Systems and methods for time variable financial authentication

Abstract
The systems and methods of the invention provide a technique for authenticating a finance related transaction. The method may include providing a token which contains a token counter, the token counter periodically advancing to generate a changing token value, the token counter being synchronized to a base counter that generates an authenticating value; transforming the token value into a token output sequence using logic; and outputting at least part of the token output sequence to an authenticating authority, the authenticating authority having access to the authenticating value. Further, the method includes the authenticating authority verifying the validity of the transaction based on the token output sequence and the authenticating value, from which the authenticating authority obtains a verification sequence using the logic, the verifying the validity including the authenticating authority comparing the token output sequence to the verification sequence to determine if there is a match between the token output sequence and the verification sequence.
Description
BACKGROUND OF THE INVENTION

The present invention relates to systems and methods to perform authentication of a transaction between a requesting entity, in particular a customer, and an authenticating authority.


Since the ancient invention of money, problems of counterfeiting have existed. These problems have led to ever more sophisticated measures to make the injection of false tokens, representing value, from successfully being used in a transaction. When in much more recent times credit cards were introduced, such measures were incorporated. For example, in earlier times, only a check digit formed by a secret algorithm was used to validate card numbers, the number space being very sparsely occupied so that the chance of finding a valid card number was relatively low. Then thieves learned how to forge this digit. As a result secret cryptography-based codes were added to the cards and checked by the card issuer when charges to an account were made. These measures have been useful in reducing fraud until recently.


However, with the practice of merchants storing card numbers, including some of the codes, insecurely on the Internet, there have been enough thefts of these numbers so that fraud is becoming an increasingly difficult problem. Such fraud often occurs in cases where the cards are not physically present. Fraud is reduced somewhat where the card is physically present. That is, credit cards contain fraud avoidance devices like holograms which make counterfeiting of physical cards more difficult than counterfeiting numbers off the cards.


Further, rules designed to prohibit storing the secret codes have been ignored, even by large issuers and as a result a new way to prevent fraudulent card use for remote customers is becoming necessary. Smart cards using public key encryption have been introduced, but these have met with little acceptance, due to their need for gadgetry to read them, which is not widely available.


Known techniques in the area of time based codes reach back to ancient times, when the password of the day was common in military camps. The notion of using widely synchronized times to control functions dates at least to the philosophy of Gottfried Liebniz (coinventor of the calculus and a contemporary of Isaac Newton). During World War II, codebooks valid for a particular day were used by both sides. The use of time stamps in computer communication is almost as old as computing. An example of their use in authentication can be found in the Kerberos system (MIT, 1987). Financial transactions have been timestamped to avoid replay problems also.


However, known techniques fail to provide an approach to effectively use the advance of time as an effective authentication mechanism. The present invention addresses the above, as well as other problems, that are present in known techniques.


BRIEF SUMMARY OF THE INVENTION

The systems and methods of the invention provide a technique for authenticating a finance related transaction. The method may include providing a token which contains a token counter, the token counter periodically advancing to generate a changing token value, the token counter being synchronized to a base counter that generates an authenticating value; transforming the token value into a token output sequence using logic; and outputting at least part of the token output sequence to an authenticating authority, the authenticating authority having access to the authenticating value. Further, the method includes the authenticating authority verifying the validity of the transaction based on the token output sequence and the authenticating value, from which the authenticating authority obtains a verification sequence using the logic, the verifying the validity including the authenticating authority comparing the token output sequence to the verification sequence to determine if there is a match between the token output sequence and the verification sequence.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention can be more fully understood by reading the following detailed description together with the accompanying drawings, in which like reference indicators are used to designate like elements, and in which:



FIG. 1 is a diagram showing a token in accordance with one embodiment of the invention;



FIG. 2 is a block diagram showing a processing system in accordance with one embodiment of the invention;



FIG. 3 is a block diagram showing an authenticating authority in accordance with one embodiment of the invention;



FIG. 4 is a flowchart showing a “customer initiates transaction” process in accordance with one embodiment of the invention;



FIG. 5 is a flowchart showing the “perform authentication process” in accordance with one embodiment of the invention;



FIG. 6 is a flowchart showing the “perform verification process on the transaction” step of FIG. 5 in accordance with one embodiment of the invention;



FIG. 7 is a flowchart showing the “calculate ‘verification sequence’ based on device number and time of transaction” process of FIG. 6 in accordance with one embodiment of the invention;



FIG. 8 is a flowchart showing the “perform alternative processing to further process authorization” step of FIG. 6 in accordance with one embodiment of the invention;



FIG. 9 is a diagram showing a token in a flashlight in accordance with one embodiment of the invention; and



FIG. 10 is a block diagram showing a token using a twenty-four hour clock in accordance with one embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Hereinafter, features in accordance with various embodiments of the invention will be described. As used herein, any term in the singular may be interpreted to be in the plural, and alternatively, any term in the plural may be interpreted to be in the singular.


The present invention supplies a display on a consumer device, in accordance with one embodiment of the invention. The display displays an authentication code that varies with time. The “time” is synchronized to a known base time. An authenticating authority, such as the issuer for credit cards for example, can determine whether the correct code is being sent to it for a particular consumer device and for a particular transaction time. The time variability is obscured by a secret process on the consumer device to prevent those not in possession of the secret process from figuring out the code sequence. As a result, the authenticating authority can decide whether the requested transaction comes from a valid source. Because the display number is variable, it cannot be recorded on the Internet or elsewhere in a form useful for theft, save for very limited durations. Further such recorded numbers cannot be used to aid in impersonating a holder of a consumer device, e.g., a credit card, for purposes of identity theft. Widespread use of this invention will make telephone, network, or other remote commerce safer for all involved.


The token, in accordance with one embodiment of the invention, may be issued by an authenticating authority. An “authenticating authority” as used herein means either a central authority or a distributed authority, for example. The authenticating authority is capable of deciding whether to authorize transactions where a token is provided as a way to check the validity of authorizations, i.e., to permit them. The authenticating authority possesses authority to perform transactions in the scope of the invention including authority to effect a payment or authorize some other financial or financial-related transaction


In accordance with one embodiment of the invention, the invention uses what might be characterized as a token. The token is used to indicate authority to perform transactions. The token includes a token clock or token counter that can maintain synchronization with a reference clock, i.e., a base counter, during the lifetime of the token. This synchronization might be maintained to within one or a few times the interval between changes of identifier. In accordance with one embodiment of the invention, this might include a counter which “ticks”, i.e., changes value, one or a few times per day, for example.


Further, the token also includes a device or mechanism for performing a secret transform on the clock value. In accordance with one embodiment of the invention, this transformation might also involve some other separately observable attribute of the token, such as the credit card number or a cellular phone number. The token uses the secret transform, which is not available to the token holder, but that is reproducible by an authenticating authority. Further, the secret may be different for every such token so that if one is lost, only its secret is lost and other tokens remain secure. The result of this transform, or part of the result of the transform, is displayed by the token in such a way that the displayed number can be read by a person or device, i.e., whatever might read the token, and transmitted to an authenticating authority. Optionally, such an authority might demand that additional memorized digits or some other identifying indicia be supplied. This other indicia would further preclude use of a stolen token. That is, the token as described herein may be used with any other known authentication technique, as desired.


In accordance with one embodiment of the invention, the invention may be in the form so as to resemble a credit card. In addition to the existing credit card fields, i.e., such as magnetic stripe, for example, the card in accordance with one embodiment of the invention is provided with a small processor and battery. Further, the card includes a display that is visible on the card. The display shows a few digits computed by a secret process on the card. One such implementation might take a secret master key known to the issuer and encrypt the card account number and expiration with this master key. This diversified key then gets stored on the card. Further, it is noted that the diversified key may be different for each card.


As noted above, a clock computes a value that is transformed and then displayed on the token. That is, the token first reads the clock. The clock may be in the form of a counter of some type. For example, the clock for a certain batch of credit cards might advance based on the “hours since midnight on Jan. 1, 2001”. Further, the credit cards might be synchronized when issued. In accordance with one embodiment of the invention, the initial value generated by the clock is encrypted with the diversified key.


Further, only the low three decimal digits of the result are displayed on the display, for example, in accordance with one embodiment of the invention. Of course, it is appreciated that any number of digits or selection of digits may be used, as is desired. Physically, the invention will not pose a problem since there currently exists flexible numeric displays much thinner than credit cards. Should power be limited to drive such a display all the time for a few years, a pushbutton or other switch might be present to conserve power.


When the credit card holder of the token of the invention makes a phone purchase or a net purchase, for example, he or she then reads the display, and possibly recites some other digits she is given to retain or memorize, in accordance with one embodiment of the invention. For example, such other digits might be the fixed CVV code (card validation value) on the back of the credit card. The credit card holder then furnishes such information to a merchant. The merchant then sends the information to the issuer, or some other authenticating authority, for validation.


The authenticating authority receives the card number, timestamp of the transaction, the token value and any added data. The authenticating authority then derives the diversified key from the card number and the master secret the particular card holds and/or reads such information from storage. Further, the authenticating authority checks the timestamp supplied for sanity, i.e., performs a crude reasonableness test, and uses the timestamp to derive the expected on-card clock value. The authenticating authority then encrypts this clock value with the diversified key and compares with the value supplied by the customer.


So as to avoid clock drift problems, the authenticating authority may compare adjacent timeslot values for the comparison operation. The authenticating authority then treats these adjacent timeslot values as matches if one of them produces the same code as was reported. The exact number of these comparisons depends on expected maximum clock drift on card over the card lifetime, i.e., two to three years, for example, and may be varied as desired. For example if it is expected the clock might drift under an hour, and the clock changes value at midnight, then transactions after 11 PM might be compared also with the next day's code, and similarly transactions before 1 AM might be compared with the prior day's code. In this way the card user never sees any effects of the clock changing during his transaction.


In accordance with further aspects of the invention, as noted above, a variety of other values may be supplied to a token holder for use in authenticating transactions. These other values can be recorded by the authenticating authority, or alternatively, can be computed by such an operation as encrypting the card number with a second secret key and using part of such resulting number. This additional number is entered when making a transaction, along with the displayed number, by the cardholder. Such added information makes a token less useful to someone who stole the token, as they would have to guess the correct check digits or digits to fool the authenticating authority.


Further, it may be desirable for the values, which the token displays, to be related mathematically to some separate observable about the token, e.g., such as a cellular phone number. For example, a second identifier built into the token may be used mathematically for computation of the value displayed by the display on the token. For tokens of the nature of credit cards, the preferred implementation encrypts the card number. For tokens like cell phones, there is a phone ID number which could be used. Such practice would make it harder to forge tokens and will be found to be of particular use for tokens in which the internal state cannot be hidden well from users, i.e., the internal state meaning a cell phone number, for example. In those cases where the internal state cannot be hidden, it may be desired to use other identifiers, in addition to the token value described herein, in order to gain the added protection against fraud.


As described herein, one embodiment of the invention uses a token resembling a credit card. However, any of a wide variety of tokens may be used. Accordingly, as used herein a “token” means a device which is presented or which bears information which is presented by someone to set up a payment or similarly authorize some financial or financial-related transaction. Accordingly, a token of the invention may be in a wide variety of forms including a token in the form of a credit card, or a gasoline-buying “speedpass,” for example. Accordingly, the token in the invention may be in the form of credit card or debit card type device possessing a display to be read by the cardholder, a credit card type device having a magnetic strip, a radio frequency generating device, an infrared signal generating device, an audio signal generating device, a magnetic pattern generating device, and/or other devices for outputting a data signal, i.e., such as a PDA (personal digital assistance) outputting a data signal to a computer or to a cashier, for example.


Further, as described herein, the token of the invention generates a “display.” As used herein, a “display” means whatever sends information off the token for authentication checks. For credit card type tokens, the display might be some visible display. For other types of tokens, the display might be a radio or audio signal, or magnetic patterns, for example. Accordingly, a “display” in a token of the invention may illustratively be an LED (light emitting diode), an LCD (liquid crystal display), a magnetic strip, a radio frequency signal, an infrared signal, an audio signal, a magnetic pattern, any other data signal, or any other technique that may be used to convey information from the token to the merchant, and in turn to the authenticating authority, for example. As is appreciated, interim steps may be needed such as a human cardholder reading the token output sequence and inputting the token output sequence into a computer via a keyboard or to a human merchant verbally, for example.


As described in various examples herein, the token of the invention may be used in an interaction between a customer and a merchant. However, the token of the invention may be used in a variety of other situations between any of a wide variety of entities. For example, the treasurer of a corporation might use the token described herein to validate instructions to a bank, i.e., regarding a desired transaction, for example. Accordingly, the token of the invention might be used in conjunction with transactions between two banks or between any other institutions or entities, for example.


The checking is preferably done off the token, although a central authority's processing might be replaced in some cases by some combination of other processing with perhaps other tokens whose trust is established in other ways, e.g., such as biometrics, for example, to allow local checking of such tokens for authenticity. That is, the token of the invention may well be used in conjunction with other authentication checks, such as simply a credit card number, for example; and the authenticating authority may be made up of separate portions so as to collectively perform the verification process.


Hereinafter, further aspects of the systems and methods of the invention will be described with reference to the drawings. FIG. 1 is a diagram showing a token 100 in accordance with one embodiment of the invention. As shown in FIG. 1, the token 100 includes a device number 110. While the token 100 is shown in FIG. 1 as being similar to a credit card, it is appreciated that the token 100 may be in any of a wide variety of shapes and sizes.


As shown in FIG. 1, the token 100 also includes a magnetic strip 120. Further, the token 100 includes a token output sequence 130, i.e., a number, that is presented by a display 132. The token output sequence 130 is generated by the token 100 based on the progression of a clock, as described above, for example. In order to conserve energy of the token 100, the token output sequence 130 might not be displayed at all times. That is, the holder of the token 100, in accordance with one embodiment of the invention, presses the power display button 140 to display the token output sequence 130. Such action results in a token output sequence being displayed and visible to the holder. As shown in FIG. 1, the token 100 may also include a signature panel 150 to provide further verification of the veracity of the holder.


To explain further, the token output sequence 130 is generated using a token counter 160. The token counter 160 generates a token value. This token value is output within a token 100 to an encryption portion 170. The encryption portion 170 provides logic to process the token value to result in the token output sequence 130. Both the progression of the token counter 160 as well as the logic used in the encryption portion 170 is known and simulated by a verification or authenticating authority so as to verify a transaction by the holder of the token 100.


The embodiment of FIG. 1 utilizes a display 132 to display the token output sequence 130. However, is appreciated that the token output sequence 130 may be displayed using a variety of techniques, as is further described below. For example, the token output sequence 130 might be input into the magnetic strip 120, i.e., so as to be output to a merchant, for example.



FIG. 2 is a block diagram showing a processing system 10 in accordance with one embodiment of the invention. As shown in FIG. 2, the processing system 10 includes a customer token 100. Further, the processing system 10 includes a merchant entity 200 and an authenticating authority 300.


In accordance with one embodiment of the invention, the customer token 100 takes the form of the device shown in FIG. 1. Further, the merchant entity 200 may be in any of a wide variety of forms such as merchant disposed in a physical merchant store, an internet entity, a receiver such as on a toll road device, a telephone entity, as well as a wide variety of other arrangements, as should be appreciated. Further, as shown in FIG. 2, the token 100 may be disposed in a variety of devices, such as in a flashlight, key chain, cellular phone, a personal digital assistant, and/or a watch, for example.



FIG. 3 is a block diagram showing in further detail the authenticating authority 300. The authenticating authority 300 includes a general processing portion 310 and a general memory portion 320. The general processing portion 310 controls overall operations of the various components disposed in the authenticating authority 300. Further, the general memory portion 320 provides a wide variety of memory resources to the authenticating authority 300.


The authenticating authority 300 further includes an input portion 330. The input portion 330 inputs information necessary to verify a transaction performed using the token 100. Illustratively, the input portion 330 inputs a device number from a token, the time the transaction, as well as a token output sequence. The authenticating authority 300 further includes a base counter 350. The base counter 350 outputs an authenticating value based on the transaction time, which is received from the token 100. This authenticating value is created using processing performed in parallel to the token counter 160. Specifically, the base counter 350 simulates the output that the token counter 160 would have generated at the time of the transaction.


Further, the authenticating authority 300 includes an encryption portion 360. The encryption portion 360 calculates a verification sequence in the same secret logic as in the token 100. In the authenticating authority 300, the encryption portion 360 operates in conjunction with the secret logic memory portion 370 to generate the verification sequence. For example, the secret logic memory portion might use the device number to determine which logic to apply to the verification sequence, e.g., using a look-up table, for example.


In accordance with one embodiment of the invention, it is noted that the logic might use the device number in mathematical processing of the authenticating value, or, in the token, the logic might use the device number in mathematical processing of the token value.


Further, the authenticating authority 300 includes a comparison portion 380. The comparison portion 380 uses the verification sequence, which is generated within the authenticating authority 300, and compares such verification sequence with the input “token output sequence,” which is input from the token 100.



FIG. 4 is a flow chart showing a customer process in accordance with one embodiment of the invention. As shown in FIG. 4, the process starts in step 500 in which the customer initiates a transaction. After step 500, the process passes to step 510. In step 510, the customer reads, or in some other manner conveys, the device number to the merchant. Then, in step 520, with reference to the embodiment of the invention shown in FIG. 1, the customer presses the power display button. As a result, the token output sequence is displayed for viewing by the customer. Accordingly, in step 530, the customer reads the token output sequence to the merchant. In conjunction with step 530, the customer device, i.e., the token 100, for example, calculates the token output sequence based on a token value generated in the token, i.e., based on the progression of the clock in the token. After step 530 of FIG. 4, the process passes to step 540. In step 540, the customer input to the transaction is completed.



FIG. 5 is a flow chart showing an authenticating authority process in accordance with one embodiment of the invention. As shown in FIG. 5, the process starts in step 600 and passes to step 610. In step 610, the authenticating authority obtains the device number from the customer. Then, in step 620, the authenticating authority obtains the token output sequence number from the customer. After 620, the process passes to step 630. In step 630, the authenticating authority also inputs the time of the transaction, i.e., which may be obtained from the merchant in accordance with one embodiment of the invention. Accordingly, each of the items of information input in steps 610, 620 and 630 are obtained from the customer and/or the merchant and may typically be transmitted from the customer through the merchant so as to be input by the authenticating authority.


Returning to FIG. 5, after step 630, the process passes to step 640. In step 640, the authenticating authority performs a verification process on the transaction. FIG. 6 is a flowchart showing in further detail step 640. After step 640 of FIG. 5, the process passes to step 800. In step 800, the verification process is completed.


As noted above, FIG. 6 is a flowchart showing in further detail the “perform verification process on the transaction.” As shown in FIG. 6, the process starts in step 640 and passes to step 650. In step 650, the process, i.e., performed by the authenticating authority, calculates a “verification sequence” based on the device number and the time of transaction, which has been input. Then, in step 660, the authenticating authority compares the “token output sequence” input from the customer with the “verification sequence”. After step 650, the process passes to step 670.


In step 670, as shown in FIG. 6, the process determines whether the token output sequence that is input from the customer matches with the verification sequence that is generated within the authenticating authority. If yes, i.e., there is a match, then the process passes to step 672. In step 672, the transaction is authorized. After step 672, the process passes to step 699.


Alternatively, it may be the situation that in step 670, the token output sequence does not match with the verification sequence. As a result, the processes passes from step 670 to step 680. In step 680, an initial determination is made that the transaction is not authorized. However, this is merely an initial determination. That is, after step 680, the process passes to step 690. In step 690, the process performs alternative processing to further consider the authorization. That is, the process performs further processing to ascertain whether the transaction was indeed a valid transaction. FIG. 8 is a flowchart showing in further detail step 690. After 690 of FIG. 6, the process passes to step 699


In step 699, the process may perform a supplemental transaction validation, as is necessary or desired. That is, it is appreciated that there may be other criteria that makes an authenticator decide to allow the transaction or not. For example suppose a transaction is coming supposedly from Seattle and the authenticating authority experienced a transaction, with the same token, from New York 10 minutes ago. The authenticating authority might want to decline this transaction even if the authorization number appeared to be correct. Likewise even if the transaction is not authorized, maybe the issuer will determine the electronics have glitched and he may use other information, ask the merchant for other information, or just warn the merchant and let the merchant decide whether to go ahead anyway, i.e., since the merchant will bear any loss. After step 699, the process passes to step 700. In step 700, the process returns to step 800 of FIG. 5.



FIG. 7 is a flowchart showing in further detail step 650 of FIG. 6 “calculate verification sequence based on device number and time of transaction.” After the sub-process of FIG. 7 starts, the process passes from step 650 to step 652. In step 652, the process determines the “authenticating value” based on the time of transaction. Then, in step 654, the process determines the “secret logic” based on the device number. That is, it is appreciated that different logics may be used for different devices. The device number, or some other identifying indicia that may be associated with a particular device, may be used to determine which logic should be applied by the authenticating authority. After step 654, the process passes to step 656. In step 656, the process proceeds with applying the secret logic to the “authenticating value” to determine, in turn, the “verification sequence”. After step 656, the process passes to step 658. In step 658, the process returns to step 660 of FIG. 6.



FIG. 8 is a flowchart showing in further detail the “perform alternative processing to further process authorization” step 690 of FIG. 6. In particular, the process of FIG. 8 relates to the situation where clock drift has occurred between the clock in the authenticating authority as compared with the clock in the token 100. Such drift between the clocks may result in an initial finding that a transaction is not valid. However, the process of FIG. 8 addresses a potential incorrect finding of an invalid transaction.


To explain, the process of FIG. 8 starts in step 690 and passes to step 692. In step 692, the process determines whether the time of transaction is near the beginning of a clock interval, i.e., is the time of the transaction near the time that the clock in the authenticating authority experienced a change. If yes in step 692, then the process passes to step 693. In step 693, the process recalculates the verification sequence based on the previous base counter setting. After step 693, the process passes to step 697.


Alternatively, in step 692, the process may have determined that the time of the transaction is not at the beginning of a clock interval. As a result, the process passes to step 694. In step 694, the process, as illustratively performed by the authenticating authority, determines whether the time of the transaction is near the end of a clock interval. If yes, then the process passes from step 694 to step 695. In step 695, the process recalculates the “verification sequence” based on the next base counter setting. Then, the process passes to step 697.


In step 697, the process determines whether the token output sequence input by the customer matches with the recalculated verification sequence. That is, step 697 checks whether the previous or the next clock setting of step 693 and step 695, respectively, result in a match between the token output sequence and the verification sequence. If yes, then the process passes to step 698. That is, if there is indeed a match then the transaction is authorized. After step 698, the process passes to step 698′. Alternatively, in step 697, there may still not be a match between the token output sequence input by the customer and the recalculated verification sequence. As a result, the process passes to step 697′ and the transaction is not authorized. After step 697′, the process passes to step 698′.


As noted above, in step 694 of FIG. 8, the process determines whether the time of the transaction is near the end of a clock interval. Further, step 692 determined if the transaction is near the beginning of a clock interval. If neither of the situations is present, then the process passes to step 696. In step 696, the process determines that the transaction is indeed not authorized. As a result, the process passes to step 698′. However, it is appreciated that more then the immediately adjacent intervals may be considered. For example if the clock advances relatively quickly, this results in a potential for substantial clock drift. As a result, it may be desired to check three, for example, (or as many as desired) intervals before the initially considered interval, as well as three subsequent intervals, for example.


In step 698′, the process returns to step 699 and then to step 700 of FIG. 6. As noted above, in step 700 of FIG. 6, the process returns to step 800 of FIG. 5 in which the verification process is terminated.


In accordance with a further embodiment of the invention, FIG. 9 is a diagram showing a token 100′ disposed in a flashlight 700. The token 100′ may operate in a similar manner to the token 100, as shown in FIG. 1. The flashlight 700 may include batteries 702. In accordance with one embodiment of the invention, the batteries 702 may power operations of the token 100′. As described above, the token 100′ generates a token output sequence, and transmits the token output sequence to a merchant 200. This transmission may be in a variety of forms, as is shown in FIG. 9. In turn, the merchant 200 outputs the token output sequence, as well as a time stamp and a token device number, which is also obtained from the token, to the authenticating entity 300.


In accordance with a yet further embodiment of the invention, FIG. 10 is a block diagram showing a token 800 that may operate in a similar manner to the token 100. The token 800 includes an encryption portion 870 and a display 880. The encryption portion 870 provides the logic to convert the token value into the token output sequence, as described above. This logic may take on a variety of forms so as to manipulate the token value, as is desired, i.e., such as a mathematical manipulation of the token value, for example. The token counter of the embodiment of FIG. 10 includes a clock 862 and a tick reduction portion 864. The clock may be a standard twenty-four hour clock, but may preferably be a digital clock, i.e., such that a digital output may be output to the tick reduction portion 864.


The tick reduction portion 864 works off the advancement of the clock 862 to generate the token values. However, the tick reduction portion 864 advances at a much slower rate. For example, for every 12 hours that the clock 862 advances, the tick reduction portion 864 may only advance once. As is noted above, such reduced advancement reduces the effects of clock drift between the token and the authenticating authority.


In accordance with further aspects of the invention, it is appreciated that the token value, the token output sequence, the authenticating value, and the verification sequence, for example, may be numbers, letters, symbols, punctuation and/or any other character set, for example. However, the particular composition of the token value, as well as the corresponding authenticating value, should be such that such values may advance in a routine manner.


As described above, the systems and methods of the invention rely upon time stamping in accordance with embodiments of the invention. Accordingly, a variety of techniques may be used to address different time zones. For example, one time zone may be designated as a standard and all time stamps converted to this standard.


As described above, methods and systems are disclosed which permit tokens used for finance to be checked for authenticity by having the tokens display an authentication code that varies with time, yet can be validated by the token validation authority. Because the authentication code changes, such codes may not readily be stored and stolen, as is a problem in existing codes. The invention reduces fraud for all involved where there is risk that a token might be a forgery.


It will be readily understood by those persons skilled in the art that the present invention is susceptible to broad utility and application. Many embodiments and adaptations of the present invention other than those herein described, as well as many variations, modifications and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and foregoing description thereof, without departing from the substance or scope of the invention.


Accordingly, while the present invention has been described here in detail in relation to its exemplary embodiments, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made to provide an enabling disclosure of the invention. Accordingly, the foregoing disclosure is not intended to be construed or to limit the present invention or otherwise to exclude any other such embodiments, adaptations, variations, modifications and equivalent arrangements.

Claims
  • 1. A method for authenticating a finance related transaction for a customer, the customer being a person, comprising: providing a token which contains a token counter, the token counter periodically advancing to generate a changing token value, the token counter being synchronized to a base counter that generates an authenticating value;transforming, by the token, the token value into a token output sequence using logic;outputting, by the token, at least part of the token output sequence to the customer, such outputting to the customer consisting of the at least part of the token output sequence;inputting from the customer, by an authenticating authority, the at least part of the token output sequence, such inputting from the customer consisting of the at least part of the token output sequence, the authenticating authority having access to the authenticating value, the authenticating authority constituted by a processing system, the at least part of the token output sequence being input by the authenticating authority via a merchant; andverifying, by the authenticating authority, the validity of the transaction based on the token output sequence and the authenticating value, from which the authenticating authority obtains a verification sequence using the logic, the verifying the validity including the authenticating authority comparing the token output sequence to the verification sequence to determine if there is a match between the token output sequence and the verification sequence; andthe method further including:generating a time stamp value at a time of the transaction: andthe authenticating authority inputting the time stamp value, and the base counter, which is in the authenticating authority determining the value of the authenticating value based on the time stamp value.
  • 2. The method of claim 1, wherein the logic includes a process that is known to the authenticating authority such that the token output sequence cannot be predicted without possession of the logic.
  • 3. The method of claim 1, wherein a display on the token displays at least a part of the token output sequence.
  • 4. The method of claim 1, wherein the token output sequence is output to the authenticating authority, along with other information from the token, and the other information is used by the authenticating authority to verify the validity of the transaction.
  • 5. The method of claim 1, wherein the token output sequence is output to the authenticating authority along with other information, which is memorized by a holder of the token, and the other information is used by the authenticating authority to verify the validity of the transaction.
  • 6. The method of claim 5, wherein the authenticating authority duplicates the logic that transforms the token value into the token output sequence in such as manner so as to transform the authenticating value into the verification sequence.
  • 7. The method of claim 1, wherein the authenticating authority compares only a part of the token output sequence with a corresponding part of the verification sequence.
  • 8. The method of claim 1, wherein the authenticating authority uses equality of at least a part of the token output sequence as compared with a corresponding part of the verification sequence to verify the validity of the transaction.
  • 9. The method of claim 1 wherein the token is at least one of a credit card and debit card and the token output sequence is displayed on a display, the display being a human readable display.
  • 10. The method of claim 1, wherein the token is used for authentication for payment processing, the transaction relating to a monetary exchange.
  • 11. The method of claim 1, wherein the token is not internally secure and wherein a second identifier built into the token is used by the authenticating authority for verifying the validity of the transaction.
  • 12. The method of claim 11, wherein the second identifier is input by the authenticating authority along with the token output sequence.
  • 13. The method of claim 1, wherein the token output sequence is at least one of numbers, letters and symbols.
  • 14. The method of claim 1, wherein the outputting at least part of the token output sequence to an authenticating authority includes using at least one of a radio frequency signal, an infrared signal, an audio signal, a magnetic pattern signal and a data signal.
  • 15. The method of claim 1, wherein the token counter periodically advancing to generate a changing token value includes the token counter advancing through a sequential progression of numbers.
  • 16. The method of claim 15, wherein the token counter includes a clock.
  • 17. The method of claim 16, wherein the clock is a 24 hour time clock, and wherein the token value changes based on progression of the clock, but at a slower rate than the clock.
  • 18. The method of claim 1, further including: the token possessing a device identification;the authenticating authority inputting the device identification, and the authenticating authority determining the logic to apply based on the device identification.
  • 19. The method of claim 1, wherein the authenticating value is a first authenticating value, the method further including: the authenticating authority comparing the token output sequence to the verification sequence and determining that there is not a match between the token output sequence and the verification sequence;the authenticating authority recalculating a second authenticating value based on a previous base counter setting, the authenticating authority using the logic to generate a second verification sequence based on the second authenticating value; andthe authenticating authority comparing the token output sequence to the second verification sequence to determine a match between the token output sequence and the second verification sequence.
  • 20. The method of claim 1, wherein the authenticating value is a first authenticating value, the method further including: the authenticating authority comparing the token output sequence to the verification sequence and determining that there is not a match between the token output sequence and the verification sequence;the authenticating authority recalculating a second authenticating value based on a subsequent base counter setting, the authenticating authority using the logic to generate a second verification sequence based on the second authenticating value; andthe authenticating authority comparing the token output sequence to the second verification sequence to determine a match between the token output sequence and the second verification sequence.
  • 21. The method of claim 1, wherein the outputting being performed through the person of the customer includes the authenticating authority receiving the at least part of the token output sequence by the customer verbally conveying the at least part of the token output sequence to a merchant.
  • 22. The method of claim 1, wherein the inputting from the customer consisting of part of the token output sequence.
  • 23. The method of claim 1, the input by the authenticating authority via a merchant is performed using at least one selected from the group consisting of: an LED (light emitting diode), an LCD (liquid crystal display), a magnetic strip, an audio signal, a magnetic pattern.
  • 24. The method of claim 1, the input by the authenticating authority via a merchant is performed using at least one selected from the group consisting of: a radio frequency signal and an infrared signal.
  • 25. A system for authenticating a finance related transaction, the system comprising: an authenticating authority; anda token that includes a token counter, the token counter periodically advancing to generate a changing token value in conjunction with the transaction, the token transforming the token value into a token output sequence using logic in a logic portion, the token outputting at least part of the token output sequence to the authenticating authority using a display, the token outputting a time of the transaction to the authenticating authority;the authenticating authority determining a base counter based on the time of the transaction, the authenticating authority verifying the validity of the transaction based on the token output sequence and the base counter, the authenticating authority obtaining a verification sequence based on the base counter using the logic; andthe authenticating authority verifying the validity of the transaction includes comparing the token output sequence to the verification sequence to determine if there is a match between the token output sequence and the verification sequence.
  • 26. The system of claim 25, wherein the token possesses a device identification; and the authenticating authority inputting the device identification, and the authenticating authority determining the logic to apply based on the device identification.
  • 27. The system of claim 25, wherein the display of the token is one of a magnetic strip, a radio frequency generating device, an infrared signal generating device, an audio signal generating device, and a magnetic pattern generating device.
  • 28. The system of claim 25, wherein the token is included in a flashlight, the flashlight including a lighting portion and a battery.
  • 29. The system of claim 25, wherein the token is included in a device selected from the group consisting of a key chain, cellular phone, a personal digital assistant, and a watch.
  • 30. The system of claim 25, wherein the token possesses a device identification; and the authenticating authority inputting the device identification, and the authenticating authority using the device identification in the logic to obtain the verification sequence.
  • 31. The system of claim 25, the authenticating authority verifying the validity of the transaction includes checking the time of the transaction vis-à-vis an expected value.
  • 32. The system of claim 25, the authenticating authority verifying the validity of the transaction includes generating respective verification sequences for at least one of (1) times before the time of transaction and (2) times after the time of transaction.
  • 33. A method for authenticating a finance related transaction for a customer, the customer being a person, comprising: providing a token which includes a token counter, the token counter periodically advancing to generate a changing token value, the token counter being synchronized to a base counter in an authenticating authority;the token transforming the token value into a token output sequence using logic;the token outputting at least part of the token output sequence to the person of the customer, andtoken outputting a time of the transaction to the authenticating authority; andinputting, by the authenticating authority, the time of the transaction, the authenticating authority inputting at least part of the token output sequence from the person of the customer, the inputting being performed via a communication through a merchant processing portion; andthe authenticating authority determining the base counter based on the time of the transaction, the authenticating authority generating the authenticating value based on the base counter;verifying, by the authenticating authority, the validity of the transaction based on the token output sequence and the authenticating value, from which the authenticating authority obtains a verification sequence using the logic, the verifying the validity including the authenticating authority comparing the token output sequence to the verification sequence to determine if there is a match between the token output sequence and the verification sequence.
Parent Case Info

This application is a continuation-in-part application (CIP) of U.S. application Ser. No. 10/105,471 filed Mar. 25, 2002, now abandoned which is incorporated herein by reference in its entirety.

US Referenced Citations (516)
Number Name Date Kind
3653480 Yamamoto Apr 1972 A
3665162 Yamamoto May 1972 A
3713235 Roberts et al. Jan 1973 A
4123747 Lancto et al. Oct 1978 A
4200770 Hellman et al. Apr 1980 A
4218582 Hellman et al. Aug 1980 A
4223403 Konheim et al. Sep 1980 A
4321672 Braun Mar 1982 A
4338587 Chiappetti Jul 1982 A
4396985 Ohara Aug 1983 A
4424414 Hellman et al. Jan 1984 A
4453074 Weinstein Jun 1984 A
4454414 Benton Jun 1984 A
4523087 Benton Jun 1985 A
4575621 Dreifus Mar 1986 A
4582985 Lofberg Apr 1986 A
4605844 Haggan Aug 1986 A
4614861 Pavlov et al. Sep 1986 A
4633036 Hellman et al. Dec 1986 A
4650981 Foletta Mar 1987 A
4672377 Murphy Jun 1987 A
4697072 Kawana Sep 1987 A
4700055 Kashkashian Oct 1987 A
4701601 Francini et al. Oct 1987 A
4755661 Ruebsam Jul 1988 A
4797913 Kaplan Jan 1989 A
4799156 Shavit Jan 1989 A
4812628 Boston Mar 1989 A
4823264 Deming Apr 1989 A
4851650 Kitade Jul 1989 A
4988849 Sasaki Jan 1991 A
5023904 Kaplan Jun 1991 A
5053607 Carlson Oct 1991 A
5054096 Beizer Oct 1991 A
5097115 Ogasawara et al. Mar 1992 A
5111395 Smith May 1992 A
5146068 Ugawa et al. Sep 1992 A
5163098 Duhbura Nov 1992 A
5175682 Higashiyama Dec 1992 A
5177342 Adams Jan 1993 A
5180901 Hiramatsu Jan 1993 A
5206488 Teicher Apr 1993 A
5225664 Lijima Jul 1993 A
5225978 Petersen et al. Jul 1993 A
5237159 Stephens Aug 1993 A
5237620 Deaton Aug 1993 A
5283829 Anderson Feb 1994 A
5287269 Dorrough Feb 1994 A
5311594 Penzias May 1994 A
5326959 Perazza Jul 1994 A
5336870 Hughes Aug 1994 A
5350906 Brody Sep 1994 A
5352877 Morley Oct 1994 A
5361062 Weiss et al. Nov 1994 A
5367581 VanHorn et al. Nov 1994 A
5373550 Campbell Dec 1994 A
5380046 Stephens Jan 1995 A
5382784 Eberhardt Jan 1995 A
5396417 Burks Mar 1995 A
5402474 Miller Mar 1995 A
5409092 Itako et al. Apr 1995 A
5412190 Josephson et al. May 1995 A
5420405 Chasek May 1995 A
5424938 Wagner Jun 1995 A
5430644 Deaton et al. Jul 1995 A
5432326 Noblett et al. Jul 1995 A
5444841 Glaser Aug 1995 A
5446740 Yien Aug 1995 A
5448471 Deaton Sep 1995 A
5450479 Alesio Sep 1995 A
5450491 McNair Sep 1995 A
5457305 Akel et al. Oct 1995 A
5465206 Hilt Nov 1995 A
5466920 Nair et al. Nov 1995 A
5479494 Clitherow Dec 1995 A
5479532 Abel Dec 1995 A
5481094 Suda Jan 1996 A
5483445 Pickering Jan 1996 A
5484988 Hills Jan 1996 A
5489123 Eda Feb 1996 A
5504677 Pollin Apr 1996 A
5506691 Bednar Apr 1996 A
5511184 Lin Apr 1996 A
5513250 McAllister Apr 1996 A
5537314 Kanter Jul 1996 A
5544040 Gerbaulet Aug 1996 A
5550358 Tait Aug 1996 A
5550734 Tarter Aug 1996 A
5551021 Harada Aug 1996 A
5557092 Ackley Sep 1996 A
5563934 Carlisle Oct 1996 A
5566330 Sheffield Oct 1996 A
5568489 Yien Oct 1996 A
5583759 Geer Dec 1996 A
5583933 Mark Dec 1996 A
5585787 Wallerstein Dec 1996 A
5590038 Pitroda Dec 1996 A
5592378 Cameron Jan 1997 A
5592553 Guski et al. Jan 1997 A
5613002 Kephart et al. Mar 1997 A
5621201 Langhans Apr 1997 A
5640577 Scharmer Jun 1997 A
5649117 Landry Jul 1997 A
5649118 Carlisle Jul 1997 A
5650604 Marcous Jul 1997 A
5652786 Rogers Jul 1997 A
5659165 Jennings Aug 1997 A
5659469 Deaton Aug 1997 A
5661807 Guski et al. Aug 1997 A
5677521 Hook et al. Oct 1997 A
5677955 Doggett Oct 1997 A
5679938 Templeton Oct 1997 A
5679940 Templeton Oct 1997 A
5680459 Furuta et al. Oct 1997 A
5692132 Hogan Nov 1997 A
5698837 Murphee et al. Dec 1997 A
5699528 Hogan Dec 1997 A
5703344 Bezy Dec 1997 A
5708422 Blonder Jan 1998 A
5710889 Clark Jan 1998 A
5715298 Rogers Feb 1998 A
5715314 Payne Feb 1998 A
5715399 Bezos Feb 1998 A
5721781 Deo et al. Feb 1998 A
5724423 Khello Mar 1998 A
5724424 Gifford Mar 1998 A
5727249 Pollin Mar 1998 A
5732136 Murphee et al. Mar 1998 A
5734154 Jachimowicz et al. Mar 1998 A
5737421 Audebert Apr 1998 A
5745555 Mark Apr 1998 A
5748737 Daggar May 1998 A
5748780 Stolfo May 1998 A
5764770 Schipper et al. Jun 1998 A
5770843 Rose Jun 1998 A
5790636 Marshall Aug 1998 A
5793861 Haigh Aug 1998 A
5794221 Egendorf Aug 1998 A
5796827 Coppersmith et al. Aug 1998 A
5802176 Audebert Sep 1998 A
5802498 Comesanas Sep 1998 A
5805719 Pare, Jr. et al. Sep 1998 A
5819236 Josephson Oct 1998 A
5823463 Fissmann et al. Oct 1998 A
5825871 Mark Oct 1998 A
5826241 Stein Oct 1998 A
5826245 Sandberg-Diment Oct 1998 A
5832090 Raspotnik Nov 1998 A
5832211 Blakley, III et al. Nov 1998 A
5832460 Bednar Nov 1998 A
5832463 Funk Nov 1998 A
5832464 Houvener Nov 1998 A
5835603 Coutts Nov 1998 A
5838812 Parre Nov 1998 A
5838903 Blakely, III et al. Nov 1998 A
5852812 Reeder Dec 1998 A
5859419 Wynn Jan 1999 A
5862323 Blakley, III et al. Jan 1999 A
5864609 Cross Jan 1999 A
5870456 Rogers Feb 1999 A
5870721 Norris Feb 1999 A
5870723 Pare Feb 1999 A
5870725 Belinger Feb 1999 A
5872917 Hellman Feb 1999 A
5873072 Kight Feb 1999 A
5881151 Yamamoto Mar 1999 A
5883810 Franklin Mar 1999 A
5884288 Chang Mar 1999 A
5887065 Audebert Mar 1999 A
5897625 Gustin Apr 1999 A
5901303 Chew May 1999 A
5903881 Schrader May 1999 A
5907142 Kelsey May 1999 A
5920847 Kolling Jul 1999 A
5930778 Geer Jul 1999 A
5937068 Audebert Aug 1999 A
5940811 Norris Aug 1999 A
5940844 Cahill Aug 1999 A
5943656 Crooks Aug 1999 A
5945653 Walker Aug 1999 A
5953710 Fleming Sep 1999 A
5963647 Downing Oct 1999 A
5963925 Kolling Oct 1999 A
5966698 Pollin Oct 1999 A
5978780 Watson Nov 1999 A
5991750 Watson Nov 1999 A
5999596 Walker et al. Dec 1999 A
5999624 Hopkins Dec 1999 A
6000832 Franklin Dec 1999 A
6003762 Hayashida Dec 1999 A
6009442 Chen Dec 1999 A
6016476 Maes et al. Jan 2000 A
6021189 Vu Feb 2000 A
6029890 Austin Feb 2000 A
6041315 Pollin Mar 2000 A
6042006 VanTilburg Mar 2000 A
6044360 Picciallo Mar 2000 A
6045050 Ippolito et al. Apr 2000 A
6065675 Teicher May 2000 A
6069968 Shaw et al. May 2000 A
6078888 Johnson, Jr. Jun 2000 A
6088683 Jalili Jul 2000 A
6092192 Kanevsky et al. Jul 2000 A
6105006 Davis et al. Aug 2000 A
6119107 Polk Sep 2000 A
6119932 Maloney et al. Sep 2000 A
6144848 Walsh Nov 2000 A
6163771 Walker et al. Dec 2000 A
6170058 Kausik Jan 2001 B1
6182220 Chen et al. Jan 2001 B1
6182894 Hackett et al. Feb 2001 B1
6185682 Tang Feb 2001 B1
6188309 Levine Feb 2001 B1
6192142 Pare et al. Feb 2001 B1
6195698 Lillibridge Feb 2001 B1
6209102 Hoover Mar 2001 B1
6213392 Zuppicich Apr 2001 B1
6219639 Bakis et al. Apr 2001 B1
6227447 Campisano May 2001 B1
6263446 Kausik et al. Jul 2001 B1
6269348 Parre Jul 2001 B1
6282522 Davis et al. Aug 2001 B1
6302444 Cobben Oct 2001 B1
6308268 Audebert Oct 2001 B1
6315195 Ramachandran Nov 2001 B1
6317834 Gennaro et al. Nov 2001 B1
6324526 D'Agostino Nov 2001 B1
6338048 Mori Jan 2002 B1
6338049 Walker Jan 2002 B1
6341724 Campisano Jan 2002 B2
6360954 Bernardo et al. Mar 2002 B1
6366682 Hoffman Apr 2002 B1
6373969 Adler Apr 2002 B1
6374230 Walker Apr 2002 B1
6382677 Teraoka et al. May 2002 B1
6411933 Maes et al. Jun 2002 B1
6419161 Haddad Jul 2002 B1
6424029 Giesler Jul 2002 B1
6429927 Borza Aug 2002 B1
6434259 Hamid et al. Aug 2002 B1
6446210 Borza Sep 2002 B1
6498861 Hamid et al. Dec 2002 B1
6507644 Henderson Jan 2003 B1
6507912 Matyas, Jr. et al. Jan 2003 B1
6529880 McKeen et al. Mar 2003 B1
6539363 Allgeier et al. Mar 2003 B1
6557750 Druse et al. May 2003 B1
6580814 Ittycheriah et al. Jun 2003 B1
6592044 Wong et al. Jul 2003 B1
6609654 Anderson et al. Aug 2003 B1
6609658 Sehr Aug 2003 B1
6615352 Terao Sep 2003 B2
6631849 Blossom Oct 2003 B2
6641050 Kelley et al. Nov 2003 B2
6651168 Kao et al. Nov 2003 B1
6668321 Nendell Dec 2003 B2
6685088 Royer Feb 2004 B1
6691916 Noyes Feb 2004 B2
6693544 Hebbecker Feb 2004 B1
6697947 Matyas, Jr. et al. Feb 2004 B1
6705518 Park et al. Mar 2004 B2
6726813 Kaule et al. Apr 2004 B2
6727802 Kelly Apr 2004 B2
6732919 Macklin et al. May 2004 B2
6735695 Gopalakrishnan et al. May 2004 B1
6742125 Gabber et al. May 2004 B1
6754640 Bozeman Jun 2004 B2
6764014 Lasch et al. Jul 2004 B2
6793131 Hogan Sep 2004 B2
6793135 Ryoo Sep 2004 B1
6804786 Chamley et al. Oct 2004 B1
6805288 Routhenstein et al. Oct 2004 B2
6805289 Noriega et al. Oct 2004 B2
6819219 Bolle et al. Nov 2004 B1
6845906 Royer Jan 2005 B2
6857566 Wankmueller Feb 2005 B2
6895391 Kausik May 2005 B1
6908030 Rajasekaran et al. Jun 2005 B2
6913193 Kawan Jul 2005 B1
6928427 Rajasekaran et al. Aug 2005 B2
6931382 Laage Aug 2005 B2
6938020 Nakajama Aug 2005 B2
6938156 Wheeler et al. Aug 2005 B2
6942156 Ohta et al. Sep 2005 B2
6950940 Wheeler et al. Sep 2005 B2
6956950 Kausik Oct 2005 B2
6957337 Chainer et al. Oct 2005 B1
6978369 Wheeler Dec 2005 B2
6983381 Jerdonek Jan 2006 B2
6999569 Risafi et al. Feb 2006 B2
7013293 Kipnis Mar 2006 B1
7020782 Rajasekaran et al. Mar 2006 B2
7031939 Gallagher Apr 2006 B1
7047222 Bush May 2006 B1
7051001 Slater May 2006 B1
7051002 Keresman, III et al. May 2006 B2
7051929 Li May 2006 B2
7054842 James et al. May 2006 B2
7070095 Gandel et al. Jul 2006 B1
7072864 Brake et al. Jul 2006 B2
7082416 Anderson Jul 2006 B2
7092916 Diveley et al. Aug 2006 B2
7093282 Hillhouse Aug 2006 B2
7099850 Mann Aug 2006 B1
7103576 Mann Sep 2006 B2
7107249 Dively et al. Sep 2006 B2
7111789 Rajasekaran et al. Sep 2006 B2
7140036 Bhagavatula et al. Nov 2006 B2
7149899 Pinkas Dec 2006 B2
7163153 Blossom Jan 2007 B2
7165049 Slater Jan 2007 B2
7167565 Rajasekaran Jan 2007 B2
7181762 Jerdonek Feb 2007 B2
7191952 Blossom Mar 2007 B2
7195154 Routhenstein Mar 2007 B2
7228155 Saunders Jun 2007 B2
7228565 Wolff et al. Jun 2007 B2
7249092 Dunn et al. Jul 2007 B2
7249099 Ling Jul 2007 B2
7216091 Blandina et al. Aug 2007 B1
7254560 Singhal Aug 2007 B2
7269021 Gundlach Sep 2007 B2
7272857 Everhart Sep 2007 B1
7287695 Wankmueller Oct 2007 B2
7306141 Schwarz Dec 2007 B1
7311244 Schwarz Dec 2007 B1
7312707 Bishop et al. Dec 2007 B1
7315843 Diveley et al. Jan 2008 B2
7324972 Oliver Jan 2008 B1
7328350 Hird Feb 2008 B2
7330836 Kausik Feb 2008 B2
7349866 Schwarz Mar 2008 B2
7357331 Blossom Apr 2008 B2
7363262 Reno Apr 2008 B2
7363492 Kuhlman et al. Apr 2008 B2
7363494 Brainard Apr 2008 B2
7398248 Phillips et al. Jul 2008 B2
7418728 Jerdonek Aug 2008 B2
7427033 Roskind Sep 2008 B1
7448538 Fletcher Nov 2008 B2
7454794 Hibbard Nov 2008 B1
7461028 Wronski Dec 2008 B2
7480631 Merced Jan 2009 B1
7493288 Biship et al. Feb 2009 B2
7502933 Jakobsson Mar 2009 B2
7506806 Bonalle et al. Mar 2009 B2
7591416 Blossom Sep 2009 B2
7599856 Agrawal et al. Oct 2009 B2
7606771 Keresman, III et al. Oct 2009 B2
7707089 Barton Apr 2010 B1
7711122 Allen et al. May 2010 B2
7716484 Kaliski May 2010 B1
20010001856 Gould et al. May 2001 A1
20010002487 Grawrock et al. May 2001 A1
20010011250 Paltenghe Aug 2001 A1
20010027441 Wankmueller Oct 2001 A1
20010032312 Runje et al. Oct 2001 A1
20010034720 Armes Oct 2001 A1
20010051917 Bissonette Dec 2001 A1
20020023108 Daswani Feb 2002 A1
20020026416 Provinse Feb 2002 A1
20020046169 Keresman, III et al. Apr 2002 A1
20020109435 Ye et al. Apr 2002 A1
20020062279 Behrenbrinker et al. May 2002 A1
20020065712 Kwanet al. May 2002 A1
20020069104 Beach et al. Jun 2002 A1
20020073030 Offer Jun 2002 A1
20020099667 Diamandis et al. Jun 2002 A1
20020091632 Turock et al. Jul 2002 A1
20020091649 Anvekar et al. Jul 2002 A1
20020111886 Chenevich et al. Aug 2002 A1
20020116330 Hed et al. Aug 2002 A1
20020117541 Biggar et al. Aug 2002 A1
20020120846 Stewart et al. Aug 2002 A1
20020128973 Kranzley Sep 2002 A1
20020139843 Park et al. Oct 2002 A1
20020145039 Carroll Oct 2002 A1
20020147683 Capobianco et al. Oct 2002 A1
20020147691 Davis et al. Oct 2002 A1
20020152168 Neofytides et al. Oct 2002 A1
20020161702 Milberger et al. Oct 2002 A1
20020169719 Dively et al. Nov 2002 A1
20020174030 Praisner et al. Nov 2002 A1
20020178063 Gravelle et al. Nov 2002 A1
20020190123 Anvekar et al. Dec 2002 A1
20020194124 Hobbs et al. Dec 2002 A1
20020198848 Michener Dec 2002 A1
20030010831 Ye Jan 2003 A1
20030020616 Graves Jan 2003 A1
20030031321 Mages et al. Feb 2003 A1
20030033257 Wankmueller Feb 2003 A1
20030034388 Routhenstein et al. Feb 2003 A1
20030037262 Hillhouse Feb 2003 A1
20030040927 Sato et al. Feb 2003 A1
20030055780 Hansen et al. Mar 2003 A1
20030055782 Slater Mar 2003 A1
20030061168 Routhenstein Mar 2003 A1
20030065624 James et al. Apr 2003 A1
20030084002 Ericson et al. May 2003 A1
20030085272 Andrews et al. May 2003 A1
20030085286 Kelley et al. May 2003 A1
20030105714 Alarcon Luther et al. Jun 2003 A1
20030121969 Wankmueller Jul 2003 A1
20030130940 Hansen et al. Jul 2003 A1
20030130948 Algiene et al. Jul 2003 A1
20030135453 Caulfield et al. Jul 2003 A1
20030135459 Abelman et al. Jul 2003 A1
20030149660 Canfield Aug 2003 A1
20030154163 Phillips et al. Aug 2003 A1
20030182246 Johnson et al. Sep 2003 A1
20030187787 Freund et al. Oct 2003 A1
20030195842 Reece et al. Oct 2003 A1
20030200179 Kwan Oct 2003 A1
20030213843 Jackson Nov 2003 A1
20030217005 Drummond et al. Nov 2003 A1
20030217329 Good Nov 2003 A1
20030218062 Noriega et al. Nov 2003 A1
20030218066 Fernandes et al. Nov 2003 A1
20030222136 Bolle et al. Dec 2003 A1
20030225623 Wankmueller Dec 2003 A1
20030233327 Keresman, III et al. Dec 2003 A1
20030236704 Antonucci Dec 2003 A1
20040024693 Lawrence Feb 2004 A1
20040049455 Mohsenzadeh Mar 2004 A1
20040059952 Newport et al. Mar 2004 A1
20040064332 Zou et al. Apr 2004 A1
20040088238 Gilson et al. May 2004 A1
20040093303 Picciallo et al. May 2004 A1
20040094624 Fernandes et al. May 2004 A1
20040133787 Doughty et al. Jul 2004 A1
20040153400 Burke Aug 2004 A1
20040177045 Brown Sep 2004 A1
20040193539 Sullivan Sep 2004 A1
20040199474 Ritter Oct 2004 A1
20040210498 Freund et al. Oct 2004 A1
20040225880 Mizrah Nov 2004 A1
20040230843 Jansen Nov 2004 A1
20040232223 Beenau et al. Nov 2004 A1
20040236688 Bozeman et al. Nov 2004 A1
20040239481 Beenau et al. Dec 2004 A1
20040242308 Gray Dec 2004 A1
20040252012 Beenau et al. Dec 2004 A1
20050021400 Postrel et al. Jan 2005 A1
20050035192 Bonalle et al. Feb 2005 A1
20050035847 Bonalle et al. Feb 2005 A1
20050040242 Beenau et al. Feb 2005 A1
20050071637 Shirakawa Mar 2005 A1
20050077349 Bonalle et al. Apr 2005 A1
20050086160 Wong Apr 2005 A1
20050091492 Benson et al. Apr 2005 A1
20050114883 Nagai et al. May 2005 A1
20050116024 Beenau et al. Jun 2005 A1
20050119979 Murshita et al. Jun 2005 A1
20050121512 Wankmueller Jun 2005 A1
20050125295 Tidwell et al. Jun 2005 A1
20050127164 Wankmueller Jun 2005 A1
20050137977 Wankmueller Jun 2005 A1
20050167488 Higgins et al. Aug 2005 A1
20050171842 Tien et al. Aug 2005 A1
20050171905 Wankmueller et al. Aug 2005 A1
20050179251 Wagoner et al. Aug 2005 A1
20050189427 Brown et al. Sep 2005 A1
20050193208 Charrette, III et al. Sep 2005 A1
20050206499 Fisher Sep 2005 A1
20050216888 Drummond et al. Sep 2005 A1
20050289044 Breslin et al. Dec 2005 A1
20050289052 Wankmueller Dec 2005 A1
20060005039 Hsieh Jan 2006 A1
20060020559 Steinmetz Jan 2006 A1
20060031174 Steinmetz Feb 2006 A1
20060036553 Gupta et al. Feb 2006 A1
20060039733 Meyerhofer Feb 2006 A1
20060081700 Li Apr 2006 A1
20060116995 Strayer et al. Jun 2006 A1
20060157557 Lee et al. Jul 2006 A1
20060249574 Brown et al. Nov 2006 A1
20060259766 Rasti Nov 2006 A1
20060261927 Kelly et al. Nov 2006 A1
20060269061 Balasubramanian et al. Nov 2006 A1
20060282382 Balasubramanian et al. Dec 2006 A1
20060289636 Hoblit Dec 2006 A1
20070034700 Poidomani et al. Feb 2007 A1
20070063025 Blossom et al. Mar 2007 A1
20070067827 Bhagavatula et al. Mar 2007 A1
20070118436 McDowell May 2007 A1
20070136211 Brown et al. Jun 2007 A1
20070180491 Mevissen Aug 2007 A1
20070208671 Brown et al. Sep 2007 A1
20070215688 Routhenstein Sep 2007 A1
20070239622 Routhenstein Oct 2007 A1
20070265924 Beenau et al. Nov 2007 A1
20070290034 Routhenstein Dec 2007 A1
20080005018 Powell Jan 2008 A1
20080027841 Eder Jan 2008 A1
20080029607 Mullen Feb 2008 A1
20080035738 Mullen Feb 2008 A1
20080046263 Sager Feb 2008 A1
20080054068 Mullen Mar 2008 A1
20080054079 Mullen Mar 2008 A1
20080054081 Mullen Mar 2008 A1
20080065555 Mullen Mar 2008 A1
20080154770 Rutherford Jun 2008 A1
20080230600 Black et al. Sep 2008 A1
20080281722 Balasubramanian et al. Nov 2008 A1
20080302869 Mullen Dec 2008 A1
20080302876 Mullen Dec 2008 A1
20090048972 Bierer et al. Feb 2009 A1
20090100508 Labaton Apr 2009 A1
20090119205 Keresman, III et al. May 2009 A1
20090185687 Wankmueller Jul 2009 A1
20090242645 Komatsu et al. Oct 2009 A1
20090250522 Williams et al. Oct 2009 A1
20090261161 Blossom et al. Oct 2009 A1
20090265275 Everhart et al. Oct 2009 A1
20090265460 Balasubramanian et al. Oct 2009 A1
20090271853 Everhart et al. Oct 2009 A1
Foreign Referenced Citations (27)
Number Date Country
19702532 Mar 1998 DE
197 31 293 Jan 1999 DE
102006015818 Oct 2007 DE
0 590 861 Apr 1996 EP
0855659 Jul 1998 EP
0884877 Dec 1998 EP
2275654 Sep 1994 GB
64-87397 Mar 1989 JP
8-080680 Mar 1996 JP
8-096098 Apr 1996 JP
2005-246658 Sep 2005 JP
WO 9116691 Oct 1991 WO
WO 9308545 Apr 1993 WO
WO 9608783 Mar 1996 WO
97-20692 Jun 1997 WO
98-10368 Mar 1998 WO
9837524 Aug 1998 WO
0062458 Oct 2000 WO
01-18699 Mar 2001 WO
01-88659 Nov 2001 WO
2005-101975 Nov 2005 WO
2006-060370 Jun 2006 WO
WO 2006081525 Aug 2006 WO
2006-105092 Oct 2006 WO
2006-116772 Nov 2006 WO
2007-115725 Oct 2007 WO
2008-021382 Feb 2008 WO
Continuation in Parts (1)
Number Date Country
Parent 10105471 Mar 2002 US
Child 10419107 US