The present disclosure relates to devices, systems, and methods of use thereof for displacing and/or manipulating anatomical structures and tissue for treatment.
Various medical procedures involve the application or delivery of energy and/or radiation to targeted areas of the body. For example, thermal and radiofrequency energy can be delivered (or removed, in the case of cooling) to ablate problematic tissue regions and/or to interrupt a natural physiological response or process (such as inflammation). Radiation is often used to target and destroy cancerous growths in various parts of the body. During such treatments, there may be a risk of inadvertent or undesirable exposure of non-targeted tissue to such energies/treatments, and thus, resulting complications for otherwise healthy tissue.
For example, various modalities such as radiofrequency and cryogenic ablation are employed to treat atrial fibrillation and other cardiac arrhythmias. During ablation, there is a risk of thermal damage to the esophagus due to its proximity and contact with the left atrium, which increase the risks of the formation of an atrio-esophageal fistula. Patients with this complication have close to an 80% mortality rate from stroke, mediastinitis, sepsis, and endocarditis. Chavez et al. “Atrioesophageal Fistula following Ablation Procedures for Atrial Fibrillation: Systematic Review of Case Reports.” Open Heart 2.1 (2015): 1-8. Even without formation of a fistula, there exists a continuum of damage to the esophagus from such ablation techniques ranging from superficial thermal injury to necrosis or ulcer. Nair et al. “Atrioesophageal Fistula: A Review.” Journal of Atrial Fibrillation 8.3 (2015): 1331. Pappone et al. “Atrio-Esophageal Fistula After AF Ablation: Pathophysiology, Prevention & Treatment.” Journal of Atrial Fibrillation 6.3 (2013): 860.
In another example, radiation treatments may be used to target tumors that are in close proximity to non-targeted vital organs, such as the heart when dealing with breast cancer, and the rectum, bladder and/or urethra when dealing with prostate cancer. Such treatments would benefit from improved minimally-invasive approaches to displacing or otherwise shifting the position of such healthy tissue structures and organs away from the targeted treatment areas to reduce the likelihood of collateral tissue damage and associated complications.
The present disclosure provides a medical device, including a handle; a flexible conduit having a proximal segment and a distal segment, wherein the proximal segment is coupled to the handle; and a substantially contiguous shaping structure coupled to the distal segment of the flexible conduit, wherein the shaping structure is configured to transition from (i) a substantially linear configuration to (ii) a configuration where a portion of the shaping structure is laterally displaced from remaining portions of the contiguous shaping structure upon the application of an axial compression force to the shaping structure. The shaping structure may extend along a substantial length of the medical device. The portion of the contiguous shaping structure may be laterally displaced substantially within a single plane. The shaping structure may include a unitary spine defining a plurality of radially offset living hinges. The shaping structure may include a first plurality of living hinges; a second plurality of living hinges radially offset from the first plurality of living hinges between approximately 150 degrees and approximately 210 degrees; a third plurality of living hinges substantially radially aligned with the second plurality of living hinges; and a fourth plurality of living hinges substantially radially aligned with the first plurality of living hinges.
The shaping structure may include a segment between the second plurality of living hinges and the third plurality of living hinges that substantially resists bending from the application of the axial compression force. The segment may include a plurality of living hinges extending along a longitudinal length of the segment, wherein each living hinge of the plurality is angularly offset by approximately 180 degrees with respect to a consecutive living hinge of the plurality, and a plurality of stopping elements, wherein each stopping element is radially offset by each living hinge of the plurality by approximately 180 degrees to restrict a motion range of the respective living hinge.
The first plurality of living hinges may provide at least one of a turn and an arc of approximately 90 degrees from the application of the axial compression force. The second plurality of living hinges may provide at least one of a turn and an arc of approximately 90 degrees from the application of the axial compression force. Each of the third and fourth pluralities of living hinges may provide at least one of a turn and an arc of approximately 90 degrees from the application of the axial compression force.
The medical device may include a pull wire coupled to the handle and the shaping structure, wherein the pull wire is configured to apply an axial compression force to at least a portion of the shaping structure. The shaping structure may define a lumen therethrough, the lumen defining an oblong cross-sectional opening, and the pull wire may traverse the lumen.
The flexible conduit may be configured to substantially resist axial compression and/or include at least one of a stainless steel hypotube and a nitinol hypotube.
The medical device may include a plurality of balloons coupled to the shaping structure. Each of the balloons may be longitudinally spaced along a length of the shaping structure, and at least one of the balloons may be non-concentric with the shaping structure. At least one of the balloons may be expandable asymmetrically about a circumference of the shaping structure. At least one of the balloons may have a substantially semi-circular cross-section when inflated. At least one of the balloons may have a substantially flattened surface segment when inflated. At least one of the balloons may be radially offset with respect to at least one other balloon. At least one of the balloons may be radially offset with respect to at least one other balloon between approximately 150 degrees and approximately 210 degrees. Each of the balloons of the plurality of balloons may be individually inflatable.
The flexible conduit may include a plurality of living hinges, wherein each living hinge is angularly offset between approximately 70 degrees and 110 degrees with respect to the nearest living hinge of the plurality.
A more complete understanding of the present disclosure, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
The present disclosure provides systems, devices, and methods thereof for minimally-invasive approaches, endoscopically or laparoscopically, to accessing, displacing or otherwise shifting the position of healthy tissue structures and organs away from disruptive or harmful targeted treatment areas to reduce the likelihood of collateral tissue damage and associated complications. Now referring to the figures, an example of a tissue displacement device 10 is shown. As shown in
Continuing to refer to
The conduit 18 may define one or more lumens or passages therethrough for the passage of one or more pull wires, device control elements, electrical wires or conduits, fluid lumens or passages, and the like. In one example, the conduit 18 may include a hypotube, a compressed coil, a polymer tube, or a polymer tube incorporating a braid or coil within the tubular wall or other similar component(s). There may be one or more flexible conduits arranged together in-line (axially) where one flexible conduit is fixed to an adjacent conduit. The flexible conduit may be constructed from stainless steel, nitinol, polymers, carbon fiber and/or combinations and composites thereof. Examples of materials that may be used include stainless steel (SST), Nitinol, or polymers. Examples of other metals which may be used include, super elastic NiTi, shape memory NiTi, Ti—Nb, Ni—Ti approx. 55-60 wt. % Ni, Ni—Ti—Hf, Ni—Ti—Pd, Ni—Mn—Ga, Stainless Steel (SST) of SAE grade in the 300 to 400 series e.g., 304, 316, 402, 440, MP35N, and 17-7 precipitation hardened (PH) stainless steel, other spring steel or other high tensile strength material or biocompatible metal material. Examples of polymers include polyimide, PEEK, nylon, polyurethane, polyethylene terephthalate (PET), latex, HDHMWPE and thermoplastic elastomers.
Now referring to
The geometric components 20 may include substantially cylindrically-shaped bodies with one or more angled faces or portions thereon to provide varying degrees of articulation and range of travel, which is mechanically limited by abutting portions of adjacent geometric components 20.
The resulting combination of the geometric components 20 and the hinges 22 provide a conduit 18 that is flexible in one or more planes, has a selectable degree of resistance to axial compression (e.g., by varying the size, shape, and/or orientation of the hinges 22 and the geometric components 20), and provides a high degree of torque transmission whether the conduit 18 is in a substantially linear configuration (such as that shown in
Referring now to
The shaping structure 26 may include one or more structural and/or material characteristics that allow the device 10 to selectively transition from a substantially linear configuration (such as that shown in
For example, the shaping structure 26 may include a first plurality of living hinges 28a longitudinally spaced along a proximal portion of the shaping structure 26. The first plurality 28a may provide at least one of a turn or an arc of approximately 90 degrees with respect to a proximal and/or linear segment of the shaping structure 26, elongate body 14, and/or the flexible conduit 18 when an axial compression force is applied. A second plurality of living hinges 28b may be longitudinally spaced along a length of the shaping structure 26 adjacent to and radially offset from the first plurality of living hinges 28a. The radial offset of the second plurality of living hinges 28b provides a varying direction of contour and/or shape compared to the first plurality of living hinges 28a. The range of the radial offset between adjacent hinges may range from about 0 degrees to about 360 degrees between living hinges, e.g., 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, etc. For example, the second plurality of living hinges 28b illustrated in
The shaping structure 26 may further include a third plurality of living hinges 28c that is positioned distally of, and, in one embodiment, substantially radially aligned with, the second plurality of living hinges 28b. The shaping structure 26 may include a fourth plurality of living hinges 28d distally of the third plurality of living hinges 28c, and substantially radially aligned with the first plurality of living hinges 28a. The third and fourth pluralities of living hinges thus provide a curvilinear shape inverted or mirrored with respect to that of the first and second pluralities of living hinges 28a, 28b, as shown.
The shaping structure 26 may include one or more segments that remain in a substantially linear configuration when under an axial load to create the desired geometry or displacement. Such segments may be substantially devoid of living hinges or other bending or contour-inducing features. For example, in the illustrated embodiment, the shaping structure 26 includes a segment 30a positioned between the second and third pluralities of living hinges 28b, 28c, that maintains a substantially linear configuration. The shaping structure 26 may also include substantially linear segments at proximal (30b) and distal (30b) positions along the length of the device 10. In the illustrated example of
The segments 30a, 30b, and/or 30c (collectively, “30”) may have alternative constructions to provide desired degrees of flexibility in one or more planes, but resist bending or contouring when under an axial load. For example, as shown in
In addition to the hinges 32, the segment 30 may include a plurality of stopping elements 34 that restrict a motion range or degree of bending for a particular hinge 32. For example, each stopping element may include a protrusion or other mechanical feature that can abut an opposing surface or component to resist further movement. Each stopping element 34 may be longitudinally aligned with an individual hinge 22, but radially offset from each hinge 22 by approximately 180 degrees such that the stopping element 34 does not interfere with the hinge bending or flexing in a first direction (e.g., in a direction that moves the stopping element away from the adjacent, abutting surface), but restricts movement or bending of the hinge in a second direction substantially opposite to the first direction (e.g., the direction in which the stopping element 34 is moved to abut the opposing surface). The illustrated combination of the radial offsets and stopping element 34 provides flexibility in a single plane, but resists bending or contouring when under an axial load.
Now referring to
In addition to restricting flexion or bending of certain segments of the device 10, the stopping elements 34 may add to a torsional rigidity to one or more segments of the device 10. For example, one or more stopping elements may include a plurality of teeth, a crown, ridges, tabs, and/or slots (not shown) that engage complementary features or structures on an opposing surface or component of the segment, such that the complementary features interlock or engage each other when an axial force is applied to the segment. The releasably interlocking nature of the respective, complementary features then resists rotational movement between the interlocked components, and thus provides a high degree of torsional rigidity and torque transmission along the length of the segment.
The living hinges in the example of the device 10 shown in
The shape of the hinges and/or gap or space between adjacent articulating segments may also include and/or vary amongst rectangular (such as in
Additional alternative examples of living hinge constructions that may be implemented to achieve the configurations and features disclosed herein are illustrated in
Now referring to
Now referring to
As shown in
As shown in
As described above, the device 10 may include one or more balloons 16 (16d—balloon body, 16e13 balloon shoulder, 16f—balloon leg) positioned along a length of the elongate body 14 and/or the shaping structure 26. A balloon assembly inner body 17 is positioned in co-axial arrangement over the shaping structure 26. The balloons 16 may be anchored or otherwise secured to the balloon assembly inner body 17 by one or more spot welds 19, heat fusions, clamping rings, adhesive, or other means to secure the connection between these components, and to reduce or eliminate any axial movement between the balloons 16 and the shaping structure 26 during use. If there are two or more anchors, e.g., spot welds 19, the spot welds 19 are positioned asymmetrically at one point on the balloon. Because the balloon 16 is anchored either at one point, i.e., one spot weld 19, or asymmetrically, i.e., a plurality of spot welds 19, the balloon 16 expands or inflates in an asymmetric manner,
This segmented structure allows the balloon to conform to the structure of the shaping element.
The balloons may be constructed from one or more elastically expandable, i.e., compliant, and/or non-plastically deformable materials, i.e., noncompliant, such as nylon, polyurethane, or the like, and/or may be constructed or include one or more radiopaque or radiation shielding materials.
One or more of the balloons 16 may be asymmetrically expandable about only a portion of the circumference of, and/or have a non-concentric mounting on, the elongate body 14 and/or shaping structure 20, an example of which is shown in
One or more of the balloons 16 may be angularly offset compared to one or more of the remaining balloons 16 of the device between approximately 100 to approximately 250 degrees or from about 150 degrees to about 210 degrees. In the illustrated device of
The balloon(s) 16 may be mounted or adhered to the elongate body 14 and/or the shaping structure 26 in numerous ways to provide a reduced profile for packaging, insertion, delivery, and/or positioning of the device in a particular medical procedure. For example, the balloon(s) 16 may be folded or pleated to reduce an overall circumferential profile. The balloon(s) 16 may subsequently be controllably inflated and/or deflated through the introduction of an inflation medium (e.g., air, nitrogen, radiopaque contrast medium, saline, etc.) through one or more ports at a proximal portion of the device 10, as described below. The balloon(s) 16 may be individually inflatable independently through an assigned inflation lumen or inflated substantially simultaneously through a single, all-balloon-encompassing inflation port. Such inflation characteristics may be facilitated through one or more fluid passages, valves, controllers, sensors, or the like located on or about portions of the device, and/or in communication with one or more portions or components of the device 10. The balloon(s) 16 and/or the device 10 may also include one or more sensors or features to monitor, assess, and/or alert an operator regarding performance or situational characteristics of the balloon(s) 16 and/or device 10, including for example, contact with tissue, inflation pressure, fluid flow, temperature, impedance or other electrical activity, or the like.
In addition, and/or alternatively to the balloon(s) 16, the device 10 may include one or more non-inflatable cushioned elements positioned to contact, displace, and/or otherwise disperse force across a targeted tissue area. Such cushioned elements may be constructed from or otherwise contain pliable materials, polymers, or the like, such as silicone, rubber, sponge-like materials, gels, hydrogels, or the like.
The handle 12 at the proximal portion of the device 10 allows for selective adjustment of the geometric configuration of the device. Now referring to
The handle 12 may include an “open” position that exerts minimal or marginal force upon the pull wire 44 (and thus the elongate body 14 and/or the shaping structure 26), as shown in
In addition and/or alternatively to the ratchet-like mechanism shown and described above, the handle 12 may further include one or more features or mechanisms to maintain a particular force and/or displacement of the pull wire 44, such as a threaded collar or other locking mechanism, a gear assembly, a set screw, and/or clamping or other tensioning elements. The handle 12 may include a visual reference indicator that indicates the direction of deflection or displacement of segments of the device, and/or indicators of the axial load or force being exerted upon the device.
The handle 12 and/or a proximal portion of the device 10 may include one or more ports 46a, 46b for the introduction of one or more materials, compounds, mediums, or otherwise into internal portions of the device 10. For example, the port 46a may be in fluid communication with an interior of one or more of the balloons 16 for the introduction or exhaustion of an inflation medium or fluid, while port 46b may be implemented for the introduction of a contrast agent (media) or flushing solution to facilitate a particular procedure being performed. Port 46b may be in fluid communication with another exit port or vent which is positioned along elongate body 14 which allows for introduction of contrast media or flushing solutions into the lumen, i.e., body cavity, where the device is situated, for example, the esophagus.
The pull wire 44 may extend along substantially an entire length of the elongate body 14 and have a distal end anchored to one or more components towards the distal region of the device 10. In one or more alternative configurations, the device 10 may include multiple pull wires that are independently controllable and/or anchored at different points along the length of the device to provide for multi-stage operation to achieve differing shapes and/or to manipulate the configuration of discrete portions of the device.
The pull 44 wire may be constructed from one or more polymers, plastics, metals, and/or composites or combinations thereof. The pull 44 wire may be composed of a braided cable, where the cable is composed of various polymers and/or metals. The pull wire 44 may have material properties providing for a predetermined or preset tension limit or threshold, such that the pull wire 44 breaks or deforms prior to reaching or exceeding a tension or force amount that could damage other components of the device (including, for example, the shaping structure 20 or portions thereof) and/or exert traumatic forces onto surrounding tissue structures. The pull wire 44 may thus provide a degree of safety during use to mitigate any excessive forces and resulting potential to damage surrounding tissue areas.
The shaping structure 26, flexible conduit 18, and/or other portions of the elongate body 14 may include one or more lumens 48 therethrough for operable components such as pull wires, e.g., cables, fluid conduits, guide wires, electrical wires, or the like. Now referring to
Now referring to
The cross-sectional position of the examples of the lumens 48 disclosed herein may change along the length of the elongate body 14 and/or the shaping structure 26 such that the mechanical advantage of the offset of the lumen 48 and pull wire 44 from the hinges or other articulating point of the device 10 remains substantially constant (or within a particular distance range) throughout the length of the device 10 for varying hinge orientations having varying angular offsets as described herein. For example, in the device illustrated in
The off-center lumens and resulting position of the pull wire 44 not only provides mechanical advantages to exert a bending force on the respective living hinges 28 or articulating elements 27 along the length of the device 10, but also, provides increased torsional rigidity when the device 10 is in a compressed, geometrically-transitioned configuration. When under a torsional load, the living hinges 28 and/or articulating elements 27 would torque and twist around their connection point—which in several of the illustrated examples would be the living hinge 28 running along an exterior surface of the device 10, thereby resulting in a twisting and rotational displacement occurring between each articulating element 27. However, the off-centered lumens and pull wire 44 add rigidity and alignment to the surface opposite the living hinges in each articulating segment, thereby balancing torsional forces more towards the centerline or longitudinal axis of the device 10. As a result, the articulating segments and the shaping structure turns to transmit torque as a substantial whole or cylindrical entity, rather than having twisting and rotational displacement between each articulating element.
The device 10 may include one or more segments that are not tensioned or placed under axial load when the handle 12 and/or pull wire 44 are tensioned. For example, now referring to
The device 10 may include one or more exterior layers, sheaths, or covers that seal, protect, and/or facilitate use of the device 10 and/or form a portion of the elongate body 14. Such components may include one or more polymer layers fused, adhered, or otherwise permanently affixed to one or more of the components of the device 10, such as the shaping structure 26, the handle 12, one or more of the balloons 16, and/or the distal end section 52. In addition, and/or alternatively to one or more permanently affixed layers, a removable sheath or cover may be used to encapsulate or envelope one or more portions of the device 10 for a procedure, with the sheath or cover being disposed of after the procedure. The device 10 may then be re-used with a new, sterile sheath or cover for a subsequent procedure.
The device 10 may include and/or otherwise be operable with various monitoring, detecting, and/or treatment modalities and respective components and accessories. For example, a temperature sensitive monitoring element may be positioned on the device 10. A radio frequency or current sensitive monitoring element may also be positioned on the device 10. Additionally, a luminal mapping element may also be positioned on or about the assembly of the device 10. This mapping system may have a mapping element which can be manipulated along the longitudinal axis of the device (for example through a lumen running primarily from proximal to distal within or about the segmented device) to enable mapping of the luminal tract without having to move or reposition the device.
The device 10 can incorporate an esophageal temperature probe. Pacing or heart stimulating electrodes can also be incorporated in addition to sensors (e.g., temperature sensors). The pacing electrodes may be placed on the probe and configured to be in contact with the wall of the esophagus. The pacing electrodes may either be bi-polar or mono-polar electrodes. For example, the pacing electrodes may be individually coupled to a radiofrequency (“RF”) generator with selection circuitry to enable individual or multiple electrodes to be selected for use. The electrodes may also be able configured and coupled to electrophysiology monitoring equipment to sense heart electrical activity. The esophageal probe may include or be configured to electrically couple to an interface circuit that is configured to shut off the RF generator if the measured patient temperature does not meet a predetermined threshold. For example, if the patient's temperature exceeds a high-temperature threshold or falls below a low-temperature threshold (which may be useful when the procedure includes cryogenic treatments).
The device 10 may incorporate radiopaque markers for aiding radiographic visualization of the positioning of the device in the esophageal lumen. The markers can include a radiopaque material, such as metallic platinum, platinum-iridium, Ta, gold, etc., in the form of wire coil or band, vapor deposition deposits, as well as radiopaque powders or fillers, e.g., barium sulfate, bismuth trioxide, bismuth sub carbonate, etc., embedded or encapsulated in a polymer matrix. Alternatively, the markers can be made from radiopaque polymers, such as radiopaque polyurethane. For example, the markers can be in the form of bands or partial bands to encircle an outer sheath, shaping element 26, along the elongated patent or layer of the distal section 52.
The radiopaque markers may be configured as bands. Alternatively, the markers can be configured as surface patches. The radiopaque markers should have sufficient size and suitable configuration/construction (e.g., the type of radiopaque material, load amount of radiopaque material, etc.) such that they can be visualized with the proper radiographic aid.
The shaping structure 26 and/or other components of the device 10 may be manufactured from 3D printing processes to provide the features shown and described herein. Rapid prototyping, additive manufacturing, or 3D printing processes utilize a three-dimensional (3D) CAD file to produce a 3D object at significantly lower expenses compared to traditional manufacturing methods. Methodologies such as selective-laser-sintering (“SLS”), stereolithography (“SLA”), inkjet printing, and extrusion-based 3D printing or FFF (fused filament fabrication) may be implemented. Several types of low temperature thermoplastic polymers, such as ABS (acrylonitrile butadiene styrene) and PLA (polylactic acid) may be used in addition and/or alternatively to higher-end engineering polymers, such as nylons, polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyphenylsulphone (PPSU), polycarbonate (PC), and polyetherimide (PEI). One or more fiber fillers, such as carbon, or glass fibers, may be been added to a polymer base material to enhance the mechanical properties of the shaping structure 26 and/or other components being manufactured.
In an exemplary method of use of the device 10, the device 10 may be in a substantially linear configuration where the pull wire 44 and the respective components of the device operably coupled to the pull wire 44 are not under any significant axial load or pressure. The device 10 may be steered or navigated towards a tissue region of interest for displacement and/or treatment, whereby the flexible characteristics of the device as described herein aid in navigating tortuous anatomical paths to reach the targeted tissue area. The approach and positioning of the device 10 may be intravascular, intraluminal, transdermal, percutaneous, or otherwise, and may be assisted or facilitated by one or more imaging modalities. Once the desired positioning has been achieved, the device 10 may be actuated to transition from the substantially linear and/or flexible configuration to the altered geometric configuration under axial load. The transition of the medical device 10 may be achieved, for example, by actuating the handle 12 to exert a force on the pull wire 44, which in turn axially loads the shaping structure 26 to transition into one or more arcuate, contoured, and/or bent configurations. The one or more balloons 16 may be inflated before, during, and/or after the geometric transformation of the shaping structure to contact the targeted tissue area. The geometric transformation of the shaping structure and/or inflation of the balloons can thus exert targeted force onto the targeted tissue area to displace the tissue for subsequent treatment, analysis, or the like.
In a particular exemplary use, the device 10 may be used to displace portions of the esophagus away from the heart during the application of thermal or energetic treatments to the heart, such as that associated with arrhythmogenic ablation therapies. Now referring to
Another exemplary use of the device 10 may include displacing the esophagus anteriorly into contact with the heart to displace the heart anteriorly and/or laterally away from radiation or other potentially harmful treatments focusing on tumors in the breast. There are an estimated 232,000 new cases of invasive breast cancer and 62,500 cases of breast carcinoma in situ diagnosed each year. Beck et al. Treatment techniques to reduce cardiac irradiation for breast cancer patients treated with breast-conserving surgery and radiation therapy: a review. Frontiers in Oncology, 4(327):2 (2014). Most of these women will receive breast-conserving surgery, followed by radiation. A potentially serious complication of radiation therapy is cardiac toxicity, e.g., radiation delivered to the target tumor bed and/or regional lymph nodes can also intersect the heart. Potential complications arising from this incidental cardiac irradiation can include ischemic heart disease, heart failure, valvular disease, or even death from heart disease. An exemplary method for reducing radiation dosage to the heart involves displacing the heart using the device described herein. For example, the device 10 may be introduced into the esophagus and positioned adjacent to the heart, as described above. The device 10 would then be actuated to transition to the alternative geometric configuration which may direct the device to displace the esophagus anteriorly (rather than posteriorly, as described above), with the device and the esophagus then being moved to contact and displace the cardiac tissue anteriorly and/or laterally out of the damaging field of radiation or therapy.
Because of the ability to introduce both curved and comparatively linear sections at any point along the shaping structure 26 of the device 10, another exemplary use of the device 10 may include supporting and/or conforming tissue for gastric tubulization in the stomach during surgical resection. For example, as shown in
In another exemplary use, the device 10 may be used to deflect or displace targeted tissue portions during or in anticipation of prostate radiation therapy. For example, the device 10 may be inserted into the urethra to displace one or more tissue segments from a radiation field.
It will be appreciated by persons skilled in the art that the present disclosure is not limited to what has been particularly shown and described herein above. In addition, unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. Of note, the system components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. Moreover, while certain embodiments or figures described herein may illustrate features not expressly indicated on other figures or embodiments, it is understood that the features and components of the examples disclosed herein are not necessarily exclusive of each other and may be included in a variety of different combinations or configurations without departing from the scope and spirit of the disclosure. A variety of modifications and variations are possible in light of the above teachings without departing from the scope and spirit of the disclosure, which is limited only by the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US18/24334 | 3/26/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62476312 | Mar 2017 | US | |
62505475 | May 2017 | US | |
62560725 | Sep 2017 | US |