Residential heating ventilation and air conditioning (HVAC) systems include many components which must work together to provide heating or cooling to a residential structure. Often, the individual components, such as compressors, fans, and valves, require individual sensors or other devices to ensure that the components are operating at a proper operating point based on one or more parameters associated with the HVAC system. This can require an HVAC system to either use simple control components to allow for basic HVAC system control, which can result in HVAC systems with limited functionality and efficiency. Conversely, an HVAC system having additional functionality require multiple sensors and other devices to determine the operational values for multiple components within the HVAC system resulting in additional cost and complexity of the HVAC system.
One implementation of the present disclosure is a residential HVAC system. The system includes a compressor, and an outdoor unit controller in communication with the compressor. The outdoor unit controller is configured to receive an indoor ambient temperature and a temperature set point. The outdoor unit controller is further configured to determine an outdoor ambient temperature, and to determine an operating value for the compressor based on a percentage of a delta between a minimum operating value of the compressor and a maximum operating value of the compressor, plus the minimum operating value. The minimum operating value and the maximum operating value are based on the determined outdoor ambient temperature. The percentage of the delta is based on a predefined temperature differential multiplier and one or more time dependent multipliers. The outdoor unit controller is further configured to modify the current operating value of the compressor with the determined operating value.
Another implementation of the present disclosure is a method for modifying one or more operational values of a residential HVAC system. The method includes monitoring an indoor ambient temperature of a residential building, and comparing the indoor ambient temperature to a defined temperature set point. The method further includes calculating an operational value for one or more components of the residential HVAC system based on a percentage of a delta between a minimum operating value for the components and a maximum operating value of the components plus a minimum operating value. The minimum operating value and the maxim operating value are based on the determined outdoor ambient temperature. The percentage of the delta is based on a predefined temperature multiplier and one or more time dependent multipliers. The method further includes modifying the current operating values of the components with the determined operating values.
Another implementation of the present disclosure is an outdoor unit of a residential HVAC system. The outdoor unit includes a compressor and an outdoor unit controller in communication with the compressor. The outdoor unit controller is configured to receive an indoor ambient temperature and a temperature set point, and to determine an outdoor ambient temperature. The outdoor unit controller is further configured to calculate an operating value for the compressor based on a percentage of a delta between a minimum operating value for the compressor and a maximum operating value for the compressor plus the minimum operating value. The minimum operating value and the maximum operating value are based on the determined outdoor ambient temperature. The percentage of the delta is based on a predefined temperature differential multiplier and one or more time dependent multipliers using the equation ±A %/Tc(+B %/Dmin when T[0]≥T[Dmin]; or −C %/Dmin when T[0]<T[Dmin]). Wherein A is the temperature differential multiplier, and B and C are the time dependent multipliers. Tc is a difference between the indoor ambient temperature and the temperature set point, and Dmin is a time value. The outdoor unit controller is further configured to modify a current operating value of the compressor with the calculated operating value.
Various objects, aspects, features, and advantages of the disclosure will become more apparent and better understood by referring to the detailed description taken in conjunction with the accompanying drawings, in which like reference characters identify corresponding elements throughout. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements.
Referring generally to FIGURES, and specification, systems and methods for providing temperature and humidity control are shown, according to various exemplary embodiments. The following systems and methods utilize an outdoor ambient temperature to provide a common operating value calculation for multiple components within the system by instructing the components to operate at a defined percentage of the delta between each component's minimum and maximum operating points. This reduces the need for additional sensors and components, as well as increases the simplicity of the control scheme by allowing for a common control scheme to be provided for multiple components that does not require each component to be individually evaluated during operation. This provides a technical solution to the HVAC centric challenge of simplifying the control of an HVAC system while still providing for efficient and effecting functioning of the HVAC system.
When the system 100 shown in
Outdoor unit 30 draws in environmental air through its sides as indicated by the arrows directed to the sides of the unit, forces the air through the outer unit coil using a fan, and expels the air. When operating as an air conditioner, the air is heated by the condenser coil within the outdoor unit 30 and exits the top of the unit at a temperature higher than it entered the sides. Air is blown over indoor coil 32 and is then circulated through residence 24 by means of ductwork 20, as indicated by the arrows entering and exiting ductwork 20. The overall system 100 operates to maintain a desired temperature as set by thermostat 22. When the temperature sensed inside the residence 24 is higher than the set point on the thermostat 22 (with the addition of a relatively small tolerance), the air conditioner will become operative to refrigerate additional air for circulation through the residence 24. When the temperature reaches the set point (with the removal of a relatively small tolerance), the unit can stop the refrigeration cycle temporarily.
In some embodiments, the system 100 configured so that the outdoor unit 30 is controlled to achieve a more elegant control over temperature and humidity within the residence 24. The outdoor unit 30 is controlled to operate components within the outdoor unit 30, and the system 100, based on a percentage of a delta between a minimum operating value of the compressor and a maximum operating value of the compressor plus the minimum operating value. In some embodiments, the minimum operating value and the maximum operating value are based on the determined outdoor ambient temperature, and the percentage of the delta is based on a predefined temperature differential multiplier and one or more time dependent multipliers.
Referring now to
Thermostat 22 can be configured to generate control signals for indoor unit 28 and/or outdoor unit 30. The thermostat 22 is shown to be connected to an indoor ambient temperature sensor 202, and an outdoor unit controller 204 is shown to be connected to an outdoor ambient temperature sensor 206. The indoor ambient temperature sensor 202 and the outdoor ambient temperature sensor 206 may be any kind of temperature sensor (e.g., thermistor, thermocouple, etc.). The thermostat 22 may measure the temperature of residence 24 via the indoor ambient temperature sensor 202. Further, the thermostat 22 can be configured to receive the temperature outside residence 24 via communication with the outdoor unit controller 204. In various embodiments, the thermostat 22 generates control signals for the indoor unit 28 and the outdoor unit 30 based on the indoor ambient temperature (e.g., measured via indoor ambient temperature sensor 202), the outdoor temperature (e.g., measured via the outdoor ambient temperature sensor 206), and/or a temperature set point.
The indoor unit 28 and the outdoor unit 30 may be electrically connected. Further, indoor unit 28 and outdoor unit 30 may be coupled via conduits 210. The outdoor unit 30 can be configured to compress refrigerant inside conduits 210 to either heat or cool the building based on the operating mode of the indoor unit 28 and the outdoor unit 30 (e.g., heat pump operation or air conditioning operation). The refrigerant inside conduits 210 may be any fluid that absorbs and extracts heat. For example, the refrigerant may be hydro fluorocarbon (HFC) based R-410A, R-407C, and/or R-134a.
The outdoor unit 30 is shown to include the outdoor unit controller 204, a variable speed drive 212, a motor 214 and a compressor 216. The outdoor unit 30 can be configured to control the compressor 216 and to further cause the compressor 216 to compress the refrigerant inside conduits 210. In this regard, the compressor 216 may be driven by the variable speed drive 212 and the motor 214. For example, the outdoor unit controller 204 can generate control signals for the variable speed drive 212. The variable speed drive 212 (e.g., an inverter, a variable frequency drive, etc.) may be an AC-AC inverter, a DC-AC inverter, and/or any other type of inverter. The variable speed drive 212 can be configured to vary the torque and/or speed of the motor 214 which in turn drives the speed and/or torque of compressor 216. The compressor 216 may be any suitable compressor such as a screw compressor, a reciprocating compressor, a rotary compressor, a swing link compressor, a scroll compressor, or a turbine compressor, etc.
In some embodiments, the outdoor unit controller 204 is configured to process data received from the thermostat 22 to determine operating values for components of the system 100, such as the compressor 216. In one embodiment, the outdoor unit controller 204 is configured to provide the determined operating values for the compressor 216 to the variable speed drive 212, which controls a speed of the compressor 216. The outdoor unit controller 204 is controlled to operate components within the outdoor unit 30, and the indoor unit 28, based on a percentage of a delta between a minimum operating value of the compressor and a maximum operating value of the compressor plus the minimum operating value. In some embodiments, the minimum operating value and the maximum operating value are based on the determined outdoor ambient temperature, and the percentage of the delta is based on a predefined temperature differential multiplier and one or more time dependent multipliers.
In some embodiments, the outdoor unit controller 204 can control a reversing valve 218 to operate system 200 as a heat pump or an air conditioner. For example, the outdoor unit controller 204 may cause reversing valve 218 to direct compressed refrigerant to the indoor coil 32 while in heat pump mode and to an outdoor coil 220 while in air conditioner mode. In this regard, the indoor coil 32 and the outdoor coil 220 can both act as condensers and evaporators depending on the operating mode (i.e., heat pump or air conditioner) of system 200.
Further, in various embodiments, outdoor unit controller 204 can be configured to control and/or receive data from an outdoor electronic expansion valve (EEV) 222. The outdoor electronic expansion valve 222 may be an expansion valve controlled by a stepper motor. In this regard, the outdoor unit controller 204 can be configured to generate a step signal (e.g., a PWM signal) for the outdoor electronic expansion valve 222. Based on the step signal, the outdoor electronic expansion valve 222 can be held fully open, fully closed, partial open, etc. In various embodiments, the outdoor unit controller 204 can be configured to generate step signal for the outdoor electronic expansion valve 222 based on a subcool and/or superheat value calculated from various temperatures and pressures measured in system 200. In one embodiment, the outdoor unit controller 204 is configured to control the position of the outdoor electronic expansion valve 222 based on a percentage of a delta between a minimum operating value of the compressor and a maximum operating value of the compressor plus the minimum operating value. In some embodiments, the minimum operating value and the maximum operating value are based on the determined outdoor ambient temperature, and the percentage of the delta is based on a predefined temperature differential multiplier and one or more time dependent multipliers.
The outdoor unit controller 204 can be configured to control and/or power outdoor fan 224. The outdoor fan 224 can be configured to blow air over the outdoor coil 220. In this regard, the outdoor unit controller 204 can control the amount of air blowing over the outdoor coil 220 by generating control signals to control the speed and/or torque of outdoor fan 224. In some embodiments, the control signals are pulse wave modulated signals (PWM), analog voltage signals (i.e., varying the amplitude of a DC or AC signal), and/or any other type of signal. In one embodiment, the outdoor unit controller 204 can control an operating value of the outdoor fan 224, such as speed, based on a percentage of a delta between a minimum operating value of the compressor and a maximum operating value of the compressor plus the minimum operating value. In some embodiments, the minimum operating value and the maximum operating value are based on the determined outdoor ambient temperature, and the percentage of the delta is based on a predefined temperature differential multiplier and one or more time dependent multipliers.
The outdoor unit 30 may include one or more temperature sensors and one or more pressure sensors. The temperature sensors and pressure sensors may be electrical connected (i.e., via wires, via wireless communication, etc.) to the outdoor unit controller 204. In this regard, the outdoor unit controller 204 can be configured to measure and store the temperatures and pressures of the refrigerant at various locations of the conduits 210. The pressure sensors may be any kind of transducer that can be configured to sense the pressure of the refrigerant in the conduits 210. The outdoor unit 30 is shown to include pressure sensor 226. The pressure sensor 226 may measure the pressure of the refrigerant in conduit 210 in the suction line (i.e., a predefined distance from the inlet of compressor 216. Further, the outdoor unit 30 is shown to include pressure sensor 226. The pressure sensor 226 may be configured to measure the pressure of the refrigerant in conduits 210 on the discharge line (e.g., a predefined distance from the outlet of compressor 216).
The temperature sensors of outdoor unit 30 may include thermistors, thermocouples, and/or any other temperature sensing device. The outdoor unit 30 is shown to include temperature sensor 208, temperature sensor 228, temperature sensor 230, and temperature sensor 232. The temperature sensors (i.e., temperature sensor 208, temperature sensor 228, temperature sensor 230, and/or temperature sensor 232) can be configured to measure the temperature of the refrigerant at various locations inside conduits 210.
Referring now to the indoor unit 28, the indoor unit 28 is shown to include indoor unit controller 234, indoor electronic expansion valve controller 236, an indoor fan 238, an indoor coil 240, an indoor electronic expansion valve 242, a pressure sensor 244, and a temperature sensor 246. The indoor unit controller 234 can be configured to generate control signals for indoor electronic expansion valve controller 248. The signals may be set points (e.g., temperature set point, pressure set point, superheat set point, subcool set point, step value set point, etc.). In this regard, indoor electronic expansion valve controller 248 can be configured to generate control signals for indoor electronic expansion valve 242. In various embodiments, indoor electronic expansion valve 242 may be the same type of valve as outdoor electronic expansion valve 222. In this regard, indoor electronic expansion valve controller 248 can be configured to generate a step control signal (e.g., a PWM wave) for controlling the stepper motor of the indoor electronic expansion valve 242. In this regard, indoor electronic expansion valve controller 248 can be configured to fully open, fully close, or partially close the indoor electronic expansion valve 242 based on the step signal.
Indoor unit controller 234 can be configured to control indoor fan 238. The indoor fan 238 can be configured to blow air over indoor coil 32. In this regard, the indoor unit controller 234 can control the amount of air blowing over the indoor coil 240 by generating control signals to control the speed and/or torque of the indoor fan 238. In some embodiments, the control signals are pulse wave modulated signals (PWM), analog voltage signals (i.e., varying the amplitude of a DC or AC signal), and/or any other type of signal. In one embodiment, the indoor unit controller 234 may receive a signal from the outdoor unit controller indicating one or more operating values, such as speed for the indoor fan 238. In one embodiment, the operating value associated with the indoor fan 238 is an airflow, such as cubic feet per minute (CFM). In one embodiment, the outdoor unit controller 204 may determine the operating value of the indoor fan based on a percentage of a delta between a minimum operating value of the compressor and a maximum operating value of the compressor plus the minimum operating value. In some embodiments, the minimum operating value and the maximum operating value are based on the determined outdoor ambient temperature, and the percentage of the delta is based on a predefined temperature differential multiplier and one or more time dependent multipliers.
The indoor unit controller 234 may be electrically connected (e.g., wired connection, wireless connection, etc.) to pressure sensor 244 and/or temperature sensor 246. In this regard, the indoor unit controller 234 can take pressure and/or temperature sensing measurements via pressure sensor 244 and/or temperature sensor 246. In one embodiment, pressure sensor 244 and temperature sensor 246 are located on the suction line (i.e., a predefined distance from indoor coil 32). In other embodiments, the pressure sensor 244 and/or the temperature sensor 246 may be located on the liquid line (i.e., a predefined distance from indoor coil 32).
Referring now to
System components 302 are shown to include one or more temperature sensors 304, one or more valves 306, and a variable speed drive 308. In various embodiments temperature sensors 304 include and/or are ambient temperature sensors for sensing indoor and outdoor ambient temperatures as described in
The outdoor controller 204 is shown to include a network interface 310. In this regard, outdoor controller 204 can be configured to communicate with thermostat 22 or other network connected device. In one embodiment, the network interface 310 can be configured to receive operating commands from thermostat 22 and distribute the operating command to various components of the outdoor unit controller 204. In various embodiments, network interface 310 can be configured to send various calculated and/or measured system status variables to the thermostat 22.
In
Memory 316 can include one or more devices (e.g., memory units, memory devices, storage devices, etc.) for storing data and/or computer code for completing and/or facilitating the various processes described in the present disclosure. Memory 316 can include random access memory (RAM), read-only memory (ROM), hard drive storage, temporary storage, non-volatile memory, flash memory, optical memory, or any other suitable memory for storing software objects and/or computer instructions. Memory 316 can include database components, object code components, script components, or any other type of information structure for supporting the various activities and information structures described in the present disclosure. Memory 316 can be communicably connected to processor 314 via processing circuit 312 and can include computer code for executing (e.g., by processor 314) one or more processes described herein.
Memory 424 is shown to include an operation controller 318 and a unit monitor 320. In some embodiments, the operation controller 318 and/or the unit monitor 320 and each units respective components may be software modules. In various embodiments, the operation controller 318 and the unit monitor 320 are and or include an individual processing device and/or memory device. The operation controller 318 can be configured to generate control signals for system components 302. The operation controller 318 may cause system components 302 to heat and/or cool residence 24, as described with reference to
The operation controller 318 is shown to include a temperature/humidity controller 322, a valve controller 324, a compressor controller 326, and a fan controller 327. The temperature/humidity controller 322 can be configured to operate system components 302 to meet various temperature and/or humidity set points. The valve controller 324 can be configured to control valves such as the outdoor electronic expansion valve 222 and the reversing valve 218. In this regard, valve controller 324 can be configured to operate reversing valve 218 to cause system 200 of
Regarding the unit monitor 320, the unit monitor 320 is shown to include a compressor monitor 330, a fan monitor 332, and a valve monitor 334. The compressor monitor 330 can be configured to determine the current operating status of the variable speed drive 212, the motor 214, and/or the compressor 216 of the outdoor unit 30. In this regard, the compressor monitor 330 can be configured to monitor the amount of power sourced by variable speed drive 212 to determine the speed of the compressor 216. In various embodiments, the compressor monitor 330 may monitor a tachometer, an encoder, and/or any other meter for determining the speed of a motor to determine the speed of the compressor 216.
In some embodiments, the fan monitor 332 can be configured to monitor the airflow and/or fan speed of the outdoor fan 224. In various embodiments, the fan monitor 332 can be configured to measure the air flow of outdoor fan 224. The valve monitor 334 can be configured to determine the step value of the one or more valves 306. In various embodiments, the valve monitor 334 determines the step value of valves 306 by communicating with the valve controller 324. In some embodiments, the valve monitor 334 communicates with various feedback sensors of valves 306 to determine the current position and/or step value of the valves 306.
As described above, the thermostat 22 may be able to communicate with the outdoor unit controller 204. For example, the thermostat 22 may transmit a “call” to the outdoor unit controller 204, instructing the outdoor unit controller 204 to perform one or more operations. For example, the thermostat 22 may transmit a call to the outdoor unit controller 204 to initiate a cooling operation. In other examples, the thermostat 22 may transmit a call to the outdoor unit controller 204 to initiate a heating operation. The thermostat 22 can also provide additional data to the outdoor unit controller 204, such as a desired operation mode (e.g. normal, efficiency, and comfort), an ambient indoor temperature, an indoor humidity level, or other required information to perform the desired operations.
In one embodiment, the outdoor unit controller 204 may transmit data received from the thermostat 22 to the temperature/humidity controller 322. The temperature/humidity controller 322 may be configured to establish operating values for multiple components within the system 100. In one embodiment, the temperature/humidity controller 322 may be configured to establish various operating values for system 100 components, including the compressor 216, the outdoor fan 224, and the indoor fan 238, as described above. In addition, the temperature/humidity controller 322 may be able to establish other system parameters such as superheat set points, and/or electronic expansion valve start positions. In one embodiment, the temperature/humidity controller 322 is configured to calculate operational values for one or more components within the system 100 using one or more control algorithms. For example, the temperature/humidity controller 322 may be configured to operate one or more components within a predefined operating envelope. The operating envelope may allow the temperature/humidity controller 322 to control one or more components to operate between a minimum operational value and a maximum operational value. For example, the compressor 216 may have a minimum operational speed and a maximum operational speed. The temperature/humidity controller 322 may then operate the compressor 216 at a speed between the minimum speed and the maximum speed.
In one embodiment, the minimum and maximum operational values are dependent on an outdoor ambient temperature (“OAT”). For example, the minimum and maximum compressor speeds may vary as the OAT increases. The operational minimum and maximum values at varying outdoor ambient temperatures are shown below in Tables 1 and 2. The below values are shown for a standard four-ton HVAC system. However, the values are for example purposes only, and should not be considered as limiting, as the described control mechanism described herein are applicable across multiple HVAC system sizes and types.
In one embodiment, the temperature/humidity controller 322 is further configured to calculate an appropriate output for each of the above components or parameters based upon a percentage of the delta between the minimum operational values and the maximum operational values. This allows each component to be controlled similarly based on the OAT. The operational output equation (Equation 1) is shown below.
(Max−Min)*x%+Min=Target Value
For Equation 1, above, Max is the maximum operating value for a component of the system 100, Min is the minimum operating value for the component of the system 100, and x % is the output of an operating algorithm. The operating algorithm is used to determine a percentage of the delta between the minimum operating values and the maximum operating values of one or more components. The operating algorithm may be expressed as the following equation:
x%=±A%/Tc(+B%/Dmin when T[0]≥T[Dmin]; or −C%/Dmin when T[0]<T[Dmin])
In Equation 2, Tc is a temperature difference between a set point of the system 100 and a measured indoor ambient temperature. The set point may be a set point temperature provided by a user of the system 100. In one embodiment, the set point is provided by the thermostat 22. In one example, the indoor ambient temperature is provided to the temperature/humidity controller 322 by the thermostat 22, to allow the temperature/humidity controller 322 determine Tc. However, in some embodiments, Tc may be provided to the temperature/humidity controller 322 directly from the thermostat 22. In one example, Tc may be 0.1°. However, Tc may be more than 0.1° or less than 0.1°. In some embodiments, Tc is a temperature above a deadband temperature. A deadband temperature may be a defined band of temperature variation from a set point temperature where the system does not request additional heating or cooling. In some examples the deadband temperature may be selected by a user via the thermostat 22. In one embodiment, the deadband range can be ±0.5° to ±2.0° from the set point. However, in other examples the deadband range can be greater than ±0.5° to ±2.0° or less than ±0.5° to ±2.0°.
As used in Equation 2, A % is a predefined temperature differential multiplier expressed as a percentage. Thus, the temperature/humidity controller 322 makes an A % change in the operational value for specified components for every Tc change in the indoor ambient temperature. In one example, the default value for A may be 10%. However, the value of A may be dependent on the operating mode of the system 100. For example, where the system 100 is operating in an efficiency mode, the default value for A may be 10% to require less increase in operating values to achieve the desired set point. However, in other modes, such as a normal mode, the default value for A may be 20%. In one embodiment, the value for A is determined based on the size and type of system that is being controlled.
As also used in Equation 2, there are shown two time-dependent multipliers, B and C. Time-dependent multiplier B is used to instruct the temperature/humidity controller 322 to make an increase of B % in one or more operational values when the temperature is moving further from the set point or if the temperature is staying at a constant level above the set point, after a period of time. Conversely, time dependent multiplier C is used to instruct the temperature/humidity controller 322 to make a decrease of C % in one or more operational values when the temperature is moving closer to the set point. B and C are predefined values that are set by the manufacturer, based on data associated with the system 100. For example, B and C may be based on a size of the system 100. In one example, B may be 8% and C may be 5% for normal operation. However, B may be more than 8% or less than 8%. Similarly, C may be more than 5% or less than 5%.
Both B and C are time-dependent on a time-slope constant D. The time-slope constant D is used to calculate Dmin, which varies based on how far the indoor ambient temperature is away from the set point temperature, as shown below in Equation 3. The time-slope constant D may be a predefined value that is determined based on empirical testing on various systems. In one embodiment, the time-slope constant D is equal to four; however, D may be equal to a value more than four, or a value less than four. Further, the time-slope constant D may vary based on the type of system, size of system, or other variable.
DMin=D/(indoor ambient temperature−set point temperature); where Dmin≥1 minute
Using the above equations, operating values can be provided to multiple components within the system 100, to allow for the components to operate at an operational value configured to accomplish the desired results, with minimum sensors or other devices required to determine an ideal operational value for each component. Additionally, some components may have additional variables which may be used when determining an appropriate operating value. For example, where the component is the indoor fan 238, the operating airflow value (e.g. CFM) may be determined using the above equations. However, the operating airflow value may further be adjusted based on other settings. In one embodiment, the determined operating airflow value for the indoor fan 238 is further adjusted up or down based on a dehumidifier setting. In another embodiment, the determined operating airflow value for the indoor fan 238 is further adjusted up or down based on an airflow setting for the indoor fan 238. The dehumidifier signal and/or airflow setting may be set in the thermostat 22. In one embodiment, the thermostat 22 provides the dehumidifier and/or airflow signal to the temperature/humidity controller 322 for processing. Accordingly, the temperature/humidity controller 322 can determine the operating value (e.g. operating airflow value) for the indoor fan 238 using the above equations, and then further adjusting the operating value for the indoor fan 238 based on the dehumidifier and/or airflow settings provided by the thermostat 22.
The above examples may be used during a setback cycle of the system. A setback cycle is defined as an offset temperature larger than a minimum offset. In one example, there are two modes available for a setback cycle, comfort or efficiency. In comfort mode, a setback cycle shall begin with the compressor 216, the outdoor fan 224, and the indoor fan 238 at 100% per max values at the current ambient conditions. Further the outdoor electronic expansion valve 222 set-point and starting point shall be at 100% per max values at the current ambient conditions. In efficiency mode, a setback cycle may begin with the compressor 216, the outdoor fan 224 and the indoor fan 238 operating based on Equation 1, above, where A % is a lower value than where the system is operating in a normal mode. If the offset temperature is satisfied by a set-point change, the temperature/humidity controller 322 may ramp to the ramp-down frequency at the maximum ramp rate and stop. The indoor fan 238 may then shut off per requirements in the thermostat 22, and the outdoor fan 224 may shut off after a specified delay.
The above examples may also be modified based on a slew rate for one or more components within the system. For example, where the compressor 216 has reached a lower limit, any change to the system 100 requiring a change in the compressor 216 speed must not exceed a ramp rate of the system. In one embodiment, the ramp rate may be 10% per minute. However, the ramp rate may be more than 10% per minute or less than 10% per minute, based on the system 100. Similarly, the indoor fan 238, the outdoor fan 224, the superheat set point and/or the outdoor electronic expansion valve 222 positions may execute a slew rate based as described above.
Turning now to
At process block 404, the indoor ambient temperature is compared to a temperature set point to determine if the indoor ambient temperature varies from the temperature set point. In some embodiments, the thermostat 22 compares the ambient indoor temperature to the temperature set point. However, in other examples, other devices, such as the outdoor unit controller 204 may compare the indoor ambient temperature to the temperature set point. In some embodiments, the indoor ambient temperature is evaluated to determine if it varies from the temperature by a defined amount. For example, as described above, the indoor ambient temperature may be evaluated to determine if the indoor ambient temperature exceeds the set point temperature by an amount equal to or greater than a predetermined deadband value. For example, the deadband value may be 0.5°-2° above or below the set point temperature. If the indoor ambient temperature is determined not to vary from the temperature set point by a predetermined value, the system 100 continues to monitor the ambient temperature at 402.
Where the indoor ambient temperature varies from the temperature set point by a predetermined amount, the process determines an updated operating value for one or more components based on the indoor ambient temperature at 406. The one or more components may include an indoor fan, and outdoor fan, a compressor, an EEV, or other applicable component as described above. For some components the operating values may related to an operating speed. For example, for a compressor, an outdoor fan, and/or an indoor fan, the operating value may be related to a speed. For other components, such as the superheat set point or the EEV start position, the operating values may be related to other parameters. In one embodiment, the operating values are determined based on an outdoor ambient temperature, using the equations listed above. Once the operating values are determined, the operating values are transmitted to the respective components at 408.
At 410, the process 400 determines if the indoor ambient temperature is equal to the set point temperature. In one embodiment, the thermostat 22 determines if the indoor ambient temperature is equal to the set point temperature. In other embodiments, other components, such as the outdoor unit controller 204 may determine if the indoor ambient temperature is equal to the set point temperature. In one embodiment, the indoor ambient temperature is evaluated after a predefined amount of time to determine if the indoor ambient temperature is equal to the set point temperature. For example, the indoor ambient temperature may be evaluated after ten minutes to determine if the indoor ambient temperature is equal to the set point temperature. In other embodiments, the indoor ambient temperature may be evaluated after less than ten minutes or after ten minutes. In some examples, the indoor ambient temperature may be determined to be equal to the set point temperature when the indoor ambient temperature is within a predetermined value of the set point. For example, the indoor ambient temperature may be determined to be equal to the set point temperature when the indoor ambient temperature is within 0.1° of the set point temperature. However, values of more than 0.1° or less than 0.1° may also be used. If the ambient temperature is determined to equal the set point temperature, the system 100 monitors the indoor ambient temperature at 402. If the ambient temperature is not equal to the set point temperature, the operational values for the one or more components are modified based on the indoor ambient temperature value and time at 412. For example, the operational values may be modified using the equations listed above. Specifically, the operational values may be modified based on the time dependent multipliers B and C, described above.
Once the operational values have been modified, the indoor ambient temperature is evaluated to determine if the indoor ambient temperature is equal to the set point temperature at 414. The indoor ambient temperature may be evaluated at 414 in the same manner that the indoor ambient temperature is evaluated at process block 410. If the indoor ambient temperature is determined to be equal to the set point temperature, the indoor ambient temperature is monitored at 402. If the ambient temperature is determined to not equal the set point temperature, the operational values are modified again at 412. The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
The present disclosure contemplates methods, systems and program products on any machine-readable media for accomplishing various operations. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a machine, the machine properly views the connection as a machine-readable medium. Thus, any such connection is properly termed a machine-readable medium. Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
Although the figures show a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various connection steps, processing steps, comparison steps and decision steps.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/367,358 filed Jul. 27, 2016, U.S. Provisional Patent Application No. 62/367,315 filed Jul. 27, 2016, U.S. Provisional Patent Application No. 62/367,576 filed Jul. 27, 2016, and U.S. Provisional Patent Application No. 62/367,572 filed Jul. 27, 2016. The entire disclosure of each of these patent applications is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4748822 | Erbs | Jun 1988 | A |
5052186 | Dudley et al. | Oct 1991 | A |
5062276 | Dudley | Nov 1991 | A |
5263335 | Isono | Nov 1993 | A |
5673568 | Isshiki | Oct 1997 | A |
5797729 | Rafuse et al. | Aug 1998 | A |
5970727 | Hiraoka | Oct 1999 | A |
6164374 | Rhodes et al. | Dec 2000 | A |
6169937 | Peterson | Jan 2001 | B1 |
6227961 | Moore et al. | May 2001 | B1 |
6314750 | Ishikawa et al. | Nov 2001 | B1 |
6351693 | Monie et al. | Feb 2002 | B1 |
6435418 | Toth et al. | Aug 2002 | B1 |
6487869 | Sulc et al. | Dec 2002 | B1 |
6557771 | Shah | May 2003 | B2 |
6641054 | Morey | Nov 2003 | B2 |
6726112 | Ho | Apr 2004 | B1 |
6726113 | Guo | Apr 2004 | B2 |
6810307 | Addy | Oct 2004 | B1 |
6824069 | Rosen | Nov 2004 | B2 |
6888441 | Carey | May 2005 | B2 |
6995518 | Havlik et al. | Feb 2006 | B2 |
7028912 | Rosen | Apr 2006 | B1 |
7083109 | Pouchak | Aug 2006 | B2 |
7099748 | Rayburn | Aug 2006 | B2 |
7140551 | De Pauw et al. | Nov 2006 | B2 |
7146253 | Hoog et al. | Dec 2006 | B2 |
7152806 | Rosen | Dec 2006 | B1 |
7156317 | Moore | Jan 2007 | B1 |
7156318 | Rosen | Jan 2007 | B1 |
7159789 | Schwendinger et al. | Jan 2007 | B2 |
7159790 | Schwendinger et al. | Jan 2007 | B2 |
7167079 | Smyth et al. | Jan 2007 | B2 |
7188002 | Chapman et al. | Mar 2007 | B2 |
7212887 | Shah et al. | May 2007 | B2 |
7232075 | Rosen | Jun 2007 | B1 |
7261243 | Butler et al. | Aug 2007 | B2 |
7274972 | Amundson et al. | Sep 2007 | B2 |
7287709 | Proffitt et al. | Oct 2007 | B2 |
7296426 | Butler et al. | Nov 2007 | B2 |
7299996 | Garrett et al. | Nov 2007 | B2 |
7306165 | Shah | Dec 2007 | B2 |
7308384 | Shah et al. | Dec 2007 | B2 |
7317970 | Pienta et al. | Jan 2008 | B2 |
7331187 | Kates | Feb 2008 | B2 |
7343751 | Kates | Mar 2008 | B2 |
7402780 | Mueller et al. | Jul 2008 | B2 |
7434744 | Garozzo et al. | Oct 2008 | B2 |
7442012 | Moens | Oct 2008 | B2 |
7475558 | Perry | Jan 2009 | B2 |
7475828 | Bartlett et al. | Jan 2009 | B2 |
7556207 | Mueller et al. | Jul 2009 | B2 |
7565813 | Pouchak | Jul 2009 | B2 |
7575179 | Morrow et al. | Aug 2009 | B2 |
7584897 | Schultz et al. | Sep 2009 | B2 |
7614567 | Chapman et al. | Nov 2009 | B2 |
7624931 | Chapman et al. | Dec 2009 | B2 |
7633743 | Barton et al. | Dec 2009 | B2 |
7636604 | Bergman et al. | Dec 2009 | B2 |
7638739 | Rhodes et al. | Dec 2009 | B2 |
7641126 | Schultz et al. | Jan 2010 | B2 |
7645158 | Mulhouse et al. | Jan 2010 | B2 |
7667163 | Ashworth et al. | Feb 2010 | B2 |
7726581 | Naujok et al. | Jun 2010 | B2 |
7731096 | Lorenz et al. | Jun 2010 | B2 |
7731098 | Butler et al. | Jun 2010 | B2 |
7740184 | Schnell et al. | Jun 2010 | B2 |
7748225 | Butler et al. | Jul 2010 | B2 |
7748639 | Perry | Jul 2010 | B2 |
7748640 | Roher et al. | Jul 2010 | B2 |
7755220 | Sorg et al. | Jul 2010 | B2 |
7765826 | Nichols | Aug 2010 | B2 |
7770806 | Herzon | Aug 2010 | B2 |
7784291 | Butler et al. | Aug 2010 | B2 |
7784704 | Harter | Aug 2010 | B2 |
7802618 | Simon et al. | Sep 2010 | B2 |
7832221 | Wijaya et al. | Nov 2010 | B2 |
7832652 | Barton et al. | Nov 2010 | B2 |
7845576 | Siddaramanna et al. | Dec 2010 | B2 |
7861941 | Schultz et al. | Jan 2011 | B2 |
7867646 | Rhodes | Jan 2011 | B2 |
7908116 | Steinberg et al. | Mar 2011 | B2 |
7908117 | Steinberg et al. | Mar 2011 | B2 |
7918406 | Rosen | Apr 2011 | B2 |
7938336 | Rhodes et al. | May 2011 | B2 |
7941294 | Shahi et al. | May 2011 | B2 |
7954726 | Siddaramanna et al. | Jun 2011 | B2 |
7963454 | Sullivan et al. | Jun 2011 | B2 |
7979164 | Garozzo et al. | Jul 2011 | B2 |
8010237 | Cheung et al. | Aug 2011 | B2 |
8032254 | Amundson et al. | Oct 2011 | B2 |
8082065 | Imes et al. | Dec 2011 | B2 |
8083154 | Schultz et al. | Dec 2011 | B2 |
8089032 | Beland et al. | Jan 2012 | B2 |
8091794 | Siddaramanna et al. | Jan 2012 | B2 |
8099195 | Imes et al. | Jan 2012 | B2 |
8108076 | Imes et al. | Jan 2012 | B2 |
8131506 | Steinberg et al. | Mar 2012 | B2 |
8141791 | Rosen | Mar 2012 | B2 |
8167216 | Schultz et al. | May 2012 | B2 |
8180492 | Steinberg | May 2012 | B2 |
8190296 | Alhilo | May 2012 | B2 |
8195313 | Fadell et al. | Jun 2012 | B1 |
8196185 | Geadelmann et al. | Jun 2012 | B2 |
8209059 | Stockton | Jun 2012 | B2 |
8239066 | Jennings et al. | Aug 2012 | B2 |
8276829 | Stoner et al. | Oct 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8289182 | Vogel et al. | Oct 2012 | B2 |
8289226 | Takach et al. | Oct 2012 | B2 |
8299919 | Dayton et al. | Oct 2012 | B2 |
8321058 | Zhou et al. | Nov 2012 | B2 |
8346396 | Amundson et al. | Jan 2013 | B2 |
8387891 | Simon et al. | Mar 2013 | B1 |
8393550 | Simon et al. | Mar 2013 | B2 |
8412488 | Steinberg et al. | Apr 2013 | B2 |
8429566 | Koushik et al. | Apr 2013 | B2 |
8473109 | Imes et al. | Jun 2013 | B1 |
8476964 | Atri | Jul 2013 | B1 |
8489243 | Fadell et al. | Jul 2013 | B2 |
8504180 | Imes et al. | Aug 2013 | B2 |
8510255 | Fadell et al. | Aug 2013 | B2 |
8511576 | Warren et al. | Aug 2013 | B2 |
8511577 | Warren et al. | Aug 2013 | B2 |
8517088 | Moore et al. | Aug 2013 | B2 |
8523083 | Warren et al. | Sep 2013 | B2 |
8523084 | Siddaramanna et al. | Sep 2013 | B2 |
8527096 | Pavlak et al. | Sep 2013 | B2 |
8532827 | Stefanski et al. | Sep 2013 | B2 |
8544285 | Stefanski et al. | Oct 2013 | B2 |
8549658 | Kolavennu et al. | Oct 2013 | B2 |
8550368 | Butler et al. | Oct 2013 | B2 |
8554374 | Lunacek et al. | Oct 2013 | B2 |
8555662 | Peterson et al. | Oct 2013 | B2 |
8558179 | Filson et al. | Oct 2013 | B2 |
8560127 | Leen et al. | Oct 2013 | B2 |
8560128 | Ruff et al. | Oct 2013 | B2 |
8571518 | Imes et al. | Oct 2013 | B2 |
8596550 | Steinberg et al. | Dec 2013 | B2 |
8600564 | Imes et al. | Dec 2013 | B2 |
8606409 | Amundson et al. | Dec 2013 | B2 |
8613792 | Ragland et al. | Dec 2013 | B2 |
8622314 | Fisher et al. | Jan 2014 | B2 |
8626344 | Imes et al. | Jan 2014 | B2 |
8630741 | Matsuoka et al. | Jan 2014 | B1 |
8630742 | Stefanski et al. | Jan 2014 | B1 |
8644009 | Rylski et al. | Feb 2014 | B2 |
8659302 | Warren et al. | Feb 2014 | B1 |
8671702 | Shotey et al. | Mar 2014 | B1 |
8674816 | Trundle et al. | Mar 2014 | B2 |
8689572 | Evans et al. | Apr 2014 | B2 |
8695887 | Helt et al. | Apr 2014 | B2 |
8706270 | Fadell et al. | Apr 2014 | B2 |
8708242 | Conner et al. | Apr 2014 | B2 |
8712590 | Steinberg | Apr 2014 | B2 |
8718826 | Ramachandran et al. | May 2014 | B2 |
8726680 | Schenk et al. | May 2014 | B2 |
8727611 | Huppi et al. | May 2014 | B2 |
8738327 | Steinberg et al. | May 2014 | B2 |
8746583 | Simon et al. | Jun 2014 | B2 |
8752771 | Warren et al. | Jun 2014 | B2 |
8754780 | Petite et al. | Jun 2014 | B2 |
8766194 | Filson et al. | Jul 2014 | B2 |
8770490 | Drew | Jul 2014 | B2 |
8770491 | Warren et al. | Jul 2014 | B2 |
8788103 | Warren et al. | Jul 2014 | B2 |
8802981 | Wallaert et al. | Aug 2014 | B2 |
8838282 | Ratliff et al. | Sep 2014 | B1 |
8843239 | Mighdoll et al. | Sep 2014 | B2 |
8850348 | Fadell et al. | Sep 2014 | B2 |
8855830 | Imes et al. | Oct 2014 | B2 |
8868219 | Fadell et al. | Oct 2014 | B2 |
8870086 | Tessier et al. | Oct 2014 | B2 |
8870087 | Pienta et al. | Oct 2014 | B2 |
8880047 | Konicek et al. | Nov 2014 | B2 |
8893032 | Bruck et al. | Nov 2014 | B2 |
8903552 | Amundson et al. | Dec 2014 | B2 |
8918219 | Sloo et al. | Dec 2014 | B2 |
8942853 | Stefanski et al. | Jan 2015 | B2 |
8944338 | Warren et al. | Feb 2015 | B2 |
8950686 | Matsuoka et al. | Feb 2015 | B2 |
8950687 | Bergman et al. | Feb 2015 | B2 |
8961005 | Huppi et al. | Feb 2015 | B2 |
8978994 | Moore et al. | Mar 2015 | B2 |
8998102 | Fadell et al. | Apr 2015 | B2 |
9014686 | Ramachandran et al. | Apr 2015 | B2 |
9014860 | Moore et al. | Apr 2015 | B2 |
9020647 | Johnson et al. | Apr 2015 | B2 |
9026232 | Fadell et al. | May 2015 | B2 |
9033255 | Tessier et al. | May 2015 | B2 |
RE45574 | Harter | Jun 2015 | E |
9074784 | Sullivan et al. | Jul 2015 | B2 |
9075419 | Sloo et al. | Jul 2015 | B2 |
9080782 | Sheikh | Jul 2015 | B1 |
9081393 | Lunacek et al. | Jul 2015 | B2 |
9086703 | Warren et al. | Jul 2015 | B2 |
9088306 | Ramachandran et al. | Jul 2015 | B1 |
9092039 | Fadell et al. | Jul 2015 | B2 |
9098279 | Mucignat et al. | Aug 2015 | B2 |
9116529 | Warren et al. | Aug 2015 | B2 |
9121623 | Filson et al. | Sep 2015 | B2 |
9122283 | Rylski et al. | Sep 2015 | B2 |
9125049 | Huang et al. | Sep 2015 | B2 |
9127853 | Filson et al. | Sep 2015 | B2 |
9134710 | Cheung et al. | Sep 2015 | B2 |
9134715 | Geadelmann et al. | Sep 2015 | B2 |
9146041 | Novotny et al. | Sep 2015 | B2 |
9151510 | Leen | Oct 2015 | B2 |
9154001 | Dharwada et al. | Oct 2015 | B2 |
9157764 | Shetty et al. | Oct 2015 | B2 |
9164524 | Imes et al. | Oct 2015 | B2 |
9175868 | Fadell et al. | Nov 2015 | B2 |
9175871 | Gourlay et al. | Nov 2015 | B2 |
9182141 | Sullivan et al. | Nov 2015 | B2 |
9189751 | Matsuoka et al. | Nov 2015 | B2 |
9191277 | Rezvani et al. | Nov 2015 | B2 |
9191909 | Rezvani et al. | Nov 2015 | B2 |
9194597 | Steinberg et al. | Nov 2015 | B2 |
9194598 | Fadell et al. | Nov 2015 | B2 |
9194600 | Kates | Nov 2015 | B2 |
9207817 | Tu | Dec 2015 | B2 |
9213342 | Drake et al. | Dec 2015 | B2 |
9215281 | Iggulden et al. | Dec 2015 | B2 |
9222693 | Gourlay et al. | Dec 2015 | B2 |
9223323 | Matas et al. | Dec 2015 | B2 |
9234669 | Filson et al. | Jan 2016 | B2 |
9244445 | Finch et al. | Jan 2016 | B2 |
9244470 | Steinberg | Jan 2016 | B2 |
9261287 | Warren et al. | Feb 2016 | B2 |
9268344 | Warren et al. | Feb 2016 | B2 |
9279595 | Mighdoll et al. | Mar 2016 | B2 |
9282590 | Donlan | Mar 2016 | B2 |
9285134 | Bray et al. | Mar 2016 | B2 |
9286781 | Filson et al. | Mar 2016 | B2 |
9291359 | Fadell et al. | Mar 2016 | B2 |
9292022 | Ramachandran et al. | Mar 2016 | B2 |
9298196 | Matsuoka et al. | Mar 2016 | B2 |
9298197 | Matsuoka et al. | Mar 2016 | B2 |
D763707 | Sinha et al. | Aug 2016 | S |
D790369 | Sinha et al. | Jun 2017 | S |
20010015281 | Schiedegger et al. | Aug 2001 | A1 |
20030034897 | Shamoon et al. | Feb 2003 | A1 |
20030034898 | Shamoon et al. | Feb 2003 | A1 |
20030177012 | Drennan | Sep 2003 | A1 |
20040074978 | Rosen | Apr 2004 | A1 |
20040262410 | Hull | Dec 2004 | A1 |
20050040943 | Winick | Feb 2005 | A1 |
20050083168 | Breitenbach | Apr 2005 | A1 |
20050194456 | Tessier et al. | Sep 2005 | A1 |
20050195757 | Kidder et al. | Sep 2005 | A1 |
20050270151 | Winick | Dec 2005 | A1 |
20060038025 | Lee | Feb 2006 | A1 |
20060113398 | Ashworth | Jun 2006 | A1 |
20060130504 | Agrawal | Jun 2006 | A1 |
20060192022 | Barton et al. | Aug 2006 | A1 |
20060260334 | Carey et al. | Nov 2006 | A1 |
20070013532 | Ehlers | Jan 2007 | A1 |
20070045431 | Chapman et al. | Mar 2007 | A1 |
20070050732 | Chapman et al. | Mar 2007 | A1 |
20070057079 | Stark et al. | Mar 2007 | A1 |
20070114295 | Jenkins | May 2007 | A1 |
20070198099 | Shah | Aug 2007 | A9 |
20070228182 | Wagner et al. | Oct 2007 | A1 |
20070228183 | Kennedy et al. | Oct 2007 | A1 |
20070241203 | Wagner et al. | Oct 2007 | A1 |
20080048046 | Wagner et al. | Feb 2008 | A1 |
20080054084 | Olson | Mar 2008 | A1 |
20080099568 | Nicodem et al. | May 2008 | A1 |
20080120446 | Butler et al. | May 2008 | A1 |
20080161978 | Shah | Jul 2008 | A1 |
20080216495 | Kates | Sep 2008 | A1 |
20080223051 | Kates | Sep 2008 | A1 |
20080289347 | Kadle et al. | Nov 2008 | A1 |
20080290183 | Laberge et al. | Nov 2008 | A1 |
20080294274 | Laberge et al. | Nov 2008 | A1 |
20080295030 | Laberge et al. | Nov 2008 | A1 |
20090140065 | Juntunen et al. | Jun 2009 | A1 |
20090143880 | Amundson et al. | Jun 2009 | A1 |
20090143918 | Amundson et al. | Jun 2009 | A1 |
20090251422 | Wu et al. | Oct 2009 | A1 |
20090276096 | Proffitt et al. | Nov 2009 | A1 |
20100070092 | Winter et al. | Mar 2010 | A1 |
20100084482 | Kennedy et al. | Apr 2010 | A1 |
20100131884 | Shah | May 2010 | A1 |
20100163633 | Barrett et al. | Jul 2010 | A1 |
20100163635 | Ye | Jul 2010 | A1 |
20100171889 | Pantel et al. | Jul 2010 | A1 |
20100182743 | Roher | Jul 2010 | A1 |
20100204834 | Comerford et al. | Aug 2010 | A1 |
20100212879 | Schnell et al. | Aug 2010 | A1 |
20100250707 | Dalley et al. | Sep 2010 | A1 |
20110006887 | Shaull et al. | Jan 2011 | A1 |
20110067851 | Terlson et al. | Mar 2011 | A1 |
20110088416 | Koethler | Apr 2011 | A1 |
20110132991 | Moody et al. | Jun 2011 | A1 |
20110181412 | Alexander et al. | Jul 2011 | A1 |
20110264279 | Poth | Oct 2011 | A1 |
20120001873 | Wu et al. | Jan 2012 | A1 |
20120007555 | Bukow | Jan 2012 | A1 |
20120048955 | Lin et al. | Mar 2012 | A1 |
20120061480 | Deligiannis et al. | Mar 2012 | A1 |
20120093141 | Imes et al. | Apr 2012 | A1 |
20120095601 | Abraham et al. | Apr 2012 | A1 |
20120101637 | Imes et al. | Apr 2012 | A1 |
20120126020 | Filson et al. | May 2012 | A1 |
20120126021 | Warren et al. | May 2012 | A1 |
20120131504 | Fadell et al. | May 2012 | A1 |
20120165993 | Whitehouse | Jun 2012 | A1 |
20120181010 | Schultz et al. | Jul 2012 | A1 |
20120191257 | Corcoran et al. | Jul 2012 | A1 |
20120193437 | Henry et al. | Aug 2012 | A1 |
20120229521 | Hales et al. | Sep 2012 | A1 |
20120230661 | Alhilo | Sep 2012 | A1 |
20120239207 | Fadell et al. | Sep 2012 | A1 |
20120298763 | Young | Nov 2012 | A1 |
20120303165 | Qu et al. | Nov 2012 | A1 |
20120303828 | Young et al. | Nov 2012 | A1 |
20120310418 | Harrod et al. | Dec 2012 | A1 |
20130002447 | Vogel et al. | Jan 2013 | A1 |
20130054758 | Imes et al. | Feb 2013 | A1 |
20130057381 | Kandhasamy | Mar 2013 | A1 |
20130090767 | Bruck et al. | Apr 2013 | A1 |
20130099008 | Aljabari et al. | Apr 2013 | A1 |
20130099009 | Filson et al. | Apr 2013 | A1 |
20130123991 | Richmond | May 2013 | A1 |
20130138250 | Mowery et al. | May 2013 | A1 |
20130144443 | Casson et al. | Jun 2013 | A1 |
20130151016 | Bias et al. | Jun 2013 | A1 |
20130151018 | Bias et al. | Jun 2013 | A1 |
20130180700 | Aycock | Jul 2013 | A1 |
20130190932 | Schuman | Jul 2013 | A1 |
20130204408 | Thiruvengada et al. | Aug 2013 | A1 |
20130204441 | Sloo et al. | Aug 2013 | A1 |
20130204442 | Modi et al. | Aug 2013 | A1 |
20130211600 | Dean-Hendricks et al. | Aug 2013 | A1 |
20130215058 | Brazell et al. | Aug 2013 | A1 |
20130221117 | Warren et al. | Aug 2013 | A1 |
20130228633 | Toth et al. | Sep 2013 | A1 |
20130234840 | Trundle et al. | Sep 2013 | A1 |
20130238142 | Nichols et al. | Sep 2013 | A1 |
20130245838 | Zywicki et al. | Sep 2013 | A1 |
20130261803 | Kolavennu | Oct 2013 | A1 |
20130261807 | Zywicki et al. | Oct 2013 | A1 |
20130268129 | Fadell et al. | Oct 2013 | A1 |
20130292481 | Filson et al. | Nov 2013 | A1 |
20130297078 | Kolavennu | Nov 2013 | A1 |
20130318217 | Imes et al. | Nov 2013 | A1 |
20130318444 | Imes et al. | Nov 2013 | A1 |
20130325190 | Imes et al. | Dec 2013 | A1 |
20130338837 | Hublou et al. | Dec 2013 | A1 |
20130338839 | Rogers et al. | Dec 2013 | A1 |
20130340993 | Siddaramanna et al. | Dec 2013 | A1 |
20130345882 | Dushane et al. | Dec 2013 | A1 |
20140000861 | Barrett et al. | Jan 2014 | A1 |
20140002461 | Wang | Jan 2014 | A1 |
20140031989 | Bergman et al. | Jan 2014 | A1 |
20140034284 | Butler et al. | Feb 2014 | A1 |
20140039692 | Leen et al. | Feb 2014 | A1 |
20140041846 | Leen et al. | Feb 2014 | A1 |
20140048608 | Frank | Feb 2014 | A1 |
20140052300 | Matsuoka et al. | Feb 2014 | A1 |
20140058806 | Guenette et al. | Feb 2014 | A1 |
20140081466 | Huapeng et al. | Mar 2014 | A1 |
20140112331 | Rosen | Apr 2014 | A1 |
20140114706 | Blakely | Apr 2014 | A1 |
20140116074 | Jeong | May 2014 | A1 |
20140117103 | Rossi et al. | May 2014 | A1 |
20140118285 | Poplawski | May 2014 | A1 |
20140129034 | Stefanski et al. | May 2014 | A1 |
20140149270 | Lombard et al. | May 2014 | A1 |
20140151456 | McCurnin et al. | Jun 2014 | A1 |
20140152631 | Moore et al. | Jun 2014 | A1 |
20140156087 | Amundson | Jun 2014 | A1 |
20140158338 | Kates | Jun 2014 | A1 |
20140165612 | Qu et al. | Jun 2014 | A1 |
20140175181 | Warren et al. | Jun 2014 | A1 |
20140188288 | Fisher et al. | Jul 2014 | A1 |
20140191848 | Imes et al. | Jul 2014 | A1 |
20140202188 | Hrejsa | Jul 2014 | A1 |
20140207291 | Golden et al. | Jul 2014 | A1 |
20140207292 | Ramagem et al. | Jul 2014 | A1 |
20140214212 | Leen et al. | Jul 2014 | A1 |
20140216078 | Ladd | Aug 2014 | A1 |
20140217185 | Bicknell | Aug 2014 | A1 |
20140217186 | Kramer et al. | Aug 2014 | A1 |
20140228983 | Groskreutz et al. | Aug 2014 | A1 |
20140231530 | Warren et al. | Aug 2014 | A1 |
20140244047 | Oh et al. | Aug 2014 | A1 |
20140250399 | Gaherwar | Sep 2014 | A1 |
20140262196 | Frank et al. | Sep 2014 | A1 |
20140262484 | Khoury et al. | Sep 2014 | A1 |
20140263679 | Conner et al. | Sep 2014 | A1 |
20140267008 | Jain et al. | Sep 2014 | A1 |
20140277762 | Drew | Sep 2014 | A1 |
20140277769 | Matsuoka et al. | Sep 2014 | A1 |
20140277770 | Aljabari et al. | Sep 2014 | A1 |
20140299670 | Ramachandran et al. | Oct 2014 | A1 |
20140309792 | Drew | Oct 2014 | A1 |
20140312129 | Zikes et al. | Oct 2014 | A1 |
20140312131 | Tousignant et al. | Oct 2014 | A1 |
20140312694 | Tu et al. | Oct 2014 | A1 |
20140316585 | Boesveld et al. | Oct 2014 | A1 |
20140316586 | Boesveld et al. | Oct 2014 | A1 |
20140316587 | Imes et al. | Oct 2014 | A1 |
20140317029 | Matsuoka et al. | Oct 2014 | A1 |
20140319231 | Matsuoka et al. | Oct 2014 | A1 |
20140319236 | Novotny et al. | Oct 2014 | A1 |
20140321011 | Bisson et al. | Oct 2014 | A1 |
20140324232 | Modi et al. | Oct 2014 | A1 |
20140330435 | Stoner et al. | Nov 2014 | A1 |
20140346239 | Fadell et al. | Nov 2014 | A1 |
20140358295 | Warren et al. | Dec 2014 | A1 |
20140367475 | Fadell et al. | Dec 2014 | A1 |
20140376530 | Erickson et al. | Dec 2014 | A1 |
20150001361 | Gagne et al. | Jan 2015 | A1 |
20150002165 | Juntunen et al. | Jan 2015 | A1 |
20150016443 | Erickson et al. | Jan 2015 | A1 |
20150025693 | Wu et al. | Jan 2015 | A1 |
20150039137 | Perry et al. | Feb 2015 | A1 |
20150041551 | Tessier et al. | Feb 2015 | A1 |
20150043615 | Steinberg et al. | Feb 2015 | A1 |
20150053779 | Adamek et al. | Feb 2015 | A1 |
20150053780 | Nelson et al. | Feb 2015 | A1 |
20150053781 | Nelson et al. | Feb 2015 | A1 |
20150058779 | Bruck et al. | Feb 2015 | A1 |
20150061859 | Matsuoka et al. | Mar 2015 | A1 |
20150066215 | Buduri | Mar 2015 | A1 |
20150066216 | Ramachandran | Mar 2015 | A1 |
20150066220 | Sloo et al. | Mar 2015 | A1 |
20150081106 | Buduri | Mar 2015 | A1 |
20150081109 | Fadell et al. | Mar 2015 | A1 |
20150088272 | Drew | Mar 2015 | A1 |
20150088318 | Amundson et al. | Mar 2015 | A1 |
20150100166 | Baynes et al. | Apr 2015 | A1 |
20150100167 | Sloo et al. | Apr 2015 | A1 |
20150114080 | Berg | Apr 2015 | A1 |
20150115045 | Tu et al. | Apr 2015 | A1 |
20150115046 | Warren et al. | Apr 2015 | A1 |
20150124853 | Huppi et al. | May 2015 | A1 |
20150127176 | Bergman et al. | May 2015 | A1 |
20150140994 | Partheesh et al. | May 2015 | A1 |
20150142180 | Matsuoka et al. | May 2015 | A1 |
20150144706 | Robideau et al. | May 2015 | A1 |
20150148963 | Klein et al. | May 2015 | A1 |
20150153057 | Matsuoka et al. | Jun 2015 | A1 |
20150153060 | Stefanski et al. | Jun 2015 | A1 |
20150156631 | Ramachandran | Jun 2015 | A1 |
20150159893 | Daubman et al. | Jun 2015 | A1 |
20150159899 | Bergman et al. | Jun 2015 | A1 |
20150159902 | Quam et al. | Jun 2015 | A1 |
20150159903 | Marak et al. | Jun 2015 | A1 |
20150159904 | Barton | Jun 2015 | A1 |
20150160691 | Kadah et al. | Jun 2015 | A1 |
20150163945 | Barton et al. | Jun 2015 | A1 |
20150167995 | Fadell et al. | Jun 2015 | A1 |
20150168002 | Plitkins et al. | Jun 2015 | A1 |
20150168003 | Stefanski et al. | Jun 2015 | A1 |
20150168933 | Klein et al. | Jun 2015 | A1 |
20150176854 | Butler et al. | Jun 2015 | A1 |
20150176855 | Geadelmann et al. | Jun 2015 | A1 |
20150198346 | Vedpathak | Jul 2015 | A1 |
20150198347 | Tessier et al. | Jul 2015 | A1 |
20150204558 | Sartain et al. | Jul 2015 | A1 |
20150204561 | Sadwick et al. | Jul 2015 | A1 |
20150204563 | Imes et al. | Jul 2015 | A1 |
20150204564 | Shah | Jul 2015 | A1 |
20150204565 | Amundson et al. | Jul 2015 | A1 |
20150204569 | Lorenz et al. | Jul 2015 | A1 |
20150204570 | Adamik et al. | Jul 2015 | A1 |
20150205310 | Amundson et al. | Jul 2015 | A1 |
20150219357 | Stefanski et al. | Aug 2015 | A1 |
20150233595 | Fadell et al. | Aug 2015 | A1 |
20150233596 | Warren et al. | Aug 2015 | A1 |
20150234369 | Wen et al. | Aug 2015 | A1 |
20150241078 | Matsuoka et al. | Aug 2015 | A1 |
20150249605 | Erickson et al. | Sep 2015 | A1 |
20150260424 | Fadell et al. | Sep 2015 | A1 |
20150267935 | Devenish et al. | Sep 2015 | A1 |
20150268652 | Lunacek et al. | Sep 2015 | A1 |
20150276237 | Daniels et al. | Oct 2015 | A1 |
20150276238 | Matsuoka et al. | Oct 2015 | A1 |
20150276239 | Fadell et al. | Oct 2015 | A1 |
20150276254 | Nemcek et al. | Oct 2015 | A1 |
20150276266 | Warren et al. | Oct 2015 | A1 |
20150277463 | Hazzard et al. | Oct 2015 | A1 |
20150280935 | Poplawski et al. | Oct 2015 | A1 |
20150287310 | Deiiuliis et al. | Oct 2015 | A1 |
20150292764 | Land et al. | Oct 2015 | A1 |
20150292765 | Matsuoka et al. | Oct 2015 | A1 |
20150293541 | Fadell et al. | Oct 2015 | A1 |
20150300672 | Fadell et al. | Oct 2015 | A1 |
20150312696 | Ribbich et al. | Oct 2015 | A1 |
20150316285 | Clifton et al. | Nov 2015 | A1 |
20150316286 | Roher | Nov 2015 | A1 |
20150316902 | Wenzel et al. | Nov 2015 | A1 |
20150323212 | Warren et al. | Nov 2015 | A1 |
20150327010 | Gottschalk et al. | Nov 2015 | A1 |
20150327084 | Ramachandran et al. | Nov 2015 | A1 |
20150327375 | Bick et al. | Nov 2015 | A1 |
20150330654 | Matsuoka | Nov 2015 | A1 |
20150330658 | Filson et al. | Nov 2015 | A1 |
20150330660 | Filson et al. | Nov 2015 | A1 |
20150332150 | Thompson | Nov 2015 | A1 |
20150345818 | Oh et al. | Dec 2015 | A1 |
20150348554 | Orr et al. | Dec 2015 | A1 |
20150354844 | Kates | Dec 2015 | A1 |
20150354846 | Hales et al. | Dec 2015 | A1 |
20150355371 | Ableitner et al. | Dec 2015 | A1 |
20150362208 | Novotny et al. | Dec 2015 | A1 |
20150362927 | Giorgi | Dec 2015 | A1 |
20150364135 | Kolavennu et al. | Dec 2015 | A1 |
20150370270 | Pan et al. | Dec 2015 | A1 |
20150370272 | Reddy et al. | Dec 2015 | A1 |
20150370615 | Pi-Sunyer | Dec 2015 | A1 |
20150370621 | Karp et al. | Dec 2015 | A1 |
20150372832 | Kortz et al. | Dec 2015 | A1 |
20150372834 | Karp et al. | Dec 2015 | A1 |
20150372999 | Pi-Sunyer | Dec 2015 | A1 |
20160006274 | Tu et al. | Jan 2016 | A1 |
20160006577 | Logan | Jan 2016 | A1 |
20160010880 | Bravard et al. | Jan 2016 | A1 |
20160018122 | Frank et al. | Jan 2016 | A1 |
20160018127 | Gourlay et al. | Jan 2016 | A1 |
20160020590 | Roosli et al. | Jan 2016 | A1 |
20160026194 | Mucignat et al. | Jan 2016 | A1 |
20160036227 | Schultz et al. | Feb 2016 | A1 |
20160040903 | Emmons et al. | Feb 2016 | A1 |
20160047569 | Fadell et al. | Feb 2016 | A1 |
20160054022 | Matas et al. | Feb 2016 | A1 |
20160061471 | Eicher et al. | Mar 2016 | A1 |
20160061474 | Cheung et al. | Mar 2016 | A1 |
20160069582 | Buduri | Mar 2016 | A1 |
20160069583 | Fadell et al. | Mar 2016 | A1 |
20160077532 | Lagerstedt et al. | Mar 2016 | A1 |
20160088041 | Nichols | Mar 2016 | A1 |
20160327298 | Sinha et al. | Nov 2016 | A1 |
20160327299 | Ribbich et al. | Nov 2016 | A1 |
20160327300 | Ribbich et al. | Nov 2016 | A1 |
20160327301 | Ribbich et al. | Nov 2016 | A1 |
20160327302 | Ribbich et al. | Nov 2016 | A1 |
20160327921 | Ribbich et al. | Nov 2016 | A1 |
20160377306 | Drees et al. | Dec 2016 | A1 |
20170074536 | Bentz et al. | Mar 2017 | A1 |
20170074537 | Bentz et al. | Mar 2017 | A1 |
20170074539 | Bentz et al. | Mar 2017 | A1 |
20170074541 | Bentz et al. | Mar 2017 | A1 |
20170075510 | Bentz et al. | Mar 2017 | A1 |
20170075568 | Bentz et al. | Mar 2017 | A1 |
20170076263 | Bentz et al. | Mar 2017 | A1 |
20170102162 | Drees et al. | Apr 2017 | A1 |
20170102433 | Wenzel et al. | Apr 2017 | A1 |
20170102434 | Wenzel et al. | Apr 2017 | A1 |
20170102675 | Drees | Apr 2017 | A1 |
20170103483 | Drees et al. | Apr 2017 | A1 |
20170104332 | Wenzel et al. | Apr 2017 | A1 |
20170104336 | Elbsat et al. | Apr 2017 | A1 |
20170104337 | Drees | Apr 2017 | A1 |
20170104342 | Elbsat et al. | Apr 2017 | A1 |
20170104343 | Elbsat et al. | Apr 2017 | A1 |
20170104344 | Wenzel et al. | Apr 2017 | A1 |
20170104345 | Wenzel et al. | Apr 2017 | A1 |
20170104346 | Wenzel et al. | Apr 2017 | A1 |
20170104449 | Drees | Apr 2017 | A1 |
20170122613 | Sinha et al. | May 2017 | A1 |
20170122617 | Sinha et al. | May 2017 | A1 |
20170123391 | Sinha et al. | May 2017 | A1 |
20170124838 | Sinha et al. | May 2017 | A1 |
20170124842 | Sinha et al. | May 2017 | A1 |
20170167768 | Kesselman | Jun 2017 | A1 |
20170227246 | Rajan | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
2466854 | Apr 2008 | CA |
2633200 | Jan 2011 | CA |
2633121 | Aug 2011 | CA |
2818356 | May 2012 | CA |
2818696 | May 2012 | CA |
2853041 | Apr 2013 | CA |
2853081 | Apr 2013 | CA |
2812567 | May 2014 | CA |
2886531 | Sep 2015 | CA |
2894359 | Dec 2015 | CA |
10 2004 005 962 | Aug 2005 | DE |
2 283 279 | Feb 2011 | EP |
2 738 478 | Jun 2014 | EP |
2 897 018 | Jul 2015 | EP |
2 988 188 | Feb 2016 | EP |
2 519 441 | Apr 2015 | GB |
WO 0022491 | Apr 2000 | WO |
WO 2006041599 | Jul 2006 | WO |
WO 2009006133 | Jan 2009 | WO |
WO 2009058127 | May 2009 | WO |
WO 2009036764 | Jan 2010 | WO |
WO 2010059143 | May 2010 | WO |
WO 2010078459 | Jul 2010 | WO |
WO 2010088663 | Aug 2010 | WO |
WO 2012042232 | Apr 2012 | WO |
WO 2012068436 | May 2012 | WO |
WO 2012068495 | May 2012 | WO |
WO 2012068503 | May 2012 | WO |
WO 2012068507 | May 2012 | WO |
WO 2012068517 | May 2012 | WO |
WO 2012068526 | May 2012 | WO |
WO 2013033469 | Mar 2013 | WO |
WO 2013052389 | Apr 2013 | WO |
WO 2013052905 | Apr 2013 | WO |
WO 2013058933 | Apr 2013 | WO |
WO 2013058934 | Apr 2013 | WO |
WO 2013058968 | Apr 2013 | WO |
WO 2013058969 | Apr 2013 | WO |
WO 2013059684 | Apr 2013 | WO |
WO 2012142477 | Aug 2013 | WO |
WO 2013153480 | Dec 2013 | WO |
WO 2014047501 | Mar 2014 | WO |
WO 2012068437 | Apr 2014 | WO |
WO 2012068459 | Apr 2014 | WO |
WO 2013058932 | Apr 2014 | WO |
WO 2014051632 | Apr 2014 | WO |
WO 2014051635 | Apr 2014 | WO |
WO 2014055059 | Apr 2014 | WO |
WO 2013052901 | May 2014 | WO |
WO 2014152301 | Sep 2014 | WO |
WO 2014152301 | Sep 2014 | WO |
WO 2015012449 | Jan 2015 | WO |
WO 2015039178 | Mar 2015 | WO |
WO 2015054272 | Apr 2015 | WO |
WO 2015057698 | Apr 2015 | WO |
WO 2015099721 | Jul 2015 | WO |
WO 2015127499 | Sep 2015 | WO |
WO 2015127566 | Sep 2015 | WO |
WO 2015134755 | Oct 2015 | WO |
WO 2015195772 | Dec 2015 | WO |
WO 2016038374 | Mar 2016 | WO |
Entry |
---|
U.S. Appl. No. 15/338,215, filed Oct. 28, 2016, Johnson Controls Technology Company. |
U.S. Appl. No. 15/338,221, filed Oct. 28, 2016, Johnson Controls Technology Company. |
U.S. Appl. No. 29/563,447, filed May 4, 2016, Johnson Controls Technology Company. |
U.S. Appl. No. 29/576,515, filed Sep. 2, 2016, Johnson Controls Technology Company. |
U.S. Appl. No. 62/239,131, filed Oct. 8, 2015, Johnson Controls Technology Company. |
U.S. Appl. No. 62/239,231, filed Oct. 8, 2015, Johnson Controls Technology Company. |
U.S. Appl. No. 62/239,233, filed Oct. 8, 2015, Johnson Controls Technology Company. |
U.S. Appl. No. 62/239,245, filed Oct. 8, 2015, Johnson Controls Technology Company. |
U.S. Appl. No. 62/239,246, filed Oct. 8, 2015, Johnson Controls Technology Company. |
U.S. Appl. No. 62/239,249, filed Oct. 8, 2015, Johnson Controls Technology Company. |
Unknown, National Semiconductor's Temperature Sensor Handbook, Nov. 1, 1997, retrieved from the Internet at http://shrubbery.net/˜heas/willem/PDF/NSC/temphb.pdf on Aug. 11, 2016, pp. 1-40. |
Search Report for International Application No. PCT/US2016/030291, dated Sep. 7, 2016, 11 pages. |
Search Report for International Application No. PCT/US2016/030827 dated Sep. 7, 2016, 13 pages. |
Search Report for International Application No. PCT/US2016/030829, dated Sep. 7, 2016, 15 pages. |
Search Report for International Application No. PCT/US2016/030835, dated Sep. 7, 2016, 13 pages. |
Search Report for International Application No. PCT/US2016/030836, dated Sep. 7, 2016, 11 pages. |
Search Report for International Application No. PCT/US2016/030837, dated Sep. 7, 2016, 13 pages. |
Search Report for International Application No. PCT/US2016/051176, dated Feb. 16, 2017, 20 pages. |
Search Report for International Application No. PCT/US2017/012217, dated Mar. 31, 2017, 14 pages. |
Search Report for International Application No. PCT/US2017/012218, dated Mar. 31, 2017, 14 pages. |
Search Report for International Application No. PCT/US2017/012221, dated Mar. 31, 2017, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20180031258 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
62367572 | Jul 2016 | US | |
62367358 | Jul 2016 | US | |
62367315 | Jul 2016 | US | |
62367576 | Jul 2016 | US |