The present disclosure relates generally to surveying technology for scanning a surrounding environment and, more specifically, to systems and methods that use LIDAR technology to detect objects in the surrounding environment.
With the advent of driver assist systems and autonomous vehicles, automobiles need to be equipped with systems capable of reliably sensing and interpreting their surroundings, including identifying obstacles, hazards, objects, and other physical parameters that might impact navigation of the vehicle. To this end, a number of differing technologies have been suggested including radar, LIDAR, camera-based systems, operating alone or in a redundant manner.
One consideration with driver assistance systems and autonomous vehicles is an ability of the system to determine surroundings across different conditions including, rain, fog, darkness, bright light, and snow. A light detection and ranging system, (LIDAR a/k/a LADAR) is an example of technology that can work well in differing conditions, by measuring distances to objects by illuminating objects with light and measuring the reflected pulses with a sensor. A laser is one example of a light source that can be used in a LIDAR system. As with any sensing system, in order for a LIDAR-based sensing system to be fully adopted by the automotive industry, the system should provide reliable data enabling detection of far-away objects. Currently, however, the maximum illumination power of LIDAR systems is limited by the need to make the LIDAR systems eye-safe (i.e., so that they will not damage the human eye which can occur when a projected light emission is absorbed in the eye's cornea and lens, causing thermal damage to the retina.)
The systems and methods of the present disclosure are directed towards improving performance of LIDAR systems while complying with eye safety regulations.
In an embodiment, a time-of-flight (TOF) optical sensor may include a controller, a sensing array, and a readout unit. The sensing array may include a plurality of sensing cells. The readout unit may include a plurality of readout TOF modules. The number of the plurality of readout TOF modules may be less than the number of the plurality of sensing cells. The controller may be configured to trigger a connection of a first sensing cell of the plurality of sensing cells to a first readout TOF module of the plurality of readout TOF modules at a first time during a sampling period, thereby enabling the first readout TOF module to provide a first measurement of a change in output of the first sensing cell.
In an embodiment, a method for controlling a time-of-flight (TOF) optical sensor is provided. The TOF optical sensor may include a sensing array and a readout unit. The sensing array may include a plurality of sensing cells. The readout unit may include a plurality of readout TOF modules. The number of the plurality of readout TOF modules may be less than the number of the plurality of sensing cells. The method may include triggering a connection of a first sensing cell of the plurality of sensing cells to a first readout TOF module of the plurality of readout TOF modules at a first time during a sampling period, thereby enabling the first readout TOF module to provide a first measurement of a change in output of the first sensing cell.
In an embodiment, a time-of-flight (TOF) optical sensor may include a controller, a sensing array, and a readout unit. The sensing array may include a plurality of sensing cells. The readout unit may include a plurality of readout TOF modules. The number of the plurality of readout TOF modules may be less than the number of the plurality of sensing cells. The controller may be configured to, for each sensing cell of a first subset of the plurality of sensing cells, trigger a connection of the each sensing cell of the first subset of the plurality of sensing cells to one of the plurality of readout TOF modules at a first time, thereby enabling the one of the plurality of readout TOF modules to provide a first measurement of a change in output of one or more sensing cells of the first subset that are connected to the one of the plurality of readout TOF modules. The controller may also be configured to based on the measurements, determine an offset of an expected area of the sensing array in which a reflection signal appears.
In an embodiment, a time-of-flight (TOF) optical sensor may include a two-dimensional sensing array, a readout unit, and a controller. The two-dimensional sensing array may include a plurality of sensing cells. The readout unit may include a plurality of readout TOF modules. The number of the plurality of readout TOF modules may be less than the number of the plurality of sensing cells. The controller may be configured to trigger a connection of a first subset of the plurality of sensing cells to the plurality of readout TOF modules at a first time for providing a plurality of first measurements of changes in output of the first subset of the plurality of sensing cells by the plurality of readout TOF modules during a first sampling period. The controller may also be configured to determine a second subset of the plurality of sensing cells to be connected to the plurality of readout TOF modules based on the first measurements. The controller may further be configured to trigger a connection of the second subset of the plurality of sensing cells to the plurality of readout TOF modules at a second time for providing a plurality of second measurements of changes in output of the second subset of the plurality of sensing cells by the plurality of readout TOF modules during a second sampling period.
In an embodiment, a method for controlling a time-of-flight (TOF) optical sensor may include triggering a connection of a first subset of a plurality of sensing cells of the TOF optical sensor to a plurality of readout TOF modules at a first time for providing a plurality of first measurements of changes in output of the first subset of the plurality of sensing cells by the plurality of readout TOF modules during a first sampling period. The number of the plurality of readout TOF modules may be less than the number of the plurality of sensing cells. The method may also include determining a second subset of the plurality of sensing cells to be connected to the plurality of readout TOF modules based on the first measurements. The method may further include triggering a connection of the second subset of the plurality of sensing cells to the plurality of readout TOF modules at a second time for providing a plurality of second measurements of changes in output of the second subset of the plurality of sensing cells by the plurality of readout TOF modules during a second sampling period.
The foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the claims.
The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate various disclosed embodiments. In the drawings:
The following detailed description refers to the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the following description to refer to the same or similar parts. While several illustrative embodiments are described herein, modifications, adaptations and other implementations are possible. For example, substitutions, additions or modifications may be made to the components illustrated in the drawings, and the illustrative methods described herein may be modified by substituting, reordering, removing, or adding steps to the disclosed methods. Accordingly, the following detailed description is not limited to the disclosed embodiments and examples. Instead, the proper scope is defined by the appended claims.
Disclosed embodiments may involve an optical system. As used herein, the term “optical system” broadly includes any system that is used for the generation, detection and/or manipulation of light. By way of example only, an optical system may include one or more optical components for generating, detecting and/or manipulating light. For example, light sources, lenses, mirrors, prisms, beam splitters, collimators, polarizing optics, optical modulators, optical switches, optical amplifiers, optical detectors, optical sensors, fiber optics, semiconductor optic components, while each not necessarily required, may each be part of an optical system. In addition to the one or more optical components, an optical system may also include other non-optical components such as electrical components, mechanical components, chemical reaction components, and semiconductor components. The non-optical components may cooperate with optical components of the optical system. For example, the optical system may include at least one processor for analyzing detected light.
Consistent with the present disclosure, the optical system may be a LIDAR system. As used herein, the term “LIDAR system” broadly includes any system which can determine values of parameters indicative of a distance between a pair of tangible objects based on reflected light. In one oembodiment, the LIDAR system may determine a distance between a pair of tangible objects based on reflections of light emitted by the LIDAR system. As used herein, the term “determine distances” broadly includes generating outputs which are indicative of distances between pairs of tangible objects. The determined distance may represent the physical dimension between a pair of tangible objects. By way of example only, the determined distance may include a line of flight distance between the LIDAR system and another tangible object in a field of view of the LIDAR system. In another embodiment, the LIDAR system may determine the relative velocity between a pair of tangible objects based on reflections of light emitted by the LIDAR system. Examples of outputs indicative of the distance between a pair of tangible objects include: a number of standard length units between the tangible objects (e.g. number of meters, number of inches, number of kilometers, number of millimeters), a number of arbitrary length units (e.g. number of LIDAR system lengths), a ratio between the distance to another length (e.g. a ratio to a length of an object detected in a field of view of the LIDAR system), an amount of time (e.g. given as standard unit, arbitrary units or ratio, for example, the time it takes light to travel between the tangible objects), one or more locations (e.g. specified using an agreed coordinate system, specified in relation to a known location), and more.
The LIDAR system may determine the distance between a pair of tangible objects based on reflected light. In one embodiment, the LIDAR system may process detection results of a sensor which creates temporal information indicative of a period of time between the emission of a light signal and the time of its detection by the sensor. The period of time is occasionally referred to as “time of flight” of the light signal. In one example, the light signal may be a short pulse, whose rise and/or fall time may be detected in reception. Using known information about the speed of light in the relevant medium (usually air), the information regarding the time of flight of the light signal can be processed to provide the distance the light signal traveled between emission and detection. In another embodiment, the LIDAR system may determine the distance based on frequency phase-shift (or multiple frequency phase-shift). Specifically, the LIDAR system may process information indicative of one or more modulation phase shifts (e.g. by solving some simultaneous equations to give a final measure) of the light signal. For example, the emitted optical signal may be modulated with one or more constant frequencies. The at least one phase shift of the modulation between the emitted signal and the detected reflection may be indicative of the distance the light traveled between emission and detection. The modulation may be applied to a continuous wave light signal, to a quasi-continuous wave light signal, or to another type of emitted light signal. It is noted that additional information may be used by the LIDAR system for determining the distance, e.g. location information (e.g. relative positions) between the projection location, the detection location of the signal (especially if distanced from one another), and more.
In some embodiments, the LIDAR system may be used for detecting a plurality of objects in an environment of the LIDAR system. The term “detecting an object in an environment of the LIDAR system” broadly includes generating information which is indicative of an object that reflected light toward a detector associated with the LIDAR system. If more than one object is detected by the LIDAR system, the generated information pertaining to different objects may be interconnected, for example a car is driving on a road, a bird is sitting on the tree, a man touches a bicycle, a van moves towards a building. The dimensions of the environment in which the LIDAR system detects objects may vary with respect to implementation. For example, the LIDAR system may be used for detecting a plurality of objects in an environment of a vehicle on which the LIDAR system is installed, up to a horizontal distance of 100 m (or 200 m, 300 m, etc.), and up to a vertical distance of 10 m (or 25 m, 50 m, etc.). In another example, the LIDAR system may be used for detecting a plurality of objects in an environment of a vehicle or within a predefined horizontal range (e.g., 25°, 50°, 100°, 180°, etc.), and up to a predefined vertical elevation (e.g., ±10°, ±20°, +40°-20°, ±90° or 0°-90°.
As used herein, the term “detecting an object” may broadly refer to determining an existence of the object (e.g., an object may exist in a certain direction with respect to the LIDAR system and/or to another reference location, or an object may exist in a certain spatial volume). Additionally or alternatively, the term “detecting an object” may refer to determining a distance between the object and another location (e.g. a location of the LIDAR system, a location on earth, or a location of another object). Additionally or alternatively, the term “detecting an object” may refer to identifying the object (e.g. classifying a type of object such as car, plant, tree, road; recognizing a specific object (e.g., the Washington Monument); determining a license plate number; determining a composition of an object (e.g., solid, liquid, transparent, semitransparent); determining a kinematic parameter of an object (e.g., whether it is moving, its velocity, its movement direction, expansion of the object). Additionally or alternatively, the term “detecting an object” may refer to generating a point cloud map in which every point of one or more points of the point cloud map correspond to a location in the object or a location on a face thereof. In one embodiment, the data resolution associated with the point cloud map representation of the field of view may be associated with 0.1°x0.1° or 0.3°x0.3° of the field of view.
Consistent with the present disclosure, the term “object” broadly includes a finite composition of matter that may reflect light from at least a portion thereof. For example, an object may be at least partially solid (e.g. cars, trees); at least partially liquid (e.g. puddles on the road, rain); at least partly gaseous (e.g. fumes, clouds); made from a multitude of distinct particles (e.g. sand storm, fog, spray); and its size may be of one or more scales of magnitude, such as ˜1 millimeter (mm), ˜5 mm, ˜10 mm, ˜50 mm, ˜100 mm, ˜500 mm, ˜1 meter (m), ˜5 m, ˜10 m, ˜50 m, ˜100 m, and so on. Smaller or larger objects, as well as any size in between those examples, may also be detected. It is noted that for various reasons, the LIDAR system may detect only part of the object. For example, in some cases, light may be reflected from only some sides of the object (e.g., only the side facing the LIDAR system will be detected); in other cases, light may be projected on only part of the object (e.g. laser beam projected onto a road or a building); in other cases, the object may be partly blocked by another object between the LIDAR system and the detected object; in other cases, the LIDAR's sensor may only detects light reflected from a portion of the object, e.g., because ambient light or other interferences interfere with detection of some portions of the object.
Consistent with the present disclosure, a LIDAR system may be configured to detect objects by scanning the environment of LIDAR system. The term “scanning the environment of LIDAR system” broadly includes illuminating the field of view or a portion of the field of view of the LIDAR system. In one example, scanning the environment of LIDAR system may be achieved by moving or pivoting a light deflector to deflect light in differing directions toward different parts of the field of view. In another example, scanning the environment of LIDAR system may be achieved by changing a positioning (i.e. location and/or orientation) of a sensor with respect to the field of view. In another example, scanning the environment of LIDAR system may be achieved by changing a positioning (i.e. location and/or orientation) of a light source with respect to the field of view. In yet another example, scanning the environment of LIDAR system may be achieved by changing the positions of at least one light source and of at least one sensor to move rigidly respect to the field of view (i.e. the relative distance and orientation of the at least one sensor and of the at least one light source remains).
As used herein the term “field of view of the LIDAR system” may broadly include an extent of the observable environment of LIDAR system in which objects may be detected. It is noted that the field of view (FOV) of the LIDAR system may be affected by various conditions such as but not limited to: an orientation of the LIDAR system (e.g. is the direction of an optical axis of the LIDAR system); a position of the LIDAR system with respect to the environment (e.g. distance above ground and adjacent topography and obstacles); operational parameters of the LIDAR system (e.g. emission power, computational settings, defined angles of operation), etc. The field of view of LIDAR system may be defined, for example, by a solid angle (e.g. defined using ϕ, 74 angles, in which ϕ and θ are angles defined in perpendicular planes, e.g. with respect to symmetry axes of the LIDAR system and/or its FOV). In one example, the field of view may also be defined within a certain range (e.g. up to 200 m).
Similarly, the term “instantaneous field of view” may broadly include an extent of the observable environment in which objects may be detected by the LIDAR system at any given moment. For example, for a scanning LIDAR system, the instantaneous field of view is narrower than the entire FOV of the LIDAR system, and it can be moved within the FOV of the LIDAR system in order to enable detection in other parts of the FOV of the LIDAR system. The movement of the instantaneous field of view within the FOV of the LIDAR system may be achieved by moving a light deflector of the LIDAR system (or external to the LIDAR system), so as to deflect beams of light to and/or from the LIDAR system in differing directions. In one embodiment, LIDAR system may be configured to scan scene in the environment in which the LIDAR system is operating. As used herein the term “scene” may broadly include some or all of the objects within the field of view of the LIDAR system, in their relative positions and in their current states, within an operational duration of the LIDAR system. For example, the scene may include ground elements (e.g. earth, roads, grass, sidewalks, road surface marking), sky, man-made objects (e.g. vehicles, buildings, signs), vegetation, people, animals, light projecting elements (e.g. flashlights, sun, other LIDAR systems), and so on.
Disclosed embodiments may involve obtaining information for use in generating reconstructed three-dimensional models. Examples of types of reconstructed three-dimensional models which may be used include point cloud models, and Polygon Mesh (e.g. a triangle mesh). The terms “point cloud” and “point cloud model” are widely known in the art, and should be construed to include a set of data points located spatially in some coordinate system (i.e., having an identifiable location in a space described by a respective coordinate system).The term “point cloud point” refer to a point in space (which may be dimensionless, or a miniature cellular space, e.g. 1 cm3), and whose location may be described by the point cloud model using a set of coordinates (e.g. (X,Y,Z), (r,ϕ,θ)). By way of example only, the point cloud model may store additional information for some or all of its points (e.g. color information for points generated from camera images). Likewise, any other type of reconstructed three-dimensional model may store additional information for some or all of its objects Similarly, the terms “polygon mesh” and “triangle mesh” are widely known in the art, and are to be construed to include, among other things, a set of vertices, edges and faces that define the shape of one or more 3D objects (such as a polyhedral object). The faces may include one or more of the following: triangles (triangle mesh), quadrilaterals, or other simple convex polygons, since this may simplify rendering. The faces may also include more general concave polygons, or polygons with holes. Polygon meshes may be represented using differing techniques, such as: Vertex-vertex meshes, Face-vertex meshes, Winged-edge meshes and Render dynamic meshes. Different portions of the polygon mesh (e.g., vertex, face, edge) are located spatially in some coordinate system (i.e., having an identifiable location in a space described by the respective coordinate system), either directly and/or relative to one another. The generation of the reconstructed three-dimensional model may be implemented using any standard, dedicated and/or novel photogrammetry technique, many of which are known in the art. It is noted that other types of models of the environment may be generated by the LIDAR system.
Consistent with disclosed embodiments, the LIDAR system may include at least one projecting unit with a light source configured to project light. As used herein the term “light source” broadly refers to any device configured to emit light. In one embodiment, the light source may be a laser such as a solid-state laser, laser diode, a high power laser, or an alternative light source such as, a light emitting diode (LED)-based light source. In addition, light source 112 as illustrated throughout the figures, may emit light in differing formats, such as light pulses, continuous wave (CW), quasi-CW, and so on. For example, one type of light source that may be used is a vertical-cavity surface-emitting laser (VCSEL). Another type of light source that may be used is an external cavity diode laser (ECDL). In some examples, the light source may include a laser diode configured to emit light at a wavelength between about 650 nm and 1150 nm. Alternatively, the light source may include a laser diode configured to emit light at a wavelength between about 800 nm and about 1000 nm, between about 850 nm and about 950 nm, or between about 1300 nm and about 1600 nm. Unless indicated otherwise, the term “about” with regards to a numeric value is defined as a variance of up to 5% with respect to the stated value. Additional details on the projecting unit and the at least one light source are described below with reference to
Consistent with disclosed embodiments, the LIDAR system may include at least one scanning unit with at least one light deflector configured to deflect light from the light source in order to scan the field of view. The term “light deflector” broadly includes any mechanism or module which is configured to make light deviate from its original path; for example, a mirror, a prism, controllable lens, a mechanical mirror, mechanical scanning polygons, active diffraction (e.g. controllable LCD), Risley prisms, non-mechanical-electro-optical beam steering (such as made by Vscent), polarization grating (such as offered by Boulder Non-Linear Systems), optical phased array (OPA), and more. In one embodiment, a light deflector may include a plurality of optical components, such as at least one reflecting element (e.g. a mirror), at least one refracting element (e.g. a prism, a lens), and so on. In one example, the light deflector may be movable, to cause light deviate to differing degrees (e.g. discrete degrees, or over a continuous span of degrees). The light deflector may optionally be controllable in different ways (e.g. deflect to a degree α, change deflection angle by Δα, move a component of the light deflector by M millimeters, change speed in which the deflection angle changes). In addition, the light deflector may optionally be operable to change an angle of deflection within a single plane (e.g., θ coordinate). The light deflector may optionally be operable to change an angle of deflection within two non-parallel planes (e.g., θ and ϕ coordinates). Alternatively or in addition, the light deflector may optionally be operable to change an angle of deflection between predetermined settings (e.g. along a predefined scanning route) or otherwise. With respect the use of light deflectors in LIDAR systems, it is noted that a light deflector may be used in the outbound direction (also referred to as transmission direction, or TX) to deflect light from the light source to at least a part of the field of view. However, a light deflector may also be used in the inbound direction (also referred to as reception direction, or RX) to deflect light from at least a part of the field of view to one or more light sensors. Additional details on the scanning unit and the at least one light deflector are described below with reference to
Disclosed embodiments may involve pivoting the light deflector in order to scan the field of view. As used herein the term “pivoting” broadly includes rotating of an object (especially a solid object) about one or more axis of rotation, while substantially maintaining a center of rotation fixed. In one embodiment, the pivoting of the light deflector may include rotation of the light deflector about a fixed axis (e.g., a shaft), but this is not necessarily so. For example, in some MEMS mirror implementation, the MEMS mirror may move by actuation of a plurality of benders connected to the mirror, the mirror may experience some spatial translation in addition to rotation. Nevertheless, such mirror may be designed to rotate about a substantially fixed axis, and therefore consistent with the present disclosure it considered to be pivoted. In other embodiments, some types of light deflectors (e.g. non-mechanical-electro-optical beam steering, OPA) do not require any moving components or internal movements in order to change the deflection angles of deflected light. It is noted that any discussion relating to moving or pivoting a light deflector is also mutatis mutandis applicable to controlling the light deflector such that it changes a deflection behavior of the light deflector. For example, controlling the light deflector may cause a change in a deflection angle of beams of light arriving from at least one direction.
Disclosed embodiments may involve receiving reflections associated with a portion of the field of view corresponding to a single instantaneous position of the light deflector. As used herein, the term “instantaneous position of the light deflector” (also referred to as “state of the light deflector”) broadly refers to the location or position in space where at least one controlled component of the light deflector is situated at an instantaneous point in time, or over a short span of time. In one embodiment, the instantaneous position of light deflector may be gauged with respect to a frame of reference. The frame of reference may pertain to at least one fixed point in the LIDAR system. Or, for example, the frame of reference may pertain to at least one fixed point in the scene. In some embodiments, the instantaneous position of the light deflector may include some movement of one or more components of the light deflector (e.g. mirror, prism), usually to a limited degree with respect to the maximal degree of change during a scanning of the field of view. For example, a scanning of the entire the field of view of the LIDAR system may include changing deflection of light over a span of 30°, and the instantaneous position of the at least one light deflector may include angular shifts of the light deflector within 0.05°. In other embodiments, the term “instantaneous position of the light deflector” may refer to the positions of the light deflector during acquisition of light which is processed to provide data for a single point of a point cloud (or another type of 3D model) generated by the LIDAR system. In some embodiments, an instantaneous position of the light deflector may correspond with a fixed position or orientation in which the deflector pauses for a short time during illumination of a particular sub-region of the LIDAR field of view. In other cases, an instantaneous position of the light deflector may correspond with a certain position/orientation along a scanned range of positions/orientations of the light deflector that the light deflector passes through as part of a continuous or semi-continuous scan of the LIDAR field of view. In some embodiments, the light deflector may be moved such that during a scanning cycle of the LIDAR FOV the light deflector is located at a plurality of different instantaneous positions. In other words, during the period of time in which a scanning cycle occurs, the deflector may be moved through a series of different instantaneous positions/orientations, and the deflector may reach each different instantaneous position/orientation at a different time during the scanning cycle.
Consistent with disclosed embodiments, the LIDAR system may include at least one sensing unit with at least one sensor configured to detect reflections from objects in the field of view. The term “sensor” broadly includes any device, element, or system capable of measuring properties (e.g., power, frequency, phase, pulse timing, pulse duration) of electromagnetic waves and to generate an output relating to the measured properties. In some embodiments, the at least one sensor may include a plurality of detectors constructed from a plurality of detecting elements. The at least one sensor may include light sensors of one or more types. It is noted that the at least one sensor may include multiple sensors of the same type which may differ in other characteristics (e.g., sensitivity, size). Other types of sensors may also be used. Combinations of several types of sensors can be used for different reasons, such as improving detection over a span of ranges (especially in close range); improving the dynamic range of the sensor; improving the temporal response of the sensor; and improving detection in varying environmental conditions (e.g. atmospheric temperature, rain, etc.). In one embodiment, the at least one sensor includes a SiPM (Silicon photomultipliers) which is a solid-state single-photon-sensitive device built from an array of avalanche photodiode (APD), single photon avalanche diode (SPAD), serving as detection elements on a common silicon substrate. In one example, a typical distance between SPADs may be between about 10 μm and about 50 μm, wherein each SPAD may have a recovery time of between about 20 ns and about 100 ns. Similar photomultipliers from other, non-silicon materials may also be used. Although a SiPM device works in digital/switching mode, the SiPM is an analog device because all the microcells may be read in parallel, making it possible to generate signals within a dynamic range from a single photon to hundreds and thousands of photons detected by the different SPADs. It is noted that outputs from different types of sensors (e.g., SPAD, APD, SiPM, PIN diode, Photodetector) may be combined together to a single output which may be processed by a processor of the LIDAR system. Additional details on the sensing unit and the at least one sensor are described below with reference to
Consistent with disclosed embodiments, the LIDAR system may include or communicate with at least one processor configured to execute differing functions. The at least one processor may constitute any physical device having an electric circuit that performs a logic operation on input or inputs. For example, the at least one processor may include one or more integrated circuits (IC), including Application-specific integrated circuit (ASIC), microchips, microcontrollers, microprocessors, all or part of a central processing unit (CPU), graphics processing unit (GPU), digital signal processor (DSP), field-programmable gate array (FPGA), or other circuits suitable for executing instructions or performing logic operations. The instructions executed by at least one processor may, for example, be pre-loaded into a memory integrated with or embedded into the controller or may be stored in a separate memory. The memory may comprise a Random Access Memory (RAM), a Read-Only Memory (ROM), a hard disk, an optical disk, a magnetic medium, a flash memory, other permanent, fixed, or volatile memory, or any other mechanism capable of storing instructions. In some embodiments, the memory is configured to store information representative data about objects in the environment of the LIDAR system. In some embodiments, the at least one processor may include more than one processor. Each processor may have a similar construction or the processors may be of differing constructions that are electrically connected or disconnected from each other. For example, the processors may be separate circuits or integrated in a single circuit. When more than one processor is used, the processors may be configured to operate independently or collaboratively. The processors may be coupled electrically, magnetically, optically, acoustically, mechanically or by other means that permit them to interact. Additional details on the processing unit and the at least one processor are described below with reference to
Consistent with the present disclosure, LIDAR system 100 may be used in autonomous or semi-autonomous road-vehicles (for example, cars, buses, vans, trucks and any other terrestrial vehicle). Autonomous road-vehicles with LIDAR system 100 may scan their environment and drive to a destination vehicle without human input Similarly, LIDAR system 100 may also be used in autonomous/semi-autonomous aerial-vehicles (for example, UAV, drones, quadcopters, and any other airborne vehicle or device); or in an autonomous or semi-autonomous water vessel (e.g., boat, ship, submarine, or any other watercraft). Autonomous aerial-vehicles and water craft with LIDAR system 100 may scan their environment and navigate to a destination autonomously or using a remote human operator. According to one embodiment, vehicle 110 (either a road-vehicle, aerial-vehicle, or watercraft) may use LIDAR system 100 to aid in detecting and scanning the environment in which vehicle 110 is operating.
It should be noted that LIDAR system 100 or any of its components may be used together with any of the example embodiments and methods disclosed herein. Further, while some aspects of LIDAR system 100 are described relative to an exemplary vehicle-based LIDAR platform, LIDAR system 100, any of its components, or any of the processes described herein may be applicable to LIDAR systems of other platform types.
In some embodiments, LIDAR system 100 may include one or more scanning units 104 to scan the environment around vehicle 110. LIDAR system 100 may be attached or mounted to any part of vehicle 110. Sensing unit 106 may receive reflections from the surroundings of vehicle 110, and transfer reflection signals indicative of light reflected from objects in field of view 120 to processing unit 108. Consistent with the present disclosure, scanning units 104 may be mounted to or incorporated into a bumper, a fender, a side panel, a spoiler, a roof, a headlight assembly, a taillight assembly, a rear-view mirror assembly, a hood, a trunk or any other suitable part of vehicle 110 capable of housing at least a portion of the LIDAR system. In some cases, LIDAR system 100 may capture a complete surround view of the environment of vehicle 110. Thus, LIDAR system 100 may have a 360-degree horizontal field of view. In one example, as shown in
In this embodiment, all the components of LIDAR system 100 may be contained within a single housing 200, or may be divided among a plurality of housings. As shown, projecting unit 102 is associated with a single light source 112 that includes a laser diode 202A (or one or more laser diodes coupled together) configured to emit light (projected light 204). In one non-limiting example, the light projected by light source 112 may be at a wavelength between about 800 nm and 950 nm, have an average power between about 50 mW and about 500 mW, have a peak power between about 50 W and about 200 W, and a pulse width of between about 2 ns and about 100 ns. In addition, light source 112 may optionally be associated with optical assembly 202B used for manipulation of the light emitted by laser diode 202A (e.g. for collimation, focusing, etc.). It is noted that other types of light sources 112 may be used, and that the disclosure is not restricted to laser diodes. In addition, light source 112 may emit its light in different formats, such as light pulses, frequency modulated, continuous wave (CW), quasi-CW, or any other form corresponding to the particular light source employed. The projection format and other parameters may be changed by the light source from time to time based on different factors, such as instructions from processing unit 108. The projected light is projected towards an outbound deflector 114A that functions as a steering element for directing the projected light in field of view 120. In this example, scanning unit 104 also include a pivotable return deflector 114B that direct photons (reflected light 206) reflected back from an object 208 within field of view 120 toward sensor 116. The reflected light is detected by sensor 116 and information about the object (e.g., the distance to object 212) is determined by processing unit 108.
In this figure, LIDAR system 100 is connected to a host 210. Consistent with the present disclosure, the term “host” refers to any computing environment that may interface with LIDAR system 100, it may be a vehicle system (e.g., part of vehicle 110), a testing system, a security system, a surveillance system, a traffic control system, an urban modelling system, or any system that monitors its surroundings. Such computing environment may include at least one processor and/or may be connected LIDAR system 100 via the cloud. In some embodiments, host 210 may also include interfaces to external devices such as camera and sensors configured to measure different characteristics of host 210 (e.g., acceleration, steering wheel deflection, reverse drive, etc.). Consistent with the present disclosure, LIDAR system 100 may be fixed to a stationary object associated with host 210 (e.g. a building, a tripod) or to a portable system associated with host 210 (e.g., a portable computer, a movie camera). Consistent with the present disclosure, LIDAR system 100 may be connected to host 210, to provide outputs of LIDAR system 100 (e.g., a 3D model, a reflectivity image) to host 210. Specifically, host 210 may use LIDAR system 100 to aid in detecting and scanning the environment of host 210 or any other environment. In addition, host 210 may integrate, synchronize or otherwise use together the outputs of LIDAR system 100 with outputs of other sensing systems (e.g. cameras, microphones, radar systems). In one example, LIDAR system 100 may be used by a security system.
LIDAR system 100 may also include a bus 212 (or other communication mechanisms) that interconnect subsystems and components for transferring information within LIDAR system 100. Optionally, bus 212 (or another communication mechanism) may be used for interconnecting LIDAR system 100 with host 210. In the example of
According to some embodiments, scanning the environment around LIDAR system 100 may include illuminating field of view 120 with light pulses. The light pulses may have parameters such as: pulse duration, pulse angular dispersion, wavelength, instantaneous power, photon density at different distances from light source 112, average power, pulse power intensity, pulse width, pulse repetition rate, pulse sequence, pulse duty cycle, wavelength, phase, polarization, and more. Scanning the environment around LIDAR system 100 may also include detecting and characterizing various aspects of the reflected light. Characteristics of the reflected light may include, for example: time-of-flight (i.e., time from emission until detection), instantaneous power (e.g., power signature), average power across entire return pulse, and photon distribution/signal over return pulse period. By comparing characteristics of a light pulse with characteristics of corresponding reflections, a distance and possibly a physical characteristic, such as reflected intensity of object 212 may be estimated. By repeating this process across multiple adjacent portions 122, in a predefined pattern (e.g., raster, Lissajous or other patterns) an entire scan of field of view 120 may be achieved. As discussed below in greater detail, in some situations LIDAR system 100 may direct light to only some of the portions 122 in field of view 120 at every scanning cycle. These portions may be adjacent to each other, but not necessarily so.
In another embodiment, LIDAR system 100 may include network interface 214 for communicating with host 210 (e.g., a vehicle controller). The communication between LIDAR system 100 and host 210 is represented by a dashed arrow. In one embodiment, network interface 214 may include an integrated service digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, network interface 214 may include a local area network (LAN) card to provide a data communication connection to a compatible LAN. In another embodiment, network interface 214 may include an Ethernet port connected to radio frequency receivers and transmitters and/or optical (e.g., infrared) receivers and transmitters. The specific design and implementation of network interface 214 depends on the communications network(s) over which LIDAR system 100 and host 210 are intended to operate. For example, network interface 214 may be used, for example, to provide outputs of LIDAR system 100 to the external system, such as a 3D model, operational parameters of LIDAR system 100, and so on. In other embodiment, the communication unit may be used, for example, to receive instructions from the external system, to receive information regarding the inspected environment, to receive information from another sensor, etc.
In the embodiment of
Consistent with some embodiments, secondary light source 112B may cause human eyes to blink when it is too close to the LIDAR optical output port. This may ensure an eye safety mechanism not feasible with typical laser sources that utilize the near-infrared light spectrum. In another embodiment, secondary light source 112B may be used for calibration and reliability at a point of service, in a manner somewhat similar to the calibration of headlights with a special reflector/pattern at a certain height from the ground with respect to vehicle 110. An operator at a point of service could examine the calibration of the LIDAR by simple visual inspection of the scanned pattern over a featured target such a test pattern board at a designated distance from LIDAR system 100. In addition, secondary light source 112B may provide means for operational confidence that the LIDAR is working for the end-user. For example, the system may be configured to permit a human to place a hand in front of light deflector 114 to test its operation.
Secondary light source 112B may also have a non-visible element that can double as a backup system in case primary light source 112A fails. This feature may be useful for fail-safe devices with elevated functional safety ratings. Given that secondary light source 112B may be visible and also due to reasons of cost and complexity, secondary light source 112B may be associated with a smaller power compared to primary light source 112A. Therefore, in case of a failure of primary light source 112A, the system functionality will fall back to secondary light source 112B set of functionalities and capabilities. While the capabilities of secondary light source 112B may be inferior to the capabilities of primary light source 112A, LIDAR system 100 system may be designed in such a fashion to enable vehicle 110 to safely arrive its destination.
As depicted in
Consistent with some embodiments, LIDAR system 100 may further include optics 222 (e.g., a quarter wave plate retarder) for modifying a polarization of the emitted light. For example, optics 222 may modify a linear polarization of the emitted light beam to circular polarization. Light reflected back to system 100 from the field of view would arrive back through deflector 114 to optics 222, bearing a circular polarization with a reversed handedness with respect to the transmitted light. Optics 222 would then convert the received reversed handedness polarization light to a linear polarization that is not on the same axis as that of the polarized beam splitter 216. As noted above, the received light-patch is larger than the transmitted light-patch, due to optical dispersion of the beam traversing through the distance to the target.
Some of the received light will impinge on one-way deflector 220 that will reflect the light towards sensing unit 106 with some power loss. However, another part of the received patch of light will fall on a reflective surface 218 which surrounds one-way deflector 220 (e.g., polarizing beam splitter slit). Reflective surface 218 will reflect the light towards sensing unit 106 with substantially zero power loss. One-way deflector 220 would reflect light that is composed of various polarization axes and directions that will eventually arrive at the detector. Optionally, sensing unit 106 may include sensor 116 that is agnostic to the laser polarization, and is primarily sensitive to the amount of impinging photons at a certain wavelength range.
It is noted that the proposed asymmetrical deflector 216 provides far superior performances when compared to a simple mirror with a passage hole in it. In a mirror with a hole, all of the reflected light which reaches the hole is lost to the detector. However, in deflector 216, one-way deflector 220 deflects a significant portion of that light (e.g., about 50%) toward the respective sensor 116. In LIDAR systems, the number photons reaching the LIDAR from remote distances is very limited, and therefore the improvement in photon capture rate is important.
According to some embodiments, a device for beam splitting and steering is described. A polarized beam may be emitted from a light source having a first polarization. The emitted beam may be directed to pass through a polarized beam splitter assembly. The polarized beam splitter assembly includes on a first side a one-directional slit and on an opposing side a mirror. The one-directional slit enables the polarized emitted beam to travel toward a quarter-wave-plate/wave-retarder which changes the emitted signal from a polarized signal to a linear signal (or vice versa) so that subsequently reflected beams cannot travel through the one-directional slit.
During scanning, current (represented in the figure as the dashed line) may flow from contact 304A to contact 304B (through actuator 302A, spring 306A, mirror 300, spring 306B, and actuator 302B). Isolation gaps in semiconducting frame 308 such as isolation gap 310 may cause actuator 302A and 302B to be two separate islands connected electrically through springs 306 and frame 308. The current flow, or any associated electrical parameter (voltage, current frequency, capacitance, relative dielectric constant, etc.), may be monitored by an associated position feedback. In case of a mechanical failure—where one of the components is damaged- the current flow through the structure would alter and change from its functional calibrated values. At an extreme situation (for example, when a spring is broken), the current would stop completely due to a circuit break in the electrical chain by means of a faulty element.
As described above, a monostatic scanning LIDAR system utilizes at least a portion of the same optical path for emitting projected light 204 and for receiving reflected light 206. The light beam in the outbound path may be collimated and focused into a narrow beam while the reflections in the return path spread into a larger patch of light, due to dispersion. In one embodiment, scanning unit 104 may have a large reflection area in the return path and asymmetrical deflector 216 that redirects the reflections (i.e., reflected light 206) to sensor 116. In one embodiment, scanning unit 104 may include a MEMS mirror with a large reflection area and negligible impact on the field of view and the frame rate performance. Additional details about the asymmetrical deflector 216 are provided below with reference to
In some embodiments (e.g. as exemplified in
According to some embodiments, reflector array 312 may include one or more sub-groups of steerable deflectors. Each sub-group of electrically steerable deflectors may include one or more deflector units, such as reflector unit 314. For example, each steerable deflector unit 314 may include at least one of a MEMS mirror, a reflective surface assembly, and an electromechanical actuator. In one embodiment, each reflector unit 314 may be individually controlled by an individual processor (not shown), such that it may tilt towards a specific angle along each of one or two separate axes. Alternatively, reflector array 312 may be associated with a common controller (e.g., processor 118) configured to synchronously manage the movement of reflector units 314 such that at least part of them will pivot concurrently and point in approximately the same direction.
In addition, at least one processor 118 may select at least one reflector unit 314 for the outbound path (referred to hereinafter as “TX Mirror”) and a group of reflector units 314 for the return path (referred to hereinafter as “RX Mirror”). Consistent with the present disclosure, increasing the number of TX Mirrors may increase a reflected photons beam spread. Additionally, decreasing the number of RX Mirrors may narrow the reception field and compensate for ambient light conditions (such as clouds, rain, fog, extreme heat, and other environmental conditions) and improve the signal to noise ratio. Also, as indicated above, the emitted light beam is typically narrower than the patch of reflected light, and therefore can be fully deflected by a small portion of the deflection array. Moreover, it is possible to block light reflected from the portion of the deflection array used for transmission (e.g. the TX mirror) from reaching sensor 116, thereby reducing an effect of internal reflections of the LIDAR system 100 on system operation. In addition, at least one processor 118 may pivot one or more reflector units 314 to overcome mechanical impairments and drifts due, for example, to thermal and gain effects. In an example, one or more reflector units 314 may move differently than intended (frequency, rate, speed etc.) and their movement may be compensated for by electrically controlling the deflectors appropriately.
In embodiments in which the scanning of field of view 120 is mechanical, the projected light emission may be directed to exit aperture 314 that is part of a wall 316 separating projecting unit 102 from other parts of LIDAR system 100. In some examples, wall 316 can be formed from a transparent material (e.g., glass) coated with a reflective material to form deflector 114B. In this example, exit aperture 314 may correspond to the portion of wall 316 that is not coated by the reflective material. Additionally or alternatively, exit aperture 314 may include a hole or cut-away in the wall 316. Reflected light 206 may be reflected by deflector 114B and directed towards an entrance aperture 318 of sensing unit 106. In some examples, an entrance aperture 318 may include a filtering window configured to allow wavelengths in a certain wavelength range to enter sensing unit 106 and attenuate other wavelengths. The reflections of object 208 from field of view 120 may be reflected by deflector 114B and hit sensor 116. By comparing several properties of reflected light 206 with projected light 204, at least one aspect of object 208 may be determined. For example, by comparing a time when projected light 204 was emitted by light source 112 and a time when sensor 116 received reflected light 206, a distance between object 208 and LIDAR system 100 may be determined. In some examples, other aspects of object 208, such as shape, color, material, etc. may also be determined.
In some examples, the LIDAR system 100 (or part thereof, including at least one light source 112 and at least one sensor 116) may be rotated about at least one axis to determine a three-dimensional map of the surroundings of the LIDAR system 100. For example, the LIDAR system 100 may be rotated about a substantially vertical axis as illustrated by arrow 320 in order to scan field of 120. Although
Sensor 116 includes a plurality of detection elements 402 for detecting photons of a photonic pulse reflected back from field of view 120. The detection elements may all be included in detector array 400, which may have a rectangular arrangement (e.g. as shown) or any other arrangement. Detection elements 402 may operate concurrently or partially concurrently with each other. Specifically, each detection element 402 may issue detection information for every sampling duration (e.g. every 1 nanosecond). In one example, detector array 400 may be a SiPM (Silicon photomultipliers) which is a solid-state single-photon-sensitive device built from an array of single photon avalanche diodes (SPADs, serving as detection elements 402) on a common silicon substrate. Similar photomultipliers from other, non-silicon materials may also be used. Although a SiPM device works in digital/switching mode, the SiPM is an analog device because all the microcells are read in parallel, making it possible to generate signals within a dynamic range from a single photon to hundreds and thousands of photons detected by the different SPADs. As mentioned above, more than one type of sensor may be implemented (e.g. SiPM and APD). Possibly, sensing unit 106 may include at least one APD integrated into an SiPM array and/or at least one APD detector located next to a SiPM on a separate or common silicon substrate.
In one embodiment, detection elements 402 may be grouped into a plurality of regions 404. The regions are geometrical locations or environments within sensor 116 (e.g. within detector array 400)—and may be shaped in different shapes (e.g. rectangular as shown, squares, rings, and so on, or in any other shape). While not all of the individual detectors, which are included within the geometrical area of a region 404, necessarily belong to that region, in most cases they will not belong to other regions 404 covering other areas of the sensor 310—unless some overlap is desired in the seams between regions. As illustrated in
In the illustrated example, processing unit 108 is located at a separated housing 200B (within or outside) host 210 (e.g. within vehicle 110), and sensing unit 106 may include a dedicated processor 408 for analyzing the reflected light. Alternatively, processing unit 108 may be used for analyzing reflected light 206. It is noted that LIDAR system 100 may be implemented multiple housings in other ways than the illustrated example. For example, light deflector 114 may be located in a different housing than projecting unit 102 and/or sensing module 106. In one embodiment, LIDAR system 100 may include multiple housings connected to each other in different ways, such as: electric wire connection, wireless connection (e.g., RF connection), fiber optics cable, and any combination of the above.
In one embodiment, analyzing reflected light 206 may include determining a time of flight for reflected light 206, based on outputs of individual detectors of different regions. Optionally, processor 408 may be configured to determine the time of flight for reflected light 206 based on the plurality of regions of output signals. In addition to the time of flight, processing unit 108 may analyze reflected light 206 to determine the average power across an entire return pulse, and the photon distribution/signal may be determined over the return pulse period (“pulse shape”). In the illustrated example, the outputs of any detection elements 402 may not be transmitted directly to processor 408, but rather combined (e.g. summed) with signals of other detectors of the region 404 before being passed to processor 408. However, this is only an example and the circuitry of sensor 116 may transmit information from a detection element 402 to processor 408 via other routes (not via a region output circuitry 406).
It is noted that each detector 410 may include a plurality of detection elements 402, such as Avalanche Photo Diodes (APD), Single Photon Avalanche Diodes (SPADs), combination of Avalanche Photo Diodes (APD) and Single Photon Avalanche Diodes (SPADs)or detecting elements that measure both the time of flight from a laser pulse transmission event to the reception event and the intensity of the received photons. For example, each detector 410 may include anywhere between 20 and 5,000 SPADs. The outputs of detection elements 402 in each detector 410 may be summed, averaged, or otherwise combined to provide a unified pixel output.
In the illustrated example, sensing unit 106 may include a two-dimensional sensor 116 (or a plurality of two-dimensional sensors 116), whose field of view is smaller than field of view 120 of LIDAR system 100. In this discussion, field of view 120 (the overall field of view which can be scanned by LIDAR system 100 without moving, rotating or rolling in any direction) is denoted “first FOV 412”, and the smaller FOV of sensor 116 is denoted “second FOV 412” (interchangeably “instantaneous FOV”). The coverage area of second FOV 414 relative to the first FOV 412 may differ, depending on the specific use of LIDAR system 100, and may be, for example, between 0.5% and 50%. In one example, second FOV 412 may be between about 0.05° and 1° elongated in the vertical dimension. Even if LIDAR system 100 includes more than one two-dimensional sensor 116, the combined field of view of the sensors array may still be smaller than the first FOV 412, e.g. by a factor of at least 5, by a factor of at least 10, by a factor of at least 20, or by a factor of at least 50, for example.
In order to cover first FOV 412, scanning unit 106 may direct photons arriving from different parts of the environment to sensor 116 at different times. In the illustrated monostatic configuration, together with directing projected light 204 towards field of view 120 and when least one light deflector 114 is located in an instantaneous position, scanning unit 106 may also direct reflected light 206 to sensor 116. Typically, at every moment during the scanning of first FOV 412, the light beam emitted by LIDAR system 100 covers part of the environment which is larger than the second FOV 414 (in angular opening) and includes the part of the environment from which light is collected by scanning unit 104 and sensor 116.
According to some embodiments, measurements from each detector 410 may enable determination of the time of flight from a light pulse emission event to the reception event and the intensity of the received photons. The reception event may be the result of the light pulse being reflected from object 208. The time of flight may be a timestamp value that represents the distance of the reflecting object to optional optical window 124. Time of flight values may be realized by photon detection and counting methods, such as Time Correlated Single Photon Counters (TCSPC), analog methods for photon detection such as signal integration and qualification (via analog to digital converters or plain comparators) or otherwise.
In some embodiments and with reference to
Detector array 400, as exemplified in
A front side illuminated detector (e.g., as illustrated in
In the lens configuration illustrated with regards to detection element 402(1), a focal point of the associated lens 422 may be located above the semiconductor surface. Optionally, openings in different metal layers of the detection element may have different sizes aligned with the cone of focusing light generated by the associated lens 422. Such a structure may improve the signal-to-noise and resolution of the array 400 as a whole device. Large metal layers may be important for delivery of power and ground shielding. This approach may be useful, e.g., with a monostatic LiDAR design with a narrow field of view where the incoming light beam is comprised of parallel rays and the imaging focus does not have any consequence to the detected signal.
In the lens configuration illustrated with regards to detection element 402(2), an efficiency of photon detection by the detection elements 402 may be improved by identifying a sweet spot. Specifically, a photodetector implemented in CMOS may have a sweet spot in the sensitive volume area where the probability of a photon creating an avalanche effect is the highest. Therefore, a focal point of lens 422 may be positioned inside the sensitive volume area at the sweet spot location, as demonstrated by detection elements 402(2). The lens shape and distance from the focal point may take into account the refractive indices of all the elements the laser beam is passing along the way from the lens to the sensitive sweet spot location buried in the semiconductor material.
In the lens configuration illustrated with regards to the detection element on the right of
Consistent with the present disclosure, a long path is created for the impinging photons to be absorbed and contribute to a higher probability of detection. Optical trenches may also be implemented in detecting element 422 for reducing cross talk effects of parasitic photons created during an avalanche that may leak to other detectors and cause false detection events. According to some embodiments, a photo detector array may be optimized so that a higher yield of the received signal is utilized, meaning, that as much of the received signal is received and less of the signal is lost to internal degradation of the signal. The photo detector array may be improved by: (a) moving the focal point at a location above the semiconductor surface, optionally by designing the metal layers above the substrate appropriately; (b) by steering the focal point to the most responsive/sensitive area (or “sweet spot”) of the substrate and (c) adding a diffuser above the substrate to steer the signal toward the “sweet spot” and/or adding reflective material to the trenches so that deflected signals are reflected back to the “sweet spot.”
While in some lens configurations, lens 422 may be positioned so that its focal point is above a center of the corresponding detection element 402, it is noted that this is not necessarily so. In other lens configuration, a position of the focal point of the lens 422 with respect to a center of the corresponding detection element 402 is shifted based on a distance of the respective detection element 402 from a center of the detection array 400. This may be useful in relatively larger detection arrays 400, in which detector elements further from the center receive light in angles which are increasingly off-axis. Shifting the location of the focal points (e.g., toward the center of detection array 400) allows correcting for the incidence angles. Specifically, shifting the location of the focal points (e.g., toward the center of detection array 400) allows correcting for the incidence angles while using substantially identical lenses 422 for all detection elements, which are positioned at the same angle with respect to a surface of the detector.
Adding an array of lenses 422 to an array of detection elements 402 may be useful when using a relatively small sensor 116 which covers only a small part of the field of view because in such a case, the reflection signals from the scene reach the detectors array 400 from substantially the same angle, and it is, therefore, easy to focus all the light onto individual detectors. It is also noted, that in one embodiment, lenses 422 may be used in LIDAR system 100 for favoring about increasing the overall probability of detection of the entire array 400 (preventing photons from being “wasted” in the dead area between detectors/sub-detectors) at the expense of spatial distinctiveness. This embodiment is in contrast to prior art implementations such as CMOS RGB camera, which prioritize spatial distinctiveness (i.e., light that propagates in the direction of detection element A is not allowed to be directed by the lens toward detection element B, that is, to “bleed” to another detection element of the array). Optionally, sensor 116 includes an array of lens 422, each being correlated to a corresponding detection element 402, while at least one of the lenses 422 deflects light which propagates to a first detection element 402 toward a second detection element 402 (thereby it may increase the overall probability of detection of the entire array).
Specifically, consistent with some embodiments of the present disclosure, light sensor 116 may include an array of light detectors (e.g., detector array 400), each light detector (e.g., detector 410) being configured to cause an electric current to flow when light passes through an outer surface of a respective detector. In addition, light sensor 116 may include at least one micro-lens configured to direct light toward the array of light detectors, the at least one micro-lens having a focal point. Light sensor 116 may further include at least one layer of conductive material interposed between the at least one micro-lens and the array of light detectors and having a gap therein to permit light to pass from the at least one micro-lens to the array, the at least one layer being sized to maintain a space between the at least one micro-lens and the array to cause the focal point (e.g., the focal point may be a plane) to be located in the gap, at a location spaced from the detecting surfaces of the array of light detectors.
In related embodiments, each detector may include a plurality of Single Photon Avalanche Diodes (SPADs) or a plurality of Avalanche Photo Diodes (APD). The conductive material may be a multi-layer metal constriction, and the at least one layer of conductive material may be electrically connected to detectors in the array. In one example, the at least one layer of conductive material includes a plurality of layers. In addition, the gap may be shaped to converge from the at least one micro-lens toward the focal point, and to diverge from a region of the focal point toward the array. In other embodiments, light sensor 116 may further include at least one reflector adjacent each photo detector. In one embodiment, a plurality of micro-lenses may be arranged in a lens array and the plurality of detectors may be arranged in a detector array. In another embodiment, the plurality of micro-lenses may include a single lens configured to project light to a plurality of detectors in the array.
Referring by way of a nonlimiting example to
Diagrams A-D in
Based on information about reflections associated with the initial light emission, processing unit 108 may be configured to determine the type of subsequent light emission to be projected towards portion 122 of field of view 120. The determined subsequent light emission for the particular portion of field of view 120 may be made during the same scanning cycle (i.e., in the same frame) or in a subsequent scanning cycle (i.e., in a subsequent frame).
In Diagram B, processor 118 may control the operation of light source 112 in a manner such that during scanning of field of view 120 light pulses in different intensities are projected towards a single portion 122 of field of view 120. In one embodiment, LIDAR system 100 may be operable to generate depth maps of one or more different types, such as any one or more of the following types: point cloud model, polygon mesh, depth image (holding depth information for each pixel of an image or of a 2D array), or any other type of 3D model of a scene. The sequence of depth maps may be a temporal sequence, in which different depth maps are generated at a different time. Each depth map of the sequence associated with a scanning cycle (interchangeably “frame”) may be generated within the duration of a corresponding subsequent frame-time. In one example, a typical frame-time may last less than a second. In some embodiments, LIDAR system 100 may have a fixed frame rate (e.g. 10 frames per second, 25 frames per second, 50 frames per second) or the frame rate may be dynamic. In other embodiments, the frame-times of different frames may not be identical across the sequence. For example, LIDAR system 100 may implement a 10 frames-per-second rate that includes generating a first depth map in 100 milliseconds (the average), a second frame in 92 milliseconds, a third frame at 142 milliseconds, and so on.
In Diagram C, processor 118 may control the operation of light source 112 in a manner such that during scanning of field of view 120 light pulses associated with different durations are projected towards a single portion 122 of field of view 120. In one embodiment, LIDAR system 100 may be operable to generate a different number of pulses in each frame. The number of pulses may vary between 0 to 32 pulses (e.g., 1, 5, 12, 28, or more pulses) and may be based on information derived from previous emissions. The time between light pulses may depend on desired detection range and can be between 500 ns and 5000 ns. In one example, processing unit 108 may receive from sensor 116 information about reflections associated with each light-pulse. Based on the information (or the lack of information), processing unit 108 may determine if additional light pulses are needed. It is noted that the durations of the processing times and the emission times in diagrams A-D are not in-scale. Specifically, the processing time may be substantially longer than the emission time. In diagram D, projecting unit 102 may include a continuous-wave light source. In one embodiment, the initial light emission may include a period of time where light is emitted and the subsequent emission may be a continuation of the initial emission, or there may be a discontinuity. In one embodiment, the intensity of the continuous emission may change over time.
Consistent with some embodiments of the present disclosure, the emission pattern may be determined per each portion of field of view 120. In other words, processor 118 may control the emission of light to allow differentiation in the illumination of different portions of field of view 120. In one example, processor 118 may determine the emission pattern for a single portion 122 of field of view 120, based on detection of reflected light from the same scanning cycle (e.g., the initial emission), which makes LIDAR system 100 extremely dynamic. In another example, processor 118 may determine the emission pattern for a single portion 122 of field of view 120, based on detection of reflected light from a previous scanning cycle. The differences in the patterns of the subsequent emissions may result from determining different values for light-source parameters for the subsequent emission, such as any one of the following:
Consistent with the present disclosure, the differentiation in the subsequent emissions may be put to different uses. In one example, it is possible to limit emitted power levels in one portion of field of view 120 where safety is a consideration, while emitting higher power levels (thus improving signal-to-noise ratio and detection range) for other portions of field of view 120. This is relevant for eye safety, but may also be relevant for skin safety, safety of optical systems, safety of sensitive materials, and more. In another example, it is possible to direct more energy towards portions of field of view 120 where it will be of greater use (e.g. regions of interest, further distanced targets, low reflection targets, etc.) while limiting the lighting energy to other portions of field of view 120 based on detection results from the same frame or previous frame. It is noted that processing unit 108 may process detected signals from a single instantaneous field of view several times within a single scanning frame time; for example, subsequent emission may be determined upon after every pulse emitted, or after a number of pulses emitted.
In addition, processing unit 108 may determine the scanning scheme at least partially by obtaining an identification of at least one region of interest within the field of view 120 and at least one region of non-interest within the field of view 120. In some embodiments, processing unit 108 may determine the scanning scheme at least partially by obtaining an identification of at least one region of high interest within the field of view 120 and at least one region of lower-interest within the field of view 120. The identification of the at least one region of interest within the field of view 120 may be determined, for example, from processing data captured in field of view 120, based on data of another sensor (e.g. camera, GPS), received (directly or indirectly) from host 210, or any combination of the above. In some embodiments, the identification of at least one region of interest may include identification of portions, areas, sections, pixels, or objects within field of view 120 that are important to monitor. Examples of areas that may be identified as regions of interest may include, crosswalks, moving objects, people, nearby vehicles or any other environmental condition or object that may be helpful in vehicle navigation. Examples of areas that may be identified as regions of non-interest (or lower-interest) may be static (non-moving) far-away buildings, a skyline, an area above the horizon and objects in the field of view. Upon obtaining the identification of at least one region of interest within the field of view 120, processing unit 108 may determine the scanning scheme or change an existing scanning scheme. Further to determining or changing the light-source parameters (as described above), processing unit 108 may allocate detector resources based on the identification of the at least one region of interest. In one example, to reduce noise, processing unit 108 may activate detectors 410 where a region of interest is expected and disable detectors 410 where regions of non-interest are expected. In another example, processing unit 108 may change the detector sensitivity, e.g., increasing sensor sensitivity for long range detection where the reflected power is low.
Diagrams A-C in
Additional details and examples on different components of LIDAR system 100 and their associated functionalities are included in Applicant's U.S. patent application Ser. No. 15/391,916 filed Dec. 28, 2016; Applicant's U.S. patent application Ser. No. 15/393,749 filed Dec. 29, 2016; Applicant's U.S. patent application Ser. No. 15/393,285 filed Dec. 29, 2016; and Applicant's U.S. patent application Ser. No. 15/393,593 filed Dec. 29, 2016, which are incorporated herein by reference in their entirety.
Consistent with some embodiment of the present disclosure, the 3D data may be analyzed to monitor retail business processes. In one embodiment, the 3D data may be used in retail business processes involving physical security (e.g., detection of: an intrusion within a retail facility, an act of vandalism within or around a retail facility, unauthorized access to a secure area, and suspicious behavior around cars in a parking lot). In another embodiment, the 3D data may be used in public safety (e.g., detection of: people slipping and falling on store property, a dangerous liquid spill or obstruction on a store floor, an assault or abduction in a store parking lot, an obstruction of a fire exit, and crowding in a store area or outside of the store). In another embodiment, the 3D data may be used for business intelligence data gathering (e.g., tracking of people through store areas to determine, for example, how many people go through, where they dwell, how long they dwell, how their shopping habits compare to their purchasing habits).
Consistent with other embodiments of the present disclosure, the 3D data may be analyzed and used for traffic enforcement. Specifically, the 3D data may be used to identify vehicles traveling over the legal speed limit or some other road legal requirement. In one example, LIDAR system 100 may be used to detect vehicles that cross a stop line or designated stopping place while a red traffic light is showing. In another example, LIDAR system 100 may be used to identify vehicles traveling in lanes reserved for public transportation. In yet another example, LIDAR system 100 may be used to identify vehicles turning in intersections where specific turns are prohibited on red. Two-Dimensional Time-of-Flight Optical Sensor
Unlike complementary metal-oxide-semiconductor (CMOS) based sensors, which obtain a single readout of an accumulated signal of its sensing units, a Time-of-Flight (TOF) sensor includes a plurality of sensing cells electrically connected in a temporary fashion to a readout TOF module, which can read the changes in the voltage (or other electric parameters) during a sampling period (or a scanning period). Additionally, unlike existing CMOS sensors in which the pixels collect data from the field of view even when not read, in the disclosed TOF sensors, since information is being read in real time, the sensing cells of a TOF sensor that are not connected to readout TOF module at a given moment may not collect data at that time.
The readout circuitry of a TOF sensor may be relatively large in comparison for the size of each pixel of the TOF sensor due to the need to record a large number of samples (outputs of the pixels) over a duration of time. This disclosure provides TOF sensors that use fewer TOF readout modules than the number of the pixels (or sensing cells), while enabling the data from each sensing cell to be read. The disclosed TOF sensors may be used in LIDAR systems (e.g., LIDAR system 100 or any other LIDAR system), or in other types of electrooptical systems which may require TOF detection of light (whether reflected light and/or ambient light).
A TOF sensor may include a sensing array, which may include a plurality of sensing cells (or sensing units) configured to receive reflections from the surroundings (e.g., a surrounding of a vehicle). For example, the sensing array may include 120,000 sensing cells arranged in 200 rows and 600 columns, which may form a 200×600 rectangular lattice array. The TOF optical sensor may also include a readout unit, which may include a plurality of readout TOF modules. A readout TOF module may be configured to provide a measurement of the change in output of one or more sensing cells that are connected to the readout TOF module during a period of time (e.g., a sampling period or a scanning period). The number of readout TOF modules may be less than the number sensing cells of the sensing array. For example, the number of the sensing cells of the sensing array may be 120,000, and the number of the readout TOF modules may be 300. The TOF sensor may also include a controller configured to trigger a connection of a first subset of the sensing cells with the readout TOF modules at a first time for providing a first measurements of changes in output of the first subset of the sensing cells by the readout TOF modules during a first sampling period. For example, the TOF sensor may be configured to determine a first subset of the sensing cells that correspond to a first part of the field of view of a LIDAR system, and trigger the connection of the first subset of the sensing cells to the readout TOF modules. The readout TOF modules may be configured to provide first measurements of changes in output of the first subset of the sensing cells during a first sampling period. The TOF sensor may also be configured to determine a second subset of the sensing cells to be connected to the readout TOF modules at a second time based on the first measurements. For example, the first measurements may indicate that no objects are detected in the first part of the field of view corresponding to the first subset of the sensing cells. The controller may determine a second subset of the sensing cells that correspond to a second part of the field of view. The controller may also trigger the connections of the second subset of the sensing cells to the readout TOF modules at a second time. The readout TOF modules may provide second measurements of changes in output of the second subset of the sensing cells during a second sampling period. In some embodiments, the LIDAR system may further include a processor configured to process the first and/or second measurements. For example, the processor may be configured to process the first measurements to detect one or more objects in the first part of the field of view.
Implementing a relatively low number of readout TOF modules and possibly placing them outside the sensing array may make it possible to have large sensing cells, fast electronics (thus, for example, faster readout of the sensing cells, low noise, a large bandwidth, and/or continuous data capturing (e.g., obtaining many readings from the same region in the field of view, then moving to another region). Additionally, placing the electronics of the readout TOF modules away from the sensing cells (on the same chip or a different chip) may help to design and configure more complicated circuitry that may not be achievable in a design in which readout TOF modules are placed mixed with or adjacent to the respective sensing cells.
The sensing cells may be implemented using any of the types of sensing technologies discussed elsewhere in this application or other types of TOF sensing technologies, such as SPADs, SiPM, PIN diodes, other photodiodes, amplified photodiodes, time-to-digital convertors (TDC)). In some embodiments, the sensing cells of the TOF optical sensor may include same type of sensing cells (e.g., SiPMs having substantially the same characteristics or properties. Alternatively, at least two of the sensing cells may be of different types. For example, the sensing array may include a group of feedback cells used for determining feedback on a direction (and/or size, intensity distribution, etc.) of the LIDAR scanning and a group of “main cells” used for the TOF sensing. A feedback cell may be smaller than a main cell. Alternatively or additionally, a feedback cell may have a lower quality and/or a slower response time than a main cell. In some embodiments, feedback cells may optionally be detection cells which may not be suitable for TOF detection (at least not in the full frequency used for LIDAR detection, e.g., 1-nanosecond temporal-resolution), mutatis mutandis. For example, such non-TOF sensing cells may include a capacitor, and suitable readout modules may be used for reading of the charge collected by the one or more temporarily connected feedback cell. Alternatively, feedback cells may be TOF sensing cells (e.g., SiPMs, PIN diodes, etc.) in, for example, bi-static LIDAR systems, where a LIDAR detection angle may depend on distance. In some embodiments, separate readout circuitry (e.g., decoders, muxes, lines) may be used for different types of sensing cells, but this is not necessarily so. Optionally, the feedback cells may implement pseudo-TOF by reading out the charge by the connected readout module multiple times during the sampling period (or a scanning period), but in lesser sampling frequency (e.g., 10 Hz, 100 Hz, 1 Khz, 10 Khz, etc.). In some embodiments, the sensing cells may include at least one light sensitive cell operable to output an electric signal whose magnitude is correlated to amount of impinging light on the cell.
The sensing cells may be implemented using any of the types of sensing technologies discussed above, or other types of TOF sensing technologies, many of which are known in the art (e.g., SPADs, SiPM, PIN diodes, other photodiodes, amplified photodiodes, time-to-digital convertors (TDC)). In some embodiments, at least some of the sensing cells may be sensitive for detecting light at about 905 nanometer wavelengths. Alternatively or additionally, some of the sensing cells may be sensitive for detecting light at about 1550 nanometer wavelengths.
The TOF optical sensor may include a two-dimensional optical sensing array, which may include sensing cells in a planar arrangement. In some embodiments, at least portion of the sensing cells may be substantially arranged along a straight line. For example, the sensing cells may be arranged in a lattice (e.g., a rectangular lattice, a rhombic lattice, a hexagonal lattice, an oblique lattice, or the like, or a combination thereof). Other arrangements may also be possible (e.g., a periodic arrangement of sensing cells over one axis but not over the other axis, or non-periodic 2D arrangements).
In some embodiments, all of the sensing cells may be implemented in a continuous array. Alternatively, the sensing cells may be arranged in two or more separated areas (on a same chip or different chip).
In some embodiments, the sensing array may include at least one sensing cell having at least one high-gain transistor and at least one low-gain transistor. For example, the sensing cell may be divided into one part with high gain and one part with low gain. The controller may be configured to determine which part of the sensing cells was connected to the readout TOF modules, based on the measurement of a previous scanning cycle (e.g., a sampling period or a scanning period).
Each of the readout TOF modules may be operable to detect modifications in an output of at least one connected sensing cell during a light sampling period (or a scanning period), by, for example, measuring values such as voltage or current, changes in these values over time, or other information indicative of modification of the amount of light detected by the respective sensing cells. A readout TOF module may include one or more different types of electronics, such as amplifiers, analog-to-digital converters (ADCs), filters, analog-and-time-digital converters (TDCs), or the like, or a combination thereof.
In some embodiments, the number of the readout TOF modules may be less than the number of the sensing cells by at least one order of magnitude, at least two orders of magnitude, at least three orders of magnitude, or at least four orders of magnitude. For example, For example, in the example of 120,000 sensing cells arranged as 200×600 rectangular lattice array, there may be 40, 200, or 600 readout TOF modules to be connected to one or more (e.g., two, four, or more) of the sensing cells at a time.
The readout TOF modules of the TOF optical sensor may include one type of readout TOF modules. Alternatively, at least two readout TOF modules may be different types of readout TOF modules (e.g., as discussed elsewhere in this disclosure with respect to measuring different types of parameters such as voltage, current frequency, capacitance, relative dielectric constant, etc.).
In some embodiments, a readout TOF module may be configured to provide a measurement of the output of one or more sensing cells that are connected to the readout TOF module during a sampling period (or a scanning period). Alternatively, a readout TOF module may be configured to provide multiple measurements of the output of the connected one or more sensing cells during a sampling period. For example, for a sampling at 1 GHz, a readout TOF module may be configured to provide 1,000 consecutive measurements of the output of the connected one or more sensing cells during a sampling period of 1 microsecond, a measurement may occur every 1 nanosecond.
In some embodiments, a readout TOF module may be connected to two or more sensing cells and configured to provide a readout indicative of a change in an amount of light detected by the two or more sensing cells during a sampling period (or a scanning period). For example, while triggering a connection of a subset of the sensing cells to a plurality of the readout modules, the controller may trigger a connection of multiple sensing cells to a single readout module, so that the readout module may provide a single readout (one measurement or a plurality of consecutive measurements) indicative of modifications in the overall amount of light detected by the multiple sensing cells concurrently and temporarily connected to that readout module.
The TOF sensor may include a controller configured to control the connections of one or more sensing cells to one or more readout TOF modules. For example, the controller may determine a first subset of the sensing cells that correspond to a part of the field of view of the LIDAR system. The controller may also trigger a connection of the first subset of the sensing cells with a plurality of readout TOF modules at a first time for providing a plurality of first measurements of changes in output of the first subset of the sensing cells by the readout TOF modules during a first sampling period. The controller may also determine a second subset of the sensing cells that correspond to another part of the field of view based on the first measurements. The controller may also trigger the connections of the second subset of the sensing cells to the readout TOF modules at a second time for providing second measurements of changes in output of the second subset of the sensing cells during the second sampling period.
In some embodiments, the controller may include one or more decoders associated with the sensing array to connect to two or more sensing cells (e.g., by opening the switches associated with the two or more sensing cells). This may be used for hardware binning, for example, e.g., to increase detection sensitivity (to low reflectivity targets) in order to increase detection range, or for any other reason. In some embodiments, one or more decoders may be configured to determine the first subset of the sensing cells and the readout TOF modules and/or determine the second subset of the sensing cells and the readout TOF modules.
In some embodiments, the TOF sensor may also include one or more processors configured to process the measurement data (e.g., the first and/or second measurements) received from the readout TOF modules. For example, the processor(s) may be configured to receive from the first (and/or second) subset of the readout TOF modules the first (and/or second) measurements and detect one or more objects in the corresponding part of the field of view based on the first (and/or second) measurements by, for example, detecting the timings of peaks in the signal from each readout TOF module, or by other techniques of signal processing applied to the measurements provided to the processor(s). In some embodiments, a processor may be an on-board (or on-chip) of the TOF sensor. Alternatively (or additionally), a processor may be implemented separately from the TOF sensor (e.g., a component of a LIDAR system separated from the TOF sensor).
In some embodiments, the processor may be configured to synchronize measurements with a light source of a LIDAR system in which the TOF optical sensor is installed. Alternatively or additionally, the processor may be configured to synchronize measurements with a scanning module (or one or more components thereof, such as a light source, a light deflector (e.g., a mirror), etc.) of a LIDAR system in which the TOF optical sensor is installed. In some embodiments, the processor may be configured to synchronize measurements with a scanning module and a light source of a LIDAR system in which the TOF optical sensor is installed. In some embodiments, the controller and the processor may be integrated into one signal component and configured to perform the functions of a controller and/or a processor disclosed herein.
The TOF optical sensor may be implemented on a single chip (e.g., silicon, InGaAs, etc.), or on two or more chips (e.g., silicon and InGaAs). In some embodiments, the sensing cells may be implemented on a single chip, or on two or more chips (e.g., for readout in different spectral ranges). In some embodiments, the sensing cells and the readout TOF modules may be implemented on a single chip. Alternatively, the sensing cells and the readout TOF modules may be implemented on different chips. For example, at least one sensing cell may be implemented on a chip different from the chip(s) on which the readout TOF modules are implemented. Alternatively or additionally, at least one readout TOF module may be implemented on a chip different from the chip(s) on which the sensing cells are implemented.
Controller 730 may be configured to control the connections of the sensing cells with the readout TOF modules. For example, controller 730 may be configured to trigger connections of a first subset of the sensing cells to the readout TOF modules at a first time, which may provide first measurements of changes in output of the first subset of the sensing cells by the readout TOF modules during a first sampling period.
Processor 740 may be configured to process measurements provided by one or more readout TOF modules. For example, processor 740 may receive the first measurements from the readout TOF modules and detect one or more objects based on the first measurements.
Controller 730 (and/or processor 740) may also be configured to determine a second subset of the sensing cells to be connected to the readout TOF modules based on the first measurements. Controller 730 may further be configured to trigger the connections of the second subset of the sensing cells to the readout TOF modules at a second time, which may provide second measurements of changes in output of the first subset of the sensing cells by the readout TOF modules during a second sampling period. Processor 740 may also be configured to process the second measurements (e.g., detecting one or more objects based on the second measurements. In some embodiments, controller 730 and processor 740 may be integrated into one signal component and configured to perform the functions of a controller and/or a processor disclosed herein.
Sensing array 810 may include a plurality of sensing cells 811. In some embodiments, sensing cells 811 may be similar to sensing cells 711 illustrated in
Readout unit 820 may include a plurality of readout TOF modules 821, and readout unit 830 may include a plurality of readout TOF modules 831. Readout unit 820 may be configurable to be connected to some of sensing cells 811 (e.g., the left half portion of sensing cells 811), but not to other sensing cells 811 (e.g., the right half portion of sensing cells 811). Similarly, readout unit 830 may be configurable to be connected to some of sensing cells 811 (e.g., the right half portion of sensing cells 811), but not to other sensing cells 811 (e.g., the left half portion of sensing cells 811). In some embodiments, readout TOF modules 821 and 831 may be similar to readout TOF modules 721 illustrated in
Controller 840 may be configured to control the connections of sensing cells 811 with readout TOF modules 821 and/or 831. For example, controller 840 may be configured to trigger connections of a first subset of the sensing cells (e.g., a subset of the sensing cells in the left half portion of sensing cells 811) to readout TOF modules (e.g., a subset of readout TOF modules 821) at a first time, which may provide first measurements of changes in output of the first subset of the sensing cells by the readout TOF modules during a first sampling period. Controller 840 may also be configured to determine a second subset of the sensing cells (e.g., a subset of the sensing cells in the right half portion of sensing cells 811) to the readout TOF modules (e.g., a subset of readout TOF modules 831). Controller 840 may further be configured to trigger connections of the second subset of the sensing cells to the readout TOF modules, which may provide second measurements of changes in output of the second subset of the sensing cells by the readout TOF modules during a second sampling period. In some embodiments, controller 840 may be similar to controller 730 illustrated in
Processor 850 may be configured to process measurements provided by one or more readout TOF modules. In some embodiments, processor 850 may be similar to processor 740 illustrated in
The ability to dynamically connect different subsets of sensing cells to the readout TOF modules may be used to read out real-time TOF from holey areas of the array (i.e., having unread sensing cells, which are not connected to a readout TOF module for TOF readout, being surrounded by read sensing cells, which are connected to and being actively read by one or more readout TOF modules). For example, the controller may connect for readout every other pixel of an area of the sensor array for one sampling period, and every other pixel of a second area of the sensor array for another sampling period. Such a “diluted” sampling may be used for a faster scanning, energy reduction, or other potential advantages.
In some embodiments, a subset (a first subset or a second subset) of the sensing cells to be connected to a subset (a first subset or a second subset) of the readout TOF modules may be up to a certain percentage of all sensing cells (e.g., in a range of up to 1% to 90%, such as up to 10%, 20%, 33%, 50%, or 70%).
In some embodiments, the controller of a TOF sensor may be configured to select a subset of the sensing cells (e.g., a first subset of the sensing cells) to be connected to one or more readout TOF modules. For example, the controller may randomly select a first subset of the sensing cells to be connected to readout TOF modules at a first time. Alternatively, the controller may select the first subset of the sensing cells based on one or more factors. For example, the first subset of the sensing cells may be selected based on the light emitted by a light source of the LIDAR system. Alternatively or additionally, the first subset of the sensing cells may be selected based on a particular part of the field of view that the scanning module of the LIDAR system scans. Alternatively or additionally, the first subset of the sensing cells may be selected based on an area on the sensing array that reflections may be expected to be detected.
In some embodiments, the shape of the light emitted by a light source of the LIDAR system may affect the area on the sensing array that receives the reflection signal. For example, if the laser emitted to the field of view is a line, the received reflection signal may appear as a line shape over a number of sensing cells. As illustrated in
In some embodiments, alternatively or additionally, the controller may be configured to select the first subset of the sensing cells based on an area on the sensing array that reflections may be expected to be detected. For example, the controller may expect the reflection signal based on the laser emitted to the field of view of the LIDAR system to appear in an area on the sensing array (e.g., an area at least partially overlapping sensing cells 912). The controller may be configured to select sensing cells 912 as the first subset of the sensing cells.
In some embodiments, if the laser beam is split into a plurality of beam spots, the reflection signal of a spot may appear on the sensing array as a dot (compared to the shape of the reflection signal appearing on the sensing array if the laser has a line shape described above). For example, as illustrated in
In some embodiments, as discussed above, the controller may be configured to select the first subset of the sensing cells based on a part of the field of view that the scanning module of the LIDAR system scans. For example, the first subset of the plurality of sensing cells may be configured to receive reflection signals indicative of reflections of flash light emissions from one or more objects in a first segment of a field of view of a LIDAR system, and the second subset of the plurality of sensing may be configured to receive reflection signals indicative of reflections of flash light emissions from one or more objects in a second segment of the field of view of the LIDAR system. In some embodiments, the first segment of the field of view may be positioned closer to the LIDAR system (or a component thereof) than the second segment of the field of view.
As another example, as illustrated in
As yet another example, as illustrated in
At step 1101, the controller of the TOF sensor may be configured to trigger a connection of a first subset of the plurality of sensing cells to a plurality of readout TOF modules at a first time. For example, the controller may open the switches associated with the first subset of the sensing cells to trigger a connection of the first subset of the sensing cells to the readout TOF modules.
In some embodiments, the controller may select the first subset of sensing cells as described elsewhere in this disclosure. For example, the controller may select the first subset of the sensing cells based on an area on the sensing array that a reflection signal is expected to appear (by, for example, selecting the sensing cells covering the area as the first subset of the sensing cells).
At step 1103, the readout TOF modules may be configured to provide a plurality of first measurements of changes in output of the first subset of the sensing cells during a first sampling period. For example, each of the readout TOF modules may be operable to detect modifications in an output of one or more connected sensing cells during the first sampling period, by, for example, measuring values such as voltage or current, changes in these values over time, or other information indicative of modification of the amount of light detected by the respective sensing cells.
In some embodiments, at least one of the readout TOF modules may be connected to two or more sensing cells of the first subset of the sensing cells. The at least one of the readout TOF modules may be configured to provide a readout indicative of a change in an amount of light detected by the two or more sensing cells of the first subset of the sensing cells.
In some embodiments, the first (and/or second) measurements measure a trace of light intensity impinging on each of the first (and/or second) subset of sensing cells along a time of flight corresponding to at least 10 meters from the LIDAR system (or a component thereof).
In some embodiments, the controller (or a processor) may also receive the plurality of first measurements and detect a first object based on the plurality of first measurements.
In some embodiments, the controller (or a processor) may modify at least one parameter of the scanning module of the LIDAR system based on the first measurements. For example, the controller may detect the presence of a human being in an area of the field of view based on the first measurements. The controller may also decrease the intensity of the light emitted to that area to minimize or prevent the impact by the light on the human being. As another example, the controller may determine an offset of an actual area on the sensing array that a reflection signal appear compared to the expected area of the reflection signal on the sensing array, based on the first measurements. The controller may also adjust the light deflector (e.g., a mirror) to deflect the light emission to an updated area in the field of view based on the offset so that the expected area of the reflection signal on the sensing array may match the actual area on the sensing array in the next sampling period.
At step 1105, the controller (or the processor) may be configured to determine a second subset of the sensing cells to be connected to the readout TOF modules based on the first measurements. For example, the controller may be configured to determine a second subset of the sensing cells that correspond to a part of the field of view that is different from the part of the field of view associated with the first measurements.
In some embodiments, in determining the second subset of the sensing cells, the controller may consider one or more other factors in addition to the first measurements. For example, the second subset of the sensing cells may be selected further based on the light emitted by a light source of the LIDAR system (as described elsewhere in this disclosure). Alternatively or additionally, the second subset of the sensing cells may be selected further based on a part of the field of view that the scanning module of the LIDAR system scans (as described elsewhere in this disclosure). Alternatively or additionally, the second subset of the sensing cells may be selected further based on an area on the sensing array that reflections may be expected to be detected (as described elsewhere in this disclosure).
In some embodiments, the first subset and the second subset of sensing cells may be the same. Alternatively, the first subset and the second subset of sensing cells may have at least one common sensing cell. In other embodiments, the first subset and the second subset of sensing cells may have no common sensing cells. In some embodiments, the first subset and the second subset of sensing cells may be different. For example, at least one of the second subset of the plurality of sensing cells is not connected to a readout TOF module at the first time. Alternatively or additionally, at least one of the first subset of the plurality of sensing cells is not connected to a readout TOF module at the second time.
At step 1107, the controller may trigger a connection of the second subset of the plurality of sensing cells to a plurality of readout TOF modules at a second time. For example, the controller may open the switches associated with the second subset of the sensing cells to trigger a connection of the second subset of the sensing cells to the readout TOF modules.
At step 1109, the readout TOF modules may be configured to provide a plurality of second measurements of changes in output of the second subset of the sensing cells during a second sampling period. For example, each of the readout TOF modules may be operable to detect modifications in an output of one or more connected sensing cells during the second sampling period, by, for example, measuring values such as voltage or current, changes in these values over time, or other information indicative of modification of the amount of light detected by the respective sensing cells.
In some embodiments, the first subset and the second subset of readout TOF modules may be the same. Alternatively, the first subset and the second subset of readout TOF modules may have at least one common readout TOF module. Alternatively, the first subset and the second subset of sensing cells may have no common readout TOF modules.
In some embodiments, the controller (or a processor) may be configured to receive the plurality of second measurements and detect one or more objects based on the plurality of second measurements.
In some embodiments, the controller may be configured to synchronize measurements with a light source of a LIDAR system in which the TOF optical sensor is installed. Alternatively or additionally, the controller may be configured to synchronize measurements with a scanning module (or one or more components thereof, such as a light source, a light deflector (e.g., a mirror), etc.) of a LIDAR system in which the TOF optical sensor is installed. In some embodiments, the controller may be configured to synchronize measurements with a scanning module and a light source of a LIDAR system in which the TOF optical sensor is installed. For example, the controller may be configured to trigger a connection of a first subset of the sensing cells to the readout TOF modules for providing a plurality of first measurements of changes in output of the first subset of the sensing cells by the readout TOF modules during a first sampling period. The controller may also trigger an analog measurement (not a TOF measurement) of one or more sensing cells (or referred to the surrounding sensing cells) adjacent to the first subset of the sensing cells to determine the presence of a reflection signal (and/or the intensity thereof) based on the analogy measurement.
The controller may also cause adjustment of at least one aspect of the scanning module. For example, the controller (or a processor) may adjust the position (and/or orientation) of the mirror and/or the position (and/or orientation) of the light source to realign an actual position of a reflection signal with the sensing cells that are selected to receive the reflection signal in the next sampling period. By way of example, if the actual reflection signal shifts to the left of expected area 1211 and partially overlaps with sensing cells 1222, the controller may cause adjust the position (and/or orientation) of the mirror and/or the position (and/or orientation) of the light source to realign an actual position of a reflection signal with sensing cells in area 1211 (so that sensing cell 1222 may not detect part of the reflection signal). Alternatively, instead of adjusting the scanning module, the controller may add one or more of sensing cells 1221, 1222, 1223, and 1234 to the first subset of the sensing cells as the second subset of the sensing cells to be connected to the readout TOF modules for the next sampling period. The controller may also trigger a connection of the second subset of the sensing cells to the readout TOF modules at a second time, and the readout TOF modules may provide second measurements of changes in output of the second subset of the sensing cells during the next sampling period, as described elsewhere in this disclosure.
In some embodiments, the sensing array may include sensing cells in a planar arrangement. In some embodiments, at least portion of the sensing cells may be substantially arranged along a straight line. For example, the sensing cells may be arranged in a lattice (e.g., a rectangular lattice, a rhombic lattice, a hexagonal lattice, an oblique lattice, or the like, or a combination thereof). Other arrangements may also be possible (e.g., a periodic arrangement of sensing cells over one axis but not over the other axis, or non-periodic 2D arrangements).
The TOF optical sensor may be implemented on a single chip (e.g., silicon, InGaAs, etc.), or on two or more chips (e.g., silicon and InGaAs). In some embodiments, the sensing cells may be implemented on a single chip, or on two or more chips (e.g., for readout in different spectral ranges). In some embodiments, the sensing cells and the readout TOF modules may be implemented on a single chip.
Alternatively, the sensing cells and the readout TOF modules may be implemented on different chips. For example, at least one sensing cell may be implemented on a chip different from the chip(s) on which the readout TOF modules are implemented. Alternatively or additionally, at least one readout TOF module may be implemented on a chip different from the chip(s) on which the sensing cells are implemented.
In some embodiments, the number of the readout TOF modules may be less than the number of the sensing cells by at least one order of magnitude, at least two orders of magnitude, at least three orders of magnitude, or at least four orders of magnitude. For example, For example, in the example of 120,000 sensing cells arranged as 200×600 rectangular lattice array, there may be 40, 200, or 600 readout TOF modules to be connected to one or more (e.g., two, four, or more) of the sensing cells at a time.
In some embodiments, the controller may include one or more decoders associated with the sensing array to connect to two or more sensing cells (e.g., by opening the switches associated with the two or more sensing cells). This may be used for hardware binning, for example, e.g., to increase detection sensitivity (to low reflectivity targets) in order to increase detection range, or for any other reason. For example, one or more decoders may be configured to determine the first sensing cell of the plurality of sensing cells to be connected to a readout TOF module.
In some embodiments, the controller may be configured to synchronize measurements with a light source of a LIDAR system in which the TOF optical sensor is installed. Alternatively or additionally, the controller may be configured to synchronize measurements with a scanning module (or one or more components thereof, such as a light source, a light deflector (e.g., a mirror), etc.) of a LIDAR system in which the TOF optical sensor is installed. In some embodiments, the controller may be configured to synchronize measurements with a scanning module and a light source of a LIDAR system in which the TOF optical sensor is installed. For example, the controller may be configured to trigger a connection of a first subset of the sensing cells to the readout TOF modules for providing a plurality of first measurements of changes in output of the first subset of the sensing cells by the readout TOF modules during a first sampling period. The controller may also trigger an analog measurement (not a TOF measurement) of one or more sensing cells (or referred to the surrounding sensing cells) adjacent to the first subset of the sensing cells to determine the presence of a reflection signal (and/or the intensity thereof) based on the analogy measurement.
At step 1301, the controller may be configured to trigger a connection of a first sensing cell of the plurality of sensing cells to a first readout TOF module of the plurality of readout TOF modules at a first time during a sampling period. For example, the controller may select one of the sensing cells of the sensing array and trigger a connection of the selected sensing cells to one of the readout TOF modules at a time point during a sampling period. In some embodiments, the first sensing cell of the plurality of sensing cells may be randomly selected to be connected to the plurality of the readout TOF modules at the first time.
At step 1303, the first readout TOF module may be configured to provide a first measurement of a change in output of the first sensing cell. The first readout TOF module may provide a first measurement of a change in output of the first sensing cell as described elsewhere in this disclosure. For example, the first readout TOF module may be configured to detect modifications in an output of the first sensing cell by, for example, measuring values such as voltage or current, changes in these values over time, or other information indicative of modification of the amount of light detected by the first sensing cell.
In some embodiments, the first readout TOF module (or any readout TOF module) may be connected to two or more sensing cells, which may include the first sensing cell. The first readout TOF module may be configured to provide a readout indicative of a change in an amount of light detected by the two or more sensing cells.
In some embodiments, the TOF optical sensor may include a processor configured to receive the first measurement and detect one or more objects based on the first measurement. Alternatively, the controller may be configured to receive the first measurement and detect one or more objects based on the first measurement.
At step 1305, the controller may be configured to trigger a connection of a second sensing cell of the plurality of sensing cells to the first readout TOF module at a second time during the sampling period. The second sensing cell may be different from the first sensing cell. In some embodiments, the second time may be after the first time. For example, the controller may select a sensing cell adjacent to the first sensing cell as the second sensing cell. Alternatively, the controller may randomly select a sensing cell (other than the first sensing cell) among the sensing cells as the second sensing cell. The controller may also be configured to trigger a connection of the second sensing cell to the first readout TOF module at the second time.
At step 1307, the first readout TOF module may be configured to provide a second measurement of a change in output of the second sensing cell. The first readout TOF module may provide a second measurement of a change in output of the second sensing cell as described elsewhere in this disclosure. For example, the first readout TOF module may be configured to detect modifications in an output of the second sensing cell by, for example, measuring values such as voltage or current, changes in these values over time, or other information indicative of modification of the amount of light detected by the second sensing cell.
In some embodiments, the first sensing cell may be not connected to any readout TOF modules at the second time. Alternatively or additionally, the second sensing cell is not connected to any readout TOF modules at the first time. In some embodiments, at least one of the plurality of sensing cells is not connected to any readout TOF modules at the first time. Alternatively or additionally, at least one of the plurality of sensing cells is not connected to any readout TOF modules at the second time.
In some embodiments, during a sampling period, the controller may trigger a connection of each of all the sensing cells (or a subset of the sensing cells) to one readout TOF module at least once. By way of example, the sensing array may include 16 sensing cells, and the readout unit may include 2 readout TOF modules. The controller may trigger a connection of sensing cell 1 to a first readout TOF module and a connection of sensing cell 2 to a second readout TOF module at a first time. The controller may also trigger a connection of sensing cell 3 to the first readout TOF module and a connection of sensing cell 4 to the second readout TOF module at a second time. The controller may further trigger a connection of sensing cell 5 to the first readout TOF module and a connection of sensing cell 6 to the second readout TOF module at a third time. The controller may also trigger a connection of one of the rest of the sensing cells to one of the readout TOF modules at a different time until all sensing cells have been connected to a readout TOF module at least once. A readout TOF module may be configured to provide a measurement of a change in output of the connected sensing cell as described elsewhere in this disclosure.
In some embodiments, the controller may receive one or more measurements of the sensing cells during the sampling period (also referred herein as sampling measurements) and determine a group of the sensing cells to be connected to one or more readout TOF modules in a next sampling period or a scanning period. For example, the controller may receive a first measurement of a first sensing cell and determine a subset of the plurality of sensing cells to be connected to one or more of the plurality of readout TOF modules during a scanning period after the sampling period based on the received measurement. In some embodiments, the subset may include the first sensing cell. Alternatively, the first sensing cell may not be included in the subset. The controller may also trigger a connection of each sensing cell of the subset to one of the plurality of readout TOF modules during the scanning period. Each of the plurality of the readout TOF module may be configured to provide a scanning measurement of a change in output of one or more sensing cells that are connected to the each of the plurality of the readout TOF module during the scanning period. In some embodiments, the controller (or a processor) may further be configured to receive the scanning measurements and detect one or more objects based on the scanning measurements. As another example, the controller may receive the sampling measurements of all sensing cells obtained during a sampling period. The controller may determine a subset of the plurality of sensing cells to be connected to one or more of the readout TOF modules during a scanning period after the sampling period based, at least in part, on the sampling measurements.
In some embodiments, the duration of the sampling period may be equal to, less than, or greater than the duration of the scanning period.
In some embodiments, the controller may be configured to trigger a connection of an analog sensor to an adjacent sensing cell that is adjacent to the first sensing cell at the first time. The adjacent sensing cell may not be connected to a readout TOF module at the first time. The analogy sensor may provide a second measurement of a change in output of the adjacent sensing cell. In some embodiments, the controller may also be configured to determine a subset of the plurality of sensing cells to be connected to one or more readout TOF modules during a scanning period after the sampling period, based, at least in part, on the second measurement and/or the first measurement (i.e., the measurement by the first readout TOF module connected to the first sensing cell). For example, the second measurement may indicate the presence of a reflection signal (or a portion thereof) in the adjacent cell. The controller may be configured to include the adjacent cell in a subset of the plurality of sensing cells to be connected to one of the readout TOF modules in the next scanning period.
In some embodiments, the controller (or a processor) may be configured to adjust (or cause an adjustment of) a scanning module to modify at least one light emission directed to a field of view of a LIDAR system, based on one or more sampling measurements obtained during the sampling period. For example, the controller may be configured to adjust the position (and/or orientation) of the mirror and/or the position (and/or orientation) of the light source to realign an actual position of a reflection signal with the sensing cells that are selected to receive the reflection signal in a scanning period, based, at least in part on the first measurement (i.e., the measurement by the first readout TOF module connected to the first sensing cell).
In some embodiments, the first measurement measures a trace of light intensity impinging on the first sensing cell along a time of flight corresponding to at least 10 meters.
In some embodiments, the controller may be configured to select a subset of the sensing cells of the sensing array to be connected to one or more readout TOF modules. The subset may include the first sensing cell. For each sensing cell of a subset of the plurality of sensing cells, the controller may be configured to trigger a connection of the each of the subset of sensing cells to one of the plurality of readout TOF modules at a first time during a sampling period. Each of the readout TOF modules may be configured to provide a measurement of a change in output of one or more sensing cells that are connected to the each of the plurality of the readout TOF modules. In some embodiments, the subset of the plurality of sensing cells may include less than 75%, 50%, 33%, 20%, 10%, or 5% of the plurality of sensing cells.
In some embodiments, the controller may be configured to select the subset of the sensing cells based on a shape of a light emission directed to a field of view of a LIDAR system. As discussed above, the shape of the light emitted by a light source of the LIDAR system may affect the area on the sensing array that receives the reflection signal. For example, if the laser emitted to the field of view is a line, the received reflection signal may appear as a line shape over a number of sensing cells. As illustrated in
In some embodiments, the controller may be configured to select a second subset of the sensing cells of the sensing array to be connected to one or more readout TOF modules. For example, the controller may select a subset adjacent to the first subset (e.g., first subset 1411 in the example above). By way of example, the controller may select second subset 1412 or third subset 1413 as the second subset to be connected to one or more readout TOF modules. For each sensing cell of the second subset of the plurality of sensing cells, the controller may be configured to trigger a connection of the each of the second subset of sensing cells to one of the plurality of readout TOF modules at a second time (after the first time) during a sampling period. Each of the readout TOF modules may be configured to provide a measurement of a change in output of one or more sensing cells that are connected to the each of the plurality of the readout TOF module.
In some embodiments, as described elsewhere in this disclosure, if the laser beam is split into a plurality of beam spots, the reflection signal of a spot may appear on the sensing array as a dot (compared to the shape of the reflection signal appearing on the sensing array if the laser has a line shape described above). As illustrated in
In some embodiments, during a sampling period, the controller may trigger a connection of each of all the sensing cells (with other sensing cells in a same subset) to one readout TOF module at least once. By way of example, as illustrated in
In some embodiments, the controller (or a processor) may be configured to receive the measurements of one or more subsets and detect one or more objects based on the received measurements.
In some embodiments, not all subsets are connected to a readout TOF module at a given time. For example, the sensing cells of the second subset may not be connected to any readout TOF modules at the first time. Alternatively or additionally, the sensing cells of the first subset may not be connected to any readout TOF modules at the second time.
In some embodiments, the controller may receive the measurements of one or more subsets during the sampling period (also referred herein as sampling measurements of a subsets) and determine a group of the sensing cells to be connected to one or more readout TOF modules in a next sampling period or a scanning period based on the received measurements. For example, the controller may receive the sampling measurement of all subsets obtained during a sampling period. The controller may also determine a subset of the plurality of sensing cells to be connected to one or more of the plurality of readout TOF modules in a next scanning period based on the received sampling measurements). In some embodiments, the determined subset may include one or more of the “old” subsets that were connected to one or more readout TOF modules during the sampling period. For example, the controller may determine that may indicate the presence of an object in certain part of the field of view based on the sampling measurements of an “old” subset obtained during the sampling period. The controller may also include this “old” subset in a “new” subset of sensing cells to be connected to at least one of the readout TOF modules in the next scanning cycle. The controller may also trigger a connection of each sensing cell of the “new” subset to one of the plurality of readout TOF modules during the scanning period. Each of the plurality of the readout TOF module may be configured to provide a scanning measurement of a change in output of one or more sensing cells that are connected to the each of the plurality of the readout TOF module during the scanning period. In some embodiments, the controller (or a processor) may further be configured to receive the scanning measurements and detect one or more objects based on the scanning measurements.
In some embodiments, the controller may be configured to trigger a connection of an analog sensor to one or more adjacent sensing cells that are adjacent to a subset at the time when the subset is connected to one or more readout TOF modules. The adjacent sensing cell(s) may not be connected to a readout TOF module at that time. For example, the controller may be configured to trigger a connection of each sensing cell of a subset (e.g., a subset including the sensing cells covering area 1211 illustrated in
In some embodiments, the controller (or a processor) may be configured to adjust a scanning module to modify at least one light emission directed to a field of view of a LIDAR system, based on sampling measurements of one or more subsets obtained during the sampling period. For example, the controller may be configured to may adjust the position (and/or orientation) of the mirror and/or the position (and/or orientation) of the light source to realign an actual position of a reflection signal with the sensing cells that are selected to receive the reflection signal in a scanning period, based, at least in part on the first measurements (i.e., the measurement by the readout TOF modules connected to the sensing cell of the first subset).
At step 1501, the controller may be configured to, for each sensing cell of a first subset of a plurality of sensing cells, trigger a connection of the each sensing cell of the first subset of the plurality of sensing cells to one of a plurality of readout TOF modules at a first time. Each of the readout TOF modules may be configured to provide a measurement of a change in output of one or more sensing cells that are connected to the each of the plurality of the readout TOF module. In some embodiments, the subset of the plurality of sensing cells may include less than 75%, 50%, 33%, 20%, 10%, or 5% of the plurality of sensing cells.
At step 1503, the controller may be configured to receive the measurements of the sensing cells of the first subset and determine an offset of an expected area of the sensing array in which a reflection signal appears, based on the received measurements. For example, as illustrated in
At step 1505, the controller may be configured to determine a second subset of the plurality of sensing cells, each sensing cells of which is to be connected to one of the plurality of readout TOF modules at a second time, based on the determined offset. For example, the controller may determine a second subset of the sensing cells, which may include subset 1631, to be connected to at least one of the readout TOF modules at a second time (e.g., during a next scanning period). As another example, the controller may be configured to adjust (or cause an adjustment of) a scanning module of the LIDAR system to modify at least one light emission directed to the field of view of a LIDAR system in the next scanning cycle, based on the determined offset. For example, the controller may be configured to adjust the position (and/or orientation) of the mirror and/or the position (and/or orientation) of the light source to realign an actual position of a reflection signal to expected area 1611. The controller may also be configured to determine one or more sensing cells that at least partially overlapping with expected area 1611 as the second subset.
In some embodiments, for each sensing cell of the second subset of the plurality of sensing cells, the controller may be configured to trigger a connection of the each sensing cell of the second subset of the plurality of sensing cells to one of the plurality of readout TOF modules at the second time, thereby enabling the one of the plurality of readout TOF modules to provide a second measurement of a change in output of one or more sensing cells of the second subset that are connected to the one of the plurality of readout TOF modules during a scanning period. In some embodiments, the controller may also be configured to receive the second measurements and detect one or more objects based on the second measurements.
The foregoing description has been presented for purposes of illustration. It is not exhaustive and is not limited to the precise forms or embodiments disclosed. Modifications and adaptations will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed embodiments. Additionally, although aspects of the disclosed embodiments are described as being stored in memory, one skilled in the art will appreciate that these aspects can also be stored on other types of computer-readable media, such as secondary storage devices, for example, hard disks or CD ROM, or other forms of RAM or ROM, USB media, DVD, Blu-ray, or other optical drive media.
Computer programs based on the written description and disclosed methods are within the skill of an experienced developer. The various programs or program modules can be created using any of the techniques known to one skilled in the art or can be designed in connection with existing software. For example, program sections or program modules can be designed in or by means of .Net Framework, .Net Compact Framework (and related languages, such as Visual Basic, C, etc.), Java, C++, Objective-C, HTML, HTML/AJAX combinations, XML, or HTML with included Java applets.
Moreover, while illustrative embodiments have been described herein, the scope of any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those skilled in the art based on the present disclosure. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the present specification or during the prosecution of the application. The examples are to be construed as non-exclusive.
Furthermore, the steps of the disclosed methods may be modified in any manner, including by reordering steps and/or inserting or deleting steps. It is intended, therefore, that the specification and examples be considered as illustrative only, with a true scope and spirit being indicated by the following claims and their full scope of equivalents.
The present application claims priority to U.S. Provisional Patent Application No. 62/857,793, filed Jun. 5, 2019, and U.S. Provisional Patent Application No. 63/027,021, filed May 19, 2020. Each of the above-referenced applications is incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/000442 | 6/5/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
63027021 | May 2020 | US | |
62857793 | Jun 2019 | US |