Embodiments of the invention relate generally to systems and methods for training data in a machine learning environment, and more particularly to augmenting the training data by including additional data, such as sensor characteristics, in the training data set.
In typical machine learning applications, data may be augmented in various ways to avoid overfitting the model to the characteristics of the capture equipment used to obtain the training data. For example, in typical sets of images used for training computer models, the images may represent objects captured with many different capture environments having varying sensor characteristics with respect to the objects being captured. For example, such images may be captured by various sensor characteristics, such as various scales (e.g., significantly different distances within the image), with various focal lengths, by various lens types, with various pre- or post-processing, different software environments, sensor array hardware, and so forth. These sensors may also differ with respect to different extrinsic parameters, such as the position and orientation of the imaging sensors with respect to the environment as the image is captured. All of these different types of sensor characteristics can cause the captured images to present differently and variously throughout the different images in the image set and make it more difficult to properly train a computer model.
Many applications of neural networks learn from data captured in a variety of conditions and are deployed on a variety different sensor configurations (e.g. in an app that runs on multiple types of mobile phones). To account for differences in the sensors used to capture images, developers may augment the image training data with modifications such as flipping, rotating, or cropping the image, which generalize the developed model with respect to camera properties such as focal length, axis skew, position, and rotation.
To account for these variations and deploy the trained network on various sources, training data may be augmented or manipulated to increase robustness of the trained model. These approaches, however, typically prevent models from learning effectively for any particular camera configuration by applying transformations that modify camera properties in the augmented images.
One embodiment is a method for training a set of parameters of a predictive computer model. This embodiment may include: identifying a set of images captured by a set of cameras while affixed to one or more image collection systems; for each image in the set of images, identifying a training output for the image; for one or more images in the set of images, generating an augmented image for a set of augmented images by: generating an augmented image for a set of augmented images by modifying the image with an image manipulation function that maintains camera properties of the image, and associating the augmented training image with the training output of the image; training the set of parameters of the predictive computer model to predict the training output based on an image training set including the images and the set of augmented images.
An additional embodiment may include a system having one or more processors and non-transitory computer storage media storing instructions that when executed by the one or more processors, cause the processors to perform operations comprising: identifying a set of images captured by a set of cameras while affixed to one or more image collection systems; for each image in the set of images, identifying a training output for the image; for one or more images in the set of images, generating an augmented image for a set of augmented images by: generating an augmented image for a set of augmented images by modifying the image with an image manipulation function that maintains camera properties of the image, and associating the augmented training image with the training output of the image; training the set of parameters of the predictive computer model to predict the training output based on an image training set including the images and the set of augmented images.
Another embodiment may include a non-transitory computer-readable medium having instructions for execution by a processor, the instructions when executed by the processor causing the processor to: identify a set of images captured by a set of cameras while affixed to one or more image collection systems; for each image in the set of images, identify a training output for the image; for one or more images in the set of images, generate an augmented image for a set of augmented images by: generate an augmented image for a set of augmented images by modifying the image with an image manipulation function that maintains camera properties of the image, and associate the augmented training image with the training output of the image; train the computer model to learn to predict the training output based on an image training set including the images and the set of augmented images.
The figures depict various embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.
One embodiment is a system that trains a computer model with images which have been augmented to maintain the camera properties of the originally-captured images. These camera properties may include intrinsic or extrinsic properties of the camera. Such intrinsic properties may include characteristics of the sensor itself, such as dynamic range, field of view, focal length, and lens distortion. Extrinsic properties may describe the configuration of the camera with respect to the captured environment, such as the angle, scale, or pose of a camera.
These intrinsic and extrinsic properties may affect the view of the camera with respect to objects and other aspects captured in the image and artifacts and other effects, such as static objects appearing in view of the camera because of its positioning on a device or system. For example, a camera mounted on a vehicle may include, as a portion of its view, a hood of the car that appears across many images and for all cameras in that configuration mounted in the same way on the same model of car. As another example, these camera properties may also include reflections coming off objects within the view of the camera. The reflections may be one type of consistent characteristic that becomes included with many of the images captured by the camera.
By maintaining, saving, storing or using the camera properties of the images to train data models while still adding to the training data with augmented images, the resulting model may be useful across many different devices having the same camera properties. Moreover, the augmentation may provide generalization and greater robustness to the model prediction, particularly when images are clouded, occluded, or otherwise do not provide clear views of the detectable objects. These approaches may be particularly useful for object detection and in autonomous vehicles. This approach may also be beneficial for other situations in which the same camera configurations may be deployed to many devices. Since these devices may have a consistent set of sensors in a consistent orientation, the training data may be collected with a given configuration, a model may be trained with augmented data from the collected training data, and the trained model may be deployed to devices having the same configuration. Accordingly, these techniques avoid augmentation that creates unnecessary generalization in this context and permits generalization for other variables with some data augmentation.
To maintain camera properties, the image manipulation function used to generate an augmented image is a function that maintains the camera properties. For example, these manipulations may avoid affecting angle, scale, or pose of the camera with respect to the captured environment. In embodiments, no images are used in training that were augmented with image manipulation functions that affect camera properties. For example, image manipulation functions that may be used to maintain camera properties include cutout, hue/saturation/value jitter, salt and pepper, and domain transfer (e.g., modifying day to night). Those functions which may modify camera properties, and thus are not used on some embodiments, include cropping, padding, flipping (horizontal or vertical), or affine transformations (such as sheer, rotate, translate, and skew).
As a further example, the images may be augmented with a “cutout” function that removes a portion of the original image. The removed portion of the image may then be replaced with other image content, such as a specified color, blur, noise, or from another image. The number, size, region, and replacement content for cutouts may be varied and may be based on the label of the image (e.g., the region of interest in the image, or a bounding box for an object).
A computer model may thus be trained with the images and the augmented images and distributed to device having camera characteristics of the captured images to use the model in sensor analysis. In particular, this data augmentation and model training may be used for models trained to detect objects or object bounding boxes in images.
A model training system 130 trains a computer model having a set of trainable parameters for predicting an output given a set of inputs. The model training system 130 in this example typically trains models based on image inputs to generate an output predicting information about the image. For example, in various embodiments these outputs may identify objects in the image (identify objects, either by bounding box or by segmentation, may identify conditions of the image (e.g., time of day, weather) or other tags or descriptors of the image.
Although an image is used herein as an example type of sensor data for convenience, the augmentation and model development as described herein may be applied to a variety of types of sensors to augment training data captured from these sensors while maintaining sensor configuration characteristics.
The image collection system 140 has a set of sensors that capture information from the environment of the image collection system 140. Though one image collection system 140 is shown, many image collection systems 140 may capture images for the model training system 130. The sensors for the image collection system 140 have sensor characteristics that may be the same or substantially the same across the image collection systems 140. The image collection system in one embodiment is a vehicle or other system that moves in an environment and captures images of the environment with a camera. The image collection system 140 may be manually operated or may be operated be a partially- or fully-automated vehicle. Thus, as the image collection system 140 traverses the environment, the image collection system 140 may capture and transmit images of the environment to the model training system 130.
The model application system 110 is a system having a set of sensors having the same or substantially the same sensor characteristics as the image collection system. In some examples, the model application system 110 also serves as an image collection system 130 and provides captured sensor data (e.g., images) to the model training system 130 to use as further training data. The model application system 110 receives a trained model from the model training system 130 and uses the model with the data sensed by its sensors. Because images captured from image collection systems 140 and the model application system 110 have the same camera configuration, the model application system 110 may capture its environment in the same way and from the same perspective (or substantially similar) as the image collection systems. After applying the models, the model application system 110 may use the output of the models for various purposes. For example, when the model application system 110 is a vehicle, the model may predict the presence of objects in the image, which may be used by the model application system 110 as part of a safety system or as a part of an autonomous (or semi-autonomous) control system.
The model training system includes a data input module 310 that receives images from the image collection system 140. The data input module 310 may store these images in an image data store 350. The data input module 310 may receive images as generated or provided by the data collection system 140, or it may request images from the image collection system 140.
The labeling module 320 may identify or apply labels to the images in the image data 350. In some examples, the images may already have identified characteristics. The labels may also represent data that is to be predicted or output by a trained model. For example, a label may designate particular objects in an environment shown in the image, or may include a descriptor or “tag” associated with the image. Depending on the application of the model, the labels may represent this information in various ways. For example, an object may be associated with a bounding box within an image, or an object may be segmented from other parts of the image. The labeled images may thus represent the ground truth for which the model is trained. The images may be labeled by any suitable means, and may typically be by a supervised labeling process (e.g., labeled by users reviewing the images and designating labels for the images). These labels may then be associated with the images in the image data store 350.
The image augmentation module 330 may generate additional images based on the images captured by the image collection system 140. These images may be generated as a part of a training pipeline for the model training module 340, or these augmented images may be generated before initiating training in the model training module 340. The augmented images may be generated based on images captured by the image collection system 140.
The image augmentation module 330 generates augmented images by applying an image manipulation function to the labeled training image 400. The image manipulation function generates a modified version of the labeled training image 400 to vary the characteristics of the image for training the model. The image manipulation function used to generate the training images maintains the camera properties of the labeled training image 400. Thus, the manipulation function may maintain the scale, perspective, orientation, and other characteristics of the view of the environment that may be affected by the physical capture characteristics of the camera or the position of the camera when capturing the environment that may be consistent across various devices. Accordingly, the image manipulation functions may affect how viewable objects or other features of the environment are or how clearly these are seen in a scene, but may not affect the location or size of objects in the image. Example image manipulation functions that may be applied, which maintain camera characteristics, include cutout, jitter (e.g., for hue, saturation, or color value), salt and pepper (introducing black and white dots), blur, and domain transfer. More than one of these image manipulation functions may be applied in combination to generate an augmented image. Cutout refers to an image manipulation function that removes a portion of the image and replaces the removed portion with other image content. Domain transfer refers to an image manipulation function that modifies the image to correspond to another environmental condition in the image. For example, images during the day may be modified to approximate how the image may be seen at night, or an image taken in the sun may be modified to add rain or snow effects.
These augmented images may be associated with the same training output as the labeled training image 400. In the example shown in
In various embodiments, the cutouts may be applied with various parameters and configurations, which may vary based on the training image and the location of the training output in the image. Thus, the number, size, location, and replacement image content of the cutout may vary in different embodiments and based on the location of the training output. As examples, the cutout function may apply multiple cutouts of similar size, or may apply several cutouts of different, semi-randomized sizes within a range. By using multiple cutouts and varying the size, the cutouts may more closely simulate the effect of real-world obstructions (of various sizes) on viewing the objects and may prevent the trained model from learning to compensate for cutouts of any one particular size.
The range for the size of the cutouts may be based on a portion of the size of the object or other label within the image. For example, the cutout may be no more than 40% of the size of the object's bounding box in the image, or to be smaller than the smallest object's bounding box. This may ensure that a cutout does not completely obscure a target object, and therefore that the image will continue to include image data of the object that the model may learn from. The number of cutouts may also be randomized and selected from a distribution, such as a uniform, Gaussian, or exponential distribution.
In addition, the location of the cutouts may be selected based on the location of the objects in the image. This may provide some, but not excess overlap, with the bounding box. The intersection between the object and the cutout region may be measured by the portion of the object being replaced by the cutout, or may be measured by the intersection over union (IoU), which may be measured by an intersection of the object and the cutout region divided by the union of the area of the object and the cutout region. For example, the cutout region may be placed to have an intersection over union value within a range of 20% to 50%. By including some, but not an overwhelming amount of the object in the cutout, the cutouts may thus create more “challenging” examples that partially obscure the object without removing too much of the related image data. Similarly, the cutouts may also be selected to certain parts of the image, based on the expected view of the cameras in the image. For example, the cutout may mainly be located in the bottom half of the image or in the center of the image, because the bottom portion may typically include artifacts that are always present, while the center of the image may be a region of most interest (e.g., for a vehicle, is often the direction of travel of the vehicle).
The replacement image data for the cutout region may be a solid color (e.g., a constant) or may be another pattern, such as Gaussian noise. As another example, to represent occlusions or other obstructions, the cutout may be replaced with a patch of image data from another image having the same image type or label. Finally, the cutout may be blended with the regions near the cutout, for example with poisson blending. By using various blending approaches, such as a background patch or blending, these may ensure that the replacement data in the cutout is more difficult to distinguish from the environment, and thus provide a more similar example to real-world obstructions.
Though shown as a rectangular region in
The model training module 340 trains a computer model based on the images captured by the image collection system 140 and the augmented images generated by the image augmentation module 330. These images may be used as an image training set for the model training. In one embodiment, the machine-learned models are neural network models such as feed-forward networks, convolutional neural networks (CNN), deep neural networks (DNN), recurrent neural networks (RNN), self-organizing maps (SOM), and the like, that are trained by the model training module 340 based on training data. After training, the computer model may be stored in the trained computer model store 370. A model receives the sensor data (e.g., an image) as an input and outputs an output prediction according to the training of the model. In training the model, the model learns (or “trains”) a set of parameters that predict the output based on the input images as evaluated by a loss function for the training data. That is, during training the training data is assessed according to a current set of parameters to generate a prediction. That prediction for the training inputs can be compared with the designated output (e.g., the label) to assess a loss (e.g., with a loss function) and the parameters may be revised via an optimization algorithm to optimize the set of parameters to reduce the loss function. Though termed “optimization,” these algorithms may reduce the loss with respect to a set of parameters, but may not be guaranteed to find the “optimal” value of parameters given a set of inputs. For example, a gradient descent optimization algorithm may find a local minima, rather than a global minima.
By training the computer models on augmented training data, the computer models can perform with improved accuracy when they are applied to sensor data from a physical sensor operating in an environment having the sensor characteristics of the captured data. Since the augmentation maintains these characteristics, these sensor characteristics (e.g., camera characteristics) are represented in the images used in training the data. In one embodiment, the training data does not include augmented images generated by image manipulation functions that modify the camera properties of the image, such as operations that crop, pad, flip (vertical or horizontal), or apply affine transformations (e.g., shear, rotation, translation, skew) to the image.
After training, the model distribution module 380 may distribute the trained model to systems to apply the trained model. In particular, the model distribution module 380 may send the trained model (or parameters thereof) to the model application system 110 for use in detecting characteristics of an image based on the sensors of the model application system 110. The predictions from the model may thus be used in operation of the model application system 110, for example in object detection and control of the model application system 110.
The foregoing description of the embodiments of the invention has been presented for the purpose of illustration; it is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above disclosure.
Some portions of this description describe the embodiments of the invention in terms of algorithms and symbolic representations of operations on information. These algorithmic descriptions and representations are commonly used by those skilled in the data processing arts to convey the substance of their work effectively to others skilled in the art. These operations, while described functionally, computationally, or logically, are understood to be implemented by computer programs or equivalent electrical circuits, microcode, or the like. Furthermore, it has also proven convenient at times, to refer to these arrangements of operations as modules, without loss of generality. The described operations and their associated modules may be embodied in software, firmware, hardware, or any combinations thereof.
Any of the steps, operations, or processes described herein may be performed or implemented with one or more hardware or software modules, alone or in combination with other devices. In one embodiment, a software module is implemented with a computer program product comprising a computer-readable medium containing computer program code, which can be executed by a computer processor for performing any or all of the steps, operations, or processes described.
Embodiments of the invention may also relate to an apparatus (e.g., a system) for performing the operations herein. This apparatus may be specially constructed for the required purposes, and/or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computer. The computing device may a system or device of one or more processors and/or computer systems. Such a computer program may be stored in a non-transitory, tangible computer readable storage medium, or any type of media suitable for storing electronic instructions, which may be coupled to a computer system bus. Furthermore, any computing systems referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
Embodiments of the invention may also relate to a product that is produced by a computing process described herein. Such a product may comprise information resulting from a computing process, where the information is stored on a non-transitory, tangible computer readable storage medium and may include any embodiment of a computer program product or other data combination described herein.
Finally, the language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the invention be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments of the invention is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.
This application is a continuation of U.S. application Ser. No. 16/598,956, filed Oct. 10, 2019 and entitled “SYSTEMS AND METHODS FOR TRAINING MACHINE MODELS WITH AUGMENTED DATA” which claims priority to U.S. Provisional Application No. 62/744,534, filed on Oct. 11, 2018 and entitled “TRAINING MACHINE MODELS WITH DATA AUGMENTATION THAT RETAINS SENSOR CHARACTERISTICS.” U.S. Prov. App. No. 62/744,534 is hereby incorporated herein by reference in its entirety. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference in their entirety under 37 CFR 1.57.
Number | Name | Date | Kind |
---|---|---|---|
6882755 | Silverstein et al. | May 2005 | B2 |
7209031 | Nakai et al. | Apr 2007 | B2 |
7747070 | Puri | Jun 2010 | B2 |
7904867 | Burch et al. | Mar 2011 | B2 |
7974492 | Nishijima | Jul 2011 | B2 |
8165380 | Choi et al. | Apr 2012 | B2 |
8369633 | Lu et al. | Feb 2013 | B2 |
8406515 | Cheatle et al. | Mar 2013 | B2 |
8509478 | Haas et al. | Aug 2013 | B2 |
8588470 | Rodriguez et al. | Nov 2013 | B2 |
8744174 | Hamada et al. | Jun 2014 | B2 |
8773498 | Lindbergh | Jul 2014 | B2 |
8912476 | Fogg et al. | Dec 2014 | B2 |
8913830 | Sun et al. | Dec 2014 | B2 |
8928753 | Han et al. | Jan 2015 | B2 |
8972095 | Furuno et al. | Mar 2015 | B2 |
8976269 | Duong | Mar 2015 | B2 |
9008422 | Eid et al. | Apr 2015 | B2 |
9081385 | Ferguson et al. | Jul 2015 | B1 |
9275289 | Li et al. | Mar 2016 | B2 |
9586455 | Sugal et al. | Mar 2017 | B2 |
9672437 | McCarthy | Jun 2017 | B2 |
9710696 | Wang et al. | Jul 2017 | B2 |
9738223 | Zhang et al. | Aug 2017 | B2 |
9754154 | Craig et al. | Sep 2017 | B2 |
9767369 | Furman et al. | Sep 2017 | B2 |
9965865 | Agrawal et al. | May 2018 | B1 |
10133273 | Linke | Nov 2018 | B2 |
10140252 | Fowers et al. | Nov 2018 | B2 |
10140544 | Zhao et al. | Nov 2018 | B1 |
10146225 | Ryan | Dec 2018 | B2 |
10152655 | Krishnamurthy et al. | Dec 2018 | B2 |
10167800 | Chung et al. | Jan 2019 | B1 |
10169680 | Sachdeva et al. | Jan 2019 | B1 |
10192016 | Ng et al. | Jan 2019 | B2 |
10216189 | Haynes | Feb 2019 | B1 |
10228693 | Micks et al. | Mar 2019 | B2 |
10242293 | Shim et al. | Mar 2019 | B2 |
10248121 | VandenBerg, III | Apr 2019 | B2 |
10262218 | Lee et al. | Apr 2019 | B2 |
10282623 | Ziyaee et al. | May 2019 | B1 |
10296828 | Viswanathan | May 2019 | B2 |
10303961 | Stoffel et al. | May 2019 | B1 |
10310087 | Laddha et al. | Jun 2019 | B2 |
10311312 | Yu et al. | Jun 2019 | B2 |
10318848 | Dijkman et al. | Jun 2019 | B2 |
10325178 | Tang et al. | Jun 2019 | B1 |
10331974 | Zia et al. | Jun 2019 | B2 |
10338600 | Yoon et al. | Jul 2019 | B2 |
10343607 | Kumon et al. | Jul 2019 | B2 |
10359783 | Williams et al. | Jul 2019 | B2 |
10366290 | Wang et al. | Jul 2019 | B2 |
10372130 | Kaushansky et al. | Aug 2019 | B1 |
10373019 | Nariyambut Murali et al. | Aug 2019 | B2 |
10373026 | Kim et al. | Aug 2019 | B1 |
10380741 | Yedla et al. | Aug 2019 | B2 |
10394237 | Xu et al. | Aug 2019 | B2 |
10395144 | Zeng et al. | Aug 2019 | B2 |
10402646 | Klaus | Sep 2019 | B2 |
10402986 | Ray et al. | Sep 2019 | B2 |
10414395 | Sapp et al. | Sep 2019 | B1 |
10423934 | Zanghi et al. | Sep 2019 | B1 |
10436615 | Agarwal et al. | Oct 2019 | B2 |
10452905 | Segalovitz et al. | Oct 2019 | B2 |
10460053 | Olson et al. | Oct 2019 | B2 |
10467459 | Chen et al. | Nov 2019 | B2 |
10468008 | Beckman et al. | Nov 2019 | B2 |
10468062 | Levinson et al. | Nov 2019 | B1 |
10470510 | Koh et al. | Nov 2019 | B1 |
10474160 | Huang et al. | Nov 2019 | B2 |
10474161 | Huang et al. | Nov 2019 | B2 |
10474928 | Sivakumar et al. | Nov 2019 | B2 |
10489126 | Kumar et al. | Nov 2019 | B2 |
10489972 | Atsmon | Nov 2019 | B2 |
10503971 | Dang et al. | Dec 2019 | B1 |
10514711 | Bar-Nahum et al. | Dec 2019 | B2 |
10528824 | Zou | Jan 2020 | B2 |
10529078 | Abreu et al. | Jan 2020 | B2 |
10529088 | Fine et al. | Jan 2020 | B2 |
10534854 | Sharma et al. | Jan 2020 | B2 |
10535191 | Sachdeva et al. | Jan 2020 | B2 |
10542930 | Sanchez et al. | Jan 2020 | B1 |
10546197 | Shrestha et al. | Jan 2020 | B2 |
10546217 | Albright et al. | Jan 2020 | B2 |
10552682 | Jonsson et al. | Feb 2020 | B2 |
10559386 | Neuman | Feb 2020 | B1 |
10565475 | Lecue et al. | Feb 2020 | B2 |
10567674 | Kirsch | Feb 2020 | B2 |
10568570 | Sherpa et al. | Feb 2020 | B1 |
10572717 | Zhu et al. | Feb 2020 | B1 |
10574905 | Srikanth et al. | Feb 2020 | B2 |
10579058 | Oh et al. | Mar 2020 | B2 |
10579063 | Haynes et al. | Mar 2020 | B2 |
10579897 | Redmon et al. | Mar 2020 | B2 |
10586280 | McKenna et al. | Mar 2020 | B2 |
10591914 | Palanisamy et al. | Mar 2020 | B2 |
10592785 | Zhu et al. | Mar 2020 | B2 |
10599701 | Liu | Mar 2020 | B2 |
10599930 | Lee et al. | Mar 2020 | B2 |
10599958 | He et al. | Mar 2020 | B2 |
10606990 | Tuli et al. | Mar 2020 | B2 |
10609434 | Singhal et al. | Mar 2020 | B2 |
10614344 | Anthony et al. | Apr 2020 | B2 |
10621513 | Deshpande et al. | Apr 2020 | B2 |
10627818 | Sapp et al. | Apr 2020 | B2 |
10628432 | Guo et al. | Apr 2020 | B2 |
10628686 | Ogale et al. | Apr 2020 | B2 |
10628688 | Kim et al. | Apr 2020 | B1 |
10629080 | Kazemi et al. | Apr 2020 | B2 |
10636161 | Uchigaito | Apr 2020 | B2 |
10636169 | Estrada et al. | Apr 2020 | B2 |
10642275 | Silva et al. | May 2020 | B2 |
10645344 | Marman et al. | May 2020 | B2 |
10649464 | Gray | May 2020 | B2 |
10650071 | Asgekar et al. | May 2020 | B2 |
10652565 | Zhang et al. | May 2020 | B1 |
10656657 | Djuric et al. | May 2020 | B2 |
10657391 | Chen et al. | May 2020 | B2 |
10657418 | Marder et al. | May 2020 | B2 |
10657934 | Kolen et al. | May 2020 | B1 |
10661902 | Tavshikar | May 2020 | B1 |
10664750 | Greene | May 2020 | B2 |
10671082 | Huang et al. | Jun 2020 | B2 |
10671886 | Price et al. | Jun 2020 | B2 |
10678244 | Iandola et al. | Jun 2020 | B2 |
10678839 | Gordon et al. | Jun 2020 | B2 |
10678997 | Ahuja et al. | Jun 2020 | B2 |
10679129 | Baker | Jun 2020 | B2 |
10685159 | Su et al. | Jun 2020 | B2 |
10685188 | Zhang et al. | Jun 2020 | B1 |
10692000 | Surazhsky et al. | Jun 2020 | B2 |
10692242 | Morrison et al. | Jun 2020 | B1 |
10693740 | Coccia et al. | Jun 2020 | B2 |
10698868 | Guggilla et al. | Jun 2020 | B2 |
10699119 | Lo et al. | Jun 2020 | B2 |
10699140 | Kench et al. | Jun 2020 | B2 |
10699477 | Levinson et al. | Jun 2020 | B2 |
10713502 | Tiziani | Jul 2020 | B2 |
10719759 | Kutliroff | Jul 2020 | B2 |
10725475 | Yang et al. | Jul 2020 | B2 |
10726264 | Sawhney et al. | Jul 2020 | B2 |
10726279 | Kim et al. | Jul 2020 | B1 |
10726374 | Engineer et al. | Jul 2020 | B1 |
10732261 | Wang et al. | Aug 2020 | B1 |
10733262 | Miller et al. | Aug 2020 | B2 |
10733482 | Lee et al. | Aug 2020 | B1 |
10733638 | Jain et al. | Aug 2020 | B1 |
10733755 | Liao et al. | Aug 2020 | B2 |
10733876 | Moura et al. | Aug 2020 | B2 |
10740563 | Dugan | Aug 2020 | B2 |
10740914 | Xiao et al. | Aug 2020 | B2 |
10748062 | Rippel et al. | Aug 2020 | B2 |
10748247 | Paluri | Aug 2020 | B2 |
10751879 | Li et al. | Aug 2020 | B2 |
10755112 | Mabuchi | Aug 2020 | B2 |
10755575 | Johnston et al. | Aug 2020 | B2 |
10757330 | Ashrafi | Aug 2020 | B2 |
10762396 | Vallespi et al. | Sep 2020 | B2 |
10768628 | Martin et al. | Sep 2020 | B2 |
10768629 | Song et al. | Sep 2020 | B2 |
10769446 | Chang et al. | Sep 2020 | B2 |
10769483 | Nirenberg et al. | Sep 2020 | B2 |
10769493 | Yu et al. | Sep 2020 | B2 |
10769494 | Xiao et al. | Sep 2020 | B2 |
10769525 | Redding et al. | Sep 2020 | B2 |
10776626 | Lin et al. | Sep 2020 | B1 |
10776673 | Kim et al. | Sep 2020 | B2 |
10776939 | Ma et al. | Sep 2020 | B2 |
10779760 | Lee et al. | Sep 2020 | B2 |
10783381 | Yu et al. | Sep 2020 | B2 |
10783454 | Shoaib et al. | Sep 2020 | B2 |
10789402 | Vemuri et al. | Sep 2020 | B1 |
10789544 | Fiedel et al. | Sep 2020 | B2 |
10790919 | Kolen et al. | Sep 2020 | B1 |
10796221 | Zhang et al. | Oct 2020 | B2 |
10796355 | Price et al. | Oct 2020 | B1 |
10796423 | Goja | Oct 2020 | B2 |
10798368 | Briggs et al. | Oct 2020 | B2 |
10803325 | Bai et al. | Oct 2020 | B2 |
10803328 | Bai et al. | Oct 2020 | B1 |
10803743 | Abari et al. | Oct 2020 | B2 |
10805629 | Liu et al. | Oct 2020 | B2 |
10809730 | Chintakindi | Oct 2020 | B2 |
10810445 | Kangaspunta | Oct 2020 | B1 |
10816346 | Wheeler et al. | Oct 2020 | B2 |
10816992 | Chen | Oct 2020 | B2 |
10817731 | Vallespi et al. | Oct 2020 | B2 |
10817732 | Porter et al. | Oct 2020 | B2 |
10819923 | McCauley et al. | Oct 2020 | B1 |
10824122 | Mummadi et al. | Nov 2020 | B2 |
10824862 | Qi et al. | Nov 2020 | B2 |
10828790 | Nemallan | Nov 2020 | B2 |
10832057 | Chan et al. | Nov 2020 | B2 |
10832093 | Taralova et al. | Nov 2020 | B1 |
10832414 | Pfeiffer | Nov 2020 | B2 |
10832418 | Karasev et al. | Nov 2020 | B1 |
10833785 | O'Shea et al. | Nov 2020 | B1 |
10836379 | Xiao et al. | Nov 2020 | B2 |
10838936 | Cohen | Nov 2020 | B2 |
10839230 | Charette et al. | Nov 2020 | B2 |
10839578 | Coppersmith et al. | Nov 2020 | B2 |
10843628 | Kawamoto et al. | Nov 2020 | B2 |
10845820 | Wheeler | Nov 2020 | B2 |
10845943 | Ansari et al. | Nov 2020 | B1 |
10846831 | Raduta | Nov 2020 | B2 |
10846888 | Kaplanyan et al. | Nov 2020 | B2 |
10853670 | Sholingar et al. | Dec 2020 | B2 |
10853739 | Truong et al. | Dec 2020 | B2 |
10860919 | Kanazawa et al. | Dec 2020 | B2 |
10860924 | Burger | Dec 2020 | B2 |
10867444 | Russell et al. | Dec 2020 | B2 |
10871444 | Al et al. | Dec 2020 | B2 |
10871782 | Milstein et al. | Dec 2020 | B2 |
10872204 | Zhu et al. | Dec 2020 | B2 |
10872254 | Mangla et al. | Dec 2020 | B2 |
10872326 | Garner | Dec 2020 | B2 |
10872531 | Liu et al. | Dec 2020 | B2 |
10885083 | Moeller-Bertram et al. | Jan 2021 | B2 |
10887433 | Fu et al. | Jan 2021 | B2 |
10890898 | Akella et al. | Jan 2021 | B2 |
10891715 | Li | Jan 2021 | B2 |
10891735 | Yang et al. | Jan 2021 | B2 |
10893070 | Wang et al. | Jan 2021 | B2 |
10893107 | Callari et al. | Jan 2021 | B1 |
10896763 | Kempanna et al. | Jan 2021 | B2 |
10901416 | Khanna et al. | Jan 2021 | B2 |
10901508 | Laszlo et al. | Jan 2021 | B2 |
10902551 | Mellado et al. | Jan 2021 | B1 |
10908068 | Amer et al. | Feb 2021 | B2 |
10908606 | Stein et al. | Feb 2021 | B2 |
10909368 | Guo et al. | Feb 2021 | B2 |
10909453 | Myers et al. | Feb 2021 | B1 |
10915783 | Hallman et al. | Feb 2021 | B1 |
10917522 | Segalis et al. | Feb 2021 | B2 |
10921817 | Kangaspunta | Feb 2021 | B1 |
10922578 | Banerjee et al. | Feb 2021 | B2 |
10924661 | Vasconcelos et al. | Feb 2021 | B2 |
10928508 | Swaminathan | Feb 2021 | B2 |
10929757 | Baker et al. | Feb 2021 | B2 |
10930065 | Grant et al. | Feb 2021 | B2 |
10936908 | Ho et al. | Mar 2021 | B1 |
10937186 | Wang et al. | Mar 2021 | B2 |
10943101 | Agarwal et al. | Mar 2021 | B2 |
10943132 | Wang et al. | Mar 2021 | B2 |
10943355 | Fagg et al. | Mar 2021 | B2 |
11025093 | Cooper et al. | Dec 2021 | B2 |
20030035481 | Hahm | Feb 2003 | A1 |
20050162445 | Sheasby et al. | Jul 2005 | A1 |
20060072847 | Chor et al. | Apr 2006 | A1 |
20060224533 | Thaler | Oct 2006 | A1 |
20060280364 | Ma et al. | Dec 2006 | A1 |
20090016571 | Tijerina et al. | Jan 2009 | A1 |
20100118157 | Kameyama | May 2010 | A1 |
20120109915 | Kamekawa | May 2012 | A1 |
20120110491 | Cheung | May 2012 | A1 |
20120134595 | Fonseca et al. | May 2012 | A1 |
20150104102 | Carreira et al. | Apr 2015 | A1 |
20160132786 | Balan et al. | May 2016 | A1 |
20160328856 | Mannino et al. | Nov 2016 | A1 |
20170011281 | Dihkman et al. | Jan 2017 | A1 |
20170158134 | Shigemura | Jun 2017 | A1 |
20170206434 | Nariyambut et al. | Jul 2017 | A1 |
20180012411 | Richey et al. | Jan 2018 | A1 |
20180018590 | Szeto et al. | Jan 2018 | A1 |
20180039853 | Liu et al. | Feb 2018 | A1 |
20180067489 | Oder et al. | Mar 2018 | A1 |
20180068459 | Zhang et al. | Mar 2018 | A1 |
20180068540 | Romanenko et al. | Mar 2018 | A1 |
20180074506 | Branson | Mar 2018 | A1 |
20180121762 | Han et al. | May 2018 | A1 |
20180150081 | Gross et al. | May 2018 | A1 |
20180150740 | Wang et al. | May 2018 | A1 |
20180211403 | Hotson et al. | Jul 2018 | A1 |
20180308012 | Mummadi et al. | Oct 2018 | A1 |
20180314878 | Lee et al. | Nov 2018 | A1 |
20180357511 | Misra et al. | Dec 2018 | A1 |
20180374105 | Azout et al. | Dec 2018 | A1 |
20190023277 | Roger et al. | Jan 2019 | A1 |
20190025773 | Yang et al. | Jan 2019 | A1 |
20190042894 | Anderson | Feb 2019 | A1 |
20190042919 | Peysakhovich et al. | Feb 2019 | A1 |
20190042944 | Nair et al. | Feb 2019 | A1 |
20190042948 | Lee et al. | Feb 2019 | A1 |
20190057314 | Julian et al. | Feb 2019 | A1 |
20190065637 | Bogdoll et al. | Feb 2019 | A1 |
20190072978 | Levi | Mar 2019 | A1 |
20190079526 | Vallespi et al. | Mar 2019 | A1 |
20190080602 | Rice et al. | Mar 2019 | A1 |
20190095780 | Zhong et al. | Mar 2019 | A1 |
20190095946 | Azout et al. | Mar 2019 | A1 |
20190101914 | Coleman et al. | Apr 2019 | A1 |
20190108417 | Talagala et al. | Apr 2019 | A1 |
20190122111 | Min et al. | Apr 2019 | A1 |
20190130255 | Yim et al. | May 2019 | A1 |
20190145765 | Luo et al. | May 2019 | A1 |
20190146497 | Urtasun et al. | May 2019 | A1 |
20190147112 | Gordon | May 2019 | A1 |
20190147250 | Zhang et al. | May 2019 | A1 |
20190147254 | Bai et al. | May 2019 | A1 |
20190147255 | Homayounfar et al. | May 2019 | A1 |
20190147335 | Wang et al. | May 2019 | A1 |
20190147372 | Luo et al. | May 2019 | A1 |
20190158784 | Ahn et al. | May 2019 | A1 |
20190180154 | Orlov et al. | Jun 2019 | A1 |
20190185010 | Ganguli et al. | Jun 2019 | A1 |
20190189251 | Horiuchi et al. | Jun 2019 | A1 |
20190197357 | Anderson et al. | Jun 2019 | A1 |
20190204842 | Jafari et al. | Jul 2019 | A1 |
20190205402 | Sernau et al. | Jul 2019 | A1 |
20190205667 | Avidan et al. | Jul 2019 | A1 |
20190217791 | Bradley et al. | Jul 2019 | A1 |
20190227562 | Mohammadiha et al. | Jul 2019 | A1 |
20190228037 | Nicol et al. | Jul 2019 | A1 |
20190230282 | Sypitkowski et al. | Jul 2019 | A1 |
20190235499 | Kazemi et al. | Aug 2019 | A1 |
20190236437 | Shin et al. | Aug 2019 | A1 |
20190243371 | Nister et al. | Aug 2019 | A1 |
20190244138 | Bhowmick et al. | Aug 2019 | A1 |
20190250622 | Nister et al. | Aug 2019 | A1 |
20190250626 | Ghafarianzadeh et al. | Aug 2019 | A1 |
20190250640 | O'Flaherty et al. | Aug 2019 | A1 |
20190258878 | Koivisto et al. | Aug 2019 | A1 |
20190266418 | Xu et al. | Aug 2019 | A1 |
20190266610 | Ghatage et al. | Aug 2019 | A1 |
20190272446 | Kangaspunta et al. | Sep 2019 | A1 |
20190276041 | Choi et al. | Sep 2019 | A1 |
20190279004 | Kwon et al. | Sep 2019 | A1 |
20190286652 | Habbecke et al. | Sep 2019 | A1 |
20190286972 | El Husseini et al. | Sep 2019 | A1 |
20190287028 | St Amant et al. | Sep 2019 | A1 |
20190289281 | Badrinarayanan et al. | Sep 2019 | A1 |
20190294177 | Kwon et al. | Sep 2019 | A1 |
20190294975 | Sachs | Sep 2019 | A1 |
20190311290 | Huang et al. | Oct 2019 | A1 |
20190318099 | Carvalho et al. | Oct 2019 | A1 |
20190325088 | Dubey et al. | Oct 2019 | A1 |
20190325266 | Klepper et al. | Oct 2019 | A1 |
20190325269 | Bagherinezhad et al. | Oct 2019 | A1 |
20190325580 | Lukac et al. | Oct 2019 | A1 |
20190325595 | Stein et al. | Oct 2019 | A1 |
20190329790 | Nandakumar et al. | Oct 2019 | A1 |
20190332875 | Vallespi-Gonzalez et al. | Oct 2019 | A1 |
20190333232 | Vallespi-Gonzalez et al. | Oct 2019 | A1 |
20190336063 | Dascalu | Nov 2019 | A1 |
20190339989 | Liang et al. | Nov 2019 | A1 |
20190340462 | Pao et al. | Nov 2019 | A1 |
20190340492 | Burger et al. | Nov 2019 | A1 |
20190340499 | Burger et al. | Nov 2019 | A1 |
20190347501 | Kim et al. | Nov 2019 | A1 |
20190349571 | Herman et al. | Nov 2019 | A1 |
20190354782 | Kee et al. | Nov 2019 | A1 |
20190354786 | Lee et al. | Nov 2019 | A1 |
20190354808 | Park et al. | Nov 2019 | A1 |
20190354817 | Shlens et al. | Nov 2019 | A1 |
20190354850 | Watson et al. | Nov 2019 | A1 |
20190370398 | He et al. | Dec 2019 | A1 |
20190370575 | Nandakumar et al. | Dec 2019 | A1 |
20190370935 | Chang et al. | Dec 2019 | A1 |
20190373322 | Rojas-Echenique et al. | Dec 2019 | A1 |
20190377345 | Bachrach et al. | Dec 2019 | A1 |
20190377965 | Totolos et al. | Dec 2019 | A1 |
20190378049 | Widmann et al. | Dec 2019 | A1 |
20190378051 | Widmann et al. | Dec 2019 | A1 |
20190382007 | Casas et al. | Dec 2019 | A1 |
20190384303 | Muller et al. | Dec 2019 | A1 |
20190384304 | Towal et al. | Dec 2019 | A1 |
20190384309 | Silva et al. | Dec 2019 | A1 |
20190384994 | Frossard et al. | Dec 2019 | A1 |
20190385048 | Cassidy et al. | Dec 2019 | A1 |
20190385360 | Yang et al. | Dec 2019 | A1 |
20200004259 | Gulino et al. | Jan 2020 | A1 |
20200004351 | Marchant et al. | Jan 2020 | A1 |
20200012936 | Lee et al. | Jan 2020 | A1 |
20200017117 | Milton | Jan 2020 | A1 |
20200025931 | Liang et al. | Jan 2020 | A1 |
20200026282 | Choe et al. | Jan 2020 | A1 |
20200026283 | Barnes et al. | Jan 2020 | A1 |
20200026992 | Zhang et al. | Jan 2020 | A1 |
20200027210 | Haemel et al. | Jan 2020 | A1 |
20200033858 | Xiao | Jan 2020 | A1 |
20200033865 | Mellinger et al. | Jan 2020 | A1 |
20200034665 | Ghanta et al. | Jan 2020 | A1 |
20200034710 | Sidhu et al. | Jan 2020 | A1 |
20200036948 | Song | Jan 2020 | A1 |
20200039520 | Misu et al. | Feb 2020 | A1 |
20200051550 | Baker | Feb 2020 | A1 |
20200060757 | Ben-Haim et al. | Feb 2020 | A1 |
20200065711 | Clément et al. | Feb 2020 | A1 |
20200065879 | Hu et al. | Feb 2020 | A1 |
20200069973 | Lou et al. | Mar 2020 | A1 |
20200073385 | Jobanputra et al. | Mar 2020 | A1 |
20200074230 | Englard et al. | Mar 2020 | A1 |
20200086880 | Poeppel et al. | Mar 2020 | A1 |
20200089243 | Poeppel et al. | Mar 2020 | A1 |
20200089969 | Lakshmi et al. | Mar 2020 | A1 |
20200090056 | Singhal et al. | Mar 2020 | A1 |
20200097841 | Petousis et al. | Mar 2020 | A1 |
20200098095 | Borcs et al. | Mar 2020 | A1 |
20200103894 | Cella et al. | Apr 2020 | A1 |
20200104705 | Bhowmick et al. | Apr 2020 | A1 |
20200110416 | Hong et al. | Apr 2020 | A1 |
20200117180 | Cella et al. | Apr 2020 | A1 |
20200117889 | Laput et al. | Apr 2020 | A1 |
20200117916 | Liu | Apr 2020 | A1 |
20200117917 | Yoo | Apr 2020 | A1 |
20200118035 | Asawa et al. | Apr 2020 | A1 |
20200125844 | She et al. | Apr 2020 | A1 |
20200125845 | Hess et al. | Apr 2020 | A1 |
20200126129 | Lkhamsuren et al. | Apr 2020 | A1 |
20200134427 | Oh et al. | Apr 2020 | A1 |
20200134461 | Chai et al. | Apr 2020 | A1 |
20200134466 | Weintraub et al. | Apr 2020 | A1 |
20200134848 | El-Khamy et al. | Apr 2020 | A1 |
20200143231 | Fusi et al. | May 2020 | A1 |
20200143279 | West et al. | May 2020 | A1 |
20200148201 | King et al. | May 2020 | A1 |
20200149898 | Felip et al. | May 2020 | A1 |
20200151201 | Chandrasekhar et al. | May 2020 | A1 |
20200151619 | Mopur et al. | May 2020 | A1 |
20200151692 | Gao et al. | May 2020 | A1 |
20200158822 | Owens et al. | May 2020 | A1 |
20200158869 | Amirloo et al. | May 2020 | A1 |
20200159225 | Zeng et al. | May 2020 | A1 |
20200160064 | Wang et al. | May 2020 | A1 |
20200160104 | Urtasun et al. | May 2020 | A1 |
20200160117 | Urtasun et al. | May 2020 | A1 |
20200160178 | Kar et al. | May 2020 | A1 |
20200160532 | Urtasun et al. | May 2020 | A1 |
20200160558 | Urtasun et al. | May 2020 | A1 |
20200160559 | Urtasun et al. | May 2020 | A1 |
20200160598 | Manivasagam et al. | May 2020 | A1 |
20200162489 | Bar-Nahum et al. | May 2020 | A1 |
20200167438 | Herring | May 2020 | A1 |
20200167554 | Wang et al. | May 2020 | A1 |
20200174481 | Van Heukelom et al. | Jun 2020 | A1 |
20200175326 | Shen et al. | Jun 2020 | A1 |
20200175354 | Volodarskiy et al. | Jun 2020 | A1 |
20200175371 | Kursun | Jun 2020 | A1 |
20200175401 | Shen | Jun 2020 | A1 |
20200183482 | Sebot et al. | Jun 2020 | A1 |
20200184250 | Oko | Jun 2020 | A1 |
20200184333 | Oh | Jun 2020 | A1 |
20200192389 | ReMine et al. | Jun 2020 | A1 |
20200193313 | Ghanta et al. | Jun 2020 | A1 |
20200193328 | Guestrin et al. | Jun 2020 | A1 |
20200202136 | Shrestha et al. | Jun 2020 | A1 |
20200202196 | Guo et al. | Jun 2020 | A1 |
20200202216 | Martinez-Canales | Jun 2020 | A1 |
20200209857 | Djuric et al. | Jul 2020 | A1 |
20200209867 | Valois et al. | Jul 2020 | A1 |
20200209874 | Chen et al. | Jul 2020 | A1 |
20200210717 | Hou et al. | Jul 2020 | A1 |
20200210769 | Hou et al. | Jul 2020 | A1 |
20200210777 | Valois et al. | Jul 2020 | A1 |
20200216064 | du Toit et al. | Jul 2020 | A1 |
20200218722 | Mai et al. | Jul 2020 | A1 |
20200218979 | Kwon et al. | Jul 2020 | A1 |
20200223434 | Campos et al. | Jul 2020 | A1 |
20200225758 | Tang et al. | Jul 2020 | A1 |
20200226377 | Campos et al. | Jul 2020 | A1 |
20200226430 | Ahuja et al. | Jul 2020 | A1 |
20200238998 | Dasalukunte et al. | Jul 2020 | A1 |
20200242381 | Chao et al. | Jul 2020 | A1 |
20200242408 | Kim et al. | Jul 2020 | A1 |
20200242511 | Kale et al. | Jul 2020 | A1 |
20200245869 | Sivan et al. | Aug 2020 | A1 |
20200249685 | Elluswamy et al. | Aug 2020 | A1 |
20200250456 | Wang et al. | Aug 2020 | A1 |
20200250515 | Rifkin et al. | Aug 2020 | A1 |
20200250874 | Assouline et al. | Aug 2020 | A1 |
20200257301 | Weiser et al. | Aug 2020 | A1 |
20200257306 | Nisenzon | Aug 2020 | A1 |
20200258057 | Farahat et al. | Aug 2020 | A1 |
20200265247 | Musk et al. | Aug 2020 | A1 |
20200272160 | Djuric et al. | Aug 2020 | A1 |
20200272162 | Hasselgren et al. | Aug 2020 | A1 |
20200272859 | Iashyn et al. | Aug 2020 | A1 |
20200273231 | Schied et al. | Aug 2020 | A1 |
20200279354 | Klaiman | Sep 2020 | A1 |
20200279364 | Sarkisian et al. | Sep 2020 | A1 |
20200279371 | Wenzel et al. | Sep 2020 | A1 |
20200285464 | Brebner | Sep 2020 | A1 |
20200286256 | Houts et al. | Sep 2020 | A1 |
20200293786 | Jia et al. | Sep 2020 | A1 |
20200293796 | Sajjadi et al. | Sep 2020 | A1 |
20200293828 | Wang et al. | Sep 2020 | A1 |
20200293905 | Huang et al. | Sep 2020 | A1 |
20200294162 | Shah | Sep 2020 | A1 |
20200294257 | Yoo et al. | Sep 2020 | A1 |
20200294310 | Lee et al. | Sep 2020 | A1 |
20200297237 | Tamersoy et al. | Sep 2020 | A1 |
20200298891 | Liang et al. | Sep 2020 | A1 |
20200301799 | Manivasagam et al. | Sep 2020 | A1 |
20200302276 | Yang et al. | Sep 2020 | A1 |
20200302291 | Hong | Sep 2020 | A1 |
20200302627 | Duggal et al. | Sep 2020 | A1 |
20200302662 | Homayounfar et al. | Sep 2020 | A1 |
20200304441 | Bradley et al. | Sep 2020 | A1 |
20200306640 | Kolen et al. | Oct 2020 | A1 |
20200307562 | Ghafarianzadeh et al. | Oct 2020 | A1 |
20200307563 | Ghafarianzadeh et al. | Oct 2020 | A1 |
20200309536 | Omari et al. | Oct 2020 | A1 |
20200309923 | Bhaskaran et al. | Oct 2020 | A1 |
20200310442 | Halder et al. | Oct 2020 | A1 |
20200311601 | Robinson et al. | Oct 2020 | A1 |
20200312003 | Borovikov et al. | Oct 2020 | A1 |
20200315708 | Mosnier et al. | Oct 2020 | A1 |
20200320132 | Neumann | Oct 2020 | A1 |
20200324073 | Rajan et al. | Oct 2020 | A1 |
20200327192 | Hackman et al. | Oct 2020 | A1 |
20200327443 | Van et al. | Oct 2020 | A1 |
20200327449 | Tiwari et al. | Oct 2020 | A1 |
20200327662 | Liu et al. | Oct 2020 | A1 |
20200327667 | Arbel et al. | Oct 2020 | A1 |
20200331476 | Chen et al. | Oct 2020 | A1 |
20200334416 | Vianu et al. | Oct 2020 | A1 |
20200334495 | Al et al. | Oct 2020 | A1 |
20200334501 | Lin et al. | Oct 2020 | A1 |
20200334551 | Javidi et al. | Oct 2020 | A1 |
20200334574 | Ishida | Oct 2020 | A1 |
20200337648 | Saripalli et al. | Oct 2020 | A1 |
20200341466 | Pham et al. | Oct 2020 | A1 |
20200342350 | Madar et al. | Oct 2020 | A1 |
20200342548 | Mazed et al. | Oct 2020 | A1 |
20200342652 | Rowell et al. | Oct 2020 | A1 |
20200348909 | Das Sarma et al. | Nov 2020 | A1 |
20200350063 | Thornton et al. | Nov 2020 | A1 |
20200351438 | Dewhurst et al. | Nov 2020 | A1 |
20200356107 | Wells | Nov 2020 | A1 |
20200356790 | Jaipuria et al. | Nov 2020 | A1 |
20200356864 | Neumann | Nov 2020 | A1 |
20200356905 | Luk et al. | Nov 2020 | A1 |
20200361083 | Mousavian et al. | Nov 2020 | A1 |
20200361485 | Zhu et al. | Nov 2020 | A1 |
20200364481 | Kornienko et al. | Nov 2020 | A1 |
20200364508 | Gurel et al. | Nov 2020 | A1 |
20200364540 | Elsayed et al. | Nov 2020 | A1 |
20200364746 | Longano et al. | Nov 2020 | A1 |
20200364953 | Simoudis | Nov 2020 | A1 |
20200372362 | Kim | Nov 2020 | A1 |
20200372402 | Kursun et al. | Nov 2020 | A1 |
20200380362 | Cao et al. | Dec 2020 | A1 |
20200380383 | Kwong et al. | Dec 2020 | A1 |
20200393841 | Frisbie et al. | Dec 2020 | A1 |
20200394421 | Yu et al. | Dec 2020 | A1 |
20200394457 | Brady | Dec 2020 | A1 |
20200394495 | Moudgill et al. | Dec 2020 | A1 |
20200394813 | Theverapperuma et al. | Dec 2020 | A1 |
20200396394 | Zlokolica et al. | Dec 2020 | A1 |
20200398855 | Thompson | Dec 2020 | A1 |
20200401850 | Bazarsky et al. | Dec 2020 | A1 |
20200401886 | Deng et al. | Dec 2020 | A1 |
20200402155 | Kurian et al. | Dec 2020 | A1 |
20200402226 | Peng | Dec 2020 | A1 |
20200410012 | Moon et al. | Dec 2020 | A1 |
20200410224 | Goel | Dec 2020 | A1 |
20200410254 | Pham et al. | Dec 2020 | A1 |
20200410288 | Capota et al. | Dec 2020 | A1 |
20200410751 | Omari et al. | Dec 2020 | A1 |
20210004014 | Sivakumar | Jan 2021 | A1 |
20210004580 | Sundararaman et al. | Jan 2021 | A1 |
20210004611 | Garimella et al. | Jan 2021 | A1 |
20210004663 | Park et al. | Jan 2021 | A1 |
20210006835 | Slattery et al. | Jan 2021 | A1 |
20210011908 | Hayes et al. | Jan 2021 | A1 |
20210012116 | Urtasun et al. | Jan 2021 | A1 |
20210012210 | Sikka et al. | Jan 2021 | A1 |
20210012230 | Hayes et al. | Jan 2021 | A1 |
20210012239 | Arzani et al. | Jan 2021 | A1 |
20210015240 | Elfakhri et al. | Jan 2021 | A1 |
20210019215 | Neeter | Jan 2021 | A1 |
20210026360 | Luo | Jan 2021 | A1 |
20210027112 | Brewington et al. | Jan 2021 | A1 |
20210027117 | McGavran et al. | Jan 2021 | A1 |
20210030276 | Li et al. | Feb 2021 | A1 |
20210034921 | Pinkovich et al. | Feb 2021 | A1 |
20210042575 | Firner | Feb 2021 | A1 |
20210042928 | Takeda et al. | Feb 2021 | A1 |
20210046954 | Haynes | Feb 2021 | A1 |
20210049378 | Gautam et al. | Feb 2021 | A1 |
20210049455 | Kursun | Feb 2021 | A1 |
20210049456 | Kursun | Feb 2021 | A1 |
20210049548 | Grisz et al. | Feb 2021 | A1 |
20210049700 | Nguyen et al. | Feb 2021 | A1 |
20210056114 | Price et al. | Feb 2021 | A1 |
20210056306 | Hu et al. | Feb 2021 | A1 |
20210056317 | Golov | Feb 2021 | A1 |
20210056420 | Konishi et al. | Feb 2021 | A1 |
20210056701 | Vranceanu et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
2019261735 | Jun 2020 | AU |
2019201716 | Oct 2020 | AU |
110599537 | Dec 2010 | CN |
102737236 | Oct 2012 | CN |
103366339 | Oct 2013 | CN |
104252626 | Dec 2014 | CN |
104835114 | Aug 2015 | CN |
103236037 | May 2016 | CN |
103500322 | Aug 2016 | CN |
106419893 | Feb 2017 | CN |
106504253 | Mar 2017 | CN |
107031600 | Aug 2017 | CN |
107169421 | Sep 2017 | CN |
107507134 | Dec 2017 | CN |
107810505 | Mar 2018 | CN |
107885214 | Apr 2018 | CN |
108122234 | Jun 2018 | CN |
107133943 | Jul 2018 | CN |
107368926 | Jul 2018 | CN |
108305299 | Jul 2018 | CN |
105318888 | Aug 2018 | CN |
108491889 | Sep 2018 | CN |
108537864 | Sep 2018 | CN |
108647591 | Oct 2018 | CN |
108710865 | Oct 2018 | CN |
105550701 | Nov 2018 | CN |
108764185 | Nov 2018 | CN |
108845574 | Nov 2018 | CN |
108898177 | Nov 2018 | CN |
109086867 | Dec 2018 | CN |
107103113 | Jan 2019 | CN |
109215067 | Jan 2019 | CN |
109359731 | Feb 2019 | CN |
109389207 | Feb 2019 | CN |
109389552 | Feb 2019 | CN |
106779060 | Mar 2019 | CN |
109579856 | Apr 2019 | CN |
109615073 | Apr 2019 | CN |
106156754 | May 2019 | CN |
106598226 | May 2019 | CN |
106650922 | May 2019 | CN |
109791626 | May 2019 | CN |
109901595 | Jun 2019 | CN |
109902732 | Jun 2019 | CN |
109934163 | Jun 2019 | CN |
109948428 | Jun 2019 | CN |
109949257 | Jun 2019 | CN |
109951710 | Jun 2019 | CN |
109975308 | Jul 2019 | CN |
109978132 | Jul 2019 | CN |
109978161 | Jul 2019 | CN |
110060202 | Jul 2019 | CN |
110069071 | Jul 2019 | CN |
110084086 | Aug 2019 | CN |
110096937 | Aug 2019 | CN |
110111340 | Aug 2019 | CN |
110135485 | Aug 2019 | CN |
110197270 | Sep 2019 | CN |
110310264 | Oct 2019 | CN |
110321965 | Oct 2019 | CN |
110334801 | Oct 2019 | CN |
110399875 | Nov 2019 | CN |
110414362 | Nov 2019 | CN |
110426051 | Nov 2019 | CN |
110473173 | Nov 2019 | CN |
110516665 | Nov 2019 | CN |
110543837 | Dec 2019 | CN |
110569899 | Dec 2019 | CN |
110599864 | Dec 2019 | CN |
110619282 | Dec 2019 | CN |
110619283 | Dec 2019 | CN |
110619330 | Dec 2019 | CN |
110659628 | Jan 2020 | CN |
110688992 | Jan 2020 | CN |
107742311 | Feb 2020 | CN |
110751280 | Feb 2020 | CN |
110826566 | Feb 2020 | CN |
107451659 | Apr 2020 | CN |
108111873 | Apr 2020 | CN |
110956185 | Apr 2020 | CN |
110966991 | Apr 2020 | CN |
111027549 | Apr 2020 | CN |
111027575 | Apr 2020 | CN |
111047225 | Apr 2020 | CN |
111126453 | May 2020 | CN |
111158355 | May 2020 | CN |
107729998 | Jun 2020 | CN |
108549934 | Jun 2020 | CN |
111275129 | Jun 2020 | CN |
111275618 | Jun 2020 | CN |
111326023 | Jun 2020 | CN |
111428943 | Jul 2020 | CN |
111444821 | Jul 2020 | CN |
111445420 | Jul 2020 | CN |
111461052 | Jul 2020 | CN |
111461053 | Jul 2020 | CN |
111461110 | Jul 2020 | CN |
110225341 | Aug 2020 | CN |
111307162 | Aug 2020 | CN |
111488770 | Aug 2020 | CN |
111539514 | Aug 2020 | CN |
111565318 | Aug 2020 | CN |
111582216 | Aug 2020 | CN |
111598095 | Aug 2020 | CN |
108229526 | Sep 2020 | CN |
111693972 | Sep 2020 | CN |
106558058 | Oct 2020 | CN |
107169560 | Oct 2020 | CN |
107622258 | Oct 2020 | CN |
111767801 | Oct 2020 | CN |
111768002 | Oct 2020 | CN |
111783545 | Oct 2020 | CN |
111783971 | Oct 2020 | CN |
111797657 | Oct 2020 | CN |
111814623 | Oct 2020 | CN |
111814902 | Oct 2020 | CN |
111860499 | Oct 2020 | CN |
111881856 | Nov 2020 | CN |
111882579 | Nov 2020 | CN |
111897639 | Nov 2020 | CN |
111898507 | Nov 2020 | CN |
111898523 | Nov 2020 | CN |
111899227 | Nov 2020 | CN |
112101175 | Dec 2020 | CN |
112101562 | Dec 2020 | CN |
112115953 | Dec 2020 | CN |
111062973 | Jan 2021 | CN |
111275080 | Jan 2021 | CN |
112183739 | Jan 2021 | CN |
112232497 | Jan 2021 | CN |
112288658 | Jan 2021 | CN |
112308095 | Feb 2021 | CN |
112308799 | Feb 2021 | CN |
112313663 | Feb 2021 | CN |
112329552 | Feb 2021 | CN |
112348783 | Feb 2021 | CN |
111899245 | Mar 2021 | CN |
202017102235 | May 2017 | DE |
202017102238 | May 2017 | DE |
102017116017 | Jan 2019 | DE |
102018130821 | Jun 2020 | DE |
102019008316 | Aug 2020 | DE |
1215626 | Sep 2008 | EP |
2228666 | Sep 2012 | EP |
242040881 | May 2013 | EP |
2723069 | Apr 2014 | EP |
2741253 | Jun 2014 | EP |
3115772 | Jan 2017 | EP |
261855981 | Aug 2017 | EP |
3285485 | Feb 2018 | EP |
2863633 | Feb 2019 | EP |
3113080 | May 2019 | EP |
3525132 | Aug 2019 | EP |
3531689 | Aug 2019 | EP |
3537340 | Sep 2019 | EP |
3543917 | Sep 2019 | EP |
3608840 | Feb 2020 | EP |
3657387 | May 2020 | EP |
2396750 | Jun 2020 | EP |
3664020 | Jun 2020 | EP |
3690712 | Aug 2020 | EP |
3690742 | Aug 2020 | EP |
3722992 | Oct 2020 | EP |
3690730 | Nov 2020 | EP |
3739486 | Nov 2020 | EP |
3501897 | Dec 2020 | EP |
3751455 | Dec 2020 | EP |
3783527 | Feb 2021 | EP |
2402572 | Aug 2005 | GB |
2548087 | Sep 2017 | GB |
2577485 | Apr 2020 | GB |
2517270 | Jun 2020 | GB |
2578262 | Aug 1998 | JP |
3941252 | Jul 2007 | JP |
4282583 | Jun 2009 | JP |
4300098 | Jul 2009 | JP |
2015004922 | Jan 2015 | JP |
5863536 | Feb 2016 | JP |
6044134 | Dec 2016 | JP |
2018-081404 | May 2018 | JP |
6525707 | Jun 2019 | JP |
2019101535 | Jun 2019 | JP |
2020101927 | Jul 2020 | JP |
2020173744 | Oct 2020 | JP |
100326702 | Feb 2002 | KR |
101082878 | Nov 2011 | KR |
101738422 | May 2017 | KR |
101969864 | Apr 2019 | KR |
101996167 | Jul 2019 | KR |
102022388 | Aug 2019 | KR |
102043143 | Nov 2019 | KR |
102095335 | Mar 2020 | KR |
102097120 | Apr 2020 | KR |
1020200085490 | Jul 2020 | KR |
102189262 | Dec 2020 | KR |
1020200142266 | Dec 2020 | KR |
200630819 | Sep 2006 | TW |
I294089 | Mar 2008 | TW |
I306207 | Feb 2009 | TW |
WO 02052835 | Jul 2002 | WO |
WO 16032398 | Mar 2016 | WO |
WO 16048108 | Mar 2016 | WO |
WO 16207875 | Dec 2016 | WO |
WO 17068692 | Apr 2017 | WO |
WO 17158622 | Sep 2017 | WO |
WO 18015811 | Jan 2018 | WO |
WO 19005547 | Jan 2019 | WO |
WO 19067695 | Apr 2019 | WO |
WO 19089339 | May 2019 | WO |
WO 19092456 | May 2019 | WO |
WO 19099622 | May 2019 | WO |
WO 19122952 | Jun 2019 | WO |
WO 19125191 | Jun 2019 | WO |
WO 19126755 | Jun 2019 | WO |
WO 19144575 | Aug 2019 | WO |
WO 19182782 | Sep 2019 | WO |
WO 19191578 | Oct 2019 | WO |
WO 19216938 | Nov 2019 | WO |
WO 19220436 | Nov 2019 | WO |
WO 20006154 | Jan 2020 | WO |
WO 20012756 | Jan 2020 | WO |
WO 20025696 | Feb 2020 | WO |
WO 20034663 | Feb 2020 | WO |
WO 20056157 | Mar 2020 | WO |
WO 20076356 | Apr 2020 | WO |
WO 20097221 | May 2020 | WO |
WO 20101246 | May 2020 | WO |
WO 20120050 | Jun 2020 | WO |
WO 20121973 | Jun 2020 | WO |
WO 20131140 | Jun 2020 | WO |
WO 20139181 | Jul 2020 | WO |
WO 20139355 | Jul 2020 | WO |
WO 20139357 | Jul 2020 | WO |
WO 20142193 | Jul 2020 | WO |
WO 20146445 | Jul 2020 | WO |
WO 20151329 | Jul 2020 | WO |
WO 20157761 | Aug 2020 | WO |
WO 20163455 | Aug 2020 | WO |
WO 20167667 | Aug 2020 | WO |
WO 20174262 | Sep 2020 | WO |
WO 20177583 | Sep 2020 | WO |
WO 20185233 | Sep 2020 | WO |
WO 20185234 | Sep 2020 | WO |
WO 20195658 | Oct 2020 | WO |
WO 20198189 | Oct 2020 | WO |
WO 20198779 | Oct 2020 | WO |
WO 20205597 | Oct 2020 | WO |
WO 20221200 | Nov 2020 | WO |
WO 20240284 | Dec 2020 | WO |
WO 20260020 | Dec 2020 | WO |
WO 20264010 | Dec 2020 | WO |
Entry |
---|
Uchida et al., 2017, Trends in research on convolutional neural networks, Institute of Electronics, Information and Communication Engineers Technical Research Report, 117(362):25-38. |
Blasinski et al., Jan. 2018, Optimizing image acquisition systems for autonomous driving, Proc. IS&T Int'l Symp. on Electronic Imaging: Photography, Mobile and Immersive Imaging, 30:161-1 161-7. |
Devries et al., Aug. 15, 2017, Improved regularization of convolutional neural networks with cutout, Cornell University Library 8 pp. |
Zhong et al., Aug. 16, 2017, Random erasing data augmentation, Cornell University Library, 10 pp. |
International Search Report and Written Opinion dated Jan. 21, 2020 in application No. OCT/US2019/0555683. |
Number | Date | Country | |
---|---|---|---|
20220108130 A1 | Apr 2022 | US |
Number | Date | Country | |
---|---|---|---|
62744534 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16598956 | Oct 2019 | US |
Child | 17644308 | US |