The disclosure relates generally to determining Transmission Configuration Indicator (TCI) states.
In NR, several signals can be transmitted from different antenna ports of a same base station. These signals can have the same large-scale properties such as Doppler shift/spread, average delay spread, or average delay. These antenna ports are then said to be Quasi Co-Located (QCL).
If the UE knows that two antenna ports are QCL with respect to a certain parameter (e.g., Doppler spread), the UE can estimate that parameter based on one of the antenna ports and apply that estimate for receiving signal on the other antenna port.
For example, there may be a QCL relation between a CSI-RS for Tracking RS (TRS) and the PDSCH DMRS. When UE receives the PDSCH DMRS it can use the measurements already made on the TRS to assist the DMRS reception.
Information about what assumptions can be made regarding QCL is signaled to the UE from the network. In NR, four types of QCL relations between a transmitted source RS and transmitted target RS were defined:
QCL type D was introduced to facilitate beam management with analog beamforming and is known as spatial QCL. There is currently no strict definition of spatial QCL, but the understanding is that if two transmitted antenna ports are spatially QCL, the UE can use the same Rx beam to receive them. This is helpful for a UE that uses analog beamforming to receive signals, since the UE needs to adjust its RX beam in some direction prior to receiving a certain signal. If the UE knows that the signal is spatially QCL with some other signal it has received earlier, then it can safely use the same RX beam to receive also this signal. Note that for beam management, the discussion mostly revolves around QCL Type D, but it is also necessary to convey a Type A QCL relation for the RSs to the UE, so that it can estimate all the relevant large-scale parameters.
Typically, this is achieved by configuring the UE with a CSI-RS for tracking (TRS) for time/frequency offset estimation. To be able to use any QCL reference, the UE would have to receive it with a sufficiently good SINR. In many cases, this means that the TRS must be transmitted in a suitable beam to a certain UE.
To introduce dynamics in beam and transmission point (TRP) selection, the UE can be configured through RRC signaling with up to 128 Transmission Configuration Indicator (TCI) states. The TCI state information element is shown below. TCI State information element (Extracted from 3GPP TS 38.331):
Each TCI state contains QCL information related to one or two RSs. For example, a TCI state may contain CSI-RS1 associated with QCL Type A and CSI-RS2 associated with QCL TypeD. If a third RS, e.g., the PDCCH DMRS, has this TCI state as QCL source, it means that the UE can derive Doppler shift, Doppler spread, average delay, delay spread from CSI-RS1 and Spatial Rx parameter (i.e., the RX beam to use) from CSI-RS2 when performing the channel estimation for the PDCCH DMRS. The TCI states are configured in the PDSCH-Config, and separately for each serving cell and Bandwidth Part (BWP).
Both FR1 And FR2 use the concept of carrier aggregation. With carrier aggregation, the communication takes place over several carriers. One is the primary component carrier, which is used for initial access. The other carriers are secondary component carriers and are added to improve capacity. In FR2, a typical carrier bandwidth is 100 MHz and typically 8 carriers are added to form a total carrier BW of 800 MHZ. In 3GPP specification, each carrier is called a cell: the primary component carrier is called the primary cell (PCell, or PSCell), whereas the secondary component carriers are called secondary cells (SCells).
Each of the cells can be configured independently, i.e., each cell can be configured with a separate set of RRC parameters. This is true in particular for the TCI states: in each cell and BWP, there is a separate list of TCI states. Still, in many cases, the list of TCI states is identical in different carriers.
The UE can be configured with one or up to four bandwidth parts (BWP). One BWP may span a part of the bandwidth of the carrier. Hence, a BWP may start at a CRB larger than zero. All configured BWPs have a common reference, the CRB 0. Hence, a UE can be configured a narrow BWP (e.g., 10 MHZ) and a wide BWP (e.g., 100 MHz), but only one BWP can be active for the UE at a given point in time. The UE can be instructed to change the active BWP using DCI signaling. Improved systems and methods for TCI state signaling for carrier aggregation are needed.
Systems and methods for Transmission Configuration Indicator (TCI) state signalling for carrier aggregation are provided. In some embodiments, a method performed by a wireless device for determining TCI states includes receiving a TCI state list in a Physical Downlink Shared Channel (PDSCH) configuration from a reference Bandwidth Part (BWP)/cell; and receiving, in a BWP/cell other than the reference BWP/cell, a PDSCH configuration comprising a pointer to the reference BWP/cell. In some embodiments, RRC overhead from TCI state configuration is reduced.
Certain aspects of the present disclosure and their embodiments may provide solutions to the aforementioned or other challenges. Include the TCI state list in the PDSCH configuration only in one of the cells/BWPs (the reference cell/BWP). In the PDSCH configuration in other cells/BWPs, include a pointer to the reference cell/BWP.
Signalling mechanism to convey TCI states to a UE that operates in carrier aggregation. There are, proposed herein, various embodiments which address one or more of the issues disclosed herein. In some embodiments, a method performed by a wireless device for determining Transmission Configuration Indicator, TCI, states, the method comprising one or more of: receiving a TCI state list in a Physical Downlink Shared Channel, PDSCH, configuration. In some embodiments, the TCI state list is received in the PDSCH configuration in only one of the cells/Bandwidth Parts, BWPs.
In some embodiments, the TCI state list is received in the PDSCH configuration in only a subset of the cells/Bandwidth Parts, BWPs.
In some embodiments, the method optionally includes receiving, in a cell/BWP other than the only one of the cells/BWPs, a PDSCH configuration comprising a pointer to the only one of the cells/BWPs.
In some embodiments, the only one of the cells/BWPs comprises a reference cell/BWP. In some embodiments, the only a subset of the cells/BWPs comprises a set of reference cells/BWPs.
In some embodiments, the PDSCH configuration comprises two new fields that provide the pointer to a reference cell and/or a reference BWP where the wireless device can find the TCI states.
In some embodiments, when using the two fields, no TCI states are added using the field tci-StatesToAddModList.
Certain embodiments may provide one or more of the following technical advantage(s), such as reduction of RRC overhead from TCI state configuration.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure.
Radio Node: As used herein, a “radio node” is either a radio access node or a wireless communication device.
Radio Access Node: As used herein, a “radio access node” or “radio network node” or “radio access network node” is any node in a Radio Access Network (RAN) of a cellular communications network that operates to wirelessly transmit and/or receive signals. Some examples of a radio access node include, but are not limited to, a base station (e.g., a New Radio (NR) base station (gNB) in a Third Generation Partnership Project (3GPP) Fifth Generation (5G) NR network or an enhanced or evolved Node B (eNB) in a 3GPP Long Term Evolution (LTE) network), a high-power or macro base station, a low-power base station (e.g., a micro base station, a pico base station, a home eNB, or the like), a relay node, a network node that implements part of the functionality of a base station (e.g., a network node that implements a gNB Central Unit (gNB-CU) or a network node that implements a gNB Distributed Unit (gNB-DU)) or a network node that implements part of the functionality of some other type of radio access node.
Core Network Node: As used herein, a “core network node” is any type of node in a core network or any node that implements a core network function. Some examples of a core network node include, e.g., a Mobility Management Entity (MME), a Packet Data Network Gateway (P-GW), a Service Capability Exposure Function (SCEF), a Home Subscriber Server (HSS), or the like. Some other examples of a core network node include a node implementing an Access and Mobility Management Function (AMF), a User Plane Function (UPF), a Session Management Function (SMF), an Authentication Server Function (AUSF), a Network Slice Selection Function (NSSF), a Network Exposure Function (NEF), a Network Function (NF) Repository Function (NRF), a Policy Control Function (PCF), a Unified Data Management (UDM), or the like.
Communication Device: As used herein, a “communication device” is any type of device that has access to an access network. Some examples of a communication device include, but are not limited to: mobile phone, smart phone, sensor device, meter, vehicle, household appliance, medical appliance, media player, camera, or any type of consumer electronic, for instance, but not limited to, a television, radio, lighting arrangement, tablet computer, laptop, or Personal Computer (PC). The communication device may be a portable, hand-held, computer-comprised, or vehicle-mounted mobile device, enabled to communicate voice and/or data via a wireless or wireline connection.
Wireless Communication Device: One type of communication device is a wireless communication device, which may be any type of wireless device that has access to (i.e., is served by) a wireless network (e.g., a cellular network). Some examples of a wireless communication device include but are not limited to: a User Equipment device (UE) in a 3GPP network, a Machine Type Communication (MTC) device, and an Internet of Things (IOT) device. Such wireless communication devices may be, or may be integrated into, a mobile phone, smart phone, sensor device, meter, vehicle, household appliance, medical appliance, media player, camera, or any type of consumer electronic, for instance, but not limited to, a television, radio, lighting arrangement, tablet computer, laptop, or PC. The wireless communication device may be a portable, hand-held, computer-comprised, or vehicle-mounted mobile device, enabled to communicate voice and/or data via a wireless connection.
Network Node: As used herein, a “network node” is any node that is either part of the RAN or the core network of a cellular communications network/system.
Transmission/Reception Point (TRP): In some embodiments, a TRP may be either a network node, a radio head, a spatial relation, or a Transmission Configuration Indicator (TCI) state. A TRP may be represented by a spatial relation or a TCI state in some embodiments. In some embodiments, a TRP may be using multiple TCI states. In some embodiments, a TRP may a part of the gNB transmitting and receiving radio signals to/from UE according to physical layer properties and parameters inherent to that element. In some embodiments, in Multiple TRP (multi-TRP) operation, a serving cell can schedule UE from two TRPs, providing better Physical Downlink Shared Channel (PDSCH) coverage, reliability and/or data rates. There are two different operation modes for multi-TRP: single Downlink Control Information (DCI) and multi-DCI. For both modes, control of uplink and downlink operation is done by both physical layer and Medium Access Control (MAC). In single-DCI mode, UE is scheduled by the same DCI for both TRPs and in multi-DCI mode, UE is scheduled by independent DCIs from each TRP.
In some embodiments, a set Transmission Points (TPs) is a set of geographically co-located transmit antennas (e.g., an antenna array (with one or more antenna elements)) for one cell, part of one cell or one Positioning Reference Signal (PRS)-only TP. TPs can include base station (eNB) antennas, Remote Radio Heads (RRHs), a remote antenna of a base station, an antenna of a PRS-only TP, etc. One cell can be formed by one or multiple TPs. For a homogeneous deployment, each TP may correspond to one cell.
In some embodiments, a set of TRPs is a set of geographically co-located antennas (e.g., an antenna array (with one or more antenna elements)) supporting TP and/or Reception Point (RP) functionality.
Note that the description given herein focuses on a 3GPP cellular communications system and, as such, 3GPP terminology or terminology similar to 3GPP terminology is oftentimes used. However, the concepts disclosed herein are not limited to a 3GPP system.
Note that, in the description herein, reference may be made to the term “cell”; however, particularly with respect to 5G NR concepts, beams may be used instead of cells and, as such, it is important to note that the concepts described herein are equally applicable to both cells and beams.
The base stations 102 and the low power nodes 106 provide service to wireless communication devices 112-1 through 112-5 in the corresponding cells 104 and 108. The wireless communication devices 112-1 through 112-5 are generally referred to herein collectively as wireless communication devices 112 and individually as wireless communication device 112. In the following description, the wireless communication devices 112 are oftentimes UEs, but the present disclosure is not limited thereto.
In current NR specification, the TCI states are configured using the RRC fields tci-StatesToAddModList and tci-StatesToReleaseList. With these RRC fields, the TCI states are added and removed to the list. The RRC information element PDSCH-Config is depicted below. The PDSCH configuration as in 38.331:
Each BWP can be configured independently, i.e., provided with different sets of RRC parameters. There currently exist certain challenges. Since the TCI states are configured in each cell, the resulting RRC overhead can be large.
Systems and methods for TCI state signalling for carrier aggregation are provided. In some embodiments, a method performed by a wireless device for determining TCI states includes receiving a TCI state list in a PPDSCH configuration from a reference BWP/cell; and receiving, in a BWP/cell other than the reference BWP/cell, a PDSCH configuration comprising a pointer to the reference BWP/cell. In some embodiments, RRC overhead from TCI state configuration is reduced.
In a preferred embodiment, the TCI state list is only included in some cells/BWP (the reference cells), whereas in other cells/BWP, an explicit reference to the TCI state list in one of the reference cells is included. In some embodiments, the PDSCH configuration includes two new fields that provide a pointer to a reference cell and/or a reference BWP where the UE can find the TCI states. In some embodiments, when using these two fields, no TCI states are added using the field tci-StatesToAddModList.
As used herein, a “virtualized” radio access node is an implementation of the radio access node 400 in which at least a portion of the functionality of the radio access node 400 is implemented as a virtual component(s) (e.g., via a virtual machine(s) executing on a physical processing node(s) in a network(s)). As illustrated, in this example, the radio access node 400 may include the control system 402 and/or the one or more radio units 410, as described above. The control system 402 may be connected to the radio unit(s) 410 via, for example, an optical cable or the like. The radio access node 400 includes one or more processing nodes 500 coupled to or included as part of a network(s) 502. If present, the control system 402 or the radio unit(s) are connected to the processing node(s) 500 via the network 502. Each processing node 500 includes one or more processors 504 (e.g., CPUs, ASICS, FPGAS, and/or the like), memory 506, and a network interface 508.
In this example, functions 510 of the radio access node 400 described herein are implemented at the one or more processing nodes 500 or distributed across the one or more processing nodes 500 and the control system 402 and/or the radio unit(s) 410 in any desired manner. In some particular embodiments, some or all of the functions 510 of the radio access node 400 described herein are implemented as virtual components executed by one or more virtual machines implemented in a virtual environment(s) hosted by the processing node(s) 500. As will be appreciated by one of ordinary skill in the art, additional signaling or communication between the processing node(s) 500 and the control system 402 is used in order to carry out at least some of the desired functions 510. Notably, in some embodiments, the control system 402 may not be included, in which case the radio unit(s) 410 communicate directly with the processing node(s) 500 via an appropriate network interface(s).
In some embodiments, a computer program including instructions which, when executed by at least one processor, causes the at least one processor to carry out the functionality of radio access node 400 or a node (e.g., a processing node 500) implementing one or more of the functions 510 of the radio access node 400 in a virtual environment according to any of the embodiments described herein is provided. In some embodiments, a carrier comprising the aforementioned computer program product is provided. The carrier is one of an electronic signal, an optical signal, a radio signal, or a computer readable storage medium (e.g., a non-transitory computer readable medium such as memory).
In some embodiments, a computer program including instructions which, when executed by at least one processor, causes the at least one processor to carry out the functionality of the wireless communication device 700 according to any of the embodiments described herein is provided. In some embodiments, a carrier comprising the aforementioned computer program product is provided. The carrier is one of an electronic signal, an optical signal, a radio signal, or a computer readable storage medium (e.g., a non-transitory computer readable medium such as memory).
With reference to
The telecommunication network 900 is itself connected to a host computer 916, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server, or as processing resources in a server farm. The host computer 916 may be under the ownership or control of a service provider or may be operated by the service provider or on behalf of the service provider. Connections 918 and 920 between the telecommunication network 900 and the host computer 916 may extend directly from the core network 904 to the host computer 916 or may go via an optional intermediate network 922. The intermediate network 922 may be one of, or a combination of more than one of, a public, private, or hosted network; the intermediate network 922, if any, may be a backbone network or the Internet; in particular, the intermediate network 922 may comprise two or more sub-networks (not shown).
The communication system of
Example implementations, in accordance with an embodiment, of the UE, base station, and host computer discussed in the preceding paragraphs will now be described with reference to
The communication system 1000 further includes a base station 1018 provided in a telecommunication system and comprising hardware 1020 enabling it to communicate with the host computer 1002 and with the UE 1014. The hardware 1020 may include a communication interface 1022 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of the communication system 1000, as well as a radio interface 1024 for setting up and maintaining at least a wireless connection 1026 with the UE 1014 located in a coverage area (not shown in
The communication system 1000 further includes the UE 1014 already referred to. The UE's 1014 hardware 1034 may include a radio interface 1036 configured to set up and maintain a wireless connection 1026 with a base station serving a coverage area in which the UE 1014 is currently located. The hardware 1034 of the UE 1014 further includes processing circuitry 1038, which may comprise one or more programmable processors, ASICs, FPGAs, or combinations of these (not shown) adapted to execute instructions. The UE 1014 further comprises software 1040, which is stored in or accessible by the UE 1014 and executable by the processing circuitry 1038. The software 1040 includes a client application 1042. The client application 1042 may be operable to provide a service to a human or non-human user via the UE 1014, with the support of the host computer 1002. In the host computer 1002, the executing host application 1012 may communicate with the executing client application 1042 via the OTT connection 1016 terminating at the UE 1014 and the host computer 1002. In providing the service to the user, the client application 1042 may receive request data from the host application 1012 and provide user data in response to the request data. The OTT connection 1016 may transfer both the request data and the user data. The client application 1042 may interact with the user to generate the user data that it provides.
It is noted that the host computer 1002, the base station 1018, and the UE 1014 illustrated in
In
The wireless connection 1026 between the UE 1014 and the base station 1018 is in accordance with the teachings of the embodiments described throughout this disclosure. One or more of the various embodiments improve the performance of OTT services provided to the UE 1014 using the OTT connection 1016, in which the wireless connection 1026 forms the last segment. More precisely, the teachings of these embodiments may improve the e.g., data rate, latency, power consumption, etc. and thereby provide benefits such as e.g., reduced user waiting time, relaxed restriction on file size, better responsiveness, extended battery lifetime, etc.
A measurement procedure may be provided for the purpose of monitoring data rate, latency, and other factors on which the one or more embodiments improve. There may further be an optional network functionality for reconfiguring the OTT connection 1016 between the host computer 1002 and the UE 1014, in response to variations in the measurement results. The measurement procedure and/or the network functionality for reconfiguring the OTT connection 1016 may be implemented in the software 1010 and the hardware 1004 of the host computer 1002 or in the software 1040 and the hardware 1034 of the UE 1014, or both. In some embodiments, sensors (not shown) may be deployed in or in association with communication devices through which the OTT connection 1016 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which the software 1010, 1040 may compute or estimate the monitored quantities. The reconfiguring of the OTT connection 1016 may include message format, retransmission settings, preferred routing, etc.; the reconfiguring need not affect the base station 1018, and it may be unknown or imperceptible to the base station 1018. Such procedures and functionalities may be known and practiced in the art. In certain embodiments, measurements may involve proprietary UE signaling facilitating the host computer 1002's measurements of throughput, propagation times, latency, and the like. The measurements may be implemented in that the software 1010 and 1040 causes messages to be transmitted, in particular empty or ‘dummy’ messages, using the OTT connection 1016 while it monitors propagation times, errors, etc.
Any appropriate steps, methods, features, functions, or benefits disclosed herein may be performed through one or more functional units or modules of one or more virtual apparatuses. Each virtual apparatus may comprise a number of these functional units. These functional units may be implemented via processing circuitry, which may include one or more microprocessor or microcontrollers, as well as other digital hardware, which may include Digital Signal Processor (DSPs), special-purpose digital logic, and the like. The processing circuitry may be configured to execute program code stored in memory, which may include one or several types of memory such as Read Only Memory (ROM), Random Access Memory (RAM), cache memory, flash memory devices, optical storage devices, etc. Program code stored in memory includes program instructions for executing one or more telecommunications and/or data communications protocols as well as instructions for carrying out one or more of the techniques described herein. In some implementations, the processing circuitry may be used to cause the respective functional unit to perform corresponding functions according one or more embodiments of the present disclosure.
While processes in the figures may show a particular order of operations performed by certain embodiments of the present disclosure, it should be understood that such order is exemplary (e.g., alternative embodiments may perform the operations in a different order, combine certain operations, overlap certain operations, etc.).
Embodiment 1: A method performed by a wireless device for determining Transmission Configuration Indicator, TCI, states, the method comprising one or more of: receiving (200) a TCI state list in a Physical Downlink Shared Channel, PDSCH, configuration.
Embodiment 2: The method of embodiment 1 wherein the TCI state list is received in the PDSCH configuration in only one of the cells/Bandwidth Parts, BWPs.
Embodiment 3: The method of embodiment 1 wherein the TCI state list is received in the PDSCH configuration in only a subset of the cells/Bandwidth Parts, BWPs.
Embodiment 4: The method of any of embodiments 2 to 3 further comprising: receiving (202), in a cell/BWP other than the only one of the cells/BWPs, a PDSCH configuration comprising a pointer to the only one of the cells/BWPs.
Embodiment 5: The method of any of embodiments 2 to 4 wherein the only one of the cells/BWPs comprises a reference cell/BWP.
Embodiment 6: The method of any of embodiments 2 to 4 wherein the only a subset of the cells/BWPs comprises a set of reference cells/BWPs.
Embodiment 7: The method of any of embodiments 4 to 6 wherein the PDSCH configuration comprises two new fields that provide the pointer to a reference cell and/or a reference BWP where the wireless device can find the TCI states.
Embodiment 8: The method of embodiment 7 wherein when using the two fields, no TCI states are added using the field tci-StatesToAddModList.
Embodiment 9: The method of any of the previous embodiments, further comprising: providing user data; and forwarding the user data to a host computer via the transmission to the base station.
Embodiment 10: A method performed by a base station for indicating Transmission Configuration Indicator, TCI, states, the method comprising one or more of: sending (300) a TCI state list in a Physical Downlink Shared Channel, PDSCH, configuration.
Embodiment 11: The method of embodiment 10 wherein the TCI state list is sent in the PDSCH configuration in only one of the cells/Bandwidth Parts, BWPS.
Embodiment 12: The method of embodiment 10 wherein the TCI state list is sent in the PDSCH configuration in only a subset of the cells/Bandwidth Parts, BWPs.
Embodiment 13: The method of any of embodiments 11 to 12 further comprising: sending (302), in a cell/BWP other than the only one of the cells/BWPs, a PDSCH configuration comprising a pointer to the only one of the cells/BWPs.
Embodiment 14: The method of any of embodiments 11 to 13 wherein the only one of the cells/BWPs comprises a reference cell/BWP.
Embodiment 15: The method of any of embodiments 11 to 13 wherein the only a subset of the cells/BWPs comprises a set of reference cells/BWPs.
Embodiment 16: The method of any of embodiments 13 to 15 wherein the PDSCH configuration comprises two new fields that provide the pointer to a reference cell and/or a reference BWP where the wireless device can find the TCI states.
Embodiment 17: The method of embodiment 7 wherein when using the two fields, no TCI states are added using the field tci-StatesToAddModList.
Embodiment 18: The method of any of the previous embodiments, further comprising: obtaining user data; and forwarding the user data to a host computer or a wireless device.
Embodiment 19: A wireless device for determining Transmission Configuration Indicator, TCI, states, the wireless device comprising: processing circuitry configured to perform any of the steps of any of the Group A embodiments; and power supply circuitry configured to supply power to the wireless device.
Embodiment 20: A base station for indicating Transmission Configuration Indicator, TCI, states, the base station comprising: processing circuitry configured to perform any of the steps of any of the Group B embodiments; and power supply circuitry configured to supply power to the base station.
Embodiment 21: A User Equipment, UE, for determining Transmission Configuration Indicator, TCI, states, the UE comprising: an antenna configured to send and receive wireless signals; radio front-end circuitry connected to the antenna and to processing circuitry, and configured to condition signals communicated between the antenna and the processing circuitry; the processing circuitry being configured to perform any of the steps of any of the Group A embodiments; an input interface connected to the processing circuitry and configured to allow input of information into the UE to be processed by the processing circuitry; an output interface connected to the processing circuitry and configured to output information from the UE that has been processed by the processing circuitry; and a battery connected to the processing circuitry and configured to supply power to the UE.
Embodiment 22: A communication system including a host computer comprising: processing circuitry configured to provide user data; and a communication interface configured to forward the user data to a cellular network for transmission to a User Equipment, UE; wherein the cellular network comprises a base station having a radio interface and processing circuitry, the base station's processing circuitry configured to perform any of the steps of any of the Group B embodiments.
Embodiment 23: The communication system of the previous embodiment further including the base station.
Embodiment 24: The communication system of the previous 2 embodiments, further including the UE, wherein the UE is configured to communicate with the base station.
Embodiment 25: The communication system of the previous 3 embodiments, wherein: the processing circuitry of the host computer is configured to execute a host application, thereby providing the user data; and the UE comprises processing circuitry configured to execute a client application associated with the host application.
Embodiment 26: A method implemented in a communication system including a host computer, a base station, and a User Equipment, UE, the method comprising: at the host computer, providing user data; and at the host computer, initiating a transmission carrying the user data to the UE via a cellular network comprising the base station, wherein the base station performs any of the steps of any of the Group B embodiments.
Embodiment 27: The method of the previous embodiment, further comprising, at the base station, transmitting the user data.
Embodiment 28: The method of the previous 2 embodiments, wherein the user data is provided at the host computer by executing a host application, the method further comprising, at the UE, executing a client application associated with the host application.
Embodiment 29: A User Equipment, UE, configured to communicate with a base station, the UE comprising a radio interface and processing circuitry configured to perform the method of the previous 3 embodiments.
Embodiment 30: A communication system including a host computer comprising: processing circuitry configured to provide user data; and a communication interface configured to forward user data to a cellular network for transmission to a User Equipment, UE; wherein the UE comprises a radio interface and processing circuitry, the UE's components configured to perform any of the steps of any of the Group A embodiments.
Embodiment 31: The communication system of the previous embodiment, wherein the cellular network further includes a base station configured to communicate with the UE.
Embodiment 32: The communication system of the previous 2 embodiments, wherein: the processing circuitry of the host computer is configured to execute a host application, thereby providing the user data; and the UE's processing circuitry is configured to execute a client application associated with the host application.
Embodiment 33: A method implemented in a communication system including a host computer, a base station, and a User Equipment, UE, the method comprising: at the host computer, providing user data; and at the host computer, initiating a transmission carrying the user data to the UE via a cellular network comprising the base station, wherein the UE performs any of the steps of any of the Group A embodiments.
Embodiment 34: The method of the previous embodiment, further comprising at the UE, receiving the user data from the base station.
Embodiment 35: A communication system including a host computer comprising: communication interface configured to receive user data originating from a transmission from a User Equipment, UE, to a base station; wherein the UE comprises a radio interface and processing circuitry, the UE's processing circuitry configured to perform any of the steps of any of the Group A embodiments.
Embodiment 36: The communication system of the previous embodiment, further including the UE.
Embodiment 37: The communication system of the previous 2 embodiments, further including the base station, wherein the base station comprises a radio interface configured to communicate with the UE and a communication interface configured to forward to the host computer the user data carried by a transmission from the UE to the base station.
Embodiment 38: The communication system of the previous 3 embodiments, wherein: the processing circuitry of the host computer is configured to execute a host application; and the UE's processing circuitry is configured to execute a client application associated with the host application, thereby providing the user data.
Embodiment 39: The communication system of the previous 4 embodiments, wherein: the processing circuitry of the host computer is configured to execute a host application, thereby providing request data; and the UE's processing circuitry is configured to execute a client application associated with the host application, thereby providing the user data in response to the request data.
Embodiment 40: A method implemented in a communication system including a host computer, a base station, and a User Equipment, UE, the method comprising: at the host computer, receiving user data transmitted to the base station from the UE, wherein the UE performs any of the steps of any of the Group A embodiments.
Embodiment 41: The method of the previous embodiment, further comprising, at the UE, providing the user data to the base station.
Embodiment 42: The method of the previous 2 embodiments, further comprising: at the UE, executing a client application, thereby providing the user data to be transmitted; and at the host computer, executing a host application associated with the client application.
Embodiment 43: The method of the previous 3 embodiments, further comprising: at the UE, executing a client application; and at the UE, receiving input data to the client application, the input data being provided at the host computer by executing a host application associated with the client application; wherein the user data to be transmitted is provided by the client application in response to the input data.
Embodiment 44: A communication system including a host computer comprising a communication interface configured to receive user data originating from a transmission from a User Equipment, UE, to a base station, wherein the base station comprises a radio interface and processing circuitry, the base station's processing circuitry configured to perform any of the steps of any of the Group B embodiments.
Embodiment 45: The communication system of the previous embodiment further including the base station.
Embodiment 46: The communication system of the previous 2 embodiments, further including the UE, wherein the UE is configured to communicate with the base station.
Embodiment 47: The communication system of the previous 3 embodiments, wherein: the processing circuitry of the host computer is configured to execute a host application; and the UE is configured to execute a client application associated with the host application, thereby providing the user data to be received by the host computer.
Embodiment 48: A method implemented in a communication system including a host computer, a base station, and a User Equipment, UE, the method comprising: at the host computer, receiving, from the base station, user data originating from a transmission which the base station has received from the UE, wherein the UE performs any of the steps of any of the Group A embodiments.
Embodiment 49: The method of the previous embodiment, further comprising at the base station, receiving the user data from the UE.
Embodiment 50: The method of the previous 2 embodiments, further comprising at the base station, initiating a transmission of the received user data to the host computer.
At least some of the following abbreviations may be used in this disclosure. If there is an inconsistency between abbreviations, preference should be given to how it is used above. If listed multiple times below, the first listing should be preferred over any subsequent listing(s).
Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein.
This application claims the benefit of provisional patent application Ser. No. 63/191,219, filed May 20, 2021, the disclosure of which is hereby incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2022/054760 | 5/20/2022 | WO |
Number | Date | Country | |
---|---|---|---|
63191219 | May 2021 | US |