The present disclosure relates generally to systems and methods for transimpedance amplifier (TIA), and more particularly to detect a base current of a bipolar junction transistor (BJT) in a TIA and to adjust the TIA operation to compensate for changing environmental and/or manufacturing conditions.
A transimpedance amplifier (TIA) may convert an input current source into an output voltage. The current to voltage gain may be based on a feedback resistance. A TIA may provide simple linear signal processing using an operational amplifier and a feedback resistor for dissipating current. The circuit may be able to maintain a constant voltage bias across the input source as the input current changes, which may be beneficial in a network of sensors. Transimpedance amplifiers may be used to process the current output of photodiodes, pressure transducers, accelerometers, and other types of sensors to a voltage formatted as a useable signal output. However, the performance of a TIA may be negatively impacted by 1) a change in environment, e.g. temperature, and 2) silicon wafer manufacturing variations.
Accordingly, what are needed are systems and methods that may detect performance deficiencies due the aforementioned conditions, and provide a recommendation to select either to discard the TIA or to cause adjustments in the operation of the TIA to improve the performance of the TIA.
References will be made to embodiments of the invention, examples of which may be illustrated in the accompanying figures. These figures are intended to be illustrative, not limiting. Although the invention is generally described in the context of these embodiments, it should be understood that it is not intended to limit the scope of the invention to these particular embodiments. Items in the figures are not to scale.
In the following description, for purposes of explanation, specific details are set forth in order to provide an understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these details. Furthermore, one skilled in the art will recognize that embodiments of the present invention, described below, may be implemented in a variety of ways, such as a process, an apparatus, a system, a device, or a method on a tangible computer-readable medium.
Components, or modules, shown in diagrams are illustrative of exemplary embodiments of the invention and are meant to avoid obscuring the invention. It shall also be understood that throughout this discussion that components may be described as separate functional units, which may comprise sub-units, but those skilled in the art will recognize that various components, or portions thereof, may be divided into separate components or may be integrated together, including integrated within a single system or component. It should be noted that functions or operations discussed herein may be implemented as components. Components may be implemented in software, hardware, or a combination thereof.
Furthermore, connections between components or systems within the figures are not intended to be limited to direct connections. Rather, data between these components may be modified, re-formatted, or otherwise changed by intermediary components. Also, additional or fewer connections may be used. It shall also be noted that the terms “coupled,” “connected,” or “communicatively coupled” shall be understood to include direct connections, indirect connections through one or more intermediary devices, and wireless connections.
Reference in the specification to “one embodiment,” “preferred embodiment,” “an embodiment,” or “embodiments” means that a particular feature, structure, characteristic, or function described in connection with the embodiment is included in at least one embodiment of the invention and may be in more than one embodiment. Also, the appearances of the above-noted phrases in various places in the specification are not necessarily all referring to the same embodiment or embodiments.
The use of certain terms in various places in the specification is for illustration and should not be construed as limiting. A service, function, or resource is not limited to a single service, function, or resource; usage of these terms may refer to a grouping of related services, functions, or resources, which may be distributed or aggregated.
The terms “include,” “including,” “comprise,” and “comprising” shall be understood to be open terms and any lists the follow are examples and not meant to be limited to the listed items. Any headings used herein are for organizational purposes only and shall not be used to limit the scope of the description or the claims. Each reference mentioned in this patent document is incorporate by reference herein in its entirety.
Furthermore, one skilled in the art shall recognize that: (1) certain steps may optionally be performed; (2) steps may not be limited to the specific order set forth herein; (3) certain steps may be performed in different orders; and (4) certain steps may be done concurrently.
A. Transimpedance Amplifier (TIA) and Bipolar Junction Transistors (BJT)
A transimpedance amplifier (TIA) may convert current to voltage. TIAs may be used to process the current output of photodiodes, pressure transducers, accelerometers, and other types of sensors to a voltage formatted as a useable signal output. TIAs provide linear signal processing using an operational amplifier and a feedback resistor for dissipating current.
In
Iin+((Vout−Vn1)/R)−ib=0,
as noted in
Bipolar Junction Transistor (BJT) is a semiconductor device constructed with three doped Semiconductor Regions (Base, Collector and Emitter) separated by two p-n Junctions. The p-n junction between the Base and the Emitter has a Barrier Voltage (Vo) of about 0.6 V to 0.8 V.
Per
The value of beta may vary depending on changes in environment, e.g. 1) temperature, and 2) silicon wafer manufacturing variations.
In another embodiment, a sample of the Gaussian distribution of
B. TIA Base Current Detection and Compensation Functional Blocks
If the voltage VF for Intermediate Signal 226 is greater than the voltage VR of Reference 224, the output of Comparator 210 is a “1”, which triggers an increment from a current state to a next state in Digital State Machine 212. In one embodiment, the state may change from State2 to State3. Digital State Machine 212 is coupled via Digital State 234 to Current Digital-Analog-Converter (Current DAC) 202. Current DAC 202 then converts the digital state, i.e., Digital State 234, to a current indicated by Current 236, which is the current output from Current DAC 202 (The current of Currrent DAC 202 is referred to as idac). In other words, Current DAC 202 is a state machine controlled low noise current DAC. In some embodiments, the change for State2 to State3 causes an increased value of current for Current 236. Current 236 is in turn coupled to TIA 204. TIA 204 then responds to Current 236 and implements another cycle of comparing voltage VF to voltage VR.
If the voltage VF for Intermediate Signal 226 is less than the voltage VR of Reference 224, the output of Comparator 210 maintains a value of “0”. In this case, the state of Digital State Machine 212 remains the same, and there is no change in Current 236.
Functional Blocks 200 may be utilized in a calibration method in order to detect performance deficiencies and provide a recommendation to select either to discard the TIA or to cause adjustments in the operation of the TIA to improve the performance. Performance may be based on the relationship between a load in the TIA and the voltage VF, as discussed relative to
With the completion of calibration and the digital code of the state machine recorded, the following decisions may be implemented: (1) compare the recoded digital code to a predetermined code to decide whether to discard the TIA. The predetermined code may be based on design, simulation and expectation parameters. Or, 2) based on the comparison of the recoded digital code to a predetermined code, proceed with operation of the TIA. In this case, the adjusted digital code has compensated for deficiencies in the operation.
An increase in VF may cause degradation in the performance of components of TIA 204. Specifically, the condition of VF being “close” to the supply voltage Vcc may cause TIA 204 to be in a non-operating condition.
When VF increases to a value of VF2, TIA 204 may no longer be operational. The voltage VF2 may be a pre-determined value based on ImpL. This pre-determined value may be based on the design and components of TIA 204. In some embodiments, this pre-determined value of VF2 may be 50% of ImpL. That is, TIA 204 may no longer be operational when ImpL has declined in value by 50%, as illustrated in
Alternatively, for pnp bipolar junction transistors, the condition of the value of VF being “low”, compared with Vcc may cause the TIA 204 to be in a non-operating condition. In embodiment 250, VF5 illustrates a “low” condition. This condition may occur if VF5 is less than a pre-determined value of Vcc. In some embodiments, pre-determined value of VF5 may be 20%. That is, TIA 204 may be in a non-operating condition when VF5 is 20% of Vcc.
In summary, an increase in VF (Intermediate Signal Voltage) relative to the Load (ImpL) associated with a TIA, may cause a decrease in component performance of a TIA. As illustrated in embodiment 250, ImpL is relatively constant at lower VF voltages. At voltage VF1, the ImpL begins to rapidly decrease; at voltage VF2, TIA becomes non-operational; at voltage VF3, TIA is operational but with degraded performance; at voltage VF4, TIA is operational with acceptable performance; VR=Reference Voltage; Vcc=power supply voltage. Voltage VF4 refers to a range of voltages below VF1. Voltage VF3 refers to a range of voltages between VF1 and VF2. In sample embodiment 250, VF1=2.12 volts; VF2=2.4 volts, VF3=2.3 volts, VF4=2.0 volts; VR=0.7 volts, Vcc=2.5 volts. Values are approximate.
As illustrated in embodiment 250, a TIA with an intermediate signal voltage of VF3 is operational but with degraded performance. With a calibration method, the TIA can compensate for deficiencies in component performance and reduce the intermediate signal voltage to VF4 to obtain acceptable performance. In some embodiments with a BJT, the component deficiency may be a high beta.
C. TIA Base Current Detection and Compensation Circuit
Circuit 300 comprises Current DAC 302, TIA 304, Comparator 320, and Digital State Machine 322. TIA 304 comprises several components including two BJTs as illustrated in
An output of Current DAC 302 may be coupled to the base of Q1 303 and to one end of RF 310. The collector of Q1 303 may be coupled to Load 307 and Buffer 311. An output of Buffer 311 may be coupled to the other end of RF 310, hence providing a feedback resistor for Q1 303. An output of Buffer 311 is the Intermediate Signal 326 having an associated voltage, VF, where VF=VBE1+(ibf×RF). Intermediate Signal 326 is coupled via R1 312 to the base of Q2 305. The components Load 309, variable resistor, R2 314, and Buffer 311 collectively operate to generate Vout, an output of the transimpedance amplifier.
Voltage VF and Voltage VR are separately coupled to Comparator 320, which in turn is coupled via COMP_OUT 332 to Digital State Machine 322, which in turn is coupled to Current DAC 302 via Digital State 334. Current DAC 302 generates idac, which is coupled to the base of Q1 303. The operation of Comparator 320, Digital State Machine 322, and Current DAC 302 are equivalent to the previously described operation of Comparator 210, Digital State Machine 212, and Current DAC 202 as previous described for
A goal for the operation of Circuits 300 is the detection of performance deficiencies due to 1) a change in environment, e.g. temperature, and 2) silicon wafer manufacturing variations, and provide a recommendation to select either to discard the TIA or to cause adjustments in the operation of the TIA to achieve an acceptable performance. As previously discussed relative to
D. Methods
Generating, by a current DAC 302, a DAC current (idac) based on a state of a digital state machine 322 (step 402)
Generating, by a TIA, an intermediate signal voltage VF based on the DAC current, base current ib1 and a value of beta of a bipolar junction transistor Q1 303 of the TIA. (step 404)
Comparing, by Comparator 320, the intermediate signal voltage VF and a PN junction bias voltage. (step 406)
Is the intermediate signal voltage VF greater than the PN junction bias voltage? (step 408)
If yes, the output of the comparator changes state, instructing a digital state machine to increment to a next digital code (or state of Digital State Machine 212), causing the current DAC to increase its DAC current idac (step 410)
Then, repeating the generation of the intermediate signal voltage VF based on the increased DAC current idac (step 412)
If no, the last digital code is recorded and compared with a pre-determined digital code. Based on this comparison, a decision can be made to 1) discard the TIA, or 2) continue operation with adjusted DAC current idac. (step 414)
As previously discussed for
In summary, A system for detecting and adjusting the operation of a TIA comprises (1) a current digital to analog converter (DAC) operable to generate an idac current based on a first state level of a digital state machine; (2) a transimpedance amplifier (TIA) operable to receive the current and to generate an intermediate signal voltage (VF) and generate an output voltage (Vout); (3) a comparator operable to receive the intermediate signal voltage (VF) and a reference voltage and generate an output; and (4) the digital state machine operable to generate second state level based on the output of the comparator. The current DAC changes its idac generated current if there is a difference between the first state level and the second state level.
If the intermediate signal voltage is greater than the reference voltage, the output of the comparator is a “1”, causing the digital state machine to increment the first state level to a higher level state for the second state, in turn causing the current DAC to increase the idac current coupled to the TIA. If the intermediate signal voltage is less than the reference voltage, the output of the comparator is a “0”, causing no change in the state level of the digital state machine, and causing no change to idac current coupled to the TIA. The reference voltage is based on a barrier voltage of a bipolar junction transistor (BJT). The barrier voltage varies between 0.6 voltages and 0.8 voltages.
The TIA comprises a first bipolar junction transistor (BJT), and the intermediate signal voltage (VF) is based in part on the value of beta of the first BJT. A first base current (ib1) for the first BJT is equal to the current from the current DAC (idac) plus a feedback current (ibf) received via a feedback resistor, wherein the intermediate signal voltage (VF) equals the barrier voltage plus the feedback current (ibf) times the resistance of the feedback resistor. When VF increases to a pre-determine value, the impedance of the load of the TIA decreases, causing the TIA to no longer operate. If the digital state machine increments to the higher level state, the idac current increases, and the TIA repeats the generation of another value of the intermediate signal voltage (VF) utilizing the increased idac current. If the digital state machine does not increment to a higher level state, a current state is recorded and compared with a pre-determined state, and wherein, based on the comparison, a decision is made to 1) discard the TIA, or 2) continue operation with last adjusted idac current. An operation status of the TIA is based on a relationship between intermediate signal voltage (VF) and an impedance of a load of the TIA, wherein an increase in intermediate signal voltage (VF) causes degradation in the operation status of the TIA.
A variation of a beta of the first BJT causes an inverse variation of the intermediate signal voltage that in turn causes a change in the first base current (ib1) for the first BJT, wherein the change in the first base current (ib1) compensates for the variation in the beta. The reference voltage is based on the barrier voltage of a second BJT in the TIA. The current to voltage gain may be based on a feedback resistance. A goal for the operation of the system is the neutralization of a high ibf current due to a large ib1 current.
A method for detecting and adjusting the operation of a TIA comprises generating a DAC current by a current DAC and coupling the DAC current to a transimpedance amplifier (TIA); generating, by the TIA, an intermediate signal voltage (VE) based on the DAC current, a base current and a value of beta of a bipolar junction transistor of the TIA; comparing, by a comparator, the intermediate signal voltage (VF) and a PN junction bias voltage.
If the intermediate signal voltage is greater than the PN junction bias voltage, the output of the comparator changes, instructing a digital state machine to increment to a next digital code, causing the current DAC to increase its DAC current; and repeating the generation of the intermediate signal voltage (VF) based on the increased DAC current. If the intermediate signal voltage (VF) is not greater than a PN junction bias voltage, recording the last digital code and comparing the last digital code with a pre-determined digital code.
E. System Embodiments
It will be appreciated to those skilled in the art that the preceding examples and embodiments are exemplary and not limiting to the scope of the present disclosure. It is intended that all permutations, enhancements, equivalents, combinations, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of the present disclosure. It shall also be noted that elements of any claims may be arranged differently including having multiple dependencies, configurations, and combinations.
Number | Name | Date | Kind |
---|---|---|---|
3064252 | Varela | Nov 1962 | A |
3373441 | Zadig | Mar 1968 | A |
3551845 | Zelina | Dec 1970 | A |
3636250 | Haeff | Jan 1972 | A |
3686514 | Dube et al. | Aug 1972 | A |
3781111 | Fletcher et al. | Dec 1973 | A |
3862415 | Harnden, Jr. et al. | Jan 1975 | A |
3897150 | Bridges et al. | Jul 1975 | A |
3921081 | Lane | Nov 1975 | A |
4179216 | Theurer et al. | Dec 1979 | A |
4199697 | Edwards | Apr 1980 | A |
4201442 | McMahon et al. | May 1980 | A |
4212534 | Bodlaj | Jul 1980 | A |
4220103 | Kasahara et al. | Sep 1980 | A |
4477184 | Endo | Oct 1984 | A |
4516837 | Soref et al. | May 1985 | A |
4634272 | Endo | Jan 1987 | A |
4656462 | Araki et al. | Apr 1987 | A |
4681433 | Aeschlimann | Jul 1987 | A |
4700301 | Dyke | Oct 1987 | A |
4730932 | Iga et al. | Mar 1988 | A |
4742337 | Haag | May 1988 | A |
4834531 | Ward | May 1989 | A |
4862257 | Ulich | Aug 1989 | A |
4895440 | Cain et al. | Jan 1990 | A |
4896343 | Saunders | Jan 1990 | A |
4902126 | Koechner | Feb 1990 | A |
4944036 | Hyatt | Jul 1990 | A |
4952911 | D'Ambrosia et al. | Aug 1990 | A |
4967183 | D'Ambrosia et al. | Oct 1990 | A |
5004916 | Collins, Jr. | Apr 1991 | A |
5006721 | Cameron et al. | Apr 1991 | A |
5023888 | Bayston | Jun 1991 | A |
5026156 | Bayston et al. | Jun 1991 | A |
5033819 | Tanaka | Jul 1991 | A |
5059008 | Flood et al. | Oct 1991 | A |
5175694 | Amato | Dec 1992 | A |
5177768 | Crespo et al. | Jan 1993 | A |
5210586 | Grage et al. | May 1993 | A |
5212533 | Shibuya et al. | May 1993 | A |
5241481 | Olsen | Aug 1993 | A |
5249157 | Taylor | Sep 1993 | A |
5291261 | Dahl et al. | Mar 1994 | A |
5309212 | Clark | May 1994 | A |
5314037 | Shaw et al. | May 1994 | A |
5319201 | Lee | Jun 1994 | A |
5357331 | Flockencier | Oct 1994 | A |
5365218 | Otto | Nov 1994 | A |
5463384 | Juds | Oct 1995 | A |
5465142 | Krumes et al. | Nov 1995 | A |
5515156 | Yoshida et al. | May 1996 | A |
5546188 | Wangler et al. | Aug 1996 | A |
5563706 | Shibuya et al. | Oct 1996 | A |
5572219 | Silverstein et al. | Nov 1996 | A |
5691687 | Kumagai et al. | Nov 1997 | A |
5710417 | Joseph et al. | Jan 1998 | A |
5757472 | Wangler et al. | May 1998 | A |
5757501 | Hipp | May 1998 | A |
5757677 | Lennen | May 1998 | A |
5789739 | Schwarz | Aug 1998 | A |
5793163 | Okuda | Aug 1998 | A |
5793491 | Wangler et al. | Aug 1998 | A |
5805468 | Blohbaum | Sep 1998 | A |
5847815 | Albouy et al. | Dec 1998 | A |
5847817 | Zediker et al. | Dec 1998 | A |
5877688 | Morinaka et al. | Mar 1999 | A |
5889479 | Tabel | Mar 1999 | A |
5895984 | Renz | Apr 1999 | A |
5903355 | Schwarz | May 1999 | A |
5903386 | Mantravadi et al. | May 1999 | A |
5923910 | Nakahara et al. | Jul 1999 | A |
5942688 | Kimura et al. | Aug 1999 | A |
5949530 | Wetteborn | Sep 1999 | A |
5953110 | Burns | Sep 1999 | A |
5991011 | Damm | Nov 1999 | A |
6034803 | Sullivan et al. | Mar 2000 | A |
6043868 | Dunne | Mar 2000 | A |
6069565 | Stern et al. | May 2000 | A |
6088085 | Wetteborn | Jul 2000 | A |
6091071 | Franz et al. | Jul 2000 | A |
6100539 | Blumcke et al. | Aug 2000 | A |
6137566 | Leonard et al. | Oct 2000 | A |
6153878 | Jakob et al. | Nov 2000 | A |
6157294 | Urai et al. | Dec 2000 | A |
6201236 | Juds | Mar 2001 | B1 |
6259714 | Kinbara | Jul 2001 | B1 |
6297844 | Schatz et al. | Oct 2001 | B1 |
6321172 | Jakob et al. | Nov 2001 | B1 |
6327806 | Paige | Dec 2001 | B1 |
6329800 | May | Dec 2001 | B1 |
6335789 | Kikuchi | Jan 2002 | B1 |
6365429 | Kneissl et al. | Apr 2002 | B1 |
6396577 | Ramstack | May 2002 | B1 |
6420698 | Dimsdale | Jul 2002 | B1 |
6441363 | Cook, Jr. et al. | Aug 2002 | B1 |
6441889 | Patterson | Aug 2002 | B1 |
6442476 | Poropat | Aug 2002 | B1 |
6473079 | Kacyra et al. | Oct 2002 | B1 |
6504712 | Hashimoto et al. | Jan 2003 | B2 |
6509958 | Pierenkemper | Jan 2003 | B2 |
6593582 | Lee et al. | Jul 2003 | B2 |
6621764 | Smith | Sep 2003 | B1 |
6636300 | Doemens et al. | Oct 2003 | B2 |
6646725 | Eichinger et al. | Nov 2003 | B1 |
6650402 | Sullivan et al. | Nov 2003 | B2 |
6664529 | Pack et al. | Dec 2003 | B2 |
6665063 | Jamieson et al. | Dec 2003 | B2 |
6670905 | Orr | Dec 2003 | B1 |
6682478 | Nakamura | Jan 2004 | B2 |
6687373 | Yeh et al. | Feb 2004 | B1 |
6710324 | Hipp | Mar 2004 | B2 |
6742707 | Tsikos et al. | Jun 2004 | B1 |
6747747 | Hipp | Jun 2004 | B2 |
6759649 | Hipp | Jul 2004 | B2 |
6789527 | Sauler et al. | Sep 2004 | B2 |
6798527 | Fukumoto et al. | Sep 2004 | B2 |
6812450 | Hipp | Nov 2004 | B2 |
6876790 | Lee | Apr 2005 | B2 |
6879419 | Richman et al. | Apr 2005 | B2 |
6969558 | Walston et al. | Nov 2005 | B2 |
7030968 | D'Aligny et al. | Apr 2006 | B2 |
7041962 | Dollmann et al. | May 2006 | B2 |
7089114 | Huang | Aug 2006 | B1 |
7106424 | Meneely et al. | Sep 2006 | B2 |
7129971 | McCutchen | Oct 2006 | B2 |
7130672 | Pewzner et al. | Oct 2006 | B2 |
7131586 | Tsikos et al. | Nov 2006 | B2 |
7190465 | Froehlich et al. | Mar 2007 | B2 |
7240314 | Leung | Jul 2007 | B1 |
7248342 | Degnan | Jul 2007 | B1 |
7281891 | Smith et al. | Oct 2007 | B2 |
7295298 | Willhoeft et al. | Nov 2007 | B2 |
7313424 | Mayevsky et al. | Dec 2007 | B2 |
7315377 | Holland et al. | Jan 2008 | B2 |
7319777 | Morcom | Jan 2008 | B2 |
7345271 | Boehlau et al. | Mar 2008 | B2 |
7358819 | Rollins | Apr 2008 | B2 |
7373473 | Bukowski et al. | May 2008 | B2 |
7408462 | Pirkl et al. | Aug 2008 | B2 |
7477360 | England et al. | Jan 2009 | B2 |
7480031 | Mack | Jan 2009 | B2 |
7544945 | Tan et al. | Jun 2009 | B2 |
7570793 | Lages et al. | Aug 2009 | B2 |
7583364 | Mayor et al. | Sep 2009 | B1 |
7589826 | Mack et al. | Sep 2009 | B2 |
7619477 | Segarra | Nov 2009 | B2 |
7623222 | Benz et al. | Nov 2009 | B2 |
7640068 | Johnson et al. | Dec 2009 | B2 |
7642946 | Wong | Jan 2010 | B2 |
7684590 | Kampchen et al. | Mar 2010 | B2 |
7697581 | Walsh et al. | Apr 2010 | B2 |
7741618 | Lee et al. | Jun 2010 | B2 |
7746271 | Furstenberg | Jun 2010 | B2 |
7868665 | Tumer et al. | Jan 2011 | B2 |
7944548 | Eaton | May 2011 | B2 |
7969558 | Hall | Jun 2011 | B2 |
8042056 | Wheeler et al. | Oct 2011 | B2 |
8072582 | Meneely | Dec 2011 | B2 |
8077047 | Humble et al. | Dec 2011 | B2 |
8139685 | Simic et al. | Mar 2012 | B2 |
8203702 | Kane et al. | Jun 2012 | B1 |
8274037 | Ritter et al. | Sep 2012 | B2 |
8310653 | Ogawa et al. | Nov 2012 | B2 |
8451432 | Crawford et al. | May 2013 | B2 |
8605262 | Campbell et al. | Dec 2013 | B2 |
8675181 | Hall | Mar 2014 | B2 |
8736818 | Weimer et al. | May 2014 | B2 |
8767190 | Hall | Jul 2014 | B2 |
8875409 | Kretschmer et al. | Nov 2014 | B2 |
8976340 | Gilliland et al. | Mar 2015 | B2 |
8995478 | Kobtsev et al. | Mar 2015 | B1 |
9059562 | Priest et al. | Jun 2015 | B2 |
9063549 | Pennecot et al. | Jun 2015 | B1 |
9069061 | Harwit | Jun 2015 | B1 |
9069080 | Stettner et al. | Jun 2015 | B2 |
9086273 | Gruver et al. | Jul 2015 | B1 |
9093969 | Gebeyehu et al. | Jul 2015 | B2 |
9110154 | Bates et al. | Aug 2015 | B1 |
9151940 | Chuang et al. | Oct 2015 | B2 |
9191260 | Grund | Nov 2015 | B1 |
9194701 | Bosch | Nov 2015 | B2 |
RE45854 | Gittinger et al. | Jan 2016 | E |
9239959 | Evans et al. | Jan 2016 | B1 |
9246041 | Clausen et al. | Jan 2016 | B1 |
9250327 | Kelley et al. | Feb 2016 | B2 |
9285477 | Smith et al. | Mar 2016 | B1 |
9286538 | Chen et al. | Mar 2016 | B1 |
9310197 | Gogolla et al. | Apr 2016 | B2 |
9383753 | Templeton et al. | Jul 2016 | B1 |
9453914 | Stettner et al. | Sep 2016 | B2 |
9529079 | Droz et al. | Dec 2016 | B1 |
9772607 | Decoux et al. | Sep 2017 | B2 |
RE46672 | Hall | Jan 2018 | E |
9964632 | Droz et al. | May 2018 | B1 |
9983297 | Hall et al. | May 2018 | B2 |
9989629 | LaChapelle | Jun 2018 | B1 |
10003168 | Villeneuve | Jun 2018 | B1 |
10018726 | Hall et al. | Jul 2018 | B2 |
10048374 | Hall et al. | Aug 2018 | B2 |
10094925 | LaChapelle | Oct 2018 | B1 |
10109183 | Franz et al. | Oct 2018 | B1 |
10120079 | Pennecot et al. | Nov 2018 | B2 |
10126412 | Eldada et al. | Nov 2018 | B2 |
10132928 | Eldada et al. | Nov 2018 | B2 |
10309213 | Barfoot et al. | Jun 2019 | B2 |
10330780 | Hall et al. | Jun 2019 | B2 |
10386465 | Hall et al. | Aug 2019 | B2 |
10393874 | Schmidtke et al. | Aug 2019 | B2 |
10393877 | Hall et al. | Aug 2019 | B2 |
10436904 | Moss et al. | Oct 2019 | B2 |
10545222 | Hall et al. | Jan 2020 | B2 |
RE47942 | Hall | Apr 2020 | E |
10613203 | Rekow et al. | Apr 2020 | B1 |
10627490 | Hall et al. | Apr 2020 | B2 |
10627491 | Hall et al. | Apr 2020 | B2 |
10712434 | Hall et al. | Jul 2020 | B2 |
20010011289 | Davis et al. | Aug 2001 | A1 |
20010017718 | Ikeda et al. | Aug 2001 | A1 |
20020003617 | Doemens et al. | Jan 2002 | A1 |
20020060784 | Pack et al. | May 2002 | A1 |
20020117545 | Tsikos et al. | Aug 2002 | A1 |
20030041079 | Bellemore et al. | Feb 2003 | A1 |
20030043363 | Jamieson et al. | Mar 2003 | A1 |
20030043364 | Jamieson et al. | Mar 2003 | A1 |
20030057533 | Lemmi et al. | Mar 2003 | A1 |
20030066977 | Hipp et al. | Apr 2003 | A1 |
20030076485 | Ruff et al. | Apr 2003 | A1 |
20030090646 | Riegl et al. | May 2003 | A1 |
20030163030 | Arriaga | Aug 2003 | A1 |
20040021852 | DeFlumere | Feb 2004 | A1 |
20040066500 | Gokturk et al. | Apr 2004 | A1 |
20040134879 | Kochergin et al. | Jul 2004 | A1 |
20040150810 | Muenter et al. | Aug 2004 | A1 |
20040213463 | Morrison | Oct 2004 | A1 |
20040240706 | Wallace et al. | Dec 2004 | A1 |
20040240710 | Lages et al. | Dec 2004 | A1 |
20040247157 | Lages et al. | Dec 2004 | A1 |
20050023353 | Tsikos et al. | Feb 2005 | A1 |
20050168720 | Yamashita et al. | Aug 2005 | A1 |
20050211893 | Paschalidis | Sep 2005 | A1 |
20050232466 | Kampchen et al. | Oct 2005 | A1 |
20050246065 | Ricard | Nov 2005 | A1 |
20050248749 | Kiehn et al. | Nov 2005 | A1 |
20050279914 | Dimsdale et al. | Dec 2005 | A1 |
20060007350 | Gao et al. | Jan 2006 | A1 |
20060073621 | Kneissel et al. | Apr 2006 | A1 |
20060089765 | Pack et al. | Apr 2006 | A1 |
20060100783 | Haberer et al. | May 2006 | A1 |
20060115113 | Lages et al. | Jun 2006 | A1 |
20060132635 | Land | Jun 2006 | A1 |
20060176697 | Arruda | Aug 2006 | A1 |
20060186326 | Ito | Aug 2006 | A1 |
20060197867 | Johnson et al. | Sep 2006 | A1 |
20060231771 | Lee et al. | Oct 2006 | A1 |
20060290920 | Kampchen et al. | Dec 2006 | A1 |
20070035624 | Lubard et al. | Feb 2007 | A1 |
20070071056 | Chen | Mar 2007 | A1 |
20070121095 | Lewis | May 2007 | A1 |
20070181810 | Tan et al. | Aug 2007 | A1 |
20070201027 | Doushkina et al. | Aug 2007 | A1 |
20070219720 | Trepagnier et al. | Sep 2007 | A1 |
20070241955 | Brosche | Oct 2007 | A1 |
20070272841 | Wiklof | Nov 2007 | A1 |
20080002176 | Krasutsky | Jan 2008 | A1 |
20080013896 | Salzberg et al. | Jan 2008 | A1 |
20080074640 | Walsh et al. | Mar 2008 | A1 |
20080079371 | Kang et al. | Apr 2008 | A1 |
20080154495 | Breed | Jun 2008 | A1 |
20080170826 | Schaafsma | Jul 2008 | A1 |
20080186501 | Xie | Aug 2008 | A1 |
20080302971 | Hyde et al. | Dec 2008 | A1 |
20090010644 | Varshneya et al. | Jan 2009 | A1 |
20090026503 | Tsuda | Jan 2009 | A1 |
20090085901 | Antony | Apr 2009 | A1 |
20090122295 | Eaton | May 2009 | A1 |
20090142053 | Varshneya et al. | Jun 2009 | A1 |
20090168045 | Lin et al. | Jul 2009 | A1 |
20090218475 | Kawakami et al. | Sep 2009 | A1 |
20090245788 | Varshneya et al. | Oct 2009 | A1 |
20090323737 | Ensher et al. | Dec 2009 | A1 |
20100006760 | Lee et al. | Jan 2010 | A1 |
20100020306 | Hall | Jan 2010 | A1 |
20100045965 | Meneely | Feb 2010 | A1 |
20100046953 | Shaw et al. | Feb 2010 | A1 |
20100067070 | Mamada et al. | Mar 2010 | A1 |
20100073780 | Ito | Mar 2010 | A1 |
20100074532 | Gordon et al. | Mar 2010 | A1 |
20100134596 | Becker | Jun 2010 | A1 |
20100188722 | Yamada et al. | Jul 2010 | A1 |
20100198487 | Vollmer et al. | Aug 2010 | A1 |
20100204964 | Pack et al. | Aug 2010 | A1 |
20100239139 | Hunt et al. | Sep 2010 | A1 |
20100265077 | Humble et al. | Oct 2010 | A1 |
20100271615 | Sebastian et al. | Oct 2010 | A1 |
20100302528 | Hall | Dec 2010 | A1 |
20110028859 | Chian | Feb 2011 | A1 |
20110040482 | Brimble et al. | Feb 2011 | A1 |
20110176183 | Ikeda et al. | Jul 2011 | A1 |
20110211188 | Juenemann et al. | Sep 2011 | A1 |
20110216304 | Hall | Sep 2011 | A1 |
20110305250 | Chann et al. | Dec 2011 | A1 |
20120038903 | Weimer et al. | Feb 2012 | A1 |
20120195597 | Malaney | Aug 2012 | A1 |
20120287417 | Mimeault | Nov 2012 | A1 |
20130024176 | Woodford | Jan 2013 | A2 |
20130038915 | Kusaka et al. | Feb 2013 | A1 |
20130050144 | Reynolds | Feb 2013 | A1 |
20130050486 | Omer et al. | Feb 2013 | A1 |
20130070239 | Crawford et al. | Mar 2013 | A1 |
20130093583 | Shapiro | Apr 2013 | A1 |
20130094960 | Bowyer et al. | Apr 2013 | A1 |
20130151198 | Brown | Jun 2013 | A1 |
20130168673 | Yu et al. | Jul 2013 | A1 |
20130206967 | Shpunt et al. | Aug 2013 | A1 |
20130241761 | Cooper et al. | Sep 2013 | A1 |
20130242283 | Bailey et al. | Sep 2013 | A1 |
20130258312 | Lewis | Oct 2013 | A1 |
20130286404 | Cenko et al. | Oct 2013 | A1 |
20130300479 | Thibault | Nov 2013 | A1 |
20130314711 | Cantin et al. | Nov 2013 | A1 |
20130336375 | Ranki et al. | Dec 2013 | A1 |
20130342366 | Kiefer et al. | Dec 2013 | A1 |
20140063189 | Zheleznyak et al. | Mar 2014 | A1 |
20140063483 | Li | Mar 2014 | A1 |
20140071234 | Millett | Mar 2014 | A1 |
20140078519 | Steffey et al. | Mar 2014 | A1 |
20140104592 | Tien et al. | Apr 2014 | A1 |
20140176657 | Nemoto | Jun 2014 | A1 |
20140240317 | Go et al. | Aug 2014 | A1 |
20140240721 | Herschbach | Aug 2014 | A1 |
20140253369 | Kelley et al. | Sep 2014 | A1 |
20140259715 | Engel | Sep 2014 | A1 |
20140267848 | Wu | Sep 2014 | A1 |
20140274093 | Abdelmonem | Sep 2014 | A1 |
20140347650 | Bosch | Nov 2014 | A1 |
20150015895 | Bridges et al. | Jan 2015 | A1 |
20150035437 | Panopoulos et al. | Feb 2015 | A1 |
20150055117 | Pennecot et al. | Feb 2015 | A1 |
20150101234 | Priest et al. | Apr 2015 | A1 |
20150116695 | Bartolome et al. | Apr 2015 | A1 |
20150131080 | Retterath et al. | May 2015 | A1 |
20150144806 | Jin et al. | May 2015 | A1 |
20150185325 | Park et al. | Jul 2015 | A1 |
20150202939 | Stettner et al. | Jul 2015 | A1 |
20150219764 | Lipson | Aug 2015 | A1 |
20150219765 | Mead et al. | Aug 2015 | A1 |
20150226853 | Seo et al. | Aug 2015 | A1 |
20150293224 | Eldada et al. | Oct 2015 | A1 |
20150293228 | Retterath et al. | Oct 2015 | A1 |
20150303216 | Tamaru | Oct 2015 | A1 |
20160003946 | Gilliland et al. | Jan 2016 | A1 |
20160009410 | Derenick et al. | Jan 2016 | A1 |
20160014309 | Ellison et al. | Jan 2016 | A1 |
20160021713 | Reed | Jan 2016 | A1 |
20160049058 | Allen et al. | Feb 2016 | A1 |
20160098620 | Geile | Apr 2016 | A1 |
20160117431 | Kim et al. | Apr 2016 | A1 |
20160154105 | Sigmund et al. | Jun 2016 | A1 |
20160161600 | Eldada et al. | Jun 2016 | A1 |
20160191173 | Malaney | Jun 2016 | A1 |
20160209499 | Suzuki | Jul 2016 | A1 |
20160245919 | Kalscheur et al. | Aug 2016 | A1 |
20160259038 | Retterath et al. | Sep 2016 | A1 |
20160279808 | Doughty et al. | Sep 2016 | A1 |
20160300484 | Torbett | Oct 2016 | A1 |
20160306032 | Schwarz et al. | Oct 2016 | A1 |
20160313445 | Bailey et al. | Oct 2016 | A1 |
20160363659 | Mindell et al. | Dec 2016 | A1 |
20160365846 | Wyland | Dec 2016 | A1 |
20170146639 | Carothers | May 2017 | A1 |
20170146640 | Hall et al. | May 2017 | A1 |
20170153319 | Villeneuve et al. | Jun 2017 | A1 |
20170214861 | Rachlin et al. | Jul 2017 | A1 |
20170219695 | Hall et al. | Aug 2017 | A1 |
20170220876 | Gao et al. | Aug 2017 | A1 |
20170242102 | Dussan et al. | Aug 2017 | A1 |
20170269198 | Hall et al. | Sep 2017 | A1 |
20170269209 | Hall et al. | Sep 2017 | A1 |
20170269215 | Hall et al. | Sep 2017 | A1 |
20170299721 | Eichenholz et al. | Oct 2017 | A1 |
20170350983 | Hall et al. | Dec 2017 | A1 |
20180019155 | Tsang et al. | Jan 2018 | A1 |
20180058197 | Barfoot et al. | Mar 2018 | A1 |
20180059219 | Irish et al. | Mar 2018 | A1 |
20180074382 | Lee et al. | Mar 2018 | A1 |
20180100924 | Brinkmeyer | Apr 2018 | A1 |
20180106902 | Mase et al. | Apr 2018 | A1 |
20180131449 | Kare et al. | May 2018 | A1 |
20180168539 | Singh et al. | Jun 2018 | A1 |
20180267151 | Hall et al. | Sep 2018 | A1 |
20180275249 | Campbell et al. | Sep 2018 | A1 |
20180284227 | Hall et al. | Oct 2018 | A1 |
20180284274 | LaChapelle | Oct 2018 | A1 |
20180321360 | Hall et al. | Nov 2018 | A1 |
20180364098 | McDaniel et al. | Dec 2018 | A1 |
20190001442 | Unrath et al. | Jan 2019 | A1 |
20190011563 | Hall et al. | Jan 2019 | A1 |
20190178991 | Hall et al. | Jun 2019 | A1 |
20190293764 | Van Nieuwenhove et al. | Sep 2019 | A1 |
20190339365 | Hall et al. | Nov 2019 | A1 |
20190361092 | Hall et al. | Nov 2019 | A1 |
20190369257 | Hall et al. | Dec 2019 | A1 |
20190369258 | Hall et al. | Dec 2019 | A1 |
20200025896 | Gunnam | Jan 2020 | A1 |
20200064452 | Avlas et al. | Feb 2020 | A1 |
20200142070 | Hall et al. | May 2020 | A1 |
20200144971 | Pinto et al. | May 2020 | A1 |
20200166613 | Hall et al. | May 2020 | A1 |
20200191915 | Hall et al. | Jun 2020 | A1 |
20200249321 | Hall et al. | Aug 2020 | A1 |
20200319311 | Hall et al. | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2089105 | Aug 1994 | CA |
641583 | Feb 1984 | CH |
1106534 | Aug 1995 | CN |
1576123 | Feb 2005 | CN |
2681085 | Feb 2005 | CN |
2773714 | Apr 2006 | CN |
103278808 | Dec 2015 | CN |
107037444 | Aug 2017 | CN |
206773192 | Dec 2017 | CN |
108061884 | May 2018 | CN |
207457499 | Jun 2018 | CN |
207457508 | Jun 2018 | CN |
109116367 | Jan 2019 | CN |
106443699 | Feb 2019 | CN |
106597471 | May 2019 | CN |
208902906 | May 2019 | CN |
930909 | Jul 1955 | DE |
3134815 | Mar 1983 | DE |
3216312 | Nov 1983 | DE |
3216313 | Nov 1983 | DE |
3701340 | Jul 1988 | DE |
3741259 | Jun 1989 | DE |
3808972 | Oct 1989 | DE |
3821892 | Feb 1990 | DE |
4040894 | Apr 1992 | DE |
4115747 | Nov 1992 | DE |
4124192 | Jan 1993 | DE |
4127168 | Feb 1993 | DE |
4137550 | Mar 1993 | DE |
4215272 | Nov 1993 | DE |
4243631 | Jun 1994 | DE |
4340756 | Jun 1994 | DE |
4411448 | Oct 1995 | DE |
4412044 | Oct 1995 | DE |
19512644 | Oct 1996 | DE |
19512681 | Oct 1996 | DE |
4345446 | Jul 1998 | DE |
4345448 | Jul 1998 | DE |
19727792 | Feb 1999 | DE |
19741730 | Apr 1999 | DE |
19741731 | Apr 1999 | DE |
19752145 | May 1999 | DE |
19717399 | Jun 1999 | DE |
19757847 | Jul 1999 | DE |
19757848 | Jul 1999 | DE |
19757849 | Jul 1999 | DE |
19757840 | Sep 1999 | DE |
19815149 | Oct 1999 | DE |
19828000 | Jan 2000 | DE |
19902903 | May 2000 | DE |
19911375 | Sep 2000 | DE |
19919925 | Nov 2000 | DE |
19927501 | Nov 2000 | DE |
19936440 | Mar 2001 | DE |
19953006 | May 2001 | DE |
19953007 | May 2001 | DE |
19953009 | May 2001 | DE |
19953010 | May 2001 | DE |
10025511 | Dec 2001 | DE |
10110420 | Sep 2002 | DE |
10114362 | Oct 2002 | DE |
10127417 | Dec 2002 | DE |
10128954 | Dec 2002 | DE |
10141055 | Mar 2003 | DE |
10143060 | Mar 2003 | DE |
10146692 | Apr 2003 | DE |
10148070 | Apr 2003 | DE |
10151983 | Apr 2003 | DE |
10162668 | Jul 2003 | DE |
10217295 | Nov 2003 | DE |
10222797 | Dec 2003 | DE |
10229408 | Jan 2004 | DE |
10244638 | Apr 2004 | DE |
10244640 | Apr 2004 | DE |
10244643 | Apr 2004 | DE |
10258794 | Jun 2004 | DE |
10303015 | Aug 2004 | DE |
10331529 | Jan 2005 | DE |
10341548 | Mar 2005 | DE |
102004010197 | Sep 2005 | DE |
102004014041 | Oct 2005 | DE |
102005050824 | May 2006 | DE |
102005003827 | Jul 2006 | DE |
102005019233 | Nov 2006 | DE |
102007013023 | Sep 2008 | DE |
202015009250 | Jan 2017 | DE |
0185816 | Jul 1986 | EP |
0361188 | Apr 1990 | EP |
0396865 | Nov 1990 | EP |
0412395 | Feb 1991 | EP |
0412398 | Feb 1991 | EP |
0412399 | Feb 1991 | EP |
0412400 | Feb 1991 | EP |
0468175 | Jan 1992 | EP |
0486430 | May 1992 | EP |
0653720 | May 1995 | EP |
0656868 | Jun 1995 | EP |
0897120 | Feb 1999 | EP |
0913707 | May 1999 | EP |
0937996 | Aug 1999 | EP |
0967492 | Dec 1999 | EP |
1046938 | Oct 2000 | EP |
1055937 | Nov 2000 | EP |
1148345 | Oct 2001 | EP |
1160718 | Dec 2001 | EP |
1174733 | Jan 2002 | EP |
1267177 | Dec 2002 | EP |
1267178 | Dec 2002 | EP |
1286178 | Feb 2003 | EP |
1286181 | Feb 2003 | EP |
1288677 | Mar 2003 | EP |
1291673 | Mar 2003 | EP |
1291674 | Mar 2003 | EP |
1298012 | Apr 2003 | EP |
1298453 | Apr 2003 | EP |
1298454 | Apr 2003 | EP |
1300715 | Apr 2003 | EP |
1302784 | Apr 2003 | EP |
1304583 | Apr 2003 | EP |
1306690 | May 2003 | EP |
1308747 | May 2003 | EP |
1355128 | Oct 2003 | EP |
1403657 | Mar 2004 | EP |
1408318 | Apr 2004 | EP |
1418444 | May 2004 | EP |
1460454 | Sep 2004 | EP |
1475764 | Nov 2004 | EP |
1515157 | Mar 2005 | EP |
1531342 | May 2005 | EP |
1531343 | May 2005 | EP |
1548351 | Jun 2005 | EP |
1557691 | Jul 2005 | EP |
1557692 | Jul 2005 | EP |
1557693 | Jul 2005 | EP |
1557694 | Jul 2005 | EP |
1700763 | Sep 2006 | EP |
1914564 | Apr 2008 | EP |
1927867 | Jun 2008 | EP |
1939652 | Jul 2008 | EP |
1947377 | Jul 2008 | EP |
1983354 | Oct 2008 | EP |
2003471 | Dec 2008 | EP |
2177931 | Apr 2010 | EP |
2503360 | Sep 2012 | EP |
2041687 | Sep 1980 | GB |
H05240940 | Sep 1993 | JP |
H03-006407 | Feb 1994 | JP |
H6-288725 | Oct 1994 | JP |
H07-167609 | Jul 1995 | JP |
11264871 | Sep 1999 | JP |
2001216592 | Aug 2001 | JP |
2001-256576 | Sep 2001 | JP |
2002-031528 | Jan 2002 | JP |
2003-336447 | Nov 2003 | JP |
2004-348575 | Dec 2004 | JP |
2005-070840 | Mar 2005 | JP |
2005-297863 | Oct 2005 | JP |
2006-177843 | Jul 2006 | JP |
2011-069726 | Apr 2011 | JP |
2014-190736 | Oct 2014 | JP |
2015-169491 | Sep 2015 | JP |
WO-1999003080 | Jan 1999 | WO |
WO-2000025089 | May 2000 | WO |
WO-0131608 | May 2001 | WO |
WO-03019234 | Mar 2003 | WO |
WO-03040755 | May 2003 | WO |
WO-2004019293 | Mar 2004 | WO |
WO-2004036245 | Apr 2004 | WO |
WO-2008008970 | Jan 2008 | WO |
WO-2009120706 | Oct 2009 | WO |
WO-2012153309 | Nov 2012 | WO |
WO-2013191133 | Dec 2013 | WO |
WO-2015079300 | Jun 2015 | WO |
WO-2015104572 | Jul 2015 | WO |
WO-2016162568 | Oct 2016 | WO |
WO-2017033419 | Mar 2017 | WO |
WO-2017089063 | Jun 2017 | WO |
WO-2017132703 | Aug 2017 | WO |
WO-2017164989 | Sep 2017 | WO |
WO-2017165316 | Sep 2017 | WO |
WO-2017193269 | Nov 2017 | WO |
WO-2018125823 | Jul 2018 | WO |
WO-2018196001 | Nov 2018 | WO |
Entry |
---|
U.S. Appl. No. 15/941,302, filed Mar. 30, 2018, Hall et al. |
U.S. Appl. No. 16/510,680, filed Jul. 12, 2019, Hall et al. |
U.S. Appl. No. 16/510,710, filed Jul. 12, 2019, Hall et al. |
U.S. Appl. No. 16/510,749, filed Jul. 12, 2019, Hall et al. |
U.S. Appl. No. 15/420,384, filed Jan. 31, 2017, Hall et al. |
U.S. Appl. No. 16/030,780, filed Jul. 9, 2018, Hall et al. |
U.S. Appl. No. 11/777,802, filed Jul. 13, 2007, Hall. |
U.S. Appl. No. 13/109,901, filed May 17, 2011, Hall et al. |
U.S. Appl. No. 15/180,580, filed Jun. 13, 2016, Hall et al. |
U.S. Appl. No. 15/700,543, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,558, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,571, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,836, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,844, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,959, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 15/700,965, filed Sep. 11, 2017, Hall et al. |
U.S. Appl. No. 16/912,648, filed Jun. 25, 2020, Hall et al. |
U.S. Appl. No. 15/926,095, filed Mar. 30, 2018, Hall et al. |
U.S. Appl. No. 15/464,227, filed Mar. 30, 2017, Hall et al. |
U.S. Appl. No. 15/464,221, filed Mar. 30, 2017, Hall et al. |
U.S. Appl. No. 15/974,527, filed May 8, 2018, Hall et al. |
U.S. Appl. No. 16/748,498, filed Jan. 21, 2020, Hall et al. |
U.S. Appl. No. 15/610,975, filed Jun. 1, 2017, Hall et al. |
U.S. Appl. No. 16/546,131, filed Aug. 20, 2019, Hall et al. |
U.S. Appl. No. 16/842,491, filed Apr. 7, 2020, Hall et al. |
U.S. Appl. No. 16/546,184, filed Aug. 20, 2019, Hall et al. |
U.S. Appl. No. 16/546,206, filed Aug. 20, 2019, Hall et al. |
U.S. Appl. No. 16/909,306, filed Jun. 23, 2020, Hall et al. |
U.S. Appl. No. 15/339,790, filed Oct. 31, 2016, Hall et al. |
U.S. Appl. No. 16/854,755, filed Apr. 21, 2020, Hall et al. |
U.S. Appl. No. 16/905,843, filed Jun. 18, 2020, Hall et al. |
U.S. Appl. No. 16/909,846, filed Jun. 23, 2020, Hall et al. |
U.S. Appl. No. 15/835,983, filed Dec. 8, 2017, Hall et al. |
U.S. Appl. No. 16/459,557, filed Jul. 1, 2019, Rekow et al. |
U.S. Appl. No. 16/841,506, filed Apr. 6, 2020, Rekow et al. |
U.S. Appl. No. 16/112,273, filed Aug. 24, 2018, Avlas et al. |
U.S. Appl. No. 16/241,849, filed Jan. 7, 2019, Hall et al. |
U.S. Appl. No. 16/241,963, filed Jan. 7, 2019, Hall et al. |
Quanergy Systems Inc. v. Velodyne Lidar, Inc. (N.D. Cal.), filed Sep. 13, 2016, U.S. Pat. No. 7,969,558. |
Velodyne Lidar, Inc. v. Hesai Photonics Technology Co., Ltd. (N.D. Cal.), filed Aug. 13, 2019, U.S. Pat. No. 7,969,558. |
Velodyne Lidar, Inc. v. Suteng Innovation Technology Co., Ltd. (N.D. Cal.), filed Aug. 13, 2019, U.S. Pat. No. 7,969,558. |
In re Certain Rotating 3-D Lidar Devices. Components Thereof, and Sensing Systems Containing the Same (ITC), Investigation No. ITC-337-TA-1173, filed Aug. 15, 2019, U.S. Pat. No. 7,969,558. |
Petition for Inter Partes Review (USPTO Patent Trial and Appeal Board), filed Nov. 29, 2017, U.S. Pat. No. 7,969,558. |
Inter Parties Review Petition for Inter Partes Review of U.S. Pat. No. 7,969,558 (Claims 1-4, 8, and 9) (IPR No. 2018-00255, Quanergy Systems, Inc. v. Velodyne Lidar, Inc.) (Nov. 29, 2017), 67 pages. (IPR No. 2018-00255). |
Inter Parties Review Replacement Petition for Inter Partes Review of U.S. Pat. No. 7,969,558 (Claims 1-4, 8, and 9), 71 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Preliminary Response (Public Version—Redacted) (Mar. 7, 2018), 72 pages. (IPR No. 2018-00255). |
Inter Parties Review Decision: Institution of Inter Partes Review (May 25, 2018), 11 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Motion to Submit Supplemental Information Pursuant to 37 C.F.R. § 42.123(b) (Aug. 6, 2018), 16 pages. (IPR No. 2018-00255). |
Inter Parties Review Decision: Petitioner's Motion to Submit Supplemental Information Pursuant to 37 C.F.R. § 42.123(b) (Aug. 8, 2018), 4 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Response (Public Version—Redacted) (Sep. 28, 2018), 92 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Contingent Motion to Amend (Public Version—Redacted) (Sep. 28, 2018), 56 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Unopposed Motion to Submit Replacement Petition and Supplemental Declaration (Nov. 5, 2018), 9 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Reply to Patent Owner's Response (Dec. 21, 2018), 38 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner Quanergy's Opposition to Patent Owner's Contingent Motion to Amend (Dec. 21, 2018), 35 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Surreply (Jan. 16, 2019), 50 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Reply in Support of Its Contingent Motion to Amend (Jan. 16, 2019), 33 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner Quanergy's Sur-Surreply (Jan. 30, 2019), 9 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner Quanergy's Surreply to Patent Owner's Contingent Motion to Amend (Jan. 30, 2019), 17 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Updated Exhibit List (Jan. 30, 2019), 13 pages. (IPR No. 2018-00255). |
Inter Parties Review Patent Owner's Updated Exhibit List (Feb. 11, 2019), 21 pages. (IPR No. 2018-00255). |
Inter Parties Review Record of Oral Hearing (Feb. 27, 2019), 126 pages. (IPR Nos. 2018-00255 and 2018-00256). |
Inter Parties Review Final Written Decision (May 23, 2019), 40 pages. (IPR No. 2018-00255). |
Inter Parties Review Petitioner's Request for Rehearing (Jun. 24, 2019), 20 pages. (IPR No. 2018-00255). |
Inter Parties Review Decision Denying Petitioner's Request for Rehearing (May 21, 2020), 26 pages. (IPR No. 2018-00255). |
Inter Parties Review Declaration of Dr. James F. Brennan III (Nov. 29, 2017), 172 pages. (IPR Nos. '255 and '256 Exhibit 1002). |
Kilpelä, “Precise pulsed time-of-flight laser range finder for industrial distance measurements,” Review of Scientific Instruments (Apr. 2001), 13 pages. (IPR Nos. '255 and '256 Exhibit 1005). |
Bordone, et al., “Development of a high-resolution laser radar for 3D imaging in artwork cataloging,” Proceedings of SPIE, vol. 5131 (2003), 6 pages. (IPR Nos. '255 and '256 Exhibit 1016). |
The American Heritage Dictionary of the English Language, Houghton Mifflin Company, 3d ed. (1996), pp. 1497, 1570, 1697, 1762, and 1804. (IPR Nos. '255 and '256 Exhibit 1018). |
Avalanche Photodiode: A User Guide (2011), 8 pages. (IPR Nos. '255 and '256 Exhibit 1019). |
Melle, et al., “How to select avalanche photodiodes,” Laser Focus World (Oct. 1, 1995), 9 pages. (IPR Nos. '255 and '256 Exhibit 1020). |
Aull, et al., “Geiger-Mode Avalanche Photodiodes for Three Dimensional Imaging,” Lincoln Laboratory Journal (2002), 16 pages. (IPR Nos. '255 and '256 Exhibit 1021), Lincoln Laboratory Journal, vol. 13, No. 2, 2002, pp. 335-350. |
Wikipedia, “Laser” (Nov. 10, 2017), 25 pages. (IPR Nos. '255 and '256 Exhibit 1022). |
Internet Archive Web Page: Laser Components (2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1023). |
Internet Archive Web Page: Laser Components: High Powered Pulsed Laser Diodes 905D3J08-Series (2004), 6 pages. (IPR Nos. '255 and '256 Exhibit 1024). |
U.S. District Court, Claim Construction Order, Quanergy Systems, Inc. v. Velodyne LiDAR, Inc., Case No. 5:16-cv-5251-EJD (Oct. 4, 2017), 33 pages. (IPR Nos. '255 and '256 Exhibit 1027). |
Internet Archive Webpage: Mercotac 3-Conductor Rotary Electrical Connectors (Mar. 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 1031). |
Aood Technology Limited, “Electrical Slip Rings vs. Rotating Electrical Connectors” (2013), 3 pages. (IPR Nos. '255 and '256 Exhibit 1032). |
Yang, et al., “Performance of a large-area avalanche photodiode at low temperature for scintillation detection,” Nuclear Instruments and Methods in Physics Research (2003), pp. 388-393 (IPR Nos. '255 and '256 Exhibit 1034). |
Thomas, “A procedure for multiple-pulse maximum permissible exposure determination under the Z136.1-2000 American national standard for safe use of lasers,” Journal of Laser Applications, Aug. 2001, vol. 13, No. 4, pp. 134-140. |
American National Standards Institute, “Procedures for the Development and Coordination of American National Standards” (Mar. 22, 1995), 50 pages. (IPR Nos. '255 and '256 Exhibit 1040). |
Inter Parties Review, Declaration of Dr. Sylvia Hall-Ellis (Nov. 29, 2017), 93 pages. (IPR Nos. '255 and '256 Exhibit 1041). |
Ogurtsov, et al., “High Accuracy ranging with Yb3+-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed,” Optics Communications (2006), pp. 266-273. (IPR Nos. '255 and '256 Exhibit 1042). |
Ou-Yang, et al., “High-dynamic-range laser range finders based on a novel multimodulated frequency method,” Optical Engineering (Dec. 2006), 6 pages. (IPR Nos. '255 and '256 Exhibit 1043). |
Tarakanov, et al., “Picosecond pulse generation by internal gain switching in laser diodes,” Journal of Applied Physics 95:223 (Mar. 2004), pp. 2223-2229. (IPR Nos. '255 and '256 Exhibit 1044). |
Japanese Patent Office, Petitioner's Translation of Mizuno Japanese Patent Publication No. H3-6407 (1991), 15 pages. (IPR Nos. '255 and '256 Exhibit 1058). |
Inter Parties Review, Redlined Supplemental Declaration of Dr. James F. Brennan III (2018), 171 pages. (IPR Nos. '255 and '256 Exhibit 1062). |
Inter Parties Review, Declaration of James F. Brennan, III in Support of Petitioner's Replies and Oppositions to Motions to Amend (Dec. 21, 2018), 93 pages. (IPR Nos. '255 and '256 Exhibit 1063). |
Inter Parties Review, Deposition Transcript of J. Gary Eden, Ph.D (taken Nov. 27, 2018), 285 pages. (IPR Nos. '255 and '256 Exhibit 1064). |
Inter Parties Review, Declaration of Sylvia Hall-Ellis (Dec. 21, 2018), 146 pages. (IPR Nos. '255 and '256 Exhibit 1065). |
Inter Parties Review, Chris Butler Affidavit and Exhibit (Dec. 18, 2018), 33 pages. (IPR Nos. '255 and '256 Exhibit 1066). |
Inter Parties Review, Chris Butler Affidavit and Exhibit (Dec. 20, 2018), 52 pages. (IPR Nos. '255 and '256 Exhibit 1067). |
Robots for Roboticists, Lidar Fundamentals, http://robotsforroboticists.com/lidar-fundamentals/ (May 5, 2014), 6 pages. (IPR Nos. '255 and '256 Exhibit 1068). |
Alhashimi, et al, Statistical Modeling and Calibration of Triangulation Lidars, SCITEPRESS—Science and Technology Publications (2016), pp. 308-317. (IPR Nos. '255 and '256 Exhibit 1069). |
USGS, Eros CalVal Center of Excellence (ECCOE), https://calval.cr.usgs.gov/wordpress/wpcontent/uploads/JACIE_files/JAC IE06/Files/312Habib.pdf (Dec. 21, 2018), 3 pages. (IPR Nos. '255 and '256 Exhibit 1071). |
Acuity Laser, Principles of Measurement Used by Laser Sensors, https://www.acuitylaser.com/measurement-principles (2018), 4 pages. (IPR Nos. '255 and '256 Exhibit 1075). |
Inter Parties Review, Listing of Labelled Substitute Claims (2018), 17 pages. (IPR Nos. '255 and '256 Exhibit 1076). |
Fuerstenberg, et al, Multilayer Laserscanner for Robust Object Tracking and Classification in Urban Traffic Scenes, 9th World Congress on Intelligent Transport Systems (2002), 14 pages. (IPR Nos. '255 and '256 Exhibit 1079), pp. 1-10. |
Janocha, Actuators: Basics and Applications, Springer (2004), pp. 85-153. (IPR Nos. '255 and '256 Exhibit 1080). |
Sick, Sick ToF sensors at close range, https://web.archive.org/web/20040607070720/ http:/www.sick.de:80/de/products/categories/industrial/distancesensors/dme2000/en.html (Jun. 7, 2004), 2 pages. (IPR Nos. '255 and '256 Exhibit 1082). |
Daido, Daido steel drilling equipment page, https://web.archive.org/web/20050406120958/ http:/www.daido.co.jp:80/english/products/applipro/energy/dri.html (Apr. 6, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 1083). |
Daido, Daido steel petroleum components, https://web.archive.org/web/20050406121643/ http:/www.daido.co.jp:80/english/products/applipro/energy/petro.htm (Apr. 6, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 1084). |
Daido, Daido steel rebar page, https://web.archive.org/web/20051201010951/ http:/www.daido.co.jp:80/products/stainless/ik_shokai.html (Dec. 1, 2005), 2 pages. (IPR Nos. '255 and '256 Exhibit 1086). |
Daido, Daido Special Steel Co. home page, https://web.archive.org/web/20051227070229/http:/daido.co.jp/ (Dec. 27, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 1087). |
Canbus, https://web.archive.org/web/20040520021138/ http:/canbus.us:80/ (May 20, 2004), 3 pages. (IPR Nos. '255 and '256 Exhibit 1088). |
Esacademy, Betting on CAN, https://web.archive.org/web/20040609170940/ http:/www.esacademy.com:80/faq/docs/bettingcan/traditional.htm (Jun 9, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1089). |
Velodyne, Velodyne HDL-64E user manual, https://web.archive.org/web/20081117092628/ http://www.velodyne.com/lidar/products/manual/HDL-64E%20Manual.pdf (Nov. 17, 2008), 23 pages. (IPR Nos. '255 and '256 Exhibit 1090). |
Velodyne, Velodyne—High Definition Lidar—Overview https://web.archive.org/web/20071107104255/ http://www.velodyne.com:80/lidar/products/overview.aspx (Nov. 7, 2007), 1 page. (IPR Nos. '255 and '256 Exhibit 1091). |
DARPA, 2005 DARPA Challenge Info page https://web.archive.org/web/20051214033009/ http:/www.darpa.mil:80/grandchallenge/ (Nov. 17, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 1092). |
DARPA, 2005 DARPA Team Papers https://web.archive.org/web/20051213010211/ http:/www.darpa.mil:80/grandchallenge/techpapers.html (Dec. 13, 2005), 2 pages. (IPR Nos. '255 and '256 Exhibit 1093). |
DARPA, PDF found on Team DAD paper URL, https://web.archive.org/web/20051213015642/ http:/www.darpa.mil:80/grandchallenge/TechPapers/TeamDAD.pdf (Aug. 6, 2005), pp. 1-12. (IPR Nos. '255 and '256 Exhibit 1094). |
IBEO, IBEO time of flight with moving graphic, (Jan. 8, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1095). |
IBEO, IBEO multilayer technology page with moving graphic, Archive.org (Jan. 8, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1096). |
IBEO, IBEO multilayer tech, (Jan. 8, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1097). |
IBEO, IBEO Time of Flight, (Jan. 8, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1098). |
IBEO, IBEO Alasca, https://web.archive.org/web/20031001091407/ http:/www.ibeoas.de:80/html/prod/prod_alasca.html (Oct. 1, 2003), 1 page. (IPR Nos. '255 and '256 Exhibit 1099). |
IBEO, IBEO products page, https://web.archive.org/web/20040606115118/ http:/www.ibeoas.de:80/html/prod/prod.html (Jun. 6, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1100). |
IBEO, IBEO multitarget capability, https://web.archive.org/web/20040323030746/ http:/www.ibeoas.de:80/html/knho/knho_senstech_mlc.html (Mar. 23, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1101). |
IBEO, IBEO home page, https://web.archive.org/web/20040202131331/ http:/www.ibeo-as.de:8 (Feb. 2, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1102). |
IBEO, IBEO about page, https://web.archive.org/web/20040606111631/ http:/www.ibeoas.de:80/html/about/about (Jun. 6, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1103). |
IBEO, IBEO history, https://web.archive.org/web/20040807161657/ http:/www.ibeoas.de:80/html/about/ab_history.html (Aug. 7, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1104). |
IBEO, IBEO Roadmap, https://web.archive.org/web/20041209032449/ http:/www.ibeoas.de:80/html/prod/prod_roadmap.html (Dec. 9, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1105). |
Velodyne, Velodyne HDL Applications, https://web.archive.org/web/20080716041931/http://www.velodyne.com:80/lidar/technology/applications.aspx (Jul. 16, 2008), 1 page. (IPR Nos. '255 and '256 Exhibit 1106). |
IBEO, IBEO data sheet re available products, https://web.archive.org/web/20041209025137/http://www.ibeoas.de:80/html/prod/prod_dataprices.html (Dec. 9, 2004), 2 pages. (IPR Nos. '255 and '256 Exhibit 1107). |
IBEO, IBEO Available products, https://web.archive.org/web/20041011011528/ http://www.ibeoas.de:80/html/prod/prod.html (Oct. 11, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1108). |
IBEO, IBEO publications page, https://web.archive.org/web/20031208175052/ http://www.ibeoas.de:80/html/public/public.html (Dec. 8, 2003), 2 pages. (IPR Nos. '255 and '256 Exhibit 1109). |
IBEO, IBEO Motiv sensor, https://web.archive.org/web/20040113062910/ http://www.ibeoas.de:80/html/rd/rd_rs_motiv.htm (Jan. 13, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1110). |
IBEO, IBEO LD Multilayer data sheet, https://web.archive.org/web/20031003201743/ http://www.ibeoas.de:80/html/prod/prod_ld_multi.html (Oct. 3, 2003), 1 page. (IPR Nos. '255 and '256 Exhibit 1111). |
Velodynelidar, Data to Improve the Cost, Convenience and Safety of Motor Vehicles, https://velodynelidar.com/industry.html (2018), 6 pages. (IPR Nos. '255 and '256 Exhibit 1125). |
Inter Parties Review, Quanergy Systems Inc.'s Invalidity Contentions and Production of Documents Pursuant to Patent Local Rules 3-3 and 3-4, Quanergy Systems, Inc. v. Velodyne LiDAR, Inc., Case No. 5:16-cv-5251-EJD (Mar. 27, 2017), 24 pages. (IPR Nos. '255 and '256 Exhibit 1126). |
Inter Parties Review, Quanergy Invalidity Contentions Claim Chart, U.S. Pat. No. 7,969,558 (Mizuno), Quanergy Systems, Inc. v. Velodyne LiDAR, Inc., Case No. 5:16-cv-5251-EJD (Mar. 27, 2017), 17 pages. (IPR Nos. '255 and '256 Exhibit 1127). |
Inter Parties Review, Quanergy Invalidity Contentions Claim Chart, U.S. Pat. No. 7,969,558 (PILAR), Quanergy Systems, Inc. v. Velodyne LiDAR, Inc., Case No. 5:16-cv-5251-EJD (Mar. 27, 2017), 13 pages. (IPR Nos. '255 and '256 Exhibit 1128). |
Richmond et al., Polarimetric Imaging Laser Radar (PILAR) Program. In Advanced Sensory Payloads for UAV, Meeting Proceedings RTO-MP-SET-092, Paper 19. Neuilly-sur-Seine, France: RTO (May 1, 2005), 35 pages. (IPR Nos. '255 and '256 Exhibit 1129). |
Frost et al., Driving the Future of Autonomous Navigation—Whitepaper for Analysis of LIDAR technology for advanced safety, https://velodynelidar.com/docs/papers/FROST-ON-LiDAR.pdf (2016), 30 pages. (IPR Nos. '255 and '256 Exhibit 1130). |
irdajp.org, IrDA Infrared Data Association, http://www.irdajp.org/irdajp.info (2018), 3 pages. (IPR Nos. '255 and '256 Exhibit 1134). |
Zappa, et al, SPADA: Single-Photon Avalanche Diode Arrays, IEEE Photonics Technology Letters, vol. 17, No. 3 (Mar. 2005), 9 pages. (IPR Nos. '255 and '256 Exhibit 1135). |
Dehong, et al, Design and Implementation of LiDAR Navigation System Based on Triangulation Measurement, 29th Chinese Control and Decision Conference (CCDC) (May 2017), 59 pages. (IPR Nos. '255 and '256 Exhibit 1136). |
strata-gee.com, Velodyne President Calls Strata-gee to Set the Record Straight, https://www.strata-gee.com/velodyne-president-calls-strata-gee-setrecord-straight/ (Jun. 26, 2014), 6 pages. (IPR Nos. '255 and '256 Exhibit 1137). |
Taylor, An Introduction to Error Analysis—The Study of Uncertainties in Physical Measurements, Oxford University Press (1982), pp. 81-137. (IPR Nos. '255 and '256 Exhibit 1138). |
American Petroleum Institute, “Specification for Line Pipe,” API Specification 5L, 43rd Ed. (2004), 166 pages. (IPR Nos. '255 and '256 Exhibit 1139). |
Beer, et al, Mechanics of Materials, McGraw Hill Companies, 4th Ed. (2006), pp. 750 and 752. (IPR Nos. '255 and '256 Exhibit 1140). |
National Highway Traffic Safety Administration (NHTSA), DOT, Final Rule Federal Motor Vehicle Safety Standards; Tire Pressure Monitoring Systems Controls and Displays (2005), 222 pages. (IPR Nos. '255 and '256 Exhibit 1141). |
American National Standard for Safe Use of Lasers, ANSI Z136.1-2014, Laser Institute of America (Dec. 10, 2013), pp. 27-34 and 216-219. (IPR Nos. '255 and '256 Exhibit 1142). |
Business Wire, Press Release Distribution webpage, https://services.businesswire.com/press-release-distribution (Dec. 21, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 1143). |
Inter Parties Review, Deposition Transcript of J. Gary Eden, Ph.D (taken on Jan. 22, 2019), 368 pages. (IPR Nos. '255 and '256 Exhibit 1150). |
Inter Parties Review, Eden Deposition Exhibit 1—Unmanned Vehicles Come of Age: The DARPA Grand Challenge (2006), pp. 26-29. (IPR Nos. '255 and '256 Exhibit 1151). |
Inter Parties Review, Eden Deposition Exhibit 2—Driver Reaction Time in Crash Avoidance Research: validation of a Driving Simulator Study on a Test Track; Article in Human Factors and Ergonomics Society Annual Meeting Proceedings, Jul. 2000, 5 pages. (IPR Nos. '255 and '256 Exhibit 1152). |
Inter Parties Review, Eden Deposition Exhibit 3—Axis of Rotation diagram (Jan. 22, 2019), 1 page. (IPR Nos. '255 and '256 Exhibit 1153). |
Inter Parties Review, Eden Deposition Exhibit 4—Parallel Line and Plane—from Wolfram MathWorld (http://mathworld.wolfram.com/ParallelLineandPlane.html) (Jan. 22, 2019), 1 page. (IPR Nos. '255 and '256 Exhibit 1154). |
Inter Parties Review, Eden Deposition Exhibit 5—Quasi-3D Scanning with Laserscanners: Introduction from 2D to 3D (2001), 7 pages. (IPR Nos. '255 and '256 Exhibit 1155). |
Inter Parties Review, Eden Deposition Exhibit 6—L-Gage LT3 Long-Range Time-of-Flight Laser Distance-Gauging Sensors (2002), 12 pages. (IPR Nos. '255 and '256 Exhibit 1156). |
Inter Parties Review, Eden Deposition Exhibit 7—About Ibeo: Our Mission (https://www.ibeoas.com/aboutibeo) (Jan. 21, 2019), 10 pages. (IPR Nos. '255 and '256 Exhibit 1157). |
Inter Parties Review, Eden Deposition Exhibit 8—Automotive Industry; Explore Our Key Industries (https://velodynelidar.com/industry.html) (2019), 6 pages. (IPR Nos. '255 and '256 Exhibit 1158). |
Inter Parties Review, Eden Deposition Exhibit 9—Leddar Tech, Solid-State LiDARs: Enabling the Automotive Industry Towards Autonomous Driving (2018), 6 pages. (IPR Nos. '255 and '256 Exhibit 1159). |
Inter Parties Review, Eden Deposition Exhibit 10—Are processor algorithms key to safe self-driving cars?—EDN Asia (https: //www.ednasia.com/ news /article/areprocessor-algorithms-key-to-safe-self-driving-cars) (Jul. 7, 2016), 7 pages. (IPR Nos. '255 and '256 Exhibit 1160). |
Inter Parties Review, Eden Deposition Exhibit 11—Steve Taranovich's profile (https://www.edn.com/user/steve.taranovich) (Jan. 22, 2019), 4 pages. (IPR Nos. '255 and '256 Exhibit 1161). |
Inter Parties Review, Eden Deposition Exhibit 12—Instrumentation and Control (http://www.Instrumentation.co.za /article.aspx?pklarticleid=1664) (Feb. 2002), 4 pages. (IPR Nos. '255 and '256 Exhibit 1162). |
Inter Parties Review, Eden Deposition Exhibit 13—IBEO on board: ibeo LUX 4L / ibeo LUX 8L / ibeo LUX HD Data Sheet (Jul. 2017), 2 pages. (IPR Nos. '255 and '256 Exhibit 1163). |
Inter Parties Review, Quanergy's Objected-to Demonstrative Slides of Patent Owner (2019), 16 pages. (IPR Nos. '255 and '256 Exhibit 1164). |
Inter Parties Review, Declaration of J. Gary Eden, Ph.D. in Support of Patent Owner's Preliminary Responses (Public Version—Redacted) (Mar. 7, 2018), 120 pages. (IPR Nos. '255 and '256 Exhibit 2003). |
American National Standard for Safe Use of Lasers, Laser Institute of America (Jun. 28, 2000), 184 pages. (IPR Nos. '255 and '256 Exhibit 2005). |
Hamatsu, Opto-Semiconductor Handbook, Si APD, MMPC (Chapter 3), (“APD Handbook”), available at https://www.hamamatsu.com/us/en/hamamatsu/overview/bsd/solid_state_division/related_documents.html (2014), 25 pages. (IPR Nos. '255 and '256 Exhibit 2006). |
Berkovic et al., Optical Methods for Distance and Displacement Measurements, Advances in Optics and Photonics (Sep. 11, 2012), pp. 441-471. (IPR Nos. '255 and '256 Exhibit 2007). |
Inter Parties Review, Excerpt from Stephan Lugomer, Laser Technology, Laser Driven Processes, Prentice-Hall (1990), pp. 302-311. (IPR Nos. '255 and '256 Exhibit 2008). |
Inter Parties Review, Excerpt from James T. Luxon and David E. Parker, Industrial Lasers and Their Applications, Prentice-Hall (1985), pp. 56, 68-70, 124-125, 145, 150-151, and 154-159. (IPR Nos. '255 and '256 Exhibit 2009). |
Inter Parties Review, Excerpt from Raymond T. Measures, Laser Remote Sensing, Fundamentals and Applications (1992), pp. 205 and 213-214. (IPR Nos. '255 and '256 Exhibit 2010). |
Inter Parties Review, Excerpt from Peter W. Milonni and Joseph Eberly, Lasers (1988), pp. 585-589. (IPR Nos. '255 and '256 Exhibit 2011). |
Inter Parties Review, Excerpt from William V. Smith, Laser Applications (1970), pp. 23-27. (IPR Nos. '255 and '256 Exhibit 2012). |
Velodyne Lidar, Webserver User Guide VLP-16 & HDL-32E (63-6266 Rev A) (Nov. 2015), 32 pages. (IPR Nos. '255 and '256 Exhibit 2013). |
Inter Parties Review, Excerpt from Beautiful Data, Edited by Toby Segaran and Jeff Hammerbacher (Jul. 2009), pp. 150-153. (IPR Nos. '255 and '256 Exhibit 2014). |
Inter Parties Review, Excerpts of Deposition of Craig L. Glennie, Ph.D., Quanergy Systems, Inc., v. Velodyne Lidar, Inc., No. 5:16-cv-05251-EJD (N.D. Cal.) (Jun. 27, 2017), 6 pages. (IPR Nos. '255 and '256 Exhibit 2016). |
Velodyne Acoustics, Inc., Motor Specification, Merlin Project, Rev. E1 Initial Engineering Release (Apr. 29, 2009), 1 page. (IPR Nos. '255 and '256 Exhibit 2020). |
Velodyne Lidar, CAD Drawing of MotorStat3in, HDL-64E(2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2021). |
Velodyne Acoustics, Inc., Motor Winding Specs., P2.0 , E2 Changed Material (Mar. 10, 2010), 1 page. (IPR Nos. '255 and '256 Exhibit 2022). |
Velodyne Lidar, Inc., Production Worksheet, Item #30-AD230CER2 in Production, APD, 230UM, Ceramic Submount (Jan. 17, 2018), 1 pages. (IPR Nos. '255 and '256 Exhibit 2023). |
Velodyne Lidar, Inc., Production Worksheet Detector, Item #24-AD5009 in Production, AD500-9 NIR Photodiode (Jan. 18, 2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2024). |
Velodyne Lidar, CAD Drawing of Rotor, HDL-64E (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2026). |
Velodyne Lidar, CAD Drawing of RotorAl, HDL-64E (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2027). |
Velodyne Lidar Products, PowerPoint (Jan. 18, 2017), 9 pages. (IPR Nos. '255 and '256 Exhibit 2031). |
Velodyne Lidar, Ultra Puck™ VLP-32 Data Sheet (2014), 2 pages. (IPR Nos. '255 and '256 Exhibit 2032). |
Velodyne Lidar, Excerpts of VLP-32C User Manual, 63-9325 Rev. B (2018), 26 pages. (IPR Nos. '255 and '256 Exhibit 2034). |
Velodyne Lidar, First Sensor Annual Report (2016), pp. 1-143. (IPR Nos. '255 and '256 Exhibit 2038). |
Overton, First Sensor expands supply agreement for APDs used in Velodyne lidar systems, Laser Focus World (Feb. 15, 2017), 2 pages. (IPR Nos. '255 and '256 Exhibit 2039). |
Ohnsman, How a 34-Year-Old Audio Equipment Company is Leading the Self-Driving Car Revolution, Forbes (Aug. 8, 2017), 7 pages. (IPR Nos. '255 and '256 Exhibit 2040). |
Ros-Drivers—Error in packet rate for the VLP-32C #142, GitHub Forum (Jan. 29, 2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2041). |
Velodyne Lidar, HDL-32E Data Sheet (2017), 2 pages. (IPR Nos. '255 and '256 Exhibit 2042). |
Velodyne Lidar, HDL-32E Envelope Drawing (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2043). |
Velodyne Lidar, HDL-32E User's Manual and Programing Guide (Aug. 2016), 29 pages. (IPR Nos. '255 and '256 Exhibit 2044). |
Doyle, Velodyne HDL-64E Laser Rangefinder (LIDAR) Pseudo-Disassembled, Hizook (Jan. 4, 2009), 7 pages. (IPR Nos. '255 and '256 Exhibit 2046). |
Velodyne Lidar, HDL-64E S2 Datasheet (Mar. 2010), 2 pages. (IPR Nos. '255 and '256 Exhibit 2047). |
Velodyne Lidar, HDL-64E S3 Data Sheet (2016), 2 pages. (IPR Nos. '255 and '256 Exhibit 2048). |
Velodyne Lidar, HDL-64E S2 and S2.1 User's Manual and Programming Guide (Nov. 2012), 43 pages. (IPR Nos. '255 and '256 Exhibit 2050). |
Velodyne Lidar, HDL-64E S3 User's Manual and Programming Guide (May 2013), 54 pages. (IPR Nos. '255 and '256 Exhibit 2051). |
Velodyne Lidar, HDL-64E User's Manual (Mar. 2008), 21 pages. (IPR Nos. '255 and '256 Exhibit 2052). |
Velodyne Lidar, HDL-32E Supported Sensors, Poly Synch Docs 2.3.2, http://docs.polysync.io/sensors/velodyne-hdl-32e/ (2018), 7 pages. (IPR Nos. '255 and '256 Exhibit 2055). |
Glennie et al., Temporal Stability of the Velodyne HDL-64E S2 Scanner for High Accuracy Scanning Applications, MDPI Remote Sensing (Mar. 14, 2011), 15 pages. (IPR Nos. '255 and '256 Exhibit 2057). |
Velodyne Lidar, Product Guide (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2058). |
Velodyne Lidar, White Paper, Velodyne's HDL-64E: A High Definition Lidar Sensor for 3-D Applications (Oct. 2007), 7 pages. (IPR Nos. '255 and '256 Exhibit 2059). |
Velodyne Lidar, Puck, Real-time 3D LiDAR Sensor, VLP-16 Data Sheet (2017), 2 pages. (IPR Nos. '255 and '256 Exhibit 2060). |
Velodyne Lidar, Envelope Hi Res VLP-16 Drawings, Rev. A (Jun. 30, 2016), 4 pages. (IPR Nos. '255 and '256 Exhibit 2061). |
Velodyne Lidar, VLP-16 User's Manual and Programming Guide (Mar. 2016), 49 pages. (IPR Nos. '255 and '256 Exhibit 2062). |
Velodyne Lidar, CAD Drawing of MotorStat-38in, HDL-64E (2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2063). |
Ramsey et al., Use Scenarios to Plan for Autonomous Vehicle Adoption, Gartner (Jun. 26, 2017), 17 pages. (IPR Nos. '255 and '256 Exhibit 2064). |
Ford Media Center, Ford Tripling Autonomous Vehicle Development Fleet, Accelerating on-road Testing of Sensors and Software (Jan. 5, 2016), 4 pages. (IPR Nos. '255 and '256 Exhibit 2066). |
Velodyne Lidar, HDL-64E Data Sheet (2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2069). |
Velodyne Lidar, It Began With a Race . . . 16 Years of Velodyne LiDAR, Velodyne LiDAR Blog, available at http://velodynelidar.com/blog/it-began-with-a-race/ (2018), 8 pages. (IPR Nos. '255 and '256 Exhibit 2070). |
Inter Parties Review, Quanergy M8 Lidar Sensor Datasheet, 2 pages. (IPR Nos. '255 and '256 Exhibit 2071). |
D'Allegro, Meet the Inventor Trying to Bring LiDAR to the Masses, the Drive http://www.thedrive.com/sheetmetal/15567/meet-the-inventor-trying-to bring-lidar-to-the-masses (Oct. 28, 2017), 5 pages. (IPR Nos. '255 and '256 Exhibit 2072). |
Williams, Driverless cars yield to reality: It's a long road ahead, PC World (Jul. 8, 2013), 6 pages. (IPR Nos. '255 and '256 Exhibit 2073). |
Cameron, An Introduction to LIDAR: The Key Self-Driving Car Sensor, Voyage https://news.voyage.auto/an-introduction-to-lidar-the-key-self-drivingcar-sensor-a7e405590cff (May 9, 2017), 14 pages. (IPR Nos. '255 and '256 Exhibit 2074). |
Chellapilla, Lidar: The Smartest Sensor on a Self Driving Car, LinkedIn.com https://www.linkedin.com/pulse/lidar-smartest-sensor-self-driving-carkumar-chellapill (Jul. 31, 2017), 8 pages. (IPR Nos. '255 and '256 Exhibit 2075). |
Popper, Guiding Light, The Billion-Dollar Widget Steering the Driverless Car Industry, The Verge (Oct. 18, 2017), 17 pages. (IPR Nos. '255 and '256 Exhibit 2076). |
Fast Company, The World's 50 Most Innovative Companies 2017, https://www.fastcompany.com/most-innovative-companies/2017 (last visited Feb. 26, 2018), 5 pages. (IPR Nos. '255 and '256 Exhibit 2077). |
Velodyne Lidar, Velodyne Donates LiDAR and Robotic Artifacts to Smithsonian, Point of Engineering, Point of Beginning (May 23, 2011), 2 pages. (IPR Nos. '255 and '256 Exhibit 2078). |
Informed Infrastructure, Velodyne LiDAR Division Announces Agreement with Caterpillar for Laser Imaging Technology, Informed Infrastructure http://informedinfrastructure.com/25630/velodynes-lidar-divisionannounces-agreement-with-caterpillar-for-laser-imaging-technology-2/ (Aug. 8, 2012), 3 pages. (IPR Nos. '255 and '256 Exhibit 2079). |
Inter Parties Review, Defendant Velodyne's Answer and Counterclaim, Quanergy Systems, Inc., v. Velodyne Lidar, Inc., No. 5:16-cv-05251-EJD (N.D. Cal.) ECF No. 36 (Dec. 5, 2016), 56 pages. (IPR Nos. '255 and '256 Exhibit 2080). |
Gargiulo, Velodyne Lidar Tops Winning Urban Challenge Vehicles, Business Wire (Nov. 6, 2007), 2 pages. (IPR Nos. '255 and '256 Exhibit 2082). |
Strawa et al., The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques, 20 Journal of Atmospheric and Oceanic Technology 454 (Apr. 2003), pp. 454-465. (IPR Nos. '255 and 256 Exhibit 2090). |
Cheung, Spinning laser maker is the real winner of the Urban Challenge, Tech Guru Daily, available at http://www.tgdaily.com/trendwatch-features/34750-spinning-laser-maker-is-the-real-winner (Nov. 7, 2007), 7 pages. (IPR Nos. '255 and '256 Exhibit 2091). |
Velodyne Acoustics, Inc., Outline Drawing HDL-64E S3 Envelope Drawing, Rev. A (Apr. 21, 2015), 1 page. (IPR Nos. '255 and '256 Exhibit 2094). |
Businesswire, Velodyne LiDar Awarded “Industry Choice Company of the Year” at TU-Automotive Detroit Conference, Businesswire, https://www.businesswire.com/news/home/20180608005700/en/Velodyne-LiDAR-Awarded-%E2%80%9CIndustry-Choice-Company-Year%E2%80%9D (Jun. 8, 2018), 1 page. (IPR Nos. '255 and '256 Exhibit 2096). |
Businesswire, Velodyne Displays Solid State, Highest Performing LiDAR for ADAS, Businesswire https://www.businesswire.com/news/home/20180107005088/en/Velodyne-Displays-Solid-State-Highest-Performing-LiDAR (Jan. 7, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2097). |
Brustein et al., How a Billion-Dollar Autonomous Vehicle Startup Lost Its Way, Bloomberg https://www.bloomberg.com/news/features/2018-08-13/how-a-billiondollar-autonomous-vehicle-startup-lost-its-way (Aug. 13, 2018), 7 pages. (IPR Nos. '255 and '256 Exhibit 2098). |
Automotive Lidar, Market Presentation titled “Robotic Cars LiDAR Market in Million Dollars” (Apr. 2018), 86 pages. (IPR Nos. '255 and '256 Exhibit 2113). |
Velodyne Lidar, VLP-32C User Manual, 63-9325 Rev. B. (Feb. 2, 2018), 136 pages. (IPR Nos. '255 and '256 Exhibit 2114). |
Inter Parties Review, Declaration of J. Gary Eden, Ph.D. In Support of Patent Owner's Responses and Motions to Amend (Public Version—Redacted) (Sep. 27, 2018), 202 pages. (IPR Nos. '255 and '256 Exhibit 2115). |
Inter Parties Review, Transcript of Sep. 13, 2018 Conference Call, Quanergy Systems, Inc. v. Velodyne Lidar, Inc., Nos. IPR2018-00255 and IPR2018-00256 (Sep. 13, 2018), 21 pages. (IPR Nos. '255 and '256 Exhibit 2116). |
Hamamatsu, Position Sensitive Detectors (“PSDs”) Webpage, One-dimensional and Two-dimensional (Mar. 17, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2117). |
Hamamatsu, One-dimensional PSD Plastic package, 1-D PSD with plastic package Datasheet (“1-D PSD Datasheet”) (2004), 5 pages. (IPR Nos. '255 and '256 Exhibit 2118). |
Hamamatsu, One-Dimensional PSD Webpage, One-dimensional (Mar. 17, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2119). |
Hamamatsu, Two-dimensional PSDs S1200, S1300, S1880, S1881, S2044—Non-discrete position sensor utilizing photodiode surface resistance Datasheet (2003), 6 pages. (IPR Nos. '255 and '256 Exhibit 2120). |
Hamamatsu, Two-dimensional PSD S1300 Datasheet (Dec. 19, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 2121). |
Hamamatsu, Two-dimensional PSDs Webpage (Mar. 17, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2122). |
Hamamatsu, CCD area image sensor S7030/S7031 Series Back-thinned FFT-CCD Datasheet (2006), 8 pages. (IPR Nos. '255 and '256 Exhibit 2123). |
Hamamatsu, CCD Image Sensors Webpage (“CCD Image Sensors”) (Feb. 2, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2124). |
Williams, Bias Voltage and Current Sense Circuits for Avalanche Photodiodes—Feeding and Reading the APD, Linear Technology AN92-1 (Nov. 2012), 32 pages. (IPR Nos. '255 and '256 Exhibit 2125). |
Hamamatsu, Technical Information, SD-25—Characteristics and use of FFT-CCD area image sensor (Aug. 2003), 27 pages. (IPR Nos. '255 and '256 Exhibit 2126). |
Hamamatsu, Technical Information, SD-28—Characteristics and use of Si APD (Avalanche Photodiode) (Aug. 2001), 12 pages. (IPR Nos. '255 and '256 Exhibit 2127). |
Hamamatsu, Image Sensor Selection guide (Dec. 2003), 20 pages. (IPR Nos. '255 and '256 Exhibit 2128). |
Hamamatsu, Photodiode Technical Information, 18 pages. (IPR Nos. '255 and '256 Exhibit 2129). |
Hamamatsu, Silicon Photodiode Array Webpage (Feb. 2, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2130). |
Piatek, Presentation entitled ‘LiDAR and Other Techniques—Measuring Distance with Light for Automotive Industry’, authored by Slawomir Piatek, Technical Consultant, Hamamatsu Corp. (Dec. 6, 2017), 66 pages. (IPR Nos. '255 and '256 Exhibit 2131). |
Piatek, Measuring distance with light, Hamamatsu.com, https://hub.hamamatsu.com/us/en/application-note/measuringdistance-with-light/index.html (Apr. 2, 2015), 18 pages. (IPR Nos. '255 and '256 Exhibit 2132). |
Hergert et al., The WITS$ guide to selecting a photodetector, Hamamatsu.com, https://hub.hamamatsu.com/us/en/technical-note/WITS-guide-detectorselection/index.html (Jul. 2015), 16 pages. (IPR Nos. '255 and '256 Exhibit 2133). |
Hamamatsu, Si photodiode array—S4111/S4114 series 16, 35, 46 element Si photodiode array for UV to NIR Datasheet (Jul. 2004), 4 pages. (IPR Nos. '255 and '256 Exhibit 2134). |
Hamamatsu, S4111-46Q Si Photodiode Array Webpage (Oct. 22, 2005), 1 page. (IPR Nos. '255 and '256 Exhibit 2135). |
Piatek et al., LiDAR: A photonics guide to autonomous vehicle market, Hamamatsu.com, https://hub.hamamatsu.com/us/en/application-note/LiDAR-competingtechnologies-automotive/index.html (Nov. 18, 2017), 6 pages. (IPR Nos. '255 and '256 Exhibit 2136). |
Engineering Toolbox, The Engineering Toolbox Copper Tubes—ASTM B88 Datasheet (last accessed Jul. 10, 2018), 4 pages. (IPR Nos. '255 and '256 Exhibit 2137). |
The American Society of Mechanical Engineers, Welded and Seamless Wrought Steel Pipe, ASME B36.10M-2004 (Oct. 25, 2004), 26 pages. (IPR Nos. '255 and '256 Exhibit 2138). |
Copper Development Association Inc., Copper Tube Handbook—Industry Standard Guide for the Design and Installation of Copper Piping Systems, CDA Publication A4015-14.17: Copper Tube Handbook (2016), 96 pages. (IPR Nos. '255 and '256 Exhibit 2139). |
Aufrere, et al., Perception for collision avoidance and autonomous driving, The Robots Institute, Carnegie Mellon University (2003), 14 pages. (IPR Nos. '255 and '256 Exhibit 2140). |
Blais, NRC-CNRC, Review of 20 Years of Range Sensor Development, National Research Council Canada (Jan. 2004), pp. 231-243 (IPR Nos. '255 and '256 Exhibit 2141). |
Darpa, Grand Challenge '05—Frequently Asked Questions, DARPA.com, http://archive.darpa.mil/grandchallenge05/qa.html) (2005), 3 pages. (IPR Nos. '255 and '256 Exhibit 2143). |
DARPA, Urban Challenge, DARPA.com, http://archive.darpa.mil/grandchallenge/ (“DARPA Archive”) (2007), 4 pages. (IPR Nos. '255 and '256 Exhibit 2144). |
Garmin, How the LIDAR-Lite v3/v3HP works with reflective surfaces, GARMIN.com, https://supportgarmin.com/en-US/?faq=IVeHYIKwChAY0qCVhQiJ67 (last visited Aug. 24, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2145). |
Weber, Where to? A History of Autonomous Vehicles, Computer History Museum, https://supportgarmin.com/en-US/?faq=IVeHYIKwChAY0qCVhQiJ67 (May 8, 2014), 23 pages. (IPR Nos. '255 and '256 Exhibit 2146). |
Turk, et al., VITS—A Vision System for Autonomous Land Vehicle Navigation, 10 IEEE No. 3 (May 1988), pp. 342-361. (IPR Nos. '255 and '256 Exhibit 2147). |
Amann, Laser ranging: a critical review of usual techniques for distance measurement, 40(1) Society of Photo-Optical Instrumentation Engineers (Jan. 2001), pp. 10-19. (IPR Nos. '255 and '256 Exhibit 2148). |
Omron, Technical Explanation for Displacement Sensors and Measurement Sensors, CSM_Displacemente_LineWidth_TG_E_2_1 (2018), 8 pages. (IPR Nos. '255 and '256 Exhibit 2149). |
Kaufmann, Choosing Your Detector, OE Magazine (Mar. 2005), 3 pages. (IPR Nos. '255 and '256 Exhibit 2150). |
Kaufmann, Light Levels and Noise—Guide Detector Choices, Photonics Spectra 149 (Jul. 2000), 4 pages. (IPR Nos. '255 and '256 Exhibit 2151). |
Kilpela, Pulsed Time-of-Flight Laser Range Finder Techniques for Fast, High Precision Measurement Applications (Academic dissertation, University of Oulu) (2004), 98 pages. (IPR Nos. '255 and '256 Exhibit 2152). |
Makynen, Position-Sensitive Devices and Sensor System for Optical Tracking and Displacement Sensing Applications (Academic Dissertation, University of Oulu (2000), 121 pages. (IPR Nos. '255 and '256 Exhibit 2153). |
MTI Instruments Inc., An Introduction to Laser Triangulation Sensors, https://www.azosensors.com/article.aspx?ArticleID=523 (Aug. 28, 2014), 9 pages. (IPR Nos. '255 and '256 Exhibit 2154). |
Panasonic, Measurement Sensors: Specular vs Diffuse, Panasonic Blog, https://na.industrial.panasonic.com/blog/measurement-sensorsspecular-vs-diffuse (Dec. 7, 2011), 2 pages. (IPR Nos. '255 and '256 Exhibit 2155). |
Inter Parties Review, Deposition of James F. Brennan, III, Quanergy Systems, Inc. v. Velodyne Lidar, Inc., Nos. IPR2018-00255 and IPR2018-00256 (Aug. 23, 2018), 241 pages. (IPR Nos. '255 and '256 Exhibit 2156). |
Uwinnipeg, Centripetal Acceleration, Uwinnipeg.ca, http://theory.uwinnipeg.ca/physics/circ/node6.html (1997), 2 pages. (IPR Nos. '255 and '256 Exhibit 2157). |
Accetta et al., Active Electro-Optical Systems, The Infrared and Electro-Optical Systems Handbook (1993, ed. by Clifton Fox), pp. 3-76. (IPR Nos. '255 and '256 Exhibit 2158). |
Hamamatsu, Image Sensors Webpage (Mar. 17, 2006), 1 page. (IPR Nos. '255 and '256 Exhibit 2160). |
Maatta et al., A High-Precision Time-to-Digital Converter for Pulsed Time-of-Flight Laser Radar Applications, 47 IEEE No. 2, 521 (Apr. 1998), pp. 521-536. (IPR Nos. '255 and '256 Exhibit 2161). |
English, et al., The Complementary Nature of triangulation and ladar technologies, 5791 Proceedings of SPIE (May 19, 2005), pp. 29-41. (IPR Nos. '255 and '256 Exhibit 2162). |
Reymann et al., Improving LiDAR Point Cloud Classification using Intensities and Multiple Echoes, IEE/RSJ International Conference on Intelligent Robots and Systems (Sep. 2015), 8 pages. (IPR Nos. '255 and '256 Exhibit 2167). |
Haran et al., Infrared Reflectivy of Pedestrian Mannequin for Autonomous Emergency Braking Testing, IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (2016), 6 pages. (IPR Nos. '255 and '256 Exhibit 2168). |
Song et al., Assessing the Possibility of Land-Cover Classification Using LiDAR Intensity Data, Commission III, PCV02 (2002), 4 pages. (IPR Nos. '255 and '256 Exhibit 2169). |
IBEO, IBEO Automobile Sensor GmbH—Scanner Technology webpage (Brennan Deposition Exhibit 1) (Mar. 23, 2004), 1 page. (IPR Nos. '255 and '256 Exhibit 2171). |
IBEO, IBEO Automobile Sensor GmbH—The ALASCA project webpage (Brennan Deposition Exhibit 2) (Oct. 6, 2003), 1 page. (IPR Nos. '255 and '256 Exhibit 2172). |
Sick LMS200/211/221/291 Laser Measurement Systems—Technical Description (Brennan Deposition Exhibit 3) (2006), 48 pages. (IPR Nos. '255 and '256 Exhibit 2173). |
Sick LMS 200/ LMS 211/ LMS 220 / LMS 221/ LMS 291 Laser Measurement Systems—Technical Description (Brennan Deposition Exhibit 4) (Jun. 2003), 40 pages. (IPR Nos. '255 and '256 Exhibit 2174). |
Strang, Drawing of cross-section of I-beam by Jonathan Strang (Brennan Deposition Exhibit 5), (2018) 1 page. (IPR Nos. '255 and '256 Exhibit 2175). |
Sick Laser Triangulation Sensors Product Information (Brennan Deposition Exhibit 6) (Jun. 25, 2018), 76 pages. (IPR Nos. '255 and '256 Exhibit 2176). |
Thin Lens Equation, http://hyperphysics.phyastr.gsu.edu/hbase/geoopt/lenseq.html (last visited Dec. 30, 2018) (Brennan Deposition Exhibit 7), 4 pages. (IPR Nos. '255 and '256 Exhibit 2177). |
Inter Parties Review, Images of Generator Rotors (Brennan Deposition Exhibit 8) (2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2178). |
Sick DME 2000 Operating Instructions (Excerpt) (Brennan Deposition Exhibit 9) (May 2002), 42 pages. (IPR Nos. '255 and '256 Exhibit 2179). |
Sick Sensick Measuring Distance with Light—Distance Sensors Product Overview (Brennan Deposition Exhibit 10) (2004), 12 pages. (IPR Nos. '255 and '256 Exhibit 2180). |
Acuity, Acuity Short Range Sensors Product Information webpage (Brennan Deposition Exhibit 11) (last visited Dec. 30, 2018), 3 pages. (IPR Nos. '255 and '256 Exhibit 2181). |
Acuity, Acuity Drill Pipe Runout Product Information webpage (Brennan Deposition Exhibit 12) (last visited Dec. 28, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2182). |
Acuity, Acuity AR700 Laser Displacement Sensor Product Information webpage (Brennan Deposition Exhibit 13) (last visited Dec. 28, 2018), 9 pages. (IPR Nos. '255 and '256 Exhibit 2183). |
Acuity, Acuity Aluminum Billet Scalping Production Information webpage (Brennan Deposition Exhibit 14) (last visited Dec. 28, 2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2184). |
Kilpela, Excerpt of Pulsed Time-of-Flight Laser Range Finder Techniques for Fast, High Precision Measurement Applications, at Fig. 24 (Academic dissertation, University of Oulu (Brennan Deposition Exhibit 15) (2004), 1 page. (IPR Nos. '255 and '256 Exhibit 2185). |
Brennan, Drawing of I-beam by Dr. Brennan (Brennan Deposition Exhibit 16), (Jan. 4, 2019), 1 page. (IPR Nos. '255 and '256 Exhibit 2186). |
Yu et al., A New 3D Map Reconstruction Based Mobile Robot Navigation, IEEE (2006), 4 pages. (IPR Nos. '255 and '256 Exhibit 2189). |
Furstenberg, et al., New Sensor for 360 Vehicle Surveillance—Innovative Approach to Stop & Go, Lane Assistance and Pedestrian Recognition (May 2001), 5 pages. (IPR Nos. '255 and '256 Exhibit 2190). |
Ewald et al., Object Detection with Laser Scanners for Automotive Applications, IFAC Control in Transportation Systems (2000), pp. 369-372. (IPR Nos. '255 and '256 Exhibit 2191). |
Fuerstenberg, et al., Pedestrian Recognition and Tracking of Vehicles using a vehicle based Multilayer Laserscanner, IEEE (2002), 12 pages. (IPR Nos. '255 and '256 Exhibit 2192). |
Langheim, et al., Sensing of Car Environment at Low Speed Driving, CARSENSE (2002), 14 pages. (IPR Nos. '255 and '256 Exhibit 2193). |
Inter Parties Review, Deposition of James F. Brennan, III, Quanergy Systems, Inc. v. Velodyne Lidar, Inc., Nos. IPR2018-00255 and IPR2018-00256 (Jan. 4, 2019), 267 pages. (IPR Nos. '255 and '256 Exhibit 2194). |
Kluge, Laserscanner for Automotive Applications (May 2001), 5 pages. (IPR Nos. '255 and '256 . Exhibit 2196). |
Kaempchen, Feature-Level Fusion of Laser Scanner and Video Data for Advanced Drive Assistance Systems (Ph.D. Dissertation, Ulm University) (2007), 248 pages. (IPR Nos. '255 and '256 Exhibit 2198). |
Heenan, et al., Feature-Level Map Building and Object Recognition for Intersection Safety Applications, in Advanced Microsystems for Automotive Applications (Jurgen Valldorf and Wolfgang Gessner eds.) (2005), pp. 505-519. (IPR Nos. '255 and '256 Exhibit 2199). |
Lages, Laserscanner for Obstacle Detection in Advanced Microsystems for Automotive Applications Yearbook (S. Kruger et al. eds.) (2002), pp. 136-140. (IPR Nos. '255 and '256 Exhibit 2200). |
Inter Parties Review, Declaration of J. Gary Eden, Ph.D. in Support of Patent Owner's Reply in Support of Its Motion to Amend (Jan. 16, 2019), 71 pages. (IPR Nos. '255 and '256 Exhibit 2202). |
Inter Parties Review, PTAB Conference Call, Quanergy Systems, Inc. v. Velodyne Lidar, Inc., Nos. IPR2018-00255 and 2018-00256 (Jan. 11, 2019), 27 pages. (IPR Nos. '255 and '256 Exhibit 2204). |
Macadam, Understanding and Modeling the Human Driver, 40 Vehicle System Dynamics, Nos. 1-3 (2003), pp. 101-134. (IPR Nos. '255 and '256 Exhibit 2205). |
Taranovich, Are processor algorithms key to safe self-driving cars? EDN Asia, https://www.ednasia.com/news/article/are-processor-algorithms-key-tosafe-self-driving-cars (Jul. 7, 2016), 11 pages. (IPR Nos. '255 and '256 Exhibit 2206). |
IPO Education Foundation, Inventor of the Year Award, https://www.ipoef.org/inventor-of-the-year/ (2018), 5 pages. (IPR Nos. '255 and '256 Exhibit 2207). |
Inter Parties Review, Petition for Inter Partes Review of U.S. Pat. No. 7,969,558 (Claims 16-19 and 23-25) (IPR No. 2018-00256, Quanergy Systems, Inc. v. Velodyne Lidar, Inc.) (Nov. 29, 2017), 73 pages. (IPR No. 2018-00256). |
Inter Parties Review, Replacement Petition for Inter Partes Review of U.S. Pat. No. 7,969,558 (Claims 16-19 and 23-25) (2018) 76 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Preliminary Response (Public Version—Redacted) (Mar. 7, 2018), 73 pages. (IPR No. 2018-00256). |
Inter Parties Review, Decision: Institution of Inter Partes Review (May 25, 2018), 12 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Motion to Submit Supplemental Information Pursuant to 37 C.F.R. § 42.123(b) (Aug. 6, 2018), 16 pages. (IPR No. 2018-00256). |
Inter Parties Review, Decision: Petitioner's Motion to Submit Supplemental Information Pursuant to 37 C.F.R. § 42.123(b) (Aug. 8, 2018), 4 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Response (Public Version—Redacted) (Sep. 28, 2018), 92 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Contingent Motion to Amend (Public Version—Redacted) (Sep. 28, 2018), 57 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Unopposed Motion to Submit Replacement Petition and Supplemental Declaration (Nov. 5, 2018), 9 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Reply to Patent Owner's Response (Dec. 21, 2018), 37 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner Quanergy's Opposition to Patent Owner's Contingent Motion to Amend (Dec. 21, 2018), 35 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Surreply (Jan. 16, 2019), 50 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Reply in Support of Its Contingent Motion to Amend (Jan. 16, 2019), 33 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Updated Exhibit List (Jan. 30, 2019), 15 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner Quanergy's Sur-Surreply (Jan. 30, 2019), 9 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner Quanergy's Surreply to Patent Owner's Contingent Motion to Amend (Jan. 30, 2019), 17 pages. (IPR No. 2018-00256). |
Inter Parties Review, Patent Owner's Updated Exhibit List (Feb. 11, 2019), 20 pages. (IPR No. 2018-00256). |
Inter Parties Review, Final Written Decision (May 23, 2019), 41 pages. (IPR No. 2018-00256). |
Inter Parties Review, Petitioner's Request for Rehearing (Jun. 24, 2019), 20 pages. (IPR No. 2018-00256). |
Inter Parties Review, Decision Denying Petitioner's Request for Rehearing (May 21, 2020), 26 pages. (IPR No. 2018-00256). |
Besl, Active, Optical Range Imaging Sensors Machine Visions and Applications (1988), Springer-Verlag New York Inc., pp. 1:127-152 (IPR Nos. '255 and '256 Exhibit 1015). |
Carson, N. “Defending GPS against the Spoofing Threat using Network Based Detection and 3, 15,20 Successive Interference Cancellation”. Auburn University. Nov. 2015, 35 pages. |
Excelitas Technologies, “Avalanche Photodiode. A User Guide”, 2011 Excelitas Technologies Corp., pp. 1-8. |
Hall, et al., Team DAD Technical Paper, DARPA Grand Challenge 2005, XP-002543336, Aug. 26, 2005, pp. 1-12. (IPR Nos. '255 and '256 Exhibit 1081). |
U.S. Patent Office, Information Disclosure Statement, U.S. Appl. No. 10/391,383 (U.S. Pat. No. 7,130,672, Pewzner) (Aug. 3, 2005), 8 pages. |
U.S. Patent Office, Information Disclosure Statement, U.S. Appl. No. 10/508,232 (U.S. Pat. No. 7,313,424, Mayevsky) (Apr. 21, 2006), 17 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/059452, dated Jan. 16, 2019, 12 pages. |
Juberts, et al., “Status report on next generation LADAR for driving unmanned ground vehicles” Mobile Robots XVII, edited by Douglas W. Gage, Proceedings of SPIE, vol. 5609, 2004, pp. 1-12. |
Kawata, “Development of ultra-small lightweight optical range sensor system”, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, Aug. 2-6, 2005, pp. 58-63 (IPR Nos. '255 and '256 Exhibit 1033). |
Laser Components Produkte, Laser Components IG, Inc., 2004, 1 page. |
Laser Components, “High Power Pulsed Laser Diodes 905D3J08-Series”, Laser Components IG, Inc., 2004, 6 pages. |
Liu, et al., “Coupling Study of a Rotary Capacitive Power Transfer System” Industrial Technology, 2009. ICIT 2009. IEEE International Conference, IEEE, Piscataway, NJ, USA, Feb. 10, 2009, pp. 1-6. |
Manandhar, “Auto-Extraction of Urban Features from Vehicle-Borne Laser Data”, Centre for Spatial Information Science, The University of Tokyo, Japan; Symposium on Geospatial Theory, Processing Applications, Ottawa (2002) 6 pages. (IPR Nos. '255 and '256 Exhibit 1017). |
Merriam, How to Use Lidar with the raspberry PI, Hackaday, https://hackaday.com/2016/01/22/how-to-use-lidar-with-the-raspberry-pi/ (Jan. 22, 2016), 13 pages. (IPR Nos. '255 and '256 Exhibit 1072). |
Morsy et al., “Multispectral LiDAR Data for Land Cover Classification of Urban Areas,” Sensors 17(5), 958 (2017), 21 pages. |
Office of the Federal Register National Archives and Records Administration, “Code of Federal Regulations, 21, Parts 800 to 1299, Revised as of Apr. 1, 2005, Food and Drugs”, Apr. 1, 2005, pp. 1-23. |
Saleh, “Fundamentals of Photonics” vol. 2, Wiley-Interscience Publication, 1991, pp. 342-383, 494-541, and 592-695. (IPR Nos. '255 and '256 Exhibit 1008). |
Skolnik, “Radar Handbook” Second Edition, McGraw-Hill Publishing Company, 1990, pp. 1-1191. |
The Laser Institute of America, “American National Standard of Safe Use of Lasers” ANSI Z136.1-2000, Revision of ANSI Z136.1-1993, Second Printing 2003, 32 pages. |
Westinghouse, “AN/TPS-43 E Tactical Radar System” (1999), pp. 1-14. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/025395, dated Jun. 25, 2018, 14 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/015874, dated May 23, 2017, 12 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/015877, dated Apr. 13, 2017, 13 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2007/073490, (2008), 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/023261, dated May 26, 2017, 11 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/051497, dated Nov. 28, 2018, 11 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046422, dated Dec. 3, 2019, 9 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/023283, dated Jun. 1, 2018, 9 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/023259, dated May 31, 2017, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/015869, dated Apr. 10, 2017, 12 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/050934, dated Nov. 20, 2018, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2010/037129, dated Jul. 27, 2010, 6 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/036865, dated Sep. 26, 2017, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/023262, dated Jun. 5, 2017, 9 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/047543, dated Nov. 27, 2017, 11 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/059062, dated Jan. 16, 2019, 6 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046573, dated Nov. 15, 2019, 9 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/016259, dated Apr. 26, 2019, 6 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/051729, dated Nov. 20, 2019, 7 pages. |
Jelalian, “Laser Radar Systems” (1992), 1 page. |
Code of Federal Regulations, Food and Drugs Rule—Performance Standards for Light-Emitting Products, 21 C.F.R. § 1040.10 (2005). |
Singh, “Cyclone: A Laser Scanner for Mobile Robot Navigation” (Sep. 1991), pp. 1-18. |
Bornstein, “Where am I? Sensors and Methods for Mobile Robot Positioning” (1996), pp. 95-112. |
Nagappan, “Adaptive Cruise Control: Laser Diodes as an Alternative to Millimeter Wave Radars” (Sep. 2005), pp. 1-5. |
Hancock, “Laser Intensity Based Obstacle Detecting and Tracking” (Jan. 1999), pp. 45-65. |
Zhao, “Reconstructing Textured CAD Model of Urban Environment Using Vehicle-Borne Laser Range Scanners and Line Cameras,” Lecture Notes in Computer Science, vol. 2095 (2001), pp. 284-297. |
Reutebuch, “LiDAR: an Emerging Tool for Multiple Resource Inventory,” Journal of Forestry (Sep. 2005) 7 pages. |
Zheng, “The Technique of Land 3D Laser Scanning and Imaging Surveying,” Railway Aerial Survey, vol. 2 (2003), 3 pages. |
Qing, “Method of 3D visualization using laser radar on board of mobile robot,” Journal of Jilin University (Information Science Ed.), vol. 22 (Jul. 2004), 4 pages. |
Widmann, “Development of Collision Avoidance Systems at Delphi Automotive Systems” (1998), pp. 353-358. |
Fischer, “Rapid Measurement and Mapping of Tracer Gas Concentrations in a Large Indoor Space” (May 2000), 27 pages. |
Marino, “Jigsaw: A Foliage-Penetrating 3D Imaging Laser Radar System” (2005), pp. 23-36. |
Thrun, “Probabilistic Terrain Analysis for High-Speed Desert Driving” (Oct. 2005), 7 pages. |
Oshkosh, “Team Terramax: DARPA Grand Challenge 2005” (Oct. 2005), pp. 1-14. |
Glennie, Reign of Point Clouds: A Kinematic Terrestrial LiDAR Scanning System (2007), pp. 22-31. |
Ullrich, et al., “High-performance 3D-imaging laser sensor,” Proceedings of SPIE vol. 3707 (Jun. 1999), pp. 658-664. (IPR Nos. '255 and '256 Exhibit 1014). |
Ozguner, “Team TerraMax and the DARPA Grand Challenge: a General Overview,” IEEE Intelligent Vehicles Symposium (2004), 6 pages. |
Laser Components, https:/web.archive.org/web/20041205172904/http:www.lasercomponents.com (2004), 1 page. (IPR Nos. '255 and '256 Exhibit 1023). |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, “Plaintiff Quanergy Systems, Inc.'s Invalidity Contentions and Production of Documents Pursuant to Patent Local Rules 3-3 and 3-4,” Mar. 27, 2017, 24 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, “Plaintiff Quanergy Systems, Inc.'s Amended Invalidity Contentions Pursuant to Patent Local Rule 3-3,” May 23, 2017, 238 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Complaint, Case No. 5:16-cv-05251 (Sep. 13, 2016), 21 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, Amended Complaint, Nov. 18, 2016, 6 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, Defendant Velodyne's Answer and Counterclaim, Dec. 5, 2016, 20 pages. |
Quanergy Systems, Inc. v. Velodyne LiDAR, Inc. (N.D. Cal.), Case No. 5:16-cv-05251, Answer to Counterclaim, (Jan. 16, 2017) 9 pages. |
Velodyne Lidar, Inc. v. Hesai Photonics Technology Co., Ltd. (N.D. Cal.), Complaint, Case No. 5:19-cv-04742 (Aug. 13, 2019), 13 pages. |
Velodyne Lidar, Inc. v. Sunteng Innovation Technology Co., Ltd. (“Robosense”) (N.D. Cal.), Complaint, Case No. 5:19-cv-04746 (Aug. 13, 2019), 13 pages. |
Mercotac Model 305, Electrical Slip Rings, https://web.archive.org/web/200602100652519/www.mercotac.com/html/305.htm (Feb. 2006), 3 pages. |
Mercotac, 3-Conductor Rotary Electrical Connectors https://web.archive.org/web/20060317120209/http://www.mercotac.com:80/html/threeconductor.html (Mar. 2006), 1 page. |
McManamon, “Optical Phased Array Technology,” Proceedings of the IEEE, vol. 84, No. 2 (Feb. 1996), pp. 268-298. |
Chapman, “Introduction to Laser Safety” (Sep. 10, 2007), 19 pages. |
Willhoeft et al., “QUASI-3D Scanning with Laserscanners,” IBEO Automobile Sensor, 8th World Congress on Intelligent Transport Systems—Quasi-3D Scanning (2001), IBEO Automobile Sensor, 8th World Congress on Intelligent Transport Systems—Quasi-3D Scanning (2001), 12 pages. (IPR Nos. '255 and '256 Exhibit 1077). |
Wulf et al., “Fast 3D Scanning Methods for Laser Measurement Systems, CSCS-14, 14th Int'l Conference on Control Systems and Computer Science” (Jul. 2003), pp. 312-317. (IPR Nos. '255 and '256 Exhibit 1078). |
Wulf, “2D Mapping of Cluttered Indoor Environments by Means of 3D Perception,” Proceedings of the 2004 IEEE International Conference on Robotics & Automation (Apr. 2004), pp. 4204-4209. |
Riegl, “Riegl LMS-Z210” (2003), 8 pages. |
Spies, “Extended Eyes—Sense and Avoid,” Presented at the 2006 International Aerospace Exhibition, Berlin (May 2006), 22 pages. |
IBEO, “IBEO multilayer tech” (2004), 1 page. |
IBEO, “IBEO Time of Flight” (2004), 1 page. |
IBEO, “IBEO products,” https://web.archive.org/web/20040606115118/http/:www.ibeoas.de:80/html/prod/prod.html (2004), 1 page. |
IBEO, “IBEO multitarget capability,” https://web.archive.org/web/20040323030746/, http/:www.ibeoas.de:80/html/knho/knho-senstech-mlc.html (2004), 1 page. |
IBEO, “IBEO,” https://web.archive.org/web/20040202131331/http:/www.ibeo-as.de:8 (2004), 1 page. |
IBEO, “IBEO about,” https://web.archive.org/web/20040606111631/http:/www.ibeoas.de:80/html/about/about (2004). |
IBEO, “IBEO history,” https://web.archive.org/web/20040807161657/,http:/www.ibeoas.de:80/html/about/ab_history.html (2004), 1 page. |
IBEO, “IBEO roadmap,” https://web.archive.org/web/20041209032449/http:/www.ibeoas.de:80/html/prod/prod_roadmap.html (2004), 1 page. |
IBEO, “IBEO data and prices,” https://web.archive.org/web/20041209025137/http://www.ibeoas.de:80/html/prod/prod_dataprices.html (2004), 2 pages. |
IBEO, “IBEO products,” https://web.archive.org/web/20041011011528/http://www.ibeoas.de:80/html/prod/prod.html (2004), 1 page. |
IBEO, “IBEO publications,” https://web.archive.org/web/20031208175052/http://www.ibeoas.de:80/html/public/public.html (2003), 2 pages. |
IBEO, “IBEO Motiv sensor,” https://web.archive.org/web/20040113062910/,http://www.ibeoas.de:80/html/rd/rd_rs_motiv.htm (1997-2000), 1 page. |
IBEO, “IBEO LD Multilayer data sheet,” https://web.archive.org/web/20031003201743/http://www.ibeoas.de:80/html/prod/prod_ld_multi.html (2003), 1 page. |
Fox, “Active electro-optical systems,” The infrared and electro-optical systems handbook, vol. 6 (1993), pp. 1-80. |
Gustavson, “Diode-laser radar for low-cost weapon guidance,” SPIE vol. 1633, Laser radar VII (1992), pp. 1-12. |
Skolnik, “Introduction to radar systems,” Second edition, McGraw-Hill book company (1980), pp. 1-3. |
Trepagnier, “Team gray technical paper,” DARPA grand challenge 2005 (Aug. 28, 2005), 14 pages. |
Riegl LMS-Q120, http://web.archive.org/web/20050113054822/ http:/www.riegl.com/industrial_scanners_/lms_q120_/q120_all_.htm (2005), 4 pages. |
Glennie, Performance analysis of a kinematic terrestrial LiDAR scanning system, MAPPS/ASPRS 2006 fall conference (Nov. 6-10, 2006), 9 pages. |
Albota, “Three-dimensional imaging laser RADAR with a photon-counting avalanche photodiode array and microchip laser,” Applied optics, vol. 41, No. 36 (Dec. 20, 2002), 8 pages. |
Marino, “A compact 3D imaging laser RADAR system using Geiger-mode APD arrays: system and measurements,” Proceedings of SPIE—The international society for optical engineering (Aug. 2003), 16 pages. |
Zhao, “A vehicle-borne urban 3-D acquisition system using single-row laser range scanners,” IEEE transactions on systems, man, and cybernetics, vol. 33, No. 4 (Aug. 2003), pp. 658-666. |
Fuerstenberg, Pedestrian detection and classification by laserscanners, (2003), 8 pages. |
Kohanbash, “LIDAR fundamentals—robots for roboticists” (May 5, 2014), 6 pages. |
Sensick, “DME 2000 / DME 3000: Precise non-contact distance determination,” Sensick Catalogue (2006), pp. 450-457. (IPR Nos. '255 and '256 Exhibit 1073). |
Lamon, “The SmarTer for ELROB 2006—a vehicle for fully autonomous navigation and mapping in outdoor environments” (2005), 14 pages. |
Urmson, “High speed navigation of unrehearsed terrain: red team technology for grand challenge 2004” (Jun. 1, 2004), 47 pages. |
Ohr, “War raises stakes of next DARPA bot race,” EDN (Aug. 15, 2005), 3 pages. |
Cravotta, “Operating alone,” EDN (Dec. 5, 2005), 6 pages. |
International Electrotechnical Commission, “Safety of laser products—part 1: equipment classification and requirements,” International Standard IEC 60825-1, edition 1.2 (Aug. 2001), 122 pages. |
International Electrotechnical Commission, “Safety of laser products—part 1: equipment classification and requirements,” International Standard IEC 60825-1, edition 2.0 (2007), 104 pages. |
Stone, “Performance analysis of next-generation LADAR for manufacturing, construction, and mobility” (May 2004), 198 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Hesai Photonics Technology Co., Ltd.'s Notice of Prior Art,” Nov. 13, 2019, 35 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Robosense's Notice of Prior Art,” Nov. 13, 2019, 34 pages. |
Aiestaran et al. “A Fluorescent Linear Optical Fiber Position Sensor” Elsevier B.V. May 21, 2008 (4 pages). |
European Patent Office, Office Action, App. No. EP 11166432.2 (dated Oct. 7, 2019), 6 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,012,003 (dated Aug. 28, 2019), 3 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,017,735 (dated Aug. 28, 2019), 3 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,017,811 (dated Aug. 28, 2019), 3 pages. |
European Patent Office, Office Action, App. No. EP 07840406.8 (dated Mar. 15, 2011) 7 pages. |
European Patent Office, Office Action, App. No. EP 11166432.2 (dated Jan. 29, 2019), 3 pages. |
European Patent Office, Office Action, App. No. EP 11166432.2 (dated Oct. 14, 2016), 4 pages. |
European Patent Office, Office Action, App. No. EP 11166432.2 (dated Oct. 5, 2015), 4 pages. |
PCT Search Report and Written Opinion (Corrected), App. No. PCT/US2020/026925, dated May 12, 2020, 5 pages. |
PCT Search Report and Written Opinion, App. No. PCT/US2020/012633, dated Jun. 2, 2020, 13 pages. |
PCT Search Report and Written Opinion, App. No. PCT/US2020/012635, dated Jun. 4, 2020, 10 pages. |
Search Report and Opinion, EP App. No. 07840406.8, dated Sep. 8, 2009, 6 pages. |
Search Report and Opinion, EP App. No. 11166432.2, dated Jul. 28, 2011, 7 pages. |
Search Report and Opinion, EP App. No. 17745112.7, dated Aug. 27, 2019, 8 pages. |
Search Report and Opinion, EP App. No. 17770748.6, dated Oct. 22, 2019, 10 pages. |
Search Report and Opinion, EP App. No. 17770926.8, dated Oct. 29, 2019, 11 pages. |
Search Report and Opinion, EP App. No. 17770928.4, dated Oct. 29, 2019, 10 pages. |
Search Report and Opinion, EP App. No. 17807474.6, dated Dec. 9, 2019, 9 pages. |
DARPA, Grand Challenge Media—Frequently Asked Questions (Media),DARPA.com, http://archive.darpa.mil/grandchallenge04/media_faq.htm (2004), 3 pages. (IPR Nos. '255 and '256 Exhibit 2142). |
Ultra Puck, VLP-32C Data Sheet (2018), 2 pages. (IPR Nos. '255 and '256 Exhibit 2093). |
PCT International Search Report and Written Opinion, App. No. PCT/US2018/031682, dated Sep. 17, 2018, 12 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2017/035427, dated Aug. 29, 2017, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046412, dated Jun. 24, 2020, 10 pages. |
PCT International Search Report and Written Opinion, App. No. PCT/US2019/046419, dated Oct. 29, 2019, 14 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,012,003 (dated Sep. 18, 2020), 4 pages. |
Canadian Patent Office, Office Action, App. No. CA 3,024,510 (dated Oct. 16, 2020), 6 pages. |
European Patent Office, Communication Pursuant to Rules 70(2) and 70a(2) EPC, App. No. 18771534.7 (dated Jan. 14, 2021), 1 page. |
European Patent Office, Examination Report, Appl. No. 17745112.7 (dated Jul. 1, 2020), 6 pages. |
European Patent Office, Office Action, App. No. 17770748.6 (dated Sep. 14, 2020), 10 pages. |
European Patent Office, Office Action, App. No. 17770926.8 (dated Sep. 9, 2020), 5 pages. |
European Patent Office, Office Action, App. No. 18886541.4 (dated Jun. 3, 2020), 3 pages. |
Extended Search Report, EP App. No. 18774795.1, dated Nov. 11, 20, 9 pages. |
Extended Search Report, EP App. No. 18798447.1, dated Dec. 10, 2020, 7 pages. |
Glennie, C., et al., “A Comparison of Laser Scanners for Mobile Mapping Applications,” Abstract and slides for a presentation given in 2011, 22 pages. |
Glennie, C., et al., “Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning,” Remote Sensing 2010, 2: pp. 1610-1624. |
International Search Report of PCT/CN2019/093266 dated Sep. 30, 2019, 3 pages. |
Japanese Patent Office, Notice of Reasons for Rejections, App. No. 2018-549918 (dated Jan. 26, 2021), 4 pages. |
Japanese Patent Office, Office Action, App. No. 2019-500215 (dated Dec. 8, 2020), 5 pages. |
Merriam-Webster, Aperture definition, https://web.archive.org/web/20170817144540/https://www.merriam-webster.com/dictionary/aperture (Aug. 17, 2017), 4 pages. |
Milenkovic, “Introduction to LIDAR,” NEWFOR2014 Summer School (Jul. 2014), 77 pages (IPR. Nos. '255 and '256, Exhibit 2166). |
Neff, “The Laser That's Changing the World,” Prometheus Books (2018), pp. 193-204 and 270-271. |
Russian Patent Office, Office Action, App. No. 2020121407 (dated Jul. 23, 2020), 5 pages. |
Satterfield, B., et al., “Advancing Robotics: The Urban Challenge Effect,” Journal of Aerospace Computing, Information, and Communication, vol. 5, Dec. 2008, pp. 530-542. |
Sick, “Distance Sensors,” https://web.archive.org/web/20041213053807/http:/www.Ipc-uk.com:80/sick/sickdist.htm (Dec. 13, 2004), 3 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, Appendix B to Respondent's Response to the Complaint and Notice of Investigation, Oct. 21, 2019, pp. 1-4. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne and Respondent Hesai's Joint Notice,” Jul. 9, 2020, 3 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne Lidar Inc.'s Motion for Summary Determination,” Public Version, Mar. 6, 2020, 168 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne Lidar Inc.'s Opposition to Respondent Hesai's Motion for Summary Determination of Invalidity of U.S. Pat. No. 7,969,558,” Public Version, Mar. 18, 2020, 184 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne Lidar Inc.'s Opposition to Respondent Hesai's Motion to Amend,” Public Version, Feb. 28, 2020, 108 pages. |
U.S. S International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne Lidar, Inc.'s Disclosure of Domestic Industry Products,” Nov. 8, 2019, 3 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne Lidar, Inc.'s Motion in Limine No. 3 to Exclude Evidence and Testimony that Krumes Discloses any Limitations of Claims 2 and 9 of the '558 Patent,” Sep. 2, 2020, 26 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne's Motion in Limine No. 1 to Limit the Testimony of Robosense's Expert, Jason Janet, PhD.,” Public Version, Sep. 2, 2020, 34 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne's Motion in Limine No. 2 to Exclude any Testimony from Dr. Janet Regarding an Alleged Motivation to Combine or Reasonable Expectation of Success,” Public Version, Sep. 2, 2020, 22 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complainant Velodyne's Supplemental Motion for Summary Determination Regarding Inventorship,” Public Version, Sep. 10, 2020, 26 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Complaint of Velodyne Lidar, Inc. Under Section 337 of the Tariff Act of 1930, as Amended,” Aug. 15, 2019, 45 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Hesai's Motion for Leave to Amend Its Response to the Complaint and Notice of Investigation,” Public Version, Feb. 18, 2020, 82 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Hesai's Unopposed Motion for Leave to File a Reply in Support of Its Motion to Amend Its Response to the Complaint and Notice of Investigation,” Public Version, Mar. 6, 2020, 30 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Initial Determination Granting Joint Motion for Termination of the Investigation as to Respondent Hesai Based on a Settlement and Request for Limited Service of Settlement Agreement under CFR §210.21(b),” Public Version, Jul. 13, 2020, 4 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Joint Chart of Substantive Legal Issues Being Litigated,” Sep. 17, 2020, 5 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Joint Chart of Substantive Legal Issues Being Litigated,” Sep. 8, 2020, 6 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Joint Motion for and Memorandum in Support of Termination of the Investigation as to Respondent Hesai Based on a Settlement and Request for Limited Service of Settlement Agreement under 19 CFR §210.21(b),” Public Version, Jul. 8, 2020, 77 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Order No. 26: Granting Hesai's Motion for Leave to Amend Its Response to the Complaint and Notice of Investigation,” May 7, 2020, 6 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Order No. 27: Denying without Prejudice Velodyne's Motion for Summary Determination,” Public Version, May 12, 2020, 11 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Hesai's Motion for Summary Determination of Invalidity of U.S. Pat. No. 7,969,558,” Public Version, Mar. 6, 2020, 109 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Robosense's Opposition to Complainant Velodyne's Motion in Limine No. 3 to Exclude Evidence and Testimony That Krumes Discloses Any Limitations of Claims 2 and 9 of the '558 Patent,” Sep. 9, 2020, 10 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Robosense's Response in Opposition to Complainant Velodyne Lidar, Inc.'s Motion in Limine No. 1,” Sep. 9, 2020, 11 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent RoboSense's Response in Opposition to Complainant Velodyne Lidar, Inc.'s Renewed Motion for Summary Determination Regarding Inventorship,” Public Version, Sep. 8, 2020, 12 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Robosense's Response in Opposition to Complainants Motion in Limine No. 2,” Sep. 9, 2020, 13 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondent Suteng Innovation Technology Co., Ltd.'s Response to the Complaint and Notice of Investigation,” Public Version, Oct. 21, 2019, 31 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondents' Memorandum in Opposition to Complainant Velodyne Lidar Inc.'s Motion for Summary Determination,” Public Version, Mar. 18, 2020, 190 pages. |
U.S. International Trade Commission, Investigation No. 337-TA-1173, “Respondents' Response to the Complaint and Notice of Investigation,” Public Version, Oct. 21, 2019, 36 pages. |
Velodyne Lidar, Excerpts of Business Records (2007-2012), 2 pages. (IPR Nos. '255 and '256 Exhibit 2084). |
Wikipedia, “Cassegrain reflector,” Dec. 12, 2014, 5 pages (downloaded from Internet Archive, Sep. 29, 2020). |
Written Opinion for PCT/CN2019/093266 dated Sep. 23, 2019, 4 pages. |
U.S. Appl. No. 16/931,218, filed Jul. 16, 2020, Hall et al. |
U.S. Appl. No. 16/134,068, filed Sep. 18, 2018, Hall et al. |
U.S. Appl. No. 16/890,951, filed Jun. 2, 2020, Hall et al. |
U.S. Appl. No. 17/255,948, filed Dec. 23, 2020, Xiang et al. |
Quanergy Systems, Inc. v. Velodyne Lidar, Inc. (Fed. Cir.), filed Jul. 27, 2020, U.S. Pat. No. 7,969,558. |
Number | Date | Country | |
---|---|---|---|
20200144971 A1 | May 2020 | US |