Systems and methods for the fixation or fusion of bone

Information

  • Patent Grant
  • 9820789
  • Patent Number
    9,820,789
  • Date Filed
    Tuesday, September 16, 2014
    10 years ago
  • Date Issued
    Tuesday, November 21, 2017
    7 years ago
Abstract
A stem-like bone fixation device allows for bony in-growth on its surface and across fracture fragments or between bones that are to be fused.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

This application relates generally to the fixation of bone.


BACKGROUND

Many types of hardware are available both for fracture fixation and for the fixation of bones that are to fused (arthrodesed).


Metal and absorbable screws are routinely used to fixate bone fractures and osteotomies. It is important to the successful outcome of the procedure that the screw is able to generate the compressive forces helpful in promoting bone healing.


SUMMARY OF THE DISCLOSURE

The invention provides bone fixation devices and related methods for stabilizing bone segments. The systems and methods include a stem-like structure adapted for passage between adjacent bone segments. At least a portion of the stem-like structure includes a surface that enhances bony in-growth. Boney in-growth into the stem-like structure helps speed up the fusion process or fracture healing time.


In some embodiments, a method for the fixation or fusion of a first bone segment to a second bone segment across a joint is provided. The method includes providing an elongate implant having a proximal end, a distal end, a longitudinal axis, and a lumen extending through the elongate implant along the longitudinal axis, wherein the elongate implant has a tapered distal end and a first fenestration positioned on a middle portion of elongate implant such that the first fenestration is offset from both the distal end and the proximal end; and inserting the elongate implant through the first bone segment and across the joint and into the second bone segment such that the first fenestration lies at least partly in the joint between the first bone segment and the second bone segment.


In some embodiments, the first fenestration is oblong and oriented parallel to the longitudinal axis. In some embodiments, the elongate implant further comprises a second fenestration sized and shaped like the first fenestration and positioned opposite the first fenestration such that an opening is formed completely through the elongate implant.


In some embodiments, the elongate implant comprises external screw threads. In some embodiments, the external screw threads are located on a distal portion of the elongate implant. In some embodiments, the step of inserting the elongate implant comprises screwing the elongate implant through the first bone segment and across the joint and into the second bone segment.


In some embodiments, the elongate implant is coated with a material that promotes bony in-growth. In some embodiments, the material is hydroxyapatite.


In some embodiments, the method further includes inserting a guide pin through the first bone segment and across the joint and into the second bone segment, wherein the step of inserting the elongate implant comprises inserting the elongate implant over the guide pin. In some embodiments, the method further includes inserting a cannulated drill bit over the guide pin and drilling a bore through the first bone segment and across the joint and into the second bone segment. In some embodiments, the bore is the same cross-sectional dimension as the implant. In some embodiments, the bore has a smaller cross-sectional dimension than the implant.


In some embodiments, the method further includes providing a second elongate implant having a proximal end, a distal end, a longitudinal axis, and a lumen extending through the second elongate implant along the longitudinal axis of the second elongate implant, wherein the second elongate implant has a tapered distal end; and inserting the second elongate implant through the first bone segment and across the joint and into the second bone segment.


In some embodiments, the second elongate implant has a fenestration positioned on a middle portion of second elongate implant such that the fenestration of the second elongate implant is offset from both the distal end and the proximal end of the second elongate implant. In some embodiments, the second elongate implant is inserted such that the fenestration of the second elongate implant lies at least partly in the joint between the first bone segment and the second bone segment. In some embodiments, the elongate implant and the second elongate implant have the same size. In some embodiments, the elongate implant and the second elongate implant are of different size.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 is a perspective view of a bone fixation stem having a boney in-growth surface of a mesh configuration.



FIG. 2 is a perspective view of an alternative embodiment of a bone fixation stem having a boney in-growth surface of a beaded configuration.



FIG. 3 is a perspective view of an alternative embodiment of a bone fixation stem having a boney in-growth surface of a trabecular configuration.



FIG. 4 is a schematic view of a bone fixation stem of the type shown in Fig. being inserted into bone across a fracture line or bone joint.



FIG. 5 is a schematic view of a bone fixation stem positioned within bone and illustrating a boney in-growth surface of the stem extending across a fracture line or bone joint.



FIG. 6 is a front plan view of an alternative embodiment of a bone fixation stem having a boney in-growth surface in which the stem has a conical configuration.



FIG. 7 is front plan view of an alternative embodiment of a bone fixation stem having a boney in-growth surface in which the stem has a beveled distal tip.



FIGS. 8A and 8B are schematics illustrating the insertion of a conical bone fixation stem of the type shown in FIG. 6 to reduce the gap between bone segments.



FIG. 9 is a schematic illustrating a guidewire being introduced into bone across bone segments.



FIG. 10 is a schematic similar to FIG. 9 and illustrating a drill bit being introduced over the guidewire.



FIG. 11 is a schematic similar to FIG. 10 and illustrating a bore formed in the bone remaining after withdrawal of the drill bit.



FIG. 12 is a schematic similar to FIG. 11 and illustrating insertion of a bone fixation stem into the pre-formed bore.



FIG. 13 is an exploded front plan view illustrating the coupling of a pair of bone fixation stems by threaded engagement.



FIG. 14 is a schematic illustrating a pair of bone fixation stems coupled together and inserted into bone across multiple bone segments.



FIG. 15 is a front plan view illustrating passage of a bone fixation stem through a fenestration in another bone fixation stem.



FIG. 16 is a schematic illustrating the placement of a series of bone fixation stems in bone.





DETAILED DESCRIPTION

Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention that may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.



FIG. 1 shows a device 10 sized and configured for the fixation of bone fractures or for the fixation of bones which are to be fused (arthrodesed). The device 10 comprises an elongated, stem-like structure. The device 10 can be formed—e.g., by machining, molding, or extrusion—from a material usable in the prosthetic arts, including, but not limited to, titanium, titanium alloys, tantalum, chrome cobalt, surgical steel, or any other total joint replacement metal and/or ceramic, sintered glass, artificial bone, any uncemented metal or ceramic surface, or a combination thereof. Alternatively, the device 10 may be formed from a suitable durable biologic material or a combination of metal and biologic material, such as a biocompatible bone-filling material. The device 10 may be molded from a flowable biologic material, e.g., acrylic bone cement, that is cured, e.g., by UV light, to a non-flowable or solid material.


The device 10 can take various shapes and have various cross-sectional geometries. The device 10 can have, e.g., a generally curvilinear (i.e., round or oval) cross-section, or a generally rectilinear cross section (i.e., square or rectangular), or combinations thereof. As will be described in greater detail later, the device 10 can be conical or wedge shaped.


The structure 10 includes surface texturing 12 along at least a portion of its length to promote bony in-growth on its surface. The surface texturing 12 can comprise, e.g., through holes, and/or various surface patterns, and/or various surface textures, and/or pores, or combinations thereof. The device 10 can be coated or wrapped or surfaced treated to provide the surface texturing 12, or it can be formed from a material that itself inherently possesses a surface conducing to bony in-growth, such as a porous mesh, hydroxyapetite, or other porous surface. The device 10 may further be covered with various other coatings such as antimicrobial, antithrombotic, and osteoinductive agents, or a combination thereof. The surface texturing 12 may be impregnated with such agents, if desired.


The configuration of the surface texturing 12 can, of course, vary. By way of examples, FIG. 1 shows the surface 12 as an open mesh configuration; FIG. 2 shows the surface 12 as beaded configuration; and FIG. 3 shows the surface 12 as a trabecular configuration. Any configuration conducive to bony in-growth will suffice.


In use (see FIGS. 4 and 5), the device 10 is inserted into a space between two adjacent bone surfaces, e.g., into a fracture site or between two bones (e.g., adjacent vertebral bodies) which are to be fused together. In FIG. 4, the device 10 is shown being tapped into bone through bone segments 14 (i.e., across a fracture line or between adjacent bones to be fused) with a tap 16. The bone may be drilled first to facilitate insertion of the device 10. The bony in-growth surface 12 along the surface of the device 10 accelerates bony in-growth into the device 10. Boney in-growth into the device 10 helps speed up the fusion process or fracture healing time.


The bony in-growth surface 12 may cover the entire outer surface of the device 10, as shown in FIG. 4, or the bony in-growth surface 12 may cover just a specified distance on either side of the joint surface or fracture line, as shown in FIG. 5.


The size and configuration of the device 10 can be varied to accommodate the type and location of the bone to be treated as well as individual anatomy.


As FIG. 6 shows, the device 10 can be angled or tapered in a conical configuration. The degree of angle can be varied to accommodate specific needs or individual anatomy. A lesser degree of angle (i.e., a more acute angle) decreases the risk of splitting the bone as the device 10 is tapped into the bone or the fracture segments 14. The device 10 may also include a beveled distal tip 18 to further add in insertion of the device 10 into bone, as shown in FIG. 7. As shown in FIGS. 8A and 8B, the conical shape also helps drive the joint surfaces or fracture fragments together, reducing the gap (G) between the bone segments 14


In FIGS. 9 to 12, the device 10 is cannulated, having a central lumen or throughbore 20 extending through it, to assist in the placement of the device 10 within bone


In use, the physician can insert a conventional guide pin 22 through the bone segments 14 by conventional methods, as FIG. 9 shows. A cannulated drill bit 24 can then be introduced over the guide pin 22, as seen in FIG. 10. A single or multiple drill bits 24 can be employed to drill through bone fragments or bone surfaces to create a bore 26 of the desired size and configuration. In the illustrated embodiment, the drill bit 24 is sized and configured to create a conical bore 26 similar in size and configuration to the device 10. The bore 26 is desirably sized and configured to permit tight engagement of the device 10 within the bore 26 and thereby restrict movement of the device 10 within the bore 26. The pre-formed bore 26 may be slightly smaller than the device 10, while still allowing the device 10 to be secured into position within the bore 26 by tapping. As seen in FIG. 11, the drill bit 24 is then withdrawn. The device 10 is then inserted into the bore 26 over the guide pin 22, as FIG. 12 shows. The guide pin 22 is then withdrawn.


Alternatively, the device 10 itself can include screw-like threads along the body for screwing the device into place. In the arrangement, the device 10 can be self-tapping. Also in this arrangement, the device 10 can be cannulated for use with a guide pin 22, or it need not be cannulated.


Multiple devices 10 may be employed to provide additional stabilization. While the use of multiple devices 10 will now be described illustrating the use of multiple devices 10 of the same size and configuration, it is contemplated that the devices 10 may also be of different size and/or configuration, e.g., one device 10 is of a cylindrical configuration and a second device 10 is of a conical configuration.


In many cases, it may be desirable to couple a series of devices 10 together, e.g., to provide stabilization over a larger surface area. A series of devices 10 may be coupled together be any suitable means, e.g., by a snap fit engagement or a groove and tab key arrangement. In one embodiment, a series of devices 10 are coupled by threaded engagement. As illustrated in FIG. 13, a first device 10A includes a recess 28 at one end providing a series of internal threads 30. In the illustrated embodiment, the first device 10 is of a cylindrical configuration, but may be of any desired configuration. The internal threads 30 couple with a series of complementary external threads 32 on a second device 10B of a similar or of a different configuration to couple the first and second devices 10A and 10B together.


The devices 10A and 10B are desirably coupled together prior to being inserted into the pre-formed bore 26. The series of internal and external threads 30 and 32 provide an interlocking mechanism that permits a series of devices 10 to be stacked and connected to cover a larger area or multiple bone segments 14 (e.g., a bone having multiple fractures) and thereby provides additional stabilization, as seen in FIG. 14.



FIG. 15 illustrates another embodiment in which a device 10′ includes an opening or fenestration 34 to allow another device 10 to pass through, thereby providing additional stabilization. The fenestration 34 can be sized and configured to permit another device 10 to be passed through the device 10′ at virtually any angle. The fenestration 34 can also be sized and configured to limit movement of the second device 10 relative to the second device 10′.


In use, and as shown in FIG. 16, the physician taps a first device 10′ having a fenestration 34 through the bone segments. A second device 10 is then inserted (e.g., by tapping) through the fenestration 34 of the first device 10′ into place.


It is further contemplated that device 10′ may also be adapted for coupling with another device 10A (e.g., by a series of external and internal threads), permitting the devices 10′ and 10A to be additionally stacked and connected, as also shown in FIG. 16


The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.

Claims
  • 1. A method for the fixation or fusion of a first bone segment to a second bone segment across a joint, the method comprising: providing an elongate metal implant having a proximal end, a distal end, a longitudinal axis, an external screw thread, and a lumen extending through the elongate implant along the longitudinal axis, wherein the elongate implant has a tapered distal end and a first fenestration positioned on a middle portion of elongate implant such that the first fenestration is offset from both the distal end and the proximal end;inserting the elongate implant through the first bone segment and across the joint and into the second bone segment such that the elongate implant traverses the joint at an oblique angle;providing a second elongate metal implant having a proximal end, a distal end, a longitudinal axis, an external screw thread, and a lumen extending through the second elongate implant along the longitudinal axis of the second elongate implant, wherein the second elongate implant has a tapered distal end; andinserting the second elongate implant through the first bone segment and across the joint and into the second bone segment;wherein the second elongate implant is inserted across the joint at an oblique angle.
  • 2. The method of claim 1, wherein the first fenestration is oblong and oriented parallel to the longitudinal axis.
  • 3. The method of claim 1, wherein the elongate implant further comprises a second fenestration sized and shaped like the first fenestration and positioned opposite the first fenestration such that an opening is formed completely through the elongate implant.
  • 4. The method of claim 1, wherein the external screw threads are located on a distal portion of the elongate implant.
  • 5. The method of claim 4, wherein the step of inserting the elongate implant comprises screwing the elongate implant through the first bone segment and across the joint and into the second bone segment.
  • 6. The method of claim 1, wherein the elongate implant is coated with a material that promotes bony in-growth.
  • 7. The method of claim 6, wherein the material is hydroxyapatite.
  • 8. The method of claim 1, further comprising inserting a guide pin through the first bone segment and across the joint and into the second bone segment, wherein the step of inserting the elongate implant comprises inserting the elongate implant over the guide pin.
  • 9. The method of claim 8, further comprising inserting a cannulated drill bit over the guide pin and drilling a bore through the first bone segment and across the joint and into the second bone segment.
  • 10. The method of claim 9, wherein the bore is the same cross-sectional dimension as the implant.
  • 11. The method of claim 9, wherein the bore has a smaller cross-sectional dimension than the implant.
  • 12. The method of claim 1, wherein the second elongate implant has a fenestration positioned on a middle portion of second elongate implant such that the fenestration of the second elongate implant is offset from both the distal end and the proximal end of the second elongate implant.
  • 13. A method for the fixation or fusion of a first bone segment to a second bone segment across a joint, the method comprising: providing an elongate metal implant having a proximal end, a distal end, a longitudinal axis, an external screw thread, and a lumen extending through the elongate implant along the longitudinal axis, wherein the elongate implant has a tapered distal end and a first fenestration positioned on a middle portion of elongate implant such that the first fenestration is offset from both the distal end and the proximal end;inserting the elongate implant through the first bone segment and across the joint and into the second bone segment such that the elongate implant traverses the joint at an oblique angle;providing a second elongate metal implant having a proximal end, a distal end, a longitudinal axis, an external screw thread, and a lumen extending through the second elongate implant along the longitudinal axis of the second elongate implant, wherein the second elongate implant has a tapered distal end; andinserting the second elongate implant through the first bone segment and across the joint and into the second bone segment;wherein the second elongate implant is inserted across joint at substantially a right angle.
  • 14. A method for the fixation or fusion of a first bone segment to a second bone segment across a joint, the method comprising: providing an elongate metal implant having a proximal end, a distal end, a longitudinal axis, and an external screw thread, wherein the elongate implant has a tapered distal end and a first fenestration positioned on a middle portion of elongate implant such that the first fenestration is offset from both the distal end and the proximal end;inserting the elongate implant through the first bone segment and across the joint and into the second bone segment such that the elongate implant traverses the joint at an oblique angle;providing a second elongate metal implant having a proximal end, a distal end, a longitudinal axis, and an external screw thread, wherein the second elongate implant has a tapered distal end; andinserting the second elongate implant through the first bone segment and across the joint and into the second bone segment.
  • 15. The method of claim 14 , wherein the second elongate implant is inserted across the joint at an oblique angle.
  • 16. The method of claim 14 , wherein the second elongate implant is inserted across joint at substantially a right angle.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/674,764, filed on Nov. 12, 2012, titled “SYSTEMS AND METHODS FOR THE FIXATION OR FUSION OF BONE,” now U.S. Pat. No. 8,840,651, which is a continuation of U.S. patent application Ser. No. 12/072,153, filed on Feb. 25, 2008, titled “SYSTEMS AND METHODS FOR THE FIXATION OR FUSION OF BONE,” now U.S. Pat. No. 8,308,779, which is a divisional of U.S. patent application Ser. No. 10/914,629, filed Aug. 9, 2004, titled “SYSTEMS AND METHODS FOR FIXATION OR FUSION OF BONE,” U.S. Patent Application Publication No. 2006-003625-A1, now abandoned, each of which is incorporated herein by reference.

US Referenced Citations (313)
Number Name Date Kind
1951278 Ericsson Mar 1934 A
2136471 Schneider Nov 1938 A
2243717 Moreira May 1941 A
2414882 Longfellow Jul 1947 A
2562419 Ferris Jul 1951 A
2675801 Bambara et al. Apr 1954 A
2697433 Zehnder Dec 1954 A
3076453 Tronzo Feb 1963 A
3506982 Steffee Apr 1970 A
3694821 Moritz Oct 1972 A
3709218 Halloran Jan 1973 A
3744488 Cox Jul 1973 A
4059115 Jumashev et al. Nov 1977 A
4156943 Collier Jun 1979 A
4292964 Ulrich Oct 1981 A
4341206 Perrett et al. Jul 1982 A
4344190 Lee et al. Aug 1982 A
4399813 Barber Aug 1983 A
4423721 Otte et al. Jan 1984 A
4475545 Ender Oct 1984 A
4501269 Bagby Feb 1985 A
4569338 Edwards Feb 1986 A
4612918 Slocum Sep 1986 A
4622959 Marcus Nov 1986 A
4630601 Harder et al. Dec 1986 A
4638799 Moore Jan 1987 A
4657550 Daher Apr 1987 A
4743256 Brantigan May 1988 A
4773402 Asher et al. Sep 1988 A
4787378 Sodhi Nov 1988 A
4790303 Steffee Dec 1988 A
4834757 Brantigan May 1989 A
4846162 Moehring Jul 1989 A
4877019 Vives Oct 1989 A
4878915 Brantigan Nov 1989 A
4898186 Ikada et al. Feb 1990 A
4904261 Dove et al. Feb 1990 A
4950270 Bowman et al. Aug 1990 A
4961740 Ray et al. Oct 1990 A
4981481 Kranz et al. Jan 1991 A
5034011 Howland Jul 1991 A
5034013 Kyle Jul 1991 A
5035697 Frigg Jul 1991 A
5041118 Wasilewski Aug 1991 A
5053035 McLaren Oct 1991 A
5059193 Kuslich Oct 1991 A
5066296 Chapman et al. Nov 1991 A
5102414 Kirsch Apr 1992 A
5108397 White Apr 1992 A
5122141 Simpson et al. Jun 1992 A
5139498 Astudillo Ley Aug 1992 A
5139500 Schwartz Aug 1992 A
5147367 Ellis Sep 1992 A
5147402 Bohler et al. Sep 1992 A
5190551 Chin et al. Mar 1993 A
5197961 Castle Mar 1993 A
5242444 MacMillan Sep 1993 A
5298254 Prewett et al. Mar 1994 A
5334205 Cain Aug 1994 A
5380325 Lahille et al. Jan 1995 A
5390683 Pisharodi Feb 1995 A
5433718 Brinker Jul 1995 A
5443466 Shah Aug 1995 A
5458638 Kuslich et al. Oct 1995 A
5470334 Ross et al. Nov 1995 A
5480402 Kim Jan 1996 A
5569249 James et al. Oct 1996 A
5591235 Kuslich Jan 1997 A
5593409 Michelson Jan 1997 A
5609636 Kohrs et al. Mar 1997 A
5626616 Speece May 1997 A
5643264 Sherman et al. Jul 1997 A
5645599 Samani Jul 1997 A
5658337 Kohrs et al. Aug 1997 A
5667510 Combs Sep 1997 A
5669909 Zdeblick et al. Sep 1997 A
5672178 Petersen Sep 1997 A
5683391 Boyd Nov 1997 A
5709683 Bagby Jan 1998 A
5713904 Errico et al. Feb 1998 A
5716358 Ochoa et al. Feb 1998 A
5725581 Brånemark Mar 1998 A
5743912 LaHille et al. Apr 1998 A
5759035 Ricci Jun 1998 A
5766174 Perry Jun 1998 A
5766261 Neal et al. Jun 1998 A
5788699 Bobst et al. Aug 1998 A
5800440 Stead Sep 1998 A
5868749 Reed Feb 1999 A
5897556 Drewry et al. Apr 1999 A
5928239 Mirza Jul 1999 A
5941885 Jackson Aug 1999 A
5961522 Mehdizadeh Oct 1999 A
5961554 Janson et al. Oct 1999 A
6010507 Rudloff Jan 2000 A
6015409 Jackson Jan 2000 A
6053916 Moore Apr 2000 A
6056749 Kuslich May 2000 A
6086589 Kuslich et al. Jul 2000 A
6096080 Nicholson et al. Aug 2000 A
6120504 Brumback et al. Sep 2000 A
6143031 Knothe et al. Nov 2000 A
6197062 Fenlin Mar 2001 B1
6210442 Wing et al. Apr 2001 B1
6214049 Gayer et al. Apr 2001 B1
6221074 Cole et al. Apr 2001 B1
6224607 Michelson May 2001 B1
6241732 Overaker et al. Jun 2001 B1
6264657 Urbahns et al. Jul 2001 B1
6270528 McKay Aug 2001 B1
6287343 Kuslich et al. Sep 2001 B1
6302885 Essiger Oct 2001 B1
6302914 Michelson Oct 2001 B1
6306140 Siddiqui Oct 2001 B1
6319253 Ackeret et al. Nov 2001 B1
6406498 Tormala et al. Jun 2002 B1
6409768 Tepic Jun 2002 B1
6451020 Zucherman et al. Sep 2002 B1
6471707 Miller et al. Oct 2002 B1
6485518 Cornwall et al. Nov 2002 B1
6497707 Bowman et al. Dec 2002 B1
6517541 Sesic Feb 2003 B1
6520969 Lambrecht et al. Feb 2003 B2
6524314 Dean et al. Feb 2003 B1
6527775 Warburton Mar 2003 B1
6558386 Cragg May 2003 B1
6565566 Wagner et al. May 2003 B1
6575899 Foley et al. Jun 2003 B1
6575991 Chesbrough et al. Jun 2003 B1
6579293 Chandran Jun 2003 B1
6582431 Ray Jun 2003 B1
6595998 Johnson et al. Jul 2003 B2
6602293 Biermann et al. Aug 2003 B1
6605090 Trieu et al. Aug 2003 B1
6607530 Carl et al. Aug 2003 B1
6620163 Michelson Sep 2003 B1
6635059 Randall et al. Oct 2003 B2
6666868 Fallin Dec 2003 B2
6669529 Scaries Dec 2003 B1
6673075 Santilli Jan 2004 B2
6692501 Michelson Feb 2004 B2
6723099 Goshert Apr 2004 B1
6740118 Eisermann et al. May 2004 B2
6743257 Castro Jun 2004 B2
D493533 Blain Jul 2004 S
6793656 Mathews Sep 2004 B1
6827740 Michelson Dec 2004 B1
6984235 Huebner Jan 2006 B2
6991461 Gittleman Jan 2006 B2
7118579 Michelson Oct 2006 B2
7175663 Stone Feb 2007 B1
7211085 Michelson May 2007 B2
7223269 Chappuis May 2007 B2
7314488 Reiley Jan 2008 B2
7335205 Aeschlimann et al. Feb 2008 B2
7338500 Chappuis Mar 2008 B2
7452359 Michelson Nov 2008 B1
7481831 Bonutti Jan 2009 B2
7527649 Blain May 2009 B1
7534254 Michelson May 2009 B1
7537616 Branch et al. May 2009 B1
7569054 Michelson Aug 2009 B2
7601155 Petersen Oct 2009 B2
7648509 Stark Jan 2010 B2
7686805 Michelson Mar 2010 B2
7699852 Frankel et al. Apr 2010 B2
7758646 Khandkar et al. Jul 2010 B2
7837735 Malone Nov 2010 B2
7887565 Michelson Feb 2011 B2
7909832 Michelson Mar 2011 B2
7922765 Reiley Apr 2011 B2
7942879 Christie et al. May 2011 B2
8062365 Schwab Nov 2011 B2
8066705 Michelson Nov 2011 B2
8066709 Michelson Nov 2011 B2
8142503 Malone Mar 2012 B2
8202305 Reiley Jun 2012 B2
8308779 Reiley Nov 2012 B2
8388667 Reiley et al. Mar 2013 B2
8414648 Reiley Apr 2013 B2
8425570 Reiley Apr 2013 B2
8444693 Reiley May 2013 B2
8470004 Reiley Jun 2013 B2
8672986 Klaue et al. Mar 2014 B2
8734462 Reiley et al. May 2014 B2
8778026 Mauldin Jul 2014 B2
8840623 Reiley Sep 2014 B2
8840651 Reiley Sep 2014 B2
8858601 Reiley Oct 2014 B2
8945190 Culbert et al. Feb 2015 B2
20010012942 Estes et al. Aug 2001 A1
20010046518 Sawhney Nov 2001 A1
20010047207 Michelson Nov 2001 A1
20010049529 Cachia et al. Dec 2001 A1
20020038123 Visotsky et al. Mar 2002 A1
20020049497 Mason Apr 2002 A1
20020077641 Michelson Jun 2002 A1
20020082598 Teitelbaum Jun 2002 A1
20020120275 Schmieding et al. Aug 2002 A1
20020128652 Ferree Sep 2002 A1
20020143334 von Hoffmann et al. Oct 2002 A1
20020143335 von Hoffmann et al. Oct 2002 A1
20020151903 Takei et al. Oct 2002 A1
20020169507 Malone Nov 2002 A1
20020183858 Contiliano et al. Dec 2002 A1
20020198527 Mückter Dec 2002 A1
20030018336 Vandewalle Jan 2003 A1
20030032961 Pelo et al. Feb 2003 A1
20030050642 Schmieding et al. Mar 2003 A1
20030065332 TenHuisen et al. Apr 2003 A1
20030074000 Roth et al. Apr 2003 A1
20030078660 Clifford et al. Apr 2003 A1
20030083668 Rogers et al. May 2003 A1
20030083688 Simonson May 2003 A1
20030097131 Schon et al. May 2003 A1
20030139815 Grooms et al. Jul 2003 A1
20030181982 Kuslich Sep 2003 A1
20030199983 Michelson Oct 2003 A1
20030229358 Errico et al. Dec 2003 A1
20030233146 Grinberg et al. Dec 2003 A1
20030233147 Nicholson et al. Dec 2003 A1
20040010315 Song Jan 2004 A1
20040024458 Senegas et al. Feb 2004 A1
20040034422 Errico et al. Feb 2004 A1
20040073216 Lieberman Apr 2004 A1
20040073314 White et al. Apr 2004 A1
20040082955 Zirkle Apr 2004 A1
20040087948 Suddaby May 2004 A1
20040097927 Yeung et al. May 2004 A1
20040106925 Culbert Jun 2004 A1
20040117022 Marnay et al. Jun 2004 A1
20040127990 Bartish, Jr. et al. Jul 2004 A1
20040138750 Mitchell Jul 2004 A1
20040138753 Ferree Jul 2004 A1
20040147929 Biedermann et al. Jul 2004 A1
20040176287 Harrison et al. Sep 2004 A1
20040176853 Sennett et al. Sep 2004 A1
20040181282 Zucherman et al. Sep 2004 A1
20040210221 Kozak et al. Oct 2004 A1
20040225360 Malone Nov 2004 A1
20040230305 Gorensek et al. Nov 2004 A1
20040260286 Ferree Dec 2004 A1
20040267369 Lyons et al. Dec 2004 A1
20050015059 Sweeney Jan 2005 A1
20050015146 Louis et al. Jan 2005 A1
20050033435 Belliard et al. Feb 2005 A1
20050049590 Alleyne et al. Mar 2005 A1
20050055023 Sohngen et al. Mar 2005 A1
20050075641 Singhatat et al. Apr 2005 A1
20050080415 Keyer et al. Apr 2005 A1
20050107878 Conchy May 2005 A1
20050124993 Chappuis Jun 2005 A1
20050131409 Chervitz et al. Jun 2005 A1
20050137605 Assell et al. Jun 2005 A1
20050143837 Ferree Jun 2005 A1
20050149192 Zucherman et al. Jul 2005 A1
20050159749 Levy et al. Jul 2005 A1
20050165398 Reiley Jul 2005 A1
20050192572 Abdelgany et al. Sep 2005 A1
20050228384 Zucherman et al. Oct 2005 A1
20050246021 Ringeisen et al. Nov 2005 A1
20050251146 Martz et al. Nov 2005 A1
20050277940 Neff Dec 2005 A1
20060036247 Michelson Feb 2006 A1
20060036251 Reiley Feb 2006 A1
20060058793 Michelson Mar 2006 A1
20060058800 Ainsworth et al. Mar 2006 A1
20060062825 Maccecchini Mar 2006 A1
20060129247 Brown et al. Jun 2006 A1
20060161163 Shino Jul 2006 A1
20070083265 Malone Apr 2007 A1
20070149976 Hale et al. Jun 2007 A1
20070156144 Ulrich et al. Jul 2007 A1
20070156241 Reiley et al. Jul 2007 A1
20070156246 Meswania et al. Jul 2007 A1
20080065093 Assell et al. Mar 2008 A1
20080065215 Reiley Mar 2008 A1
20080109083 Van Hoeck et al. May 2008 A1
20090043393 Duggal et al. Feb 2009 A1
20090259261 Reiley Oct 2009 A1
20090324678 Thorne et al. Dec 2009 A1
20100022535 Lee et al. Jan 2010 A1
20100094295 Schnieders et al. Apr 2010 A1
20100131011 Stark May 2010 A1
20100145461 Landry et al. Jun 2010 A1
20100191292 DeMeo et al. Jul 2010 A1
20110029019 Ainsworth et al. Feb 2011 A1
20110087294 Reiley Apr 2011 A1
20110118796 Reiley et al. May 2011 A1
20110153018 Walters et al. Jun 2011 A1
20110184478 Reiley Jul 2011 A1
20120179256 Reiley Jul 2012 A1
20130226301 Reiley Aug 2013 A1
20130237988 Mauldin Sep 2013 A1
20130238031 Reiley Sep 2013 A1
20130238093 Mauldin et al. Sep 2013 A1
20130245763 Mauldin Sep 2013 A1
20130267836 Mauldin et al. Oct 2013 A1
20130267961 Mauldin et al. Oct 2013 A1
20130267989 Mauldin et al. Oct 2013 A1
20130289625 Reiley Oct 2013 A1
20130296953 Mauldin et al. Nov 2013 A1
20140222150 Reiley Aug 2014 A1
20140249589 Reiley et al. Sep 2014 A1
20140257298 Reiley Sep 2014 A1
20140257415 Reiley Sep 2014 A1
20140276846 Mauldin et al. Sep 2014 A1
20140276851 Schneider et al. Sep 2014 A1
20140277462 Yerby et al. Sep 2014 A1
20140277463 Yerby et al. Sep 2014 A1
20140288605 Mesiwala et al. Sep 2014 A1
20140330382 Mauldin Nov 2014 A1
20150320469 Biedermann et al. Nov 2015 A1
Foreign Referenced Citations (24)
Number Date Country
1128944 Aug 1996 CN
1190882 Aug 1998 CN
1909848 Feb 2007 CN
1287796 Mar 2003 EP
59200642 Nov 1984 JP
05-176942 Jul 1993 JP
05184615 Jul 1993 JP
09149906 Oct 1997 JP
10-85231 Apr 1998 JP
11318931 Nov 1999 JP
2002509753 Apr 2002 JP
2003533329 Nov 2003 JP
2004121841 Apr 2004 JP
2004512895 Apr 2004 JP
2004516866 Jun 2004 JP
2006506181 Feb 2006 JP
2008540036 Nov 2008 JP
WO9731517 Aug 1997 WO
WO0238054 May 2002 WO
WO03007839 Jan 2003 WO
WO200402344 Jan 2004 WO
WO2004043277 May 2004 WO
WO2005009729 Feb 2005 WO
WO2006003316 Jan 2006 WO
Non-Patent Literature Citations (12)
Entry
Reiley; U.S. Appl. No. 14/707,817 entitled “Systems and methods for the fusion of the sacral-iliac joint,” filed May 8, 2015.
Mauldin et al.; “U.S. Appl. No. 14/719,274 entitled Integrated implant,” filed May 21, 2015.
Schneider et al.; U.S. Appl. No. 14/859,005 entitled “Matrix implant,” filed Sep. 18, 2015.
Reiley et al.; U.S. Appl. No. 14/859,046 entitled “Implants for bone fixation or fusion,” filed Sep. 18, 2015.
Acumed; Acutrak Headless Compressioin Screw (product information); 12 pgs; © 2005; retrieved Sep. 25, 2014 from http://www.rcsed.ac.uk/fellows/Ivanrensburg/classification/surgtech/acumed/manuals/acutrak-brochure%200311.pdf.
Reiley et al.; U.S. Appl. No. 15/195,955 entitled “Apparatus, systems, and methods for the fixation or fusion of bone,” filed Jun. 28, 2016.
Mauldin et al.; U.S. Appl. No. 15/208,588 entitled “System, device, and methods for joint fusion,” filed Jul. 12, 2016.
Reiley, Mark A.; U.S. Appl. No. 12/357,483 entitled “Systems and methods for the fixation or fusion of bone in the hand and wrist,” filed Jan. 22, 2009 (abandoned).
Reckling et al.; U.S. Appl. No. 14/515,416 entitled “Implant Placement,” filed Oct. 15, 2014.
Peretz et al.; The internal bony architecture of the sacrum; Spine; 23(9); pp. 971-974; May 1, 1998.
Sand et al.; U.S. Appl. No. 15/085,765 entitled “Neuromonitoring systems and methods for bone fixation or fusion procedures,” filed Mar. 30, 2016.
Lu et al.; Mechanical properties of porous materials; Journal of Porous Materials; 6(4); pp. 359-368; Nov. 1, 1999.
Related Publications (1)
Number Date Country
20150005832 A1 Jan 2015 US
Divisions (1)
Number Date Country
Parent 10914629 Aug 2004 US
Child 12072153 US
Continuations (2)
Number Date Country
Parent 13674764 Nov 2012 US
Child 14488144 US
Parent 12072153 Feb 2008 US
Child 13674764 US