers, and magnetometers. In a number of embodiments, an array camera contains a plurality of inertial measurement sensors. In many embodiments, inertial measurement sensors have measurement errors and/or accumulate errors over time due to sensor noise. In accordance with embodiments of the invention, the path of the array camera can be correlated (614) using one or more pixels in each captured light field. By correlating (614) the motion data with the pixels in successive captured light fields, errors due to inertial measurement sensor error can be held within a predefined margin of error. In many embodiments, correlating (614) the motion data is performed using pixels in a single captured light field. In several embodiments, the margin of error is dynamically determined. In several embodiments, the process 600 can be performed once, for example, at the time the array camera is manufactured. In a variety of embodiments, process 600 can be performed during the use of the array camera to refine the calibration of the motion sensor by updating the a priori rigid motion transformation based on changes in the array camera.


A specific process for determining an a priori rigid motion transformation for use in an array camera configured to perform image deconvolution processes in accordance with an embodiment of the invention is described above with respect to FIG. 6; however, a variety of processes can be utilized to determine a priori rigid motion transformations as appropriate to the requirements of a specific application in accordance with embodiments of the invention. Processes for generating point spread functions in accordance with embodiments of the invention are discussed below.


Generating a Point Spread Function


A PSF describes the response of an imaging system to a point object. For example, an imaging system may not be able to precisely capture a point object, resulting in the blurring of the point object across more than one pixel on a focal plane of an imager array. In images with depth information, the blurring of point objects depends on the depth of the point object from the focal plane of the image. Image deconvolution devices configured to perform image deconvolution processes in accordance with embodiments of the invention utilize depth-dependent PSFs to correct for the blurring of point objects in synthesized images based on the depth of the point objects within the synthesized image. A process for generating a point spread function using depth information in accordance with an embodiment of the invention is illustrated in FIG. 7. The process 700 includes computing (710) a depth map for a captured light field. Camera motion is determined (712). The pixel path is calculated (714) for one or more pixels in the captured light field. A blur kernel is generated (716) for the one or more pixels.


Systems and methods for computing (710) depth maps that can be utilized in accordance with a variety of embodiments of the invention are described in U.S. patent application Ser. No. 13/972,881, incorporated by reference above. Other systems and methods for computing (710) depth maps can be utilized in accordance with the requirements of a number of embodiments of the invention. In many embodiments, camera motion is determined (712) using an inertial measurement sensor. In several embodiments, processes similar to those described above can be utilized to determine (712) camera motion. In a number of embodiments, camera motion is determined using ego-motion estimation algorithms. In many embodiments, generating (714) the pixel path involves determining the movement of one or more pixels in a scene using the camera motion. In a number of embodiments, the camera motion is an a priori rigid motion transformation generated using a process such as that described above. In several embodiments, the blur kernel is generated (716) using the pixel path calculated (714) for the one or more pixels. In many embodiments, the calculated (714) pixel path and the blur kernel generated (716) are for pixels at varying depth levels in the captured light field. In a variety of embodiments, the blur kernel is generated (716) utilizing pixel timestamps associated with one or more pixels and/or motion timestamps associated with motion data captured using the inertial measurement sensor.


A point p in a scene is located at a location p(x,y,z) , where (x,y,z) represents the three-dimensional location of the point in the scene. Applying an a priori rigid motion transformation having rotation R and translation T to a point p in a light field will result in the point p moving to

MR,T(p)=(RT)p

and the imaged position q=P(x,y,z) will move to

PMR,T(p)

where P is the projective transformation of the array camera capturing the light field. In several embodiments, the projective transformation of the array camera includes scene independent geometric corrections and scene dependent geometric transformations of the array camera as described in U.S. Provisional Patent Application Ser. No. 61/780,748, the entirety of which is incorporated by reference above.


An a priori rigid motion transformation MR,T is represented by a rotation Rn and a translation Tn for a time sampling period N=1, . . . , n. Appling the a priori rigid motion transformation to pixel p over the time sampling period calculates (714) pixel path

qn=PMn(p)

where

Mn(p)=P(RnTn . . . R1T1)


Point spread functions contain a blur kernel that describes the response of the array camera to a point object. In accordance with embodiments of the invention, the blur kernel K for a pixel path qn for a time sampling period N=1, . . . , n is generated (716) using the formula






K
=

c





n
=
1

N







G


(



q
n

-

q
1


,
σ

)









where c is a nominalization constant and G(qn−q1, σ) is a two dimensional radial symmetric Gaussian distribution with mean qn−q1 and standard deviation σ. In a number of embodiments, G(qn−q1, σ) is a variety of probability distributions known to those of ordinary skill in the art. In several embodiments, applying the Gaussian distribution to the pixel path generates (716) a depth-dependent spatially varying blur kernel utilized in a PSF for each pixel depending on the depth of the pixel in the light field. In many embodiments, the depth of each pixel is determined using parallax information determined using processes as described in U.S. patent application Ser. No. 13/972,881, the entirety of which is incorporated by reference above.


A specific process for generating a point spread function using depth information in accordance with an embodiment of the invention is described above with respect to FIG. 7; however, a variety of processes can be utilized in accordance with embodiments of the invention.


Although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention can be practiced otherwise than specifically described without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.

Claims
  • 1. An array camera, comprising: a processor; anda memory connected to the processor and configured to store an image deconvolution application;wherein the image deconvolution application configures the processor to: obtain light field image data, where the light field image data comprises an image having a plurality of pixels, a depth map, and metadata describing the motion associated with a capturing device that captured the light field image data;determine motion data based on the metadata contained in the light field image data;generate a depth-dependent point spread function based on the image, the depth map, and the motion data, where the depth-dependent point spread function describes the blurriness of points within the image based on the motion of the capturing device and the depth of the pixels described in the depth map;measure the quality of the image based on the generated depth-dependent point spread function;when the measured quality of the image is within a quality threshold, incorporate the image into the light field image data; andwhen the measured quality of the image is outside the quality threshold:determine updated motion data based on the measured quality and the depth-dependent point spread function;generate an updated depth-dependent point spread function based on the updated motion data; andsynthesize a new image based on the updated depth-dependent point spread function.
  • 2. The array camera of claim 1, further comprising an array camera module comprising an imager array having multiple focal planes and an optics array configured to form images through separate apertures on each of the focal planes; wherein the array camera module is configured to communicate with the processor; andwherein the obtained light field image data comprises image data captured by the imager array.
  • 3. The array camera of claim 1, wherein the metadata describing the motion associated with the capturing device that captured the light field image data is obtained from an inertial movement sensor that captures motion information related to rotation and translation of the array camera.
  • 4. The array camera of claim 3, wherein the inertial measurement sensor is selected from the group consisting of a gyroscope and a microelectromechanical system (MEMS) accelerometer, an accelerometer, and a magnetometer.
  • 5. The array camera of claim 3, wherein the inertial measurement sensor is integrated into the array camera.
  • 6. The array camera of claim 1, wherein the metadata further comprises a timestamp associated with the motion.
  • 7. The array camera of claim 1, wherein the quality threshold is dependent on a sharpness of the image.
  • 8. The array camera of claim 1, wherein the image deconvolution application further configures the processor to: apply ego-motion techniques to estimate motion data by:detecting features in a first image and matching those features to a second image; andgenerate an optical flow describing the estimate of the motion of the array camera.
  • 9. The array camera of claim 1, wherein determining motion data further comprises correlating motion information along with time information contained in the light field image data, wherein the correlation describes how quickly the array camera moved as packets of image data included in the light field image data were read from cameras in the array camera.
  • 10. The array camera of claim 1, wherein the image deconvolution application configures the processor to calibrate the array camera by performing intrinsic and extrinsic camera calibration.
  • 11. The array camera of claim 1, wherein the point spread function includes a blur kernel that describes the response of the array to a point object.
  • 12. The array camera of claim 11, wherein the blur kernel is generated using a pixel path calculated for at least one pixel.
  • 13. The array camera of claim 1, wherein a point p in a scene is located at a location p(x, y, z), where (x, y, z) represents a three-dimensional location of the point in the scene, wherein the image deconvolution application configures the processor to apply an a priori rigid motion transformation having rotation R and translation T to a point p in a light field that results in the point p moving to: MR,T(p)=(RT)p
  • 14. The array camera of claim 1, wherein a point p in a scene is located at a location p(x, y, z), where (x, y, z) represents a three-dimensional location of the point in the scene, and wherein an a priori rigid motion transformation MR,T is represented by a rotation Rn and a translation Tn for a time sampling period N=1, . . . ,n1 wherein the image deconvolution application configures the processor to apply an a priori rigid motion transformation to pixel p over the time sampling period by calculating pixel path: qn=PMn(p)
  • 15. The array camera of claim 1, wherein the point spread functions contain a blur kernel that describes the response of the array camera to a point object, wherein the blur kernel K for a pixel path qn for a time sampling period N=1, . . . , n is generated using the formula:
  • 16. A method for performing image deconvolution, comprising: obtain light field image data using an array camera having a plurality of cameras, wherein the light field image data comprises an image having a plurality of pixels, a depth map, and metadata describing the motion associated with the array camera that captured the light field image data;determine motion based on the metadata contained in the light field image data;generate a depth-dependent point spread function based on the image, the depth map, and the motion data, where the depth-dependent point spread function describes a blurriness of points within the image based on the motion of the array camera and the depth of the pixels described in the depth map;measure the quality of the image based on the generated depth-dependent point spread function;when the measured quality of the image is within a quality threshold, incorporate the image into the light field image data; andwhen the measured quality of the image is outside the quality threshold: determine updated motion data based on the measured quality and the depth-dependent point spread function;generate an updated depth-dependent point spread function based on the updated motion data; andsynthesize a new image based on the updated depth-dependent point spread function.
  • 17. The method of claim 16, wherein the metadata describing the motion associated with the array camera that captured the light field image data is obtained from an inertial movement sensor that captures motion information related to rotation and translation of the array camera.
  • 18. The method of claim 17, wherein the inertial measurement sensor is selected from the group consisting of a gyroscope and a microelectromechanical system (MEMS) accelerometer, an accelerometer, and a magnetometer.
  • 19. The method of claim 16, wherein determining motion data further comprises correlating motion information along with time information contained in the light field image data, wherein the correlation describes how quickly the array camera moved as packets of image data included in the light field image data were read from cameras in the array camera.
  • 20. The method of claim 16, wherein the image deconvolution application configures the processor to calibrate the array camera by performing intrinsic and extrinsic camera calibration.
CROSS-REFERNCE TO RELATED APPLICATIONS

The current application is a continuation of U.S. patent application Ser. No. 14/200,629, entitled “Systems and Methods for Synthesizing High Resolution Images Using Image Deconvolution Based on Motion and Depth Information” to Lelescu et al., filed Mar. 7, 2014, which application claims priority to U.S. Provisional Patent Application Ser. No. 61/788,078, filed Mar. 15, 2013, the disclosure of which is hereby incorporated by reference in its entirety.

US Referenced Citations (842)
Number Name Date Kind
4124798 Thompson Nov 1978 A
4198646 Alexander et al. Apr 1980 A
4323925 Abell et al. Apr 1982 A
4460449 Montalbano Jul 1984 A
4467365 Murayama et al. Aug 1984 A
4652909 Glenn Mar 1987 A
4899060 Lischke Feb 1990 A
5005083 Grage Apr 1991 A
5070414 Tsutsumi Dec 1991 A
5144448 Hornbaker Sep 1992 A
5157499 Oguma et al. Oct 1992 A
5325449 Burt Jun 1994 A
5327125 Iwase et al. Jul 1994 A
5488674 Burt Jan 1996 A
5629524 Stettner et al. May 1997 A
5801919 Griencewic et al. Sep 1998 A
5808350 Jack et al. Sep 1998 A
5832312 Rieger et al. Nov 1998 A
5880691 Fossum et al. Mar 1999 A
5911008 Niikura et al. Jun 1999 A
5933190 Dierickx et al. Aug 1999 A
5973844 Burger Oct 1999 A
6002743 Telymonde Dec 1999 A
6005607 Uomori et al. Dec 1999 A
6034690 Gallery et al. Mar 2000 A
6069351 Mack May 2000 A
6069365 Chow et al. May 2000 A
6097394 Levoy et al. Aug 2000 A
6124974 Burger Sep 2000 A
6130786 Osawa et al. Oct 2000 A
6137100 Fossum et al. Oct 2000 A
6137535 Meyers Oct 2000 A
6141048 Meyers Oct 2000 A
6160909 Melen Dec 2000 A
6163414 Kikuchi et al. Dec 2000 A
6172352 Liu et al. Jan 2001 B1
6175379 Uomori et al. Jan 2001 B1
6205241 Melen Mar 2001 B1
6239909 Hayashi et al. May 2001 B1
6340994 Margulis et al. Jan 2002 B1
6358862 Ireland et al. Mar 2002 B1
6443579 Myers et al. Sep 2002 B1
6476805 Shum et al. Nov 2002 B1
6477260 Shimomura Nov 2002 B1
6502097 Chan et al. Dec 2002 B1
6525302 Dowski, Jr. et al. Feb 2003 B2
6563537 Kawamura et al. May 2003 B1
6571466 Glenn et al. Jun 2003 B1
6603513 Berezin Aug 2003 B1
6611289 Yu Aug 2003 B1
6627896 Hashimoto et al. Sep 2003 B1
6628330 Lin Sep 2003 B1
6635941 Suda Oct 2003 B2
6639596 Shum et al. Oct 2003 B1
6647142 Beardsley Nov 2003 B1
6657218 Noda Dec 2003 B2
6671399 Berestov Dec 2003 B1
6674892 Melen et al. Jan 2004 B1
6750904 Lambert Jun 2004 B1
6765617 Tangen et al. Jul 2004 B1
6771833 Edgar Aug 2004 B1
6774941 Boisvert et al. Aug 2004 B1
6788338 Dinev Sep 2004 B1
6795253 Shinohara Sep 2004 B2
6819328 Moriwaki et al. Nov 2004 B1
6819358 Kagle et al. Nov 2004 B1
6879735 Portniaguine et al. Apr 2005 B1
6897454 Sasaki et al. May 2005 B2
6903770 Kobayashi et al. Jun 2005 B1
6909121 Nishikawa Jun 2005 B2
6927922 George et al. Aug 2005 B2
6958862 Joseph Oct 2005 B1
7015954 Foote et al. Mar 2006 B1
7085409 Sawhney Aug 2006 B2
7161614 Yamashita et al. Jan 2007 B1
7199348 Olsen et al. Apr 2007 B2
7206449 Raskar et al. Apr 2007 B2
7235785 Hornback et al. Jun 2007 B2
7262799 Suda Aug 2007 B2
7292735 Blake et al. Nov 2007 B2
7295697 Satoh Nov 2007 B1
7369165 Bosco et al. May 2008 B2
7391572 Jacobowitz et al. Jun 2008 B2
7408725 Sato Aug 2008 B2
7425984 Chen Sep 2008 B2
7496293 Shamir et al. Feb 2009 B2
7564019 Olsen Jul 2009 B2
7599547 Sun et al. Oct 2009 B2
7606484 Richards et al. Oct 2009 B1
7620265 Wolff Nov 2009 B1
7633511 Shum et al. Dec 2009 B2
7639435 Chiang et al. Dec 2009 B2
7646549 Zalevsky et al. Jan 2010 B2
7657090 Omatsu et al. Feb 2010 B2
7675080 Boettiger Mar 2010 B2
7675681 Tomikawa et al. Mar 2010 B2
7706634 Schmitt et al. Apr 2010 B2
7723662 Levoy et al. May 2010 B2
7738013 Galambos et al. Jun 2010 B2
7741620 Doering et al. Jun 2010 B2
7782364 Smith Aug 2010 B2
7826153 Hong Nov 2010 B2
7840067 Shen et al. Nov 2010 B2
7912673 Hébert et al. Mar 2011 B2
7965314 Miller et al. Jun 2011 B1
7973834 Yang Jul 2011 B2
7986018 Rennie Jul 2011 B2
7990447 Honda et al. Aug 2011 B2
8000498 Shih et al. Aug 2011 B2
8013904 Tan et al. Sep 2011 B2
8027531 Wilburn et al. Sep 2011 B2
8044994 Vetro et al. Oct 2011 B2
8077245 Adamo et al. Dec 2011 B2
8098297 Crisan et al. Jan 2012 B2
8098304 Pinto et al. Jan 2012 B2
8106949 Tan et al. Jan 2012 B2
8126279 Marcellin et al. Feb 2012 B2
8130120 Kawabata et al. Mar 2012 B2
8131097 Lelescu et al. Mar 2012 B2
8149323 Li Apr 2012 B2
8164629 Zhang Apr 2012 B1
8169486 Corcoran et al. May 2012 B2
8180145 Wu et al. May 2012 B2
8189065 Georgiev et al. May 2012 B2
8189089 Georgiev May 2012 B1
8194296 Compton Jun 2012 B2
8212914 Chiu Jul 2012 B2
8213711 Tam Jul 2012 B2
8231814 Duparre Jul 2012 B2
8242426 Ward et al. Aug 2012 B2
8244027 Takahashi Aug 2012 B2
8244058 Intwala et al. Aug 2012 B1
8254668 Mashitani et al. Aug 2012 B2
8279325 Pitts et al. Oct 2012 B2
8280194 Wong et al. Oct 2012 B2
8284240 Saint-Pierre et al. Oct 2012 B2
8289409 Chang Oct 2012 B2
8289440 Pitts et al. Oct 2012 B2
8290358 Georgiev Oct 2012 B1
8294099 Blackwell, Jr. Oct 2012 B2
8300085 Yang et al. Oct 2012 B2
8305456 McMahon Nov 2012 B1
8315476 Georgiev et al. Nov 2012 B1
8345144 Georgiev et al. Jan 2013 B1
8360574 Ishak et al. Jan 2013 B2
8400555 Georgiev Mar 2013 B1
8406562 Bassi et al. Mar 2013 B2
8411146 Twede Apr 2013 B2
8446492 Nakano et al. May 2013 B2
8456517 Mor et al. Jun 2013 B2
8493496 Freedman et al. Jul 2013 B2
8514291 Chang et al. Aug 2013 B2
8514491 Duparre Aug 2013 B2
8541730 Inuiya Sep 2013 B2
8542933 Venkataraman Sep 2013 B2
8553093 Wong et al. Oct 2013 B2
8559756 Georgiev et al. Oct 2013 B2
8565547 Strandemar Oct 2013 B2
8576302 Yoshikawa Nov 2013 B2
8577183 Robinson Nov 2013 B2
8581995 Lin et al. Nov 2013 B2
8619082 Ciurea et al. Dec 2013 B1
8648918 Kauker et al. Feb 2014 B2
8655052 Spooner et al. Feb 2014 B2
8682107 Yoon et al. Mar 2014 B2
8687087 Pertsel et al. Apr 2014 B2
8692893 McMahon Apr 2014 B2
8773536 Zhang Jul 2014 B1
8780113 Ciurea et al. Jul 2014 B1
8804255 Duparre Aug 2014 B2
8830375 Ludwig Sep 2014 B2
8831367 Venkataraman Sep 2014 B2
8842201 Tajiri Sep 2014 B2
8854462 Herbin et al. Oct 2014 B2
8861089 Duparre Oct 2014 B2
8866912 Mullis Oct 2014 B2
8866920 Venkataraman et al. Oct 2014 B2
8866951 Keelan Oct 2014 B2
8878950 Lelescu et al. Nov 2014 B2
8885059 Venkataraman et al. Nov 2014 B1
8885922 Ito et al. Nov 2014 B2
8896594 Xiong et al. Nov 2014 B2
8896719 Venkataraman et al. Nov 2014 B1
8902321 Venkataraman et al. Dec 2014 B2
8928793 McMahon Jan 2015 B2
8977038 Tian et al. Mar 2015 B2
9001226 Ng et al. Apr 2015 B1
9019426 Han et al. Apr 2015 B2
9025894 Venkataraman May 2015 B2
9025895 Venkataraman May 2015 B2
9030528 Pesach et al. May 2015 B2
9031335 Venkataraman May 2015 B2
9031342 Venkataraman May 2015 B2
9031343 Venkataraman May 2015 B2
9036928 Venkataraman May 2015 B2
9036931 Venkataraman et al. May 2015 B2
9041823 Venkataraman et al. May 2015 B2
9041824 Lelescu et al. May 2015 B2
9041829 Venkataraman et al. May 2015 B2
9042667 Venkataraman et al. May 2015 B2
9049367 Venkataraman et al. Jun 2015 B2
9055233 Venkataraman et al. Jun 2015 B2
9060124 Venkataraman et al. Jun 2015 B2
9077893 Venkataraman et al. Jul 2015 B2
9094661 Venkataraman et al. Jul 2015 B2
9123117 Ciurea et al. Sep 2015 B2
9123118 Ciurea et al. Sep 2015 B2
9124815 Venkataraman et al. Sep 2015 B2
9124831 Mullis Sep 2015 B2
9124864 Mullis Sep 2015 B2
9128228 Duparre Sep 2015 B2
9129183 Venkataraman et al. Sep 2015 B2
9129377 Ciurea et al. Sep 2015 B2
9143711 McMahon Sep 2015 B2
9147254 Ciurea et al. Sep 2015 B2
9185276 Rodda et al. Nov 2015 B2
9188765 Venkataraman et al. Nov 2015 B2
9191580 Venkataraman et al. Nov 2015 B2
9197821 McMahon Nov 2015 B2
9210392 Nisenzon et al. Dec 2015 B2
9214013 Venkataraman et al. Dec 2015 B2
9235898 Venkataraman et al. Jan 2016 B2
9235900 Ciurea et al. Jan 2016 B2
9240049 Ciurea et al. Jan 2016 B2
9253380 Venkataraman et al. Feb 2016 B2
9256974 Hines Feb 2016 B1
9264592 Rodda et al. Feb 2016 B2
9264610 Duparre Feb 2016 B2
9361662 Lelescu et al. Jun 2016 B2
9412206 McMahon et al. Aug 2016 B2
9413953 Maeda Aug 2016 B2
9426343 Rodda et al. Aug 2016 B2
9426361 Venkataraman et al. Aug 2016 B2
9445003 Lelescu Sep 2016 B1
9456196 Kim et al. Sep 2016 B2
9462164 Venkataraman et al. Oct 2016 B2
9485496 Venkataraman et al. Nov 2016 B2
9497370 Venkataraman et al. Nov 2016 B2
9497429 Mullis et al. Nov 2016 B2
9516222 Duparre et al. Dec 2016 B2
9519972 Venkataraman et al. Dec 2016 B2
9521319 Rodda et al. Dec 2016 B2
9521416 McMahon et al. Dec 2016 B1
9536166 Venkataraman et al. Jan 2017 B2
9661310 Deng et al. May 2017 B2
20010005225 Clark et al. Jun 2001 A1
20010019621 Hanna et al. Sep 2001 A1
20010028038 Hamaguchi et al. Oct 2001 A1
20010038387 Tomooka et al. Nov 2001 A1
20020012056 Trevino Jan 2002 A1
20020015536 Warren Feb 2002 A1
20020027608 Johnson Mar 2002 A1
20020028014 Ono et al. Mar 2002 A1
20020039438 Mori et al. Apr 2002 A1
20020057845 Fossum May 2002 A1
20020063807 Margulis May 2002 A1
20020075450 Aratani Jun 2002 A1
20020087403 Meyers et al. Jul 2002 A1
20020089596 Suda Jul 2002 A1
20020094027 Sato et al. Jul 2002 A1
20020101528 Lee Aug 2002 A1
20020113867 Takigawa et al. Aug 2002 A1
20020113888 Sonoda et al. Aug 2002 A1
20020120634 Min et al. Aug 2002 A1
20020122113 Foote et al. Sep 2002 A1
20020163054 Suda et al. Nov 2002 A1
20020167537 Trajkovic Nov 2002 A1
20020177054 Saitoh et al. Nov 2002 A1
20020195548 Dowski, Jr. et al. Dec 2002 A1
20030025227 Daniell Feb 2003 A1
20030086079 Barth et al. May 2003 A1
20030124763 Fan et al. Jul 2003 A1
20030140347 Varsa Jul 2003 A1
20030179418 Wengender et al. Sep 2003 A1
20030188659 Merry et al. Oct 2003 A1
20030190072 Adkins et al. Oct 2003 A1
20030198377 Ng et al. Oct 2003 A1
20030211405 Venkataraman Nov 2003 A1
20040003409 Berstis et al. Jan 2004 A1
20040008271 Hagimori et al. Jan 2004 A1
20040012689 Tinnerino Jan 2004 A1
20040027358 Nakao Feb 2004 A1
20040047274 Amanai Mar 2004 A1
20040050104 Ghosh et al. Mar 2004 A1
20040056966 Schechner et al. Mar 2004 A1
20040061787 Liu et al. Apr 2004 A1
20040066454 Otani et al. Apr 2004 A1
20040071367 Irani et al. Apr 2004 A1
20040096119 Williams May 2004 A1
20040100570 Shizukuishi May 2004 A1
20040105021 Hu et al. Jun 2004 A1
20040114807 Lelescu et al. Jun 2004 A1
20040141659 Zhang et al. Jul 2004 A1
20040151401 Sawhney et al. Aug 2004 A1
20040165090 Ning Aug 2004 A1
20040169617 Yelton et al. Sep 2004 A1
20040170340 Tipping et al. Sep 2004 A1
20040174439 Upton Sep 2004 A1
20040179008 Gordon et al. Sep 2004 A1
20040179834 Szajewski Sep 2004 A1
20040207836 Chhibber et al. Oct 2004 A1
20040213449 Safaee-Rad et al. Oct 2004 A1
20040218809 Blake et al. Nov 2004 A1
20040234873 Venkataraman Nov 2004 A1
20040239885 Jaynes et al. Dec 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20040251509 Choi Dec 2004 A1
20040264806 Herley Dec 2004 A1
20050006477 Patel Jan 2005 A1
20050007461 Chou et al. Jan 2005 A1
20050009313 Suzuki et al. Jan 2005 A1
20050010621 Pinto et al. Jan 2005 A1
20050012035 Miller Jan 2005 A1
20050036778 DeMonte Feb 2005 A1
20050047678 Jones et al. Mar 2005 A1
20050048690 Yamamoto Mar 2005 A1
20050068436 Fraenkel et al. Mar 2005 A1
20050128509 Tokkonen et al. Jun 2005 A1
20050128595 Shimizu Jun 2005 A1
20050132098 Sonoda et al. Jun 2005 A1
20050134698 Schroeder Jun 2005 A1
20050134699 Nagashima Jun 2005 A1
20050134712 Gruhlke et al. Jun 2005 A1
20050147277 Higaki et al. Jul 2005 A1
20050151759 Gonzalez-Banos et al. Jul 2005 A1
20050168924 Wu et al. Aug 2005 A1
20050175257 Kuroki Aug 2005 A1
20050185711 Pfister et al. Aug 2005 A1
20050205785 Hornback et al. Sep 2005 A1
20050219363 Kohler Oct 2005 A1
20050224843 Boemler Oct 2005 A1
20050225654 Feldman et al. Oct 2005 A1
20050265633 Piacentino Dec 2005 A1
20050275946 Choo et al. Dec 2005 A1
20050286612 Takanashi Dec 2005 A1
20050286756 Hong et al. Dec 2005 A1
20060002635 Nestares et al. Jan 2006 A1
20060007331 Izumi et al. Jan 2006 A1
20060018509 Miyoshi Jan 2006 A1
20060023197 Joel Feb 2006 A1
20060023314 Boettiger et al. Feb 2006 A1
20060028476 Sobel et al. Feb 2006 A1
20060029271 Miyoshi et al. Feb 2006 A1
20060033005 Jerdev et al. Feb 2006 A1
20060034003 Zalevsky Feb 2006 A1
20060034531 Poon et al. Feb 2006 A1
20060035415 Wood Feb 2006 A1
20060038891 Okutomi et al. Feb 2006 A1
20060039611 Rother Feb 2006 A1
20060046204 Ono et al. Mar 2006 A1
20060049930 Zruya et al. Mar 2006 A1
20060054780 Garrood et al. Mar 2006 A1
20060054782 Olsen Mar 2006 A1
20060055811 Frtiz et al. Mar 2006 A1
20060069478 Iwama Mar 2006 A1
20060072029 Miyatake et al. Apr 2006 A1
20060087747 Ohzawa et al. Apr 2006 A1
20060098888 Morishita May 2006 A1
20060103754 Wenstrand et al. May 2006 A1
20060125936 Gruhike et al. Jun 2006 A1
20060138322 Costello et al. Jun 2006 A1
20060152803 Provitola Jul 2006 A1
20060157640 Perlman et al. Jul 2006 A1
20060159369 Young Jul 2006 A1
20060176566 Boettiger et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060197937 Bamji et al. Sep 2006 A1
20060203100 Ajito et al. Sep 2006 A1
20060203113 Wada et al. Sep 2006 A1
20060210186 Berkner Sep 2006 A1
20060214085 Olsen Sep 2006 A1
20060221250 Rossbach et al. Oct 2006 A1
20060239549 Kelly et al. Oct 2006 A1
20060243889 Farnworth et al. Nov 2006 A1
20060251410 Trutna Nov 2006 A1
20060274174 Tewinkle Dec 2006 A1
20060278948 Yamaguchi et al. Dec 2006 A1
20060279648 Senba et al. Dec 2006 A1
20060289772 Johnson et al. Dec 2006 A1
20070002159 Olsen Jan 2007 A1
20070008575 Yu et al. Jan 2007 A1
20070009150 Suwa Jan 2007 A1
20070024614 Tam Feb 2007 A1
20070035707 Margulis Feb 2007 A1
20070036427 Nakamura et al. Feb 2007 A1
20070040828 Zalevsky et al. Feb 2007 A1
20070040922 McKee et al. Feb 2007 A1
20070041391 Lin et al. Feb 2007 A1
20070052825 Cho Mar 2007 A1
20070083114 Yang et al. Apr 2007 A1
20070085917 Kobayashi Apr 2007 A1
20070092245 Bazakos et al. Apr 2007 A1
20070102622 Olsen et al. May 2007 A1
20070126898 Feldman Jun 2007 A1
20070127831 Venkataraman Jun 2007 A1
20070139333 Sato et al. Jun 2007 A1
20070140685 Wu et al. Jun 2007 A1
20070146503 Shiraki Jun 2007 A1
20070146511 Kinoshita et al. Jun 2007 A1
20070153335 Hosaka Jul 2007 A1
20070158427 Zhu et al. Jul 2007 A1
20070159541 Sparks et al. Jul 2007 A1
20070160310 Tanida et al. Jul 2007 A1
20070165931 Higaki Jul 2007 A1
20070171290 Kroger Jul 2007 A1
20070182843 Shimamura et al. Aug 2007 A1
20070201859 Sarrat et al. Aug 2007 A1
20070206241 Smith et al. Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070216765 Wong et al. Sep 2007 A1
20070228256 Mentzer Oct 2007 A1
20070247517 Zhang et al. Oct 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070258006 Olsen et al. Nov 2007 A1
20070258706 Raskar et al. Nov 2007 A1
20070263113 Baek et al. Nov 2007 A1
20070263114 Gurevich et al. Nov 2007 A1
20070268374 Robinson Nov 2007 A1
20070296832 Ota et al. Dec 2007 A1
20070296835 Olsen Dec 2007 A1
20070296847 Chang et al. Dec 2007 A1
20070297696 Hamza Dec 2007 A1
20080006859 Mionetto et al. Jan 2008 A1
20080019611 Larkin Jan 2008 A1
20080024683 Damera-Venkata et al. Jan 2008 A1
20080025649 Liu et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030597 Olsen et al. Feb 2008 A1
20080043095 Vetro et al. Feb 2008 A1
20080043096 Vetro et al. Feb 2008 A1
20080054518 Ra et al. Mar 2008 A1
20080056302 Erdal et al. Mar 2008 A1
20080062164 Bassi et al. Mar 2008 A1
20080079805 Takagi et al. Apr 2008 A1
20080080028 Bakin et al. Apr 2008 A1
20080084486 Enge et al. Apr 2008 A1
20080088793 Sverdrup et al. Apr 2008 A1
20080095523 Schilling-Benz et al. Apr 2008 A1
20080099804 Venezia et al. May 2008 A1
20080106620 Sawachi et al. May 2008 A1
20080112059 Choi et al. May 2008 A1
20080112635 Kondo et al. May 2008 A1
20080118241 Tekolste et al. May 2008 A1
20080131019 Ng Jun 2008 A1
20080131107 Ueno Jun 2008 A1
20080151097 Chen et al. Jun 2008 A1
20080152215 Horie et al. Jun 2008 A1
20080152296 Oh et al. Jun 2008 A1
20080156991 Hu et al. Jul 2008 A1
20080158259 Kempf et al. Jul 2008 A1
20080158375 Kakkori et al. Jul 2008 A1
20080158698 Chang et al. Jul 2008 A1
20080165257 Boettiger et al. Jul 2008 A1
20080174670 Olsen et al. Jul 2008 A1
20080187305 Raskar et al. Aug 2008 A1
20080193026 Horie et al. Aug 2008 A1
20080211737 Kim et al. Sep 2008 A1
20080218610 Chapman et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20080239116 Smith Oct 2008 A1
20080240598 Hasegawa Oct 2008 A1
20080247638 Tanida et al. Oct 2008 A1
20080247653 Moussavi et al. Oct 2008 A1
20080272416 Yun Nov 2008 A1
20080273751 Yuan et al. Nov 2008 A1
20080278591 Barna et al. Nov 2008 A1
20080278610 Boettiger et al. Nov 2008 A1
20080284880 Numata Nov 2008 A1
20080291295 Kato et al. Nov 2008 A1
20080298674 Baker et al. Dec 2008 A1
20080310501 Ward et al. Dec 2008 A1
20090050946 Duparre et al. Feb 2009 A1
20090052743 Techmer Feb 2009 A1
20090060281 Tanida et al. Mar 2009 A1
20090086074 Li et al. Apr 2009 A1
20090091645 Trimeche et al. Apr 2009 A1
20090091806 Inuiya Apr 2009 A1
20090096050 Park Apr 2009 A1
20090102956 Georgiev Apr 2009 A1
20090109306 Shan Apr 2009 A1
20090128644 Camp, Jr. et al. May 2009 A1
20090128833 Yahav May 2009 A1
20090129667 Ho May 2009 A1
20090140131 Utagawa et al. Jun 2009 A1
20090147919 Goto et al. Jun 2009 A1
20090152664 Klem et al. Jun 2009 A1
20090167922 Perlman et al. Jul 2009 A1
20090179142 Duparre et al. Jul 2009 A1
20090180021 Kikuchi et al. Jul 2009 A1
20090200622 Tai et al. Aug 2009 A1
20090201371 Matsuda et al. Aug 2009 A1
20090207235 Francini et al. Aug 2009 A1
20090219435 Yuan et al. Sep 2009 A1
20090225203 Tanida et al. Sep 2009 A1
20090237520 Kaneko et al. Sep 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090256947 Ciurea et al. Oct 2009 A1
20090263017 Tanbakuchi Oct 2009 A1
20090268192 Koenck et al. Oct 2009 A1
20090268970 Babacan et al. Oct 2009 A1
20090268983 Stone Oct 2009 A1
20090274387 Jin Nov 2009 A1
20090284651 Srinivasan Nov 2009 A1
20090297056 Lelescu et al. Dec 2009 A1
20090302205 Olsen et al. Dec 2009 A9
20090322876 Lee et al. Dec 2009 A1
20090323195 Hembree et al. Dec 2009 A1
20090323206 Oliver et al. Dec 2009 A1
20090324118 Maslov et al. Dec 2009 A1
20100002126 Wenstrand et al. Jan 2010 A1
20100002313 Duparre et al. Jan 2010 A1
20100002314 Duparre Jan 2010 A1
20100007714 Kim et al. Jan 2010 A1
20100013927 Nixon Jan 2010 A1
20100044815 Chang et al. Feb 2010 A1
20100053342 Hwang Mar 2010 A1
20100053600 Tanida Mar 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100073463 Momonoi et al. Mar 2010 A1
20100074532 Gordon et al. Mar 2010 A1
20100085425 Tan Apr 2010 A1
20100086227 Sun et al. Apr 2010 A1
20100091389 Henriksen et al. Apr 2010 A1
20100097491 Farina et al. Apr 2010 A1
20100103259 Tanida et al. Apr 2010 A1
20100103308 Butterfield et al. Apr 2010 A1
20100111444 Coffman May 2010 A1
20100118127 Nam May 2010 A1
20100128145 Pitts et al. May 2010 A1
20100133230 Henriksen et al. Jun 2010 A1
20100133418 Sargent et al. Jun 2010 A1
20100141802 Knight Jun 2010 A1
20100142828 Chang et al. Jun 2010 A1
20100142839 Lakus-Becker Jun 2010 A1
20100157073 Kondo et al. Jun 2010 A1
20100165152 Lim Jul 2010 A1
20100166410 Chang Jul 2010 A1
20100177411 Hegde et al. Jul 2010 A1
20100194860 Mentz et al. Aug 2010 A1
20100194901 van Hoorebeke et al. Aug 2010 A1
20100195716 Klein Gunnewiek et al. Aug 2010 A1
20100201834 Maruyama et al. Aug 2010 A1
20100202054 Niederer Aug 2010 A1
20100202683 Robinson Aug 2010 A1
20100208100 Olsen et al. Aug 2010 A9
20100220212 Perlman et al. Sep 2010 A1
20100223237 Mishra et al. Sep 2010 A1
20100231285 Boomer et al. Sep 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100244165 Lake et al. Sep 2010 A1
20100254627 Panahpour Tehrani et al. Oct 2010 A1
20100259610 Petersen et al. Oct 2010 A1
20100265346 Iizuka Oct 2010 A1
20100265381 Yamamoto et al. Oct 2010 A1
20100265385 Knight et al. Oct 2010 A1
20100281070 Chan et al. Nov 2010 A1
20100289941 Ito et al. Nov 2010 A1
20100302423 Adams, Jr. et al. Dec 2010 A1
20100309292 Ho et al. Dec 2010 A1
20100309368 Choi et al. Dec 2010 A1
20100321595 Chiu et al. Dec 2010 A1
20100321640 Yeh et al. Dec 2010 A1
20100329556 Mitarai et al. Dec 2010 A1
20110001037 Tewinkle Jan 2011 A1
20110018973 Takayama Jan 2011 A1
20110019243 Constant, Jr. et al. Jan 2011 A1
20110031381 Tay et al. Feb 2011 A1
20110032370 Ludwig Feb 2011 A1
20110033129 Robinson Feb 2011 A1
20110043661 Podoleanu Feb 2011 A1
20110043665 Ogasahara Feb 2011 A1
20110043668 McKinnon et al. Feb 2011 A1
20110044502 Liu et al. Feb 2011 A1
20110051255 Lee et al. Mar 2011 A1
20110055729 Mason et al. Mar 2011 A1
20110069189 Venkataraman et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110085028 Samadani et al. Apr 2011 A1
20110090217 Mashitani et al. Apr 2011 A1
20110108708 Olsen et al. May 2011 A1
20110121421 Charbon May 2011 A1
20110122308 Duparre May 2011 A1
20110128393 Tavi et al. Jun 2011 A1
20110128412 Milnes et al. Jun 2011 A1
20110129165 Lim et al. Jun 2011 A1
20110142138 Tian et al. Jun 2011 A1
20110149408 Hahgholt et al. Jun 2011 A1
20110149409 Haugholt et al. Jun 2011 A1
20110153248 Gu et al. Jun 2011 A1
20110157321 Nakajima et al. Jun 2011 A1
20110169994 DiFrancesco et al. Jul 2011 A1
20110176020 Chang Jul 2011 A1
20110181797 Galstian et al. Jul 2011 A1
20110193944 Lian et al. Aug 2011 A1
20110206291 Kashani et al. Aug 2011 A1
20110207074 Hall-Holt et al. Aug 2011 A1
20110211824 Georgiev et al. Sep 2011 A1
20110221599 Högasten Sep 2011 A1
20110221658 Haddick et al. Sep 2011 A1
20110221939 Jerdev Sep 2011 A1
20110221950 Oostra Sep 2011 A1
20110222757 Yeatman, Jr. et al. Sep 2011 A1
20110228142 Brueckner Sep 2011 A1
20110228144 Tian et al. Sep 2011 A1
20110234841 Akeley et al. Sep 2011 A1
20110241234 Duparre Oct 2011 A1
20110242342 Goma et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110242356 Aleksic et al. Oct 2011 A1
20110255592 Sung Oct 2011 A1
20110255745 Hodder et al. Oct 2011 A1
20110261993 Weiming et al. Oct 2011 A1
20110267264 McCarthy et al. Nov 2011 A1
20110267348 Lin Nov 2011 A1
20110273531 Ito et al. Nov 2011 A1
20110274366 Tardif Nov 2011 A1
20110279705 Kuang et al. Nov 2011 A1
20110279721 McMahon Nov 2011 A1
20110285701 Chen et al. Nov 2011 A1
20110285866 Bhrugumalla et al. Nov 2011 A1
20110285910 Bamji et al. Nov 2011 A1
20110292216 Fergus et al. Dec 2011 A1
20110298917 Yanagita Dec 2011 A1
20110300929 Tardif et al. Dec 2011 A1
20110310980 Mathew Dec 2011 A1
20110316968 Taguchi et al. Dec 2011 A1
20110317766 Lim, II et al. Dec 2011 A1
20120012748 Pain et al. Jan 2012 A1
20120014456 Martinez Bauza et al. Jan 2012 A1
20120019700 Gaber Jan 2012 A1
20120023456 Sun et al. Jan 2012 A1
20120026297 Sato Feb 2012 A1
20120026342 Yu et al. Feb 2012 A1
20120026366 Golan et al. Feb 2012 A1
20120026451 Nystrom Feb 2012 A1
20120039525 Tian et al. Feb 2012 A1
20120044249 Mashitani et al. Feb 2012 A1
20120044372 Côté et al. Feb 2012 A1
20120051624 Ando et al. Mar 2012 A1
20120056982 Katz et al. Mar 2012 A1
20120057040 Park et al. Mar 2012 A1
20120062697 Treado et al. Mar 2012 A1
20120062702 Jiang et al. Mar 2012 A1
20120062756 Tian Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120081519 Goma Apr 2012 A1
20120086803 Malzbender et al. Apr 2012 A1
20120105691 Waqas et al. May 2012 A1
20120113232 Joblove et al. May 2012 A1
20120113318 Galstian et al. May 2012 A1
20120113413 Miahczylowicz-Wolski et al. May 2012 A1
20120127275 Von Zitzewitz et al. May 2012 A1
20120147139 Li et al. Jun 2012 A1
20120147205 Lelescu et al. Jun 2012 A1
20120153153 Chang et al. Jun 2012 A1
20120154551 Inoue Jun 2012 A1
20120155830 Sasaki et al. Jun 2012 A1
20120163672 McKinnon Jun 2012 A1
20120169433 Mullins Jul 2012 A1
20120170134 Bolis et al. Jul 2012 A1
20120176479 Mayhew et al. Jul 2012 A1
20120188341 Klein Gunnewiek et al. Jul 2012 A1
20120188389 Lin et al. Jul 2012 A1
20120188420 Black et al. Jul 2012 A1
20120188634 Kubala et al. Jul 2012 A1
20120198677 Duparre Aug 2012 A1
20120200669 Lai Aug 2012 A1
20120200726 Bugnariu Aug 2012 A1
20120200734 Tang Aug 2012 A1
20120219236 Ali et al. Aug 2012 A1
20120224083 Jovanovski et al. Sep 2012 A1
20120229602 Chen et al. Sep 2012 A1
20120229628 Ishiyama et al. Sep 2012 A1
20120249550 Akeley et al. Oct 2012 A1
20120249750 Izzat et al. Oct 2012 A1
20120249836 Ali et al. Oct 2012 A1
20120249853 Krolczyk et al. Oct 2012 A1
20120262601 Choi et al. Oct 2012 A1
20120262607 Shimura et al. Oct 2012 A1
20120268574 Gidon et al. Oct 2012 A1
20120274626 Hsieh et al. Nov 2012 A1
20120287291 McMahon et al. Nov 2012 A1
20120290257 Hodge et al. Nov 2012 A1
20120293489 Chen et al. Nov 2012 A1
20120293624 Chen et al. Nov 2012 A1
20120293695 Tanaka Nov 2012 A1
20120307099 Yahata et al. Dec 2012 A1
20120314033 Lee et al. Dec 2012 A1
20120314937 Kim et al. Dec 2012 A1
20120327222 Ng et al. Dec 2012 A1
20130002828 Ding et al. Jan 2013 A1
20130003184 Duparre Jan 2013 A1
20130010073 Do Jan 2013 A1
20130016885 Tsujimoto et al. Jan 2013 A1
20130022111 Chen et al. Jan 2013 A1
20130027580 Olsen et al. Jan 2013 A1
20130033579 Wajs Feb 2013 A1
20130033585 Li et al. Feb 2013 A1
20130038696 Ding et al. Feb 2013 A1
20130050504 Safaee-Rad et al. Feb 2013 A1
20130050526 Keelan Feb 2013 A1
20130057710 McMahon Mar 2013 A1
20130070060 Chatterjee Mar 2013 A1
20130076967 Brunner et al. Mar 2013 A1
20130077880 Venkataraman et al. Mar 2013 A1
20130077882 Venkataraman et al. Mar 2013 A1
20130083172 Baba Apr 2013 A1
20130088489 Schmeitz et al. Apr 2013 A1
20130088637 Duparre Apr 2013 A1
20130093842 Yahata Apr 2013 A1
20130107061 Kumar et al. May 2013 A1
20130113899 Morohoshi et al. May 2013 A1
20130113939 Strandemar May 2013 A1
20130120605 Georgiev et al. May 2013 A1
20130121559 Hu May 2013 A1
20130128068 Georgiev et al. May 2013 A1
20130128069 Georgiev et al. May 2013 A1
20130128087 Georgiev et al. May 2013 A1
20130128121 Agarwala et al. May 2013 A1
20130147979 McMahon et al. Jun 2013 A1
20130176394 Tian et al. Jul 2013 A1
20130208138 Li Aug 2013 A1
20130215108 McMahon et al. Aug 2013 A1
20130215231 Hiramoto et al. Aug 2013 A1
20130222556 Shimada Aug 2013 A1
20130223759 Nishiyama et al. Aug 2013 A1
20130229540 Farina et al. Sep 2013 A1
20130230237 Schlosser et al. Sep 2013 A1
20130250123 Zhang et al. Sep 2013 A1
20130250150 Malone Sep 2013 A1
20130258067 Zhang et al. Oct 2013 A1
20130259317 Gaddy Oct 2013 A1
20130265459 Duparre et al. Oct 2013 A1
20130274923 By et al. Oct 2013 A1
20130293760 Nisenzon et al. Nov 2013 A1
20140002674 Duparre et al. Jan 2014 A1
20140009586 McNamer et al. Jan 2014 A1
20140037137 Broaddus et al. Feb 2014 A1
20140037140 Benhimane et al. Feb 2014 A1
20140043507 Wang et al. Feb 2014 A1
20140076336 Clayton et al. Mar 2014 A1
20140078333 Miao Mar 2014 A1
20140079336 Venkataraman et al. Mar 2014 A1
20140092281 Nisenzon et al. Apr 2014 A1
20140098267 Tian et al. Apr 2014 A1
20140104490 Hsieh et al. Apr 2014 A1
20140118493 Sali et al. May 2014 A1
20140118584 Lee et al. May 2014 A1
20140132810 McMahon May 2014 A1
20140146201 Knight et al. May 2014 A1
20140176592 Wilburn et al. Jun 2014 A1
20140186045 Poddar et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140198188 Izawa Jul 2014 A1
20140204183 Lee et al. Jul 2014 A1
20140218546 McMahon Aug 2014 A1
20140232822 Venkataraman et al. Aug 2014 A1
20140240528 Venkataraman et al. Aug 2014 A1
20140240529 Venkataraman et al. Aug 2014 A1
20140253738 Mullis Sep 2014 A1
20140267243 Venkataraman et al. Sep 2014 A1
20140267286 Duparre Sep 2014 A1
20140267633 Venkataraman et al. Sep 2014 A1
20140267762 Mullis et al. Sep 2014 A1
20140267890 Lelescu et al. Sep 2014 A1
20140285675 Mullis Sep 2014 A1
20140313315 Shoham et al. Oct 2014 A1
20140321712 Ciurea et al. Oct 2014 A1
20140333731 Venkataraman et al. Nov 2014 A1
20140333764 Venkataraman et al. Nov 2014 A1
20140333787 Venkataraman et al. Nov 2014 A1
20140340539 Venkataraman et al. Nov 2014 A1
20140347509 Venkataraman et al. Nov 2014 A1
20140347748 Duparre Nov 2014 A1
20140354773 Venkataraman et al. Dec 2014 A1
20140354843 Venkataraman et al. Dec 2014 A1
20140354844 Venkataraman et al. Dec 2014 A1
20140354853 Venkataraman et al. Dec 2014 A1
20140354854 Venkataraman et al. Dec 2014 A1
20140354855 Venkataraman et al. Dec 2014 A1
20140355870 Venkataraman et al. Dec 2014 A1
20140368662 Venkataraman et al. Dec 2014 A1
20140368683 Venkataraman et al. Dec 2014 A1
20140368684 Venkataraman et al. Dec 2014 A1
20140368685 Venkataraman et al. Dec 2014 A1
20140368686 Duparre Dec 2014 A1
20140369612 Venkataraman et al. Dec 2014 A1
20140369615 Venkataraman et al. Dec 2014 A1
20140376825 Venkataraman et al. Dec 2014 A1
20140376826 Venkataraman et al. Dec 2014 A1
20150002734 Lee Jan 2015 A1
20150003752 Venkataraman et al. Jan 2015 A1
20150003753 Venkataraman et al. Jan 2015 A1
20150009353 Venkataraman et al. Jan 2015 A1
20150009354 Venkataraman et al. Jan 2015 A1
20150009362 Venkataraman et al. Jan 2015 A1
20150015669 Venkataraman et al. Jan 2015 A1
20150035992 Mullis Feb 2015 A1
20150036014 Lelescu et al. Feb 2015 A1
20150036015 Lelescu et al. Feb 2015 A1
20150042766 Ciurea et al. Feb 2015 A1
20150042767 Ciurea et al. Feb 2015 A1
20150042833 Lelescu et al. Feb 2015 A1
20150049915 Ciurea et al. Feb 2015 A1
20150049916 Ciurea et al. Feb 2015 A1
20150049917 Ciurea et al. Feb 2015 A1
20150055884 Venkataraman et al. Feb 2015 A1
20150085174 Shabtay et al. Mar 2015 A1
20150091900 Yang et al. Apr 2015 A1
20150104101 Bryant et al. Apr 2015 A1
20150122411 Rodda et al. May 2015 A1
20150124113 Rodda et al. May 2015 A1
20150124151 Rodda et al. May 2015 A1
20150146029 Venkataraman et al. May 2015 A1
20150146030 Venkataraman et al. May 2015 A1
20150199841 Venkataraman et al. Jul 2015 A1
20150243480 Yamada et al. Aug 2015 A1
20150296137 Duparre et al. Oct 2015 A1
20150312455 Venkataraman et al. Oct 2015 A1
20150326852 Duparre et al. Nov 2015 A1
20150373261 Rodda et al. Dec 2015 A1
20160037097 Duparre Feb 2016 A1
20160044252 Molina Feb 2016 A1
20160044257 Venkataraman et al. Feb 2016 A1
20160057332 Ciurea et al. Feb 2016 A1
20160165106 Duparre Jun 2016 A1
20160165134 Lelescu et al. Jun 2016 A1
20160165147 Nisenzon et al. Jun 2016 A1
20160165212 Mullis Jun 2016 A1
20160195733 Lelescu et al. Jul 2016 A1
20160227195 Venkataraman et al. Aug 2016 A1
20160249001 McMahon Aug 2016 A1
20160255333 Nisenzon et al. Sep 2016 A1
20160266284 Duparre et al. Sep 2016 A1
20160267665 Venkataraman et al. Sep 2016 A1
20160267672 Ciurea et al. Sep 2016 A1
20160269626 McMahon Sep 2016 A1
20160269627 McMahon Sep 2016 A1
20160269650 Venkataraman et al. Sep 2016 A1
20160269651 Venkataraman et al. Sep 2016 A1
20160316140 Nayar et al. Oct 2016 A1
Foreign Referenced Citations (116)
Number Date Country
1669332 Sep 2005 CN
1839394 Sep 2006 CN
101010619 Aug 2007 CN
101064780 Oct 2007 CN
101102388 Jan 2008 CN
101147392 Mar 2008 CN
101427372 May 2009 CN
101606086 Dec 2009 CN
101883291 Nov 2010 CN
102037717 Apr 2011 CN
102375199 Mar 2012 CN
0677821 Oct 1995 EP
0840502 May 1998 EP
1201407 May 2002 EP
1734766 Dec 2006 EP
2026563 Feb 2009 EP
2104334 Sep 2009 EP
2244484 Oct 2010 EP
2336816 Jun 2011 EP
2482022 Jan 2012 GB
59025483 Feb 1984 JP
64037177 Feb 1989 JP
02285772 Nov 1990 JP
0715457 Jan 1995 JP
09181913 Jul 1997 JP
11142609 May 1999 JP
11223708 Aug 1999 JP
2000209503 Jul 2000 JP
2001008235 Jan 2001 JP
2001194114 Jul 2001 JP
2001264033 Sep 2001 JP
2001277260 Oct 2001 JP
2002195910 Jul 2002 JP
2002205310 Jul 2002 JP
2002252338 Sep 2002 JP
2003094445 Apr 2003 JP
2003139910 May 2003 JP
2003163938 Jun 2003 JP
2003298920 Oct 2003 JP
2004221585 Aug 2004 JP
2005116022 Apr 2005 JP
2005181460 Jul 2005 JP
2005295381 Oct 2005 JP
2005354124 Dec 2005 JP
2006033493 Feb 2006 JP
2006047944 Feb 2006 JP
2006258930 Sep 2006 JP
2007520107 Jul 2007 JP
2007259136 Oct 2007 JP
2008039852 Feb 2008 JP
2008055908 Mar 2008 JP
2008507874 Mar 2008 JP
2008258885 Oct 2008 JP
2009132010 Jun 2009 JP
2009300268 Dec 2009 JP
2011017764 Jan 2011 JP
2011030184 Feb 2011 JP
2011109484 Jun 2011 JP
2013526801 Jun 2013 JP
2014521117 Aug 2014 JP
20110097647 Aug 2011 KR
200828994 Jul 2008 TW
200939739 Sep 2009 TW
2007083579 Jul 2007 WO
2008045198 Apr 2008 WO
2008108271 Sep 2008 WO
2008108926 Sep 2008 WO
2008150817 Dec 2008 WO
2009151903 Dec 2009 WO
2009157273 Dec 2009 WO
2011008443 Jan 2011 WO
2011055655 May 2011 WO
2011063347 May 2011 WO
2011105814 Sep 2011 WO
2011116203 Sep 2011 WO
2011063347 Oct 2011 WO
2011143501 Nov 2011 WO
2012057619 May 2012 WO
2012057620 May 2012 WO
2012057621 May 2012 WO
2012057622 May 2012 WO
2012057623 May 2012 WO
2012057620 Jun 2012 WO
2012074361 Jun 2012 WO
2012078126 Jun 2012 WO
2012082904 Jun 2012 WO
2012155119 Nov 2012 WO
2013003276 Jan 2013 WO
2013043751 Mar 2013 WO
2013043761 Mar 2013 WO
2013049699 Apr 2013 WO
2013055960 Apr 2013 WO
2013119706 Aug 2013 WO
2013126578 Aug 2013 WO
2014052974 Apr 2014 WO
2014032020 May 2014 WO
2014078443 May 2014 WO
2014130849 Aug 2014 WO
2014133974 Sep 2014 WO
2014138695 Sep 2014 WO
2014138697 Sep 2014 WO
2014144157 Sep 2014 WO
2014145856 Sep 2014 WO
2014149403 Sep 2014 WO
2014149902 Sep 2014 WO
2014150856 Sep 2014 WO
2014159721 Oct 2014 WO
2014159779 Oct 2014 WO
2014160142 Oct 2014 WO
2014164550 Oct 2014 WO
2014164909 Oct 2014 WO
2014165244 Oct 2014 WO
2014133974 Apr 2015 WO
2015048694 Apr 2015 WO
2015070105 May 2015 WO
2015081279 Jun 2015 WO
Non-Patent Literature Citations (230)
Entry
US 8,957,977, 02/2015, Venkataraman et al. (withdrawn)
US 8,964,053, 02/2015, Venkataraman et al. (withdrawn)
US 8,965,058, 02/2015, Venkataraman et al. (withdrawn)
US 9,014,491, 04/2015, Venkataraman et al. (withdrawn)
US 9,338,332, 06/2016, Venkataraman et al. (withdrawn)
Lo et al., “Stereoscopic 3D Copy & Paste”, ACM Transactions on Graphics, vol. 29, No. 6, Article 147, Dec. 15, 2010, pp. 147:1-147:10.
Merkle et al., “Adaptation and optimization of coding algorithms for mobile 3DTV”, Mobile3DTV Project No. 216503, Nov. 2008, 55 pgs.
Mitra et al., “Light Field Denoising, Light Field Superresolution and Stereo Camera Based Refocussing using a GMM Light Field Patch Prior”, Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference, Jun. 16-21, 2012, pp. 22-28.
Moreno-Noguer et al., “Active Refocusing of Images and Videos”, ACM SIGGRAPH, Jul. 2007, vol. 26, No. 3, Article 67, pp. 1-10, retrieved on Jul. 8, 2015 from the Internet <URL:http://doi.acm.org/1.1145/1276377.1276461>.
Muehlebach, “Camera Auto Exposure Control for VSLAM Applications”, Studies on Mechatronics, Swiss Federal Institute of Technology Zurich, Autumn Term 2010 course, 67 pgs.
Nayar, “Computational Cameras: Redefining the Image”, IEEE Computer Society, Aug. 14, 2006, pp. 30-38.
Ng, “Digital Light Field Photography”, Thesis, Stanford University, Jul. 2006, 203 pgs.
Ng et al., “Super-Resolution Image Restoration from Blurred Low-Resolution Images”, Journal of Mathematical Imaging and Vision, Nov. 2005, vol. 23, Issue 3, pp. 367-378.
Nitta et al., “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method”, Applied Optics, May 1, 2006, vol. 45, No. 13, pp. 2893-2900.
Nomura et al., “Scene Collages and Flexible Camera Arrays”, Proceedings of Eurographics Symposium on Rendering, Grenoble, France, Jun. 25-27, 2007, 12 pgs.
Park et al., “Super-Resolution Image Reconstruction: A Technical Overview”, IEEE Signal Processing Magazine, vol. 20, Issue 3, May 2003, pp. 21-36.
Perwass et al., “Single Lens 3D-Camera with Extended Depth-of-Field”, printed from www.raytrix.de, Jan. 22, 2012, 15 pgs.
Pham et al., “Robust Super-Resolution without Regularization”, Journal of Physics: Conference Series 124, Jul. 2008, pp. 1-19.
Philips 3D Solutions, “3D Interface Specifications, White Paper”, 2005-2008 Philips Electronics Nederland B.V., Philips 3D Solutions, retrieved from www.philips.com/3dsolutions, Feb. 15, 2008, 29 pgs.
Polight, “Designing Imaging Products Using Reflowable Autofocus Lenses”, 2012, printed Nov. 2, 2012 from http://www.polight.no/tunable-polymer-autofocus-lens-html--11.html, 1 pg.
Pouydebasque et al., “Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers”, Sensors and Actuators A: Physical, vol. 172, Issue 1, Dec. 2011, pp. 280-286.
Protter et al., “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction”, IEEE Transactions on Image Processing, Jan. 209, published Dec. 2, 2008, vol. 18, No. 1, pp. 36-51.
Radtke et al., “Laser lithographic fabrication and characterization of a spherical artificial compound eye”, Optics Express, Mar. 19, 2007, vol. 15, No. 6, pp. 3067-3077.
Rajan et al., “Simultaneous Estimation of Super-Resolved Scene and Depth Map from Low Resolution Defocused Observations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 9, Sep. 8, 2003, pp. 1-16.
Rander et al., “Virtualized Reality: Constructing Time-Varying Virtual Worlds From Real World Events”, Proc. of IEEE Visualization '97, Phoenix, Arizona, Oct. 19-24, 1997, pp. 277-283, 552.
Rhemann et al, “Fast Cost-Volume Filtering for Visual Correspondence and Beyond”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Feb. 2013, vol. 35, No. 2, pp. 504-511.
Robertson et al., “Dynamic Range Improvement Through Multiple Exposures”, In Proc. of the Int. Conf. on Image Processing, 1999, 5 pgs.
Robertson et al., “Estimation-theoretic approach to dynamic range enhancement using multiple exposures”, Journal of Electronic Imaging, Apr. 1, 2003, vol. 12, No. 2, pp. 219-228.
Roy et al., “Non-Uniform Hierarchical Pyramid Stereo for Large Images”, Computer and Robot Vision, 2002, pp. 208-215.
Sauer et al., “Parallel Computation of Sequential Pixel Updates in Statistical Tomographic Reconstruction”, ICIP 1995 Proceedings of the 1995 International Conference on Image Processing, Oct. 23-26, 1995, pp. 93-96.
Seitz et al., “Plenoptic Image Editing”, International Journal of Computer Vision 48, Jan. 7, 1998, 29 pgs., DOI: 10.1109/ICCV.1998.710696.
Shum et al., “Pop-Up Light Field: an Interactive Image-Based Modeling and Rendering System”, ACM Transactions on Graphics, vol. 23, No. 2, Apr. 2004, pp. 143-162. Retrieved from http://131.107.65.14/en-us/um/people/jiansun/papers/PopupLightField_TOG.pdf on Feb. 5, 2014.
Stollberg et al., “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects”, Optics Express, Aug. 31, 2009, vol. 17, No. 18, pp. 15747-15759.
Sun et al., “Image Super-Resolution Using Gradient Profile Prior”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, 8 pgs.; DOI: 10.1109/CVPR.2008.4587659.
Takeda et al., “Super-resolution Without Explicit Subpixel Motion Estimation”, IEEE Transaction on Image Processing, Sep. 2009, vol. 18, No. 9, pp. 1958-1975.
Tallon et al., “Upsampling and Denoising of Depth Maps Via Joint-Segmentation”, 20th European Signal Processing Conference, Bucharest, Romania, Aug. 27-31, 2012, 5 pgs.
Tanida et al., “Color imaging with an integrated compound imaging system”, Optics Express, Sep. 8, 2003, vol. 11, No. 18, pp. 2109-2117.
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification”, Applied Optics, Apr. 10, 2001, vol. 40, No. 11, pp. 1806-1813.
Taylor, “Virtual camera movement: the way of the future?”, American Cinematographer, vol. 77, No. 9, Sep. 1996, 93-100.
Vaish et al., “Reconstructing Occluded Surfaces Using Synthetic Apertures: Stereo, Focus and Robust Measures”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), New York, NY, USA, vol. 2, Jun. 17-22, 2006 pp. 2331-2338.
Vaish et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform”, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)—Workshops, San Diego, CA, USA, Sep. 21-23, 2005, 8 pgs.
Vaish et al., “Using Plane + Parallax for Calibrating Dense Camera Arrays”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, Jun. 27-Jul. 2, 2004, 8 pgs.
Veilleux, “CCD Gain Lab: The Theory”, University of Maryland, College Park-Observational Astronomy (ASTR 310), Oct. 19, 2006, pp. 1-5, [retrieved on May 13, 2014]. Retrieved from the Internet <URL: http://www.astro.umd.edu/˜veillex/ASTR310/fall06/ccd_theory.pdf>.
Venkataraman et al., “PiCam: An Ultra-Thin High Performance Monolithic Camera Array”, ACM Transactions on Graphics (TOG), ACM, US, vol. 32, No. 6, Article 166, Nov. 1, 2013, pp. 1-13.
Vuong et al., “A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology”, Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 2008, San Francisco, CA, USA, Oct. 22-24, 2008, 5 pages.
Wang, “Calculation of Image Position, Size and Orientation Using First Order Properties”, Dec. 29, 2010, OPTI521 Tutorial, 10 pgs.
Wetzstein et al., “Computational Plenoptic Imaging”, Computer Graphics Forum, Dec. 2011, vol. 30, No. 8, pp. 2397-2426.
Wheeler et al., “Super-Resolution Image Synthesis Using Projections Onto Convex Sets in the Frequency Domain”, Proc. SPIE, Mar. 11, 2005, vol. 5674, 12 pgs.
Wikipedia, “Polarizing Filter (Photography)”, retrieved from http://en.wikipedia.org/wiki/Polarizing_filter_(photography) on Dec. 12, 2012, last modified on Sep. 26, 2012, 5 pgs.
Wilburn, “High Performance Imaging Using Arrays of Inexpensive Cameras”, Thesis of Bennett Wilburn, Stanford University, Dec. 2004, 128 pgs.
Wilburn et al., “High Performance Imaging Using Large Camera Arrays”, ACM Transactions on Graphics, Jul. 2005, vol. 24, No. 3, pp. 1-12.
Wilburn et al., “High-Speed Videography Using a Dense Camera Array”, CVPR'04 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, Jun. 27-Jul. 2, 2004, pp. 294-301.
Wilburn et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002, SPIE Electronic Imaging, vol. 4674, Jan. 19-25, 2002, 8 pgs.
Wippermann et al., “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective”, Proceedings of SPIE, Optical Design and Engineering II, Oct. 15, 2005, pp. 59622C-1-59622C-11.
Wu et al., “A virtual view synthesis algorithm based on image inpainting”, 2012 Third International Conference on Networking and Distributed Computing, Hangzhou, China, Oct. 21-24, 2012, pp. 153-156.
Yang et al., “A Real-Time Distributed Light Field Camera”, Eurographics Workshop on Rendering (2002), published Jul. 26, 2002, pp. 1-10.
Yang et al., “Superresolution Using Preconditioned Conjugate Gradient Method”, Proceedings of SPIE—The International Society for Optical Engineering, Jul. 31, 2002, 8 pgs.
Zhang et al., “A Self-Reconfigurable Camera Array”, Eurographics Symposium on Rendering, published Aug. 8, 2004, 12 pgs.
Zhang et al., “Depth estimation, spatially variant image registration, and super-resolution using a multi-lenslet camera”, Proceedings of SPIE, Modeling and Simulation for Defense Systems and Applications V, vol. 7705, Apr. 23, 2010, pp. 770505-770505-8, XP055113797 ISSN: 0277-786X, DOI: 10.1117/12.852171.
Zheng et al., “Balloon Motion Estimation Using Two Frames”, Proceedings of the Asilomar Conference on Signals, Systems and Computers, IEEE, Comp. Soc. Press, US, vol. 2 of 2,Nov. 4, 1991, pp. 1057-1061.
Zomet et al., “Robust Super-Resolution”, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, vol. 1, Dec. 8-14, 2001, pp. 1-645-1-650.
International Search Report and Written Opinion for International Application PCT/US2013/062720, completed Mar. 25, 2014, dated Apr. 21, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/017766, completed May 28, 2014, dated Jun. 18, 2014, 9 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/018084, completed May 23, 2014, dated Jun. 10, 2014, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/018116, completed May 13, 2014, dated Jun. 2, 2014, 12 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/021439, completed Jun. 5, 2014, dated Jun. 20, 2014, 10 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/022118, completed Jun. 9, 2014, dated, Jun. 25, 2014, 5 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/022774, completed Jun. 9, 2014, dated Jul. 14, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/024407, completed Jun. 11, 2014, dated Jul. 8, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/025100, completed Jul. 7, 2014, dated Aug 7, 2014, 5 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/025904, completed Jun. 10, 2014, dated Jul. 10, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2009/044687, completed Jan. 5, 2010, dated Jan. 13, 2010, 9 pgs.
International Search Report and Written Opinion for International Application PCT/US2010/057661, completed Mar. 9, 2011, dated Mar. 17, 2011, 14 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/037670, Completed Jul. 5, 2012, dated Jul. 18, 2012, 9 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/044014, completed Oct. 12, 2012, dated Oct. 26, 2012, 15 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/056151, completed Nov. 14, 2012, dated Nov. 30, 2012, 10 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/058093, completed Nov. 15, 2012, dated Nov. 29, 2012, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/059813, completed Dec. 17, 2012, dated Jan. 7, 2013, 8 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/022123, completed Jun. 9, 2014, dated Jun. 25, 2014, 5 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/023762, Completed May 30, 2014, dated Jul. 3, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/024903, completed Jun. 12, 2014, dated Jun. 27, 2014, 13 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/024947, Completed Jul. 8, 2014, dated Aug. 5, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/028447, completed Jun. 30, 2014, dated Jul. 21, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/030692, completed Jul. 28, 2014, dated Aug. 27, 2014, 7 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/064693, Completed Mar. 7, 2015, dated Apr. 2, 2015, 15 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/066229, Completed Mar. 6, 2015, dated Mar. 19, 2015, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/067740, Completed Jan. 29, 2015, dated Mar. 3, 2015, 10 pgs.
Office Action for U.S. Appl. No. 12/952,106, dated Aug. 16, 2012, 12 pgs.
“File Formats Version 6”, Alias Systems, 2004, 40 pgs.
Baker et al., “Limits on Super-Resolution and How to Break Them”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183.
Bennett et al., “Multispectral Bilateral Video Fusion”, 2007 IEEE Transactions on Image Processing, vol. 16, No. 5, May 2007, published Apr. 16, 2007, pp. 1185-1194.
Bertero et al., “Super-resolution in computational imaging”, Micron, Jan. 1, 2003, vol. 34, Issues 6-7, published Dec. 10, 2002, 17 pgs.
Bishop et al., “Full-Resolution Depth Map Estimation from an Aliased Plenoptic Light Field”, ACCV 2010, Part II, Nov. 8, 2010, LNCS 6493, pp. 186-200.
Bishop et al., “Light Field Superresolution”, Computational Photography (ICCP), 2009 IEEE International Conference, Apr. 16-17, 2009, published Jan. 26, 2009, 9 pgs.
Bishop et al., “The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution”, IEEE Transactions on Pattern Analysis and Machine Intelligence, May 2012, vol. 34, No. 5, published Aug. 18, 2011, pp. 972-986.
Borman, “Topics in Multiframe Superresolution Restoration”, Thesis of Sean Borman, Graduate Program in Electrical Engineering, University of Notre Dame, Apr. 2004, 282 pgs.
Borman et al, “Image Sequence Processing”, Dekker Encyclopedia of Optical Engineering, Department of Electrical Engineering, University of Notre Dame, Oct. 14, 2002, 81 pgs.
Borman et al., “Block-Matching Sub-Pixel Motion Estimation from Noisy, Under-Sampled Frames—An Empirical Performance Evaluation”, Proc SPIE, Dec. 28, 1998, vol. 3653, 10 pgs.
Borman et al., “Image Resampling and Constraint Formulation for Multi-Frame Super-Resolution Restoration”, Proc. SPIE, published Jul. 1, 2003, vol. 5016, 12 pgs.
Borman et al., “Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying PSF”, Proc. SPIE, May 21, 2004, vol. 5299, 12 pgs.
Borman et al., “Nonlinear Prediction Methods for Estimation of Clique Weighting Parameters in NonGaussian Image Models”, Proc. SPIE, Sep. 22, 1998, vol. 3459, 9 pgs.
Borman et al., “Simultaneous Multi-Frame MAP Super-Resolution Video Enhancement Using Spatio-Temporal Priors”, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), Kobe, Japan, vol. 3, Oct. 24-28, 1999, pp. 469-473.
Borman et al., “Super-Resolution from Image Sequences—A Review”, 1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268), Notre Dame, in, USA, Aug. 9-12, 1998, pp. 374-378.
Bose et al., “Superresolution and Noise Filtering Using Moving Least Squares”, IEEE Transactions on Image Processing, Aug. 2006, vol. 15, Issue 8, published Jul. 17, 2006, pp. 2239-2248.
Boye et al., “Comparison of Subpixel Image Registration Algorithms”, Proc. of SPIE—IS&T Electronic Imaging, Feb. 3, 2009, vol. 7246, pp. 72460X-1-72460X-9; doi: 10.1117/12.810369.
Bruckner et al., “Artificial compound eye applying hyperacuity”, Optics Express, Dec. 11, 2006, vol. 14, No. 25, pp. 12076-12084.
Bruckner et al., “Driving microoptical imaging systems towards miniature camera applications”, Proc. SPIE, Micro-Optics, vol. 7716 May 13, 2010, 11 pgs.
Bruckner et al., “Thin wafer-level camera lenses inspired by insect compound eyes”, Optics Express, Nov. 22, 2010, vol. 18, No. 24, pp. 24379-24394.
Capel, “Image Mosaicing and Super-resolution”, Robotics Research Group, Department of Engineering Science, University of Oxford, Retrieved on Nov. 10, 2012, Retrieved from the Internet at URL<http://citeseerx.ist.psu.edu/viewdoc/download?doi=1 0.1.1.226.2643&rep=rep1 &type=pdf>, Trinity Term, 2001, 269 pgs.
Chan et al., “Extending the Depth of Field in a Compound-Eye Imaging System with Super-Resolution Reconstruction”, Proceedings—International Conference on Pattern Recognition, Jan. 1, 2006, vol. 3, pp. 623-626.
Chan et al., “Investigation of Computational Compound-Eye Imaging System with Super-Resolution Reconstruction”, IEEE, ISASSP, Jun. 19, 2006, pp. 1177-1180.
Chan et al., “Super-resolution reconstruction in a computational compound-eye imaging system”, Multidim Syst Sign Process, published online Feb. 23, 2007, vol. 18, pp. 83-101.
Chen et al., “Interactive deformation of light fields”, in Proceedings of Siggraph I3D, Apr. 3, 2005, pp. 139-146.
Chen et al., “KNN Matting”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2013, vol. 35, No. 9, pp. 2175-2188.
“Light fields and computational photography”, Stanford Computer Graphics Laboratory, Retrieved from: http://graphics.stanford.edu/projects/lightfield/, Earliest publication online: Feb. 10, 1997, 3 pgs.
Fecker et al., “Depth Map Compression for Unstructured Lumigraph Rendering”, Proc. SPIE 6077, Proceedings Visual Communications and Image Processing 2006, Jan. 18, 2006, pp. 60770B-1-60770B-8.
Georgeiv et al., “Light Field Camera Design for Integral View Photography”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs.
Georgiev et al., “Light-Field Capture by Multiplexing in the Frequency Domain”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs.
Kubota et al., “Reconstructing Dense Light Field From Array of Multifocus Images for Novel View Synthesis”, IEEE Transactions on Image Processing, vol. 16, No. 1, Jan. 2007, pp. 269-279.
Li et al., “Fusing Images With Different Focuses Using Support Vector Machines”, IEEE Transactions on Neural Networks, vol. 15, No. 6, Nov. 8, 2004, pp. 1555-1561.
Stober, “Stanford researchers developing 3-D camera with 12,616 lenses”, Stanford Report, Mar. 19, 2008, Retrieved from: http://news.stanford.edu/news/2008/march19/camera-031908.html, 5 pgs.
Taguchi et al., “Rendering-Oriented Decoding for a Distributed Multiview Coding System Using a Coset Code”, Hindawi Publishing Corporation, EURASIP Journal on Image and Video Processing, vol. 2009, Article ID 251081, Online: Apr. 22, 2009, 12 pages.
Vetro et al., “Coding Approaches for End-To-End 3D TV Systems”, Mitsubishi Electric Research Laboratories, Inc., TR2004-137, Dec. 2004, 6 pgs.
Wieringa et al., “Remote Non-invasive Stereoscopic Imaging of Blood Vessels: First In-vivo Results of a New Multispectral Contrast Enhancement Technology”, Annals of Biomedical Engineering, vol. 34, No. 12, Dec. 2006, pp. 1870-1878, Published online Oct. 12, 2006.
Xu, Ruifeng , “Real-Time Realistic Rendering and High Dynamic Range Image Display and Compression”, Dissertation, School of Computer Science in the College of Engineering and Computer Science at the University of Central Florida, Orlando, Florida, Fall Term 2005, 192 pgs.
Crabb et al., “Real-time foreground segmentation via range and color imaging”, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, Jun. 23-28, 2008, pp. 1-5.
Drouin et al., “Fast Multiple-Baseline Stereo with Occlusion”, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05), Ottawa, Ontario, Canada, Jun. 13-16, 2005, pp. 540-547.
Drouin et al., “Geo-Consistency for Wide Multi-Camera Stereo”, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, Jun. 20-25, 2005, pp. 351-358.
Drouin et al., “Improving Border Localization of Multi-Baseline Stereo Using Border-Cut”, International Journal of Computer Vision, Jul. 5, 2006, vol. 83, Issue 3, 8 pgs.
Duparre et al., “Artificial apposition compound eye fabricated by micro-optics technology”, Applied Optics, Aug. 1, 2004, vol. 43, No. 22, pp. 4303-4310.
Duparre et al., “Artificial compound eye zoom camera”, Bioinspiration & Biomimetics, Nov. 21, 2008, vol. 3, pp. 1-6.
Duparre et al., “Artifical compound eyes—different concepts and their application to ultra flat image acquisition sensors”, MOEMS and Miniaturized Systems IV, Proc. SPIE 5346, San Jose, CA, USA, Jan. 24, 2004, pp. 89-100.
Duparre et al., “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence”, Optics Express, Dec. 26, 2005, vol. 13, No. 26, pp. 10539-10551.
Duparre et al., “Micro-optical artificial compound eyes”, Bioinspiration & Biomimetics, Apr. 6, 2006, vol. 1, pp. R1-R16.
Duparre et al., “Microoptical artificial compound eyes—from design to experimental verification of two different concepts”, Proc. of SPIE, Optical Design and Engineering II, vol. 5962, Oct. 17, 2005, pp. 59622A-1-59622A-12.
Duparre et al., “Microoptical Artificial Compound Eyes—Two Different Concepts for Compact Imaging Systems”, 11th Microoptics Conference, Tokyo, Japan, Oct. 30-Nov. 2, 2005, 2 pgs.
Duparre et al., “Microoptical telescope compound eye”, Optics Express, Feb. 7, 2005, vol. 13, No. 3, pp. 889-903.
Duparre et al., “Micro-optically fabricated artificial apposition compound eye”, Electronic Imaging—Science and Technology, Prod. SPIE 5301, San Jose, CA, USA, Jan. 18-22, 2004, pp. 25-33.
Duparre et al., “Novel Optics/Micro-Optics for Miniature Imaging Systems”, Proc. of SPIE, Photonics in Multimedia, Apr. 21, 2006, vol. 6196, pp. 619607-1-619607-15.
Duparre et al., “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices”, Optical Systems Design, Proc. SPIE 5249, St. Etienne, France, Sep. 30-Oct. 3, 2003, pp. 408-418.
Duparre et al., “Thin compound-eye camera”, Applied Optics, May 20, 2005, vol. 44, No. 15, pp. 2949-2956.
Duparre et al., “Ultra-Thin Camera Based on Artificial Apposition Compound Eyes”, 10th Microoptics Conference, Friedrich-Schiller-University, Jena, Germany, Sep. 1-3, 2004, 2 pgs.
Eng, Wei Yong et al., “Gaze correction for 3D tele-immersive communication system”, IVMSP Workshop, 2013 IEEE 11th, Seoul, South Korea, Jun. 10-12, 2013, pp. 1-4.
Fanaswala, “Regularized Super-Resolution of Multi-View Images”, Thesis of Fanaswala, Ottawa-Carleton Institute for Electrical and Computer Engineering, Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Retrieved on Nov. 10, 2012 (Nov. 10, 2012). Retrieved from the Internet at URL:<http://www.site.uottawa.ca/-edubois/theses/Fanaswala_thesis.pdf>, Aug. 2009, 163 pgs.
Farrell et al., “Resolution and Light Sensitivity Tradeoff with Pixel Size”, Proceedings of the SPIE Electronic Imaging 2006 Conference, Feb. 2, 2006, vol. 6069, 8 pgs.
Farsiu et al., “Advances and Challenges in Super-Resolution”, International Journal of Imaging Systems and Technology, Aug. 12, 2004, vol. 14, pp. 47-57.
Farsiu et al., “Fast and Robust Multiframe Super Resolution”, IEEE Transactions on Image Processing, Oct. 2004, published Sep. 3, 2004, vol. 13, No. 10, pp. 1327-1344.
Farsiu et al., “Multiframe Demosaicing and Super-Resolution of Color Images”, IEEE Transactions on Image Processing, Jan. 2006, vol. 15, No. 1, date of publication Dec. 12, 2005, pp. 141-159.
Feris et al., “Multi-Flash Stereopsis: Depth Edge Preserving Stereo with Small Baseline Illumination”, IEEE Trans on PAMI, 2006, 31 pgs.
Fife et al., “A 3D Multi-Aperture Image Sensor Architecture”, IEEE Custom Integrated Circuits Conference 2006, San Jose, CA, USA, Sep. 10-13, 2006 pp. 281-284.
Fife et al., “A 3MPixel Multi-Aperture Image Sensor with 0.7Mu Pixels in 0.11Mu CMOS”, ISSCC 2008, Session 2, Image Sensors & Technology, 2008, pp. 48-50.
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 191-198.
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 49-58.
Goldman et al., “Video Object Annotation, Navigation, and Composition”, In Proceedings of UIST 2008, Oct. 19-22, 2008, Monterey, CA, USA, pp. 3-12.
Gortler et al., “The Lumigraph”, In Proceedings of SIGGRAPH 1996, published Aug. 1, 1996, pp. 43-54.
Hacohen et al., “Non-Rigid Dense Correspondence with Applications for Image Enhancement”, ACM Transactions on Graphics, vol. 30, No. 4, Aug. 7, 2011, pp. 70:1-70:10.
Hamilton, “JPEG File Interchange Format, Version 1.02”, Sep. 1, 1992, 9 pgs.
Hardie, “A Fast Image Super-Algorithm Using an Adaptive Wiener Filter”, IEEE Transactions on Image Processing, Dec. 2007, published Nov. 19, 2007, vol. 16, No. 12, pp. 2953-2964.
Hasinoff et al., “Search-and-Replace Editing for Personal Photo Collections”, 2010 International Conference: Computational Photography (ICCP), Mar. 2010, pp. 1-8.
Hernandez-Lopez et al., “Detecting objects using color and depth segmentation with Kinect sensor”, Procedia Technology, vol. 3, Jan. 1, 2012, pp. 196-204, XP055307680, ISSN: 2212-0173, DOI: 10.1016/j.protcy.2012.03.021.
Horisaki et al., “Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems”, Applied Physics Express, Jan. 29, 2010, vol. 3, pp. 022501-1-022501-3.
Horisaki et al., “Superposition Imaging for Three-Dimensionally Space-Invariant Point Spread Functions”, Applied Physics Express, Oct. 13, 2011, vol. 4, pp. 112501-1-112501-3.
Horn et al., “LightShop: Interactive Light Field Manipulation and Rendering”, In Proceedings of I3D, Jan. 1, 2007, pp. 121-128.
Isaksen et al., “Dynamically Reparameterized Light Fields”, In Proceedings of SIGGRAPH 2000, Jul. 1, 2000, pp. 297-306.
Jarabo et al., “Efficient Propagation of Light Field Edits”, In Proceedings of SIACG 2011, 2011, pp. 75-80.
Joshi et al., “Synthetic Aperture Tracking: Tracking Through Occlusions”, 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, Oct. 14-21, 2007, pp. 1-8.
Kang et al., “Handling Occlusions in Dense Multi-View Stereo”, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, Dec. 8-14, 2001, vol. 1, pp. I-103-I-110.
Kitamura et al., “Reconstruction of a high-resolution image on a compound-eye image-capturing system”, Applied Optics, Mar. 10, 2004, vol. 43, No. 8, pp. 1719-1727.
Krishnamurthy et al., “Compression and Transmission of Depth Maps for Image-Based Rendering”, Proceedings 2001 International Conference on Image Processing (Cat. No. 01CH37205), Thessaloniki, Greece, vol. 3, Oct. 7-10, 2001, pp. 828-831.
Kutulakos et al., “Occluding Contour Detection Using Affine Invariants and Purposive Viewpoint Control”, Computer Vision and Pattern Recognition, Proceedings CVPR '94, Seattle, Washington, Jun. 21-23, 1994, 8 pgs.
Lai et al., “A Large-Scale Hierarchical Multi-View RGB-D Object Dataset”, Proceedings—IEEE International Conference on Robotics and Automation, May 9-13, 2011, 8 pgs., DOI:10.1109/ICRA.201135980382.
Lee et al., “Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module”, ETRI Journal, vol. 31, No. 6, Dec. 2009, pp. 695-702.
Lensvector, “How LensVector Autofocus Works”, 2010, printed Nov. 2, 2012 from http://www.lensvector.com/overview.html, 1 pg.
Levin et al., “A Closed Form Solution to Natural Image Matting”, Pattern Analysis and Machine Intelligence, Dec. 18, 2007, vol. 30, Issue 2, 8 pgs.
Levoy, “Light Fields and Computational Imaging”, IEEE Computer Society, Sep. 1, 2006, vol. 39, Issue No. 8, pp. 46-55.
Levoy et al., “Light Field Rendering”, Proc. ADM SIGGRAPH '96, Aug. 1, 1996, pp. 1-12.
Li et al., “A Hybrid Camera for Motion Deblurring and Depth Map Super-Resolution”, IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, 8 pgs. Retrieved from www.eecis.udel.edu/˜jye/lab_research/08/deblur-feng.pdf on Feb. 5, 2014.
Liu et al., “Virtual View Reconstruction Using Temporal Information”, 2012 IEEE International Conference on Multimedia and Expo, Melbourne, VIC, Australia, Jul. 9-13, 2012, pp. 115-120.
Extended European Search Report for EP Application No. 13810429.4, Completed Jan. 7, 2016, dated Jan. 15, 2016, 6 Pgs.
Extended European Search Report for EP Application No. 12782935.6, completed Aug. 28, 2014, dated Sep. 4, 2014, 7 Pgs.
Extended European Search Report for EP Application No. 12804266.0, Completed Jan. 27, 2015, dated Feb. 3, 2015, 6 Pgs.
Extended European Search Report for EP Application No. 12835041.0, Completed Jan. 28, 2015, dated Feb. 4, 2015, 7 Pgs.
Extended European Search Report for EP Application No. 13810229.8, Completed Apr. 14, 2016, dated Apr. 21, 2016, 7 pgs.
Extended European Search Report for EP Application No. 13830945.5, completed Jun. 28, 2016, dated Jul. 7, 2016, 14 Pgs.
Extended European Search Report for EP Application No. 13841613.6, completed Jul. 18, 2016, dated Jul. 26, 2016, 8 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/059813, Search Completed Apr. 15, 2014, 7 pgs.
Supplementary European Search Report for EP Application No. 13831768.0, Search completed May 18, 2016, dated May 30, 2016, 13 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/059991, dated Mar. 17, 2015, dated Mar. 26, 2015, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/056065, dated Feb. 24, 2015, dated Mar. 5, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/024987, dated Aug. 12, 2014, 13 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/027146, completed Aug. 26, 2014, dated Sep. 4, 2014, 10 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/039155, completed Nov. 4, 2014, dated Nov. 13, 2014, 10 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/046002, dated Dec. 31, 2014, dated Jan. 8, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/048772, dated Dec. 31, 2014, dated Jan. 8, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/056502, dated Feb. 24, 2015, dated Mar. 5, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/069932, dated May 19, 2015, dated May 28, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/017766, dated Aug. 25, 2015, dated Sep. 3, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/018084, dated Aug. 25, 2015, dated Sep. 3, 2015, 11 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/018116, dated Sep. 15, 2015, dated Sep. 24, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/021439, dated Sep. 15, 2015, dated Sep. 24, 2015, 9 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/022118, dated Sep. 8, 2015, dated Sep. 17, 2015, 4 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/022123, dated Sep. 8, 2015, dated Sep. 17, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/022774, dated Sep. 22, 2015, dated Oct. 1, 2015, 5 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/023762, dated Mar. 2, 2015, dated Mar. 9, 2015, 10 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/024407, dated Sep. 15, 2015, dated Sep. 24, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/024903, dated Sep. 15, 2015, dated Sep. 24, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/024947, dated Sep. 15, 2015, dated Sep. 24, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/025100, dated Sep. 15, 2015, dated Sep. 24, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/025904, dated Sep. 15, 2015, dated Sep. 24, 2015, 5 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/028447, dated Sep. 15, 2015, dated Sep. 24, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/030692, dated Sep. 15, 2015, dated Sep. 24, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/064693, dated May 10, 2016, dated May 19, 2016, 14 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/066229, dated May 24, 2016, dated Jun. 6, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2014/067740, dated May 31, 2016, dated Jun. 9, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2015/019529, dated Sep. 13, 2016, dated Sep. 22, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/062720, dated Mar. 31, 2015, dated Apr. 9, 2015, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/046002, completed Nov. 13, 2013, dated Nov. 29, 2013, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/056065, Completed Nov. 25, 2013, dated Nov. 26, 2013, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/059991, Completed Feb. 6, 2014, dated Feb. 26, 2014, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2011/064921, Completed Feb. 25, 2011, dated Mar. 6, 2012, 17 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/024987, Completed Mar. 27, 2013, dated Apr. 15, 2013, 14 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/027146, completed Apr. 2, 2013, dated Apr. 19, 2013, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/039155, completed Jul. 1, 2013, dated Jul. 11, 2013, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/048772, Completed Oct. 21, 2013, dated Nov. 8, 2013, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/056502, Completed Feb. 18, 2014, dated Mar. 19, 2014, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/069932, Completed Mar. 14, 2014, dated Apr. 14, 2014, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2015/019529, completed May 5, 2015, dated Jun. 8, 2015, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2011/036349, completed Aug. 11, 2011, dated Aug. 22, 2011, 11 pgs.
Van Der Wal et al., “The Acadia Vision Processor”, Proceedings Fifth IEEE International Workshop on Computer Architectures for Machine Perception, Sep. 13, 2000, Padova, Italy, pp. 31-40.
Ng et al., “Light Field Photography with a Hand-held Plenoptic Camera”, Stanford Tech Report CTSR 2005-02, Apr. 20, 2005, pp. 1-11.
Related Publications (1)
Number Date Country
20170070673 A1 Mar 2017 US
Provisional Applications (1)
Number Date Country
61788078 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14200629 Mar 2014 US
Child 15258947 US