Systems and methods for training machine models with augmented data

Information

  • Patent Grant
  • 11893774
  • Patent Number
    11,893,774
  • Date Filed
    Tuesday, December 14, 2021
    2 years ago
  • Date Issued
    Tuesday, February 6, 2024
    9 months ago
  • CPC
    • G06V10/772
    • G06F18/213
    • G06F18/214
    • G06F18/2148
    • G06V10/774
    • G06V20/00
    • G06V20/56
  • Field of Search
    • CPC
    • G06V10/772
    • G06V10/774
    • G06V20/00
    • G06V20/56
    • G06F18/213
    • G06F18/214
    • G06F18/2148
  • International Classifications
    • G06V10/772
    • G06F18/214
    • G06F18/213
    • G06V10/774
    • G06V20/00
    • G06V20/56
    • Term Extension
      230
Abstract
Systems and methods for training machine models with augmented data. An example method includes identifying a set of images captured by a set of cameras while affixed to one or more image collection systems. For each image in the set of images, a training output for the image is identified. For one or more images in the set of images, an augmented image for a set of augmented images is generated. Generating an augmented image includes modifying the image with an image manipulation function that maintains camera properties of the image. The augmented training image is associated with the training output of the image. A set of parameters of the predictive computer model are trained to predict the training output based on an image training set including the images and the set of augmented images.
Description
BACKGROUND

Embodiments of the invention relate generally to systems and methods for training data in a machine learning environment, and more particularly to augmenting the training data by including additional data, such as sensor characteristics, in the training data set.


In typical machine learning applications, data may be augmented in various ways to avoid overfitting the model to the characteristics of the capture equipment used to obtain the training data. For example, in typical sets of images used for training computer models, the images may represent objects captured with many different capture environments having varying sensor characteristics with respect to the objects being captured. For example, such images may be captured by various sensor characteristics, such as various scales (e.g., significantly different distances within the image), with various focal lengths, by various lens types, with various pre- or post-processing, different software environments, sensor array hardware, and so forth. These sensors may also differ with respect to different extrinsic parameters, such as the position and orientation of the imaging sensors with respect to the environment as the image is captured. All of these different types of sensor characteristics can cause the captured images to present differently and variously throughout the different images in the image set and make it more difficult to properly train a computer model.


Many applications of neural networks learn from data captured in a variety of conditions and are deployed on a variety different sensor configurations (e.g. in an app that runs on multiple types of mobile phones). To account for differences in the sensors used to capture images, developers may augment the image training data with modifications such as flipping, rotating, or cropping the image, which generalize the developed model with respect to camera properties such as focal length, axis skew, position, and rotation.


To account for these variations and deploy the trained network on various sources, training data may be augmented or manipulated to increase robustness of the trained model. These approaches, however, typically prevent models from learning effectively for any particular camera configuration by applying transformations that modify camera properties in the augmented images.


SUMMARY

One embodiment is a method for training a set of parameters of a predictive computer model. This embodiment may include: identifying a set of images captured by a set of cameras while affixed to one or more image collection systems; for each image in the set of images, identifying a training output for the image; for one or more images in the set of images, generating an augmented image for a set of augmented images by: generating an augmented image for a set of augmented images by modifying the image with an image manipulation function that maintains camera properties of the image, and associating the augmented training image with the training output of the image; training the set of parameters of the predictive computer model to predict the training output based on an image training set including the images and the set of augmented images.


An additional embodiment may include a system having one or more processors and non-transitory computer storage media storing instructions that when executed by the one or more processors, cause the processors to perform operations comprising: identifying a set of images captured by a set of cameras while affixed to one or more image collection systems; for each image in the set of images, identifying a training output for the image; for one or more images in the set of images, generating an augmented image for a set of augmented images by: generating an augmented image for a set of augmented images by modifying the image with an image manipulation function that maintains camera properties of the image, and associating the augmented training image with the training output of the image; training the set of parameters of the predictive computer model to predict the training output based on an image training set including the images and the set of augmented images.


Another embodiment may include a non-transitory computer-readable medium having instructions for execution by a processor, the instructions when executed by the processor causing the processor to: identify a set of images captured by a set of cameras while affixed to one or more image collection systems; for each image in the set of images, identify a training output for the image; for one or more images in the set of images, generate an augmented image for a set of augmented images by: generate an augmented image for a set of augmented images by modifying the image with an image manipulation function that maintains camera properties of the image, and associate the augmented training image with the training output of the image; train the computer model to learn to predict the training output based on an image training set including the images and the set of augmented images.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is block diagram of an environment for computer model training and deployment according to one embodiment.



FIG. 2 illustrates example images captured with the same camera characteristics.



FIG. 3 is a block diagram of components of a model training system, according to one embodiment.



FIG. 4 is a data flow diagram showing an example of generating augmented images based on a labeled training image, according to one embodiment.





The figures depict various embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.


DETAILED DESCRIPTION

One embodiment is a system that trains a computer model with images which have been augmented to maintain the camera properties of the originally-captured images. These camera properties may include intrinsic or extrinsic properties of the camera. Such intrinsic properties may include characteristics of the sensor itself, such as dynamic range, field of view, focal length, and lens distortion. Extrinsic properties may describe the configuration of the camera with respect to the captured environment, such as the angle, scale, or pose of a camera.


These intrinsic and extrinsic properties may affect the view of the camera with respect to objects and other aspects captured in the image and artifacts and other effects, such as static objects appearing in view of the camera because of its positioning on a device or system. For example, a camera mounted on a vehicle may include, as a portion of its view, a hood of the car that appears across many images and for all cameras in that configuration mounted in the same way on the same model of car. As another example, these camera properties may also include reflections coming off objects within the view of the camera. The reflections may be one type of consistent characteristic that becomes included with many of the images captured by the camera.


By maintaining, saving, storing or using the camera properties of the images to train data models while still adding to the training data with augmented images, the resulting model may be useful across many different devices having the same camera properties. Moreover, the augmentation may provide generalization and greater robustness to the model prediction, particularly when images are clouded, occluded, or otherwise do not provide clear views of the detectable objects. These approaches may be particularly useful for object detection and in autonomous vehicles. This approach may also be beneficial for other situations in which the same camera configurations may be deployed to many devices. Since these devices may have a consistent set of sensors in a consistent orientation, the training data may be collected with a given configuration, a model may be trained with augmented data from the collected training data, and the trained model may be deployed to devices having the same configuration. Accordingly, these techniques avoid augmentation that creates unnecessary generalization in this context and permits generalization for other variables with some data augmentation.


To maintain camera properties, the image manipulation function used to generate an augmented image is a function that maintains the camera properties. For example, these manipulations may avoid affecting angle, scale, or pose of the camera with respect to the captured environment. In embodiments, no images are used in training that were augmented with image manipulation functions that affect camera properties. For example, image manipulation functions that may be used to maintain camera properties include cutout, hue/saturation/value jitter, salt and pepper, and domain transfer (e.g., modifying day to night). Those functions which may modify camera properties, and thus are not used on some embodiments, include cropping, padding, flipping (horizontal or vertical), or affine transformations (such as sheer, rotate, translate, and skew).


As a further example, the images may be augmented with a “cutout” function that removes a portion of the original image. The removed portion of the image may then be replaced with other image content, such as a specified color, blur, noise, or from another image. The number, size, region, and replacement content for cutouts may be varied and may be based on the label of the image (e.g., the region of interest in the image, or a bounding box for an object).


A computer model may thus be trained with the images and the augmented images and distributed to device having camera characteristics of the captured images to use the model in sensor analysis. In particular, this data augmentation and model training may be used for models trained to detect objects or object bounding boxes in images.



FIG. 1 is an environment for computer model training and deployment according to one embodiment. One or more image collection systems 140 capture images that may be used by the model training system in training a computer model, which may be deployed and used by a model application system. These systems are connected via a network 120, such as the internet, representing various wireless or wired communication links through which these devices communicate.


A model training system 130 trains a computer model having a set of trainable parameters for predicting an output given a set of inputs. The model training system 130 in this example typically trains models based on image inputs to generate an output predicting information about the image. For example, in various embodiments these outputs may identify objects in the image (identify objects, either by bounding box or by segmentation, may identify conditions of the image (e.g., time of day, weather) or other tags or descriptors of the image.


Although an image is used herein as an example type of sensor data for convenience, the augmentation and model development as described herein may be applied to a variety of types of sensors to augment training data captured from these sensors while maintaining sensor configuration characteristics.


The image collection system 140 has a set of sensors that capture information from the environment of the image collection system 140. Though one image collection system 140 is shown, many image collection systems 140 may capture images for the model training system 130. The sensors for the image collection system 140 have sensor characteristics that may be the same or substantially the same across the image collection systems 140. The image collection system in one embodiment is a vehicle or other system that moves in an environment and captures images of the environment with a camera. The image collection system 140 may be manually operated or may be operated be a partially- or fully-automated vehicle. Thus, as the image collection system 140 traverses the environment, the image collection system 140 may capture and transmit images of the environment to the model training system 130.


The model application system 110 is a system having a set of sensors having the same or substantially the same sensor characteristics as the image collection system. In some examples, the model application system 110 also serves as an image collection system 130 and provides captured sensor data (e.g., images) to the model training system 130 to use as further training data. The model application system 110 receives a trained model from the model training system 130 and uses the model with the data sensed by its sensors. Because images captured from image collection systems 140 and the model application system 110 have the same camera configuration, the model application system 110 may capture its environment in the same way and from the same perspective (or substantially similar) as the image collection systems. After applying the models, the model application system 110 may use the output of the models for various purposes. For example, when the model application system 110 is a vehicle, the model may predict the presence of objects in the image, which may be used by the model application system 110 as part of a safety system or as a part of an autonomous (or semi-autonomous) control system.



FIG. 2 illustrates example images captured with the same camera characteristics. In this example, image 200A is captured by a camera on an image collection system 130. Another image 200B may also be captured by an image collection system 130, which may be the same or may be a different image collection system 130. While capturing different environments and different objects within the environments, these images maintain camera properties with respect to the image capturing the environment. The camera properties refer to the configuration and orientation properties of the camera that affects how the environment appears in the camera. For example, these camera properties may include the angle, scale, and pose (e.g., viewing position) of the camera with respect to the environment. Modifying the angle, scale, or position of the camera, relative to the same environment in which the image is captured, causes the image of the environment to change. For example, a camera placed at a higher position will view an object from a different height and will show a different portion of that object than a lower position. Likewise, these images include consistent artifacts and effects in the image due to the camera configuration that are not part of the environment to be analyzed. For example, both image 200A and 200B include glare and other effects from a windshield, an object on the lower right side of the image occludes the environment, and a windshield occludes the bottom of the image. Accordingly, images captured from the same camera characteristics typically present the same artifacts, distortions, and capture the environment in the same way.



FIG. 3 shows components of the model training system 130, according to one embodiment. The model training system includes various modules and data stores for training a computer model. The model training system 130 trains models for use by the model application system 110 by augmenting images from the image collection system 140 to improve generalization of the model. The augmented images are generated with image manipulation functions that do not affect (e.g., that maintain) the camera configuration of the images. This permits more effective modeling while allowing generalization of model parameters that more selectively avoiding overfitting for the aspects of images that may differ across images, while allowing model parameters to more closely learn weights related to the consistent camera characteristics.


The model training system includes a data input module 310 that receives images from the image collection system 140. The data input module 310 may store these images in an image data store 350. The data input module 310 may receive images as generated or provided by the data collection system 140, or it may request images from the image collection system 140.


The labeling module 320 may identify or apply labels to the images in the image data 350. In some examples, the images may already have identified characteristics. The labels may also represent data that is to be predicted or output by a trained model. For example, a label may designate particular objects in an environment shown in the image, or may include a descriptor or “tag” associated with the image. Depending on the application of the model, the labels may represent this information in various ways. For example, an object may be associated with a bounding box within an image, or an object may be segmented from other parts of the image. The labeled images may thus represent the ground truth for which the model is trained. The images may be labeled by any suitable means, and may typically be by a supervised labeling process (e.g., labeled by users reviewing the images and designating labels for the images). These labels may then be associated with the images in the image data store 350.


The image augmentation module 330 may generate additional images based on the images captured by the image collection system 140. These images may be generated as a part of a training pipeline for the model training module 340, or these augmented images may be generated before initiating training in the model training module 340. The augmented images may be generated based on images captured by the image collection system 140.



FIG. 4 shows example generation of augmented images based on a labeled training image 400, according to one embodiment. The labeled training image may be an image captured by the image collection system 140. The training images 410 may include a training image 410A that is not augmented, having associated training output 420A that corresponds with the labeled data in the labeled training image 400.


The image augmentation module 330 generates augmented images by applying an image manipulation function to the labeled training image 400. The image manipulation function generates a modified version of the labeled training image 400 to vary the characteristics of the image for training the model. The image manipulation function used to generate the training images maintains the camera properties of the labeled training image 400. Thus, the manipulation function may maintain the scale, perspective, orientation, and other characteristics of the view of the environment that may be affected by the physical capture characteristics of the camera or the position of the camera when capturing the environment that may be consistent across various devices. Accordingly, the image manipulation functions may affect how viewable objects or other features of the environment are or how clearly these are seen in a scene, but may not affect the location or size of objects in the image. Example image manipulation functions that may be applied, which maintain camera characteristics, include cutout, jitter (e.g., for hue, saturation, or color value), salt and pepper (introducing black and white dots), blur, and domain transfer. More than one of these image manipulation functions may be applied in combination to generate an augmented image. Cutout refers to an image manipulation function that removes a portion of the image and replaces the removed portion with other image content. Domain transfer refers to an image manipulation function that modifies the image to correspond to another environmental condition in the image. For example, images during the day may be modified to approximate how the image may be seen at night, or an image taken in the sun may be modified to add rain or snow effects.


These augmented images may be associated with the same training output as the labeled training image 400. In the example shown in FIG. 4, the augmented image 410B is generated by applying a cutout to the labeled training image 400, and the augmented image 410B may be associated with training output 420B. Likewise to generate training image 410C, multiple cutouts are applied to modify portions of the image. In this example, the cutouts applied to generate training image 410C fill the cutout region of the image with different patterns.


In various embodiments, the cutouts may be applied with various parameters and configurations, which may vary based on the training image and the location of the training output in the image. Thus, the number, size, location, and replacement image content of the cutout may vary in different embodiments and based on the location of the training output. As examples, the cutout function may apply multiple cutouts of similar size, or may apply several cutouts of different, semi-randomized sizes within a range. By using multiple cutouts and varying the size, the cutouts may more closely simulate the effect of real-world obstructions (of various sizes) on viewing the objects and may prevent the trained model from learning to compensate for cutouts of any one particular size.


The range for the size of the cutouts may be based on a portion of the size of the object or other label within the image. For example, the cutout may be no more than 40% of the size of the object's bounding box in the image, or to be smaller than the smallest object's bounding box. This may ensure that a cutout does not completely obscure a target object, and therefore that the image will continue to include image data of the object that the model may learn from. The number of cutouts may also be randomized and selected from a distribution, such as a uniform, Gaussian, or exponential distribution.


In addition, the location of the cutouts may be selected based on the location of the objects in the image. This may provide some, but not excess overlap, with the bounding box. The intersection between the object and the cutout region may be measured by the portion of the object being replaced by the cutout, or may be measured by the intersection over union (IoU), which may be measured by an intersection of the object and the cutout region divided by the union of the area of the object and the cutout region. For example, the cutout region may be placed to have an intersection over union value within a range of 20% to 50%. By including some, but not an overwhelming amount of the object in the cutout, the cutouts may thus create more “challenging” examples that partially obscure the object without removing too much of the related image data. Similarly, the cutouts may also be selected to certain parts of the image, based on the expected view of the cameras in the image. For example, the cutout may mainly be located in the bottom half of the image or in the center of the image, because the bottom portion may typically include artifacts that are always present, while the center of the image may be a region of most interest (e.g., for a vehicle, is often the direction of travel of the vehicle).


The replacement image data for the cutout region may be a solid color (e.g., a constant) or may be another pattern, such as Gaussian noise. As another example, to represent occlusions or other obstructions, the cutout may be replaced with a patch of image data from another image having the same image type or label. Finally, the cutout may be blended with the regions near the cutout, for example with poisson blending. By using various blending approaches, such as a background patch or blending, these may ensure that the replacement data in the cutout is more difficult to distinguish from the environment, and thus provide a more similar example to real-world obstructions.


Though shown as a rectangular region in FIG. 4, the cutout applied in generating the augmented image may vary in different shapes in other embodiments. After generating the augmented images 410B, 410C and associating the augmented images with related training outputs 420B, 420C, the image augmentation module 330 may add the images to the image data store 350.


The model training module 340 trains a computer model based on the images captured by the image collection system 140 and the augmented images generated by the image augmentation module 330. These images may be used as an image training set for the model training. In one embodiment, the machine-learned models are neural network models such as feed-forward networks, convolutional neural networks (CNN), deep neural networks (DNN), recurrent neural networks (RNN), self-organizing maps (SOM), and the like, that are trained by the model training module 340 based on training data. After training, the computer model may be stored in the trained computer model store 370. A model receives the sensor data (e.g., an image) as an input and outputs an output prediction according to the training of the model. In training the model, the model learns (or “trains”) a set of parameters that predict the output based on the input images as evaluated by a loss function for the training data. That is, during training the training data is assessed according to a current set of parameters to generate a prediction. That prediction for the training inputs can be compared with the designated output (e.g., the label) to assess a loss (e.g., with a loss function) and the parameters may be revised via an optimization algorithm to optimize the set of parameters to reduce the loss function. Though termed “optimization,” these algorithms may reduce the loss with respect to a set of parameters, but may not be guaranteed to find the “optimal” value of parameters given a set of inputs. For example, a gradient descent optimization algorithm may find a local minima, rather than a global minima.


By training the computer models on augmented training data, the computer models can perform with improved accuracy when they are applied to sensor data from a physical sensor operating in an environment having the sensor characteristics of the captured data. Since the augmentation maintains these characteristics, these sensor characteristics (e.g., camera characteristics) are represented in the images used in training the data. In one embodiment, the training data does not include augmented images generated by image manipulation functions that modify the camera properties of the image, such as operations that crop, pad, flip (vertical or horizontal), or apply affine transformations (e.g., shear, rotation, translation, skew) to the image.


After training, the model distribution module 380 may distribute the trained model to systems to apply the trained model. In particular, the model distribution module 380 may send the trained model (or parameters thereof) to the model application system 110 for use in detecting characteristics of an image based on the sensors of the model application system 110. The predictions from the model may thus be used in operation of the model application system 110, for example in object detection and control of the model application system 110.


The foregoing description of the embodiments of the invention has been presented for the purpose of illustration; it is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above disclosure.


Some portions of this description describe the embodiments of the invention in terms of algorithms and symbolic representations of operations on information. These algorithmic descriptions and representations are commonly used by those skilled in the data processing arts to convey the substance of their work effectively to others skilled in the art. These operations, while described functionally, computationally, or logically, are understood to be implemented by computer programs or equivalent electrical circuits, microcode, or the like. Furthermore, it has also proven convenient at times, to refer to these arrangements of operations as modules, without loss of generality. The described operations and their associated modules may be embodied in software, firmware, hardware, or any combinations thereof.


Any of the steps, operations, or processes described herein may be performed or implemented with one or more hardware or software modules, alone or in combination with other devices. In one embodiment, a software module is implemented with a computer program product comprising a computer-readable medium containing computer program code, which can be executed by a computer processor for performing any or all of the steps, operations, or processes described.


Embodiments of the invention may also relate to an apparatus (e.g., a system) for performing the operations herein. This apparatus may be specially constructed for the required purposes, and/or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computer. The computing device may a system or device of one or more processors and/or computer systems. Such a computer program may be stored in a non-transitory, tangible computer readable storage medium, or any type of media suitable for storing electronic instructions, which may be coupled to a computer system bus. Furthermore, any computing systems referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.


Embodiments of the invention may also relate to a product that is produced by a computing process described herein. Such a product may comprise information resulting from a computing process, where the information is stored on a non-transitory, tangible computer readable storage medium and may include any embodiment of a computer program product or other data combination described herein.


Finally, the language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the invention be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments of the invention is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.

Claims
  • 1. A method for training a set of parameters of a predictive computer model, the method comprising: obtaining a plurality of images and associated training outputs, the images being captured by cameras of one or more vehicles;for an individual image of the plurality of images, generating an augmented image for the individual image based on modifying the individual image with an image manipulation function of one or more image manipulation functions which maintain camera properties of the individual image, such that angle, scale, and/or pose associated with the individual image is preserved, wherein the augmented training image is associated with the associated training output of the individual image, andwherein the one or more image manipulation functions include a cutout function which adjusts a portion of an image based on a region of interest, wherein the image is obtained via a particular camera, and wherein the region of interest corresponds to artifacts which are always present in images obtained via the particular camera; andtraining the predictive computer model based, at least, on the individual image and the augmented image, wherein the trained predictive computer model is configured to predict a presence of objects in input images for use in autonomous or semi-autonomous control of a particular vehicle.
  • 2. The method of claim 1, wherein the region of interest corresponds to a direction of travel.
  • 3. The method of claim 1, wherein the portion of the image partially overlaps with an object in the image, the cutout being a solid color and the cutout being blended with regions near the cutout.
  • 4. The method of claim 1, wherein the adjusted portion comprises replacement image data.
  • 5. The method of claim 4, wherein the replacement image data is a solid color or a pattern.
  • 6. The method of claim 1, wherein the one or more vehicles and the particular vehicle have at least one camera with a same configuration.
  • 7. The method of claim 6, wherein the same configuration indicates a same position and/or orientation with respect to the one or more vehicles and particular vehicle.
  • 8. A system comprising one or more processors and non-transitory computer storage media storing instructions that when executed by the one or more processors, cause the processors to: obtain a plurality of images and associated training outputs, the images being captured by cameras of one or more vehicles;for an individual image of the plurality of images, generate an augmented image for the individual image based on modifying the individual image with an image manipulation function of one or more image manipulation functions which maintain camera properties of the individual image, such that angle, scale, and/or pose associated with the individual image is preserved, wherein the augmented training image is associated with the associated training output of the individual image, andwherein the one or more image manipulation functions include a cutout function which adjusts a portion of an image based on a region of interest, wherein the portion of the image partially overlaps with an object in the image, the cutout being a solid color and the cutout being blended with regions near the cutout; andtrain the predictive computer model based, at least, on the individual image and the augmented image, wherein the trained predictive computer model is configured to predict a presence of objects in input images for use in autonomous or semi-autonomous control of a particular vehicle.
  • 9. The system of claim 8, wherein the region of interest corresponds to a direction of travel.
  • 10. The system of claim 8, wherein the portion of the image partially overlaps with an object in the image, the cutout being a solid color and the cutout being blended with regions near the cutout.
  • 11. The system of claim 8, wherein the adjusted portion comprises replacement image data comprising a solid color or a pattern.
  • 12. The system of claim 8, wherein the one or more vehicles and the particular vehicle have at least one camera with a same configuration.
  • 13. The system of claim 12, wherein the same configuration indicates a same position and/or orientation with respect to the one or more vehicles and particular vehicle.
  • 14. A non-transitory computer-readable medium having instructions for execution by a processor, the instructions when executed by the processor causing the processor to: obtain a plurality of images and associated training outputs, the images being captured by cameras of one or more vehicles;for an individual image of the plurality of images, generate an augmented image for the individual image based on modifying the individual image with an image manipulation function of one or more image manipulation functions which maintain camera properties of the individual image, such that angle, scale, and/or pose associated with the individual image is preserved, wherein the augmented training image is associated with the associated training output of the individual image, andwherein the one or more image manipulation functions include a cutout function which adjusts a portion of an image based on a region of interest, wherein the image is obtained via a particular camera, and wherein the region of interest corresponds to artifacts which are always present in images obtained via the particular camera; andtrain the predictive computer model based, at least, on the individual image and the augmented image, wherein the trained predictive computer model is configured to predict a presence of objects in input images for use in autonomous or semi-autonomous control of a particular vehicle.
  • 15. The computer-readable medium of claim 14, wherein the region of interest corresponds to a direction of travel.
  • 16. The computer-readable medium of claim 14, wherein the portion of the image partially overlaps with an object in the image, the cutout being a solid color and the cutout being blended with regions near the cutout.
  • 17. The computer-readable medium of claim 14, wherein the adjusted portion comprises replacement image data comprising a solid color or a pattern.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/598,956, filed Oct. 10, 2019 and entitled “SYSTEMS AND METHODS FOR TRAINING MACHINE MODELS WITH AUGMENTED DATA” which claims priority to U.S. Provisional Application No. 62/744,534, filed on Oct. 11, 2018 and entitled “TRAINING MACHINE MODELS WITH DATA AUGMENTATION THAT RETAINS SENSOR CHARACTERISTICS.” U.S. Prov. App. No. 62/744,534 is hereby incorporated herein by reference in its entirety. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference in their entirety under 37 CFR 1.57.

US Referenced Citations (589)
Number Name Date Kind
6882755 Silverstein et al. May 2005 B2
7209031 Nakai et al. Apr 2007 B2
7747070 Puri Jun 2010 B2
7904867 Burch et al. Mar 2011 B2
7974492 Nishijima Jul 2011 B2
8165380 Choi et al. Apr 2012 B2
8369633 Lu et al. Feb 2013 B2
8406515 Cheatle et al. Mar 2013 B2
8509478 Haas et al. Aug 2013 B2
8588470 Rodriguez et al. Nov 2013 B2
8744174 Hamada et al. Jun 2014 B2
8773498 Lindbergh Jul 2014 B2
8912476 Fogg et al. Dec 2014 B2
8913830 Sun et al. Dec 2014 B2
8928753 Han et al. Jan 2015 B2
8972095 Furuno et al. Mar 2015 B2
8976269 Duong Mar 2015 B2
9008422 Eid et al. Apr 2015 B2
9081385 Ferguson et al. Jul 2015 B1
9275289 Li et al. Mar 2016 B2
9586455 Sugal et al. Mar 2017 B2
9672437 McCarthy Jun 2017 B2
9710696 Wang et al. Jul 2017 B2
9738223 Zhang et al. Aug 2017 B2
9754154 Craig et al. Sep 2017 B2
9767369 Furman et al. Sep 2017 B2
9965865 Agrawal et al. May 2018 B1
10133273 Linke Nov 2018 B2
10140252 Fowers et al. Nov 2018 B2
10140544 Zhao et al. Nov 2018 B1
10146225 Ryan Dec 2018 B2
10152655 Krishnamurthy et al. Dec 2018 B2
10167800 Chung et al. Jan 2019 B1
10169680 Sachdeva et al. Jan 2019 B1
10192016 Ng et al. Jan 2019 B2
10216189 Haynes Feb 2019 B1
10228693 Micks et al. Mar 2019 B2
10242293 Shim et al. Mar 2019 B2
10248121 VandenBerg, III Apr 2019 B2
10262218 Lee et al. Apr 2019 B2
10282623 Ziyaee et al. May 2019 B1
10296828 Viswanathan May 2019 B2
10303961 Stoffel et al. May 2019 B1
10310087 Laddha et al. Jun 2019 B2
10311312 Yu et al. Jun 2019 B2
10318848 Dijkman et al. Jun 2019 B2
10325178 Tang et al. Jun 2019 B1
10331974 Zia et al. Jun 2019 B2
10338600 Yoon et al. Jul 2019 B2
10343607 Kumon et al. Jul 2019 B2
10359783 Williams et al. Jul 2019 B2
10366290 Wang et al. Jul 2019 B2
10372130 Kaushansky et al. Aug 2019 B1
10373019 Nariyambut Murali et al. Aug 2019 B2
10373026 Kim et al. Aug 2019 B1
10380741 Yedla et al. Aug 2019 B2
10394237 Xu et al. Aug 2019 B2
10395144 Zeng et al. Aug 2019 B2
10402646 Klaus Sep 2019 B2
10402986 Ray et al. Sep 2019 B2
10414395 Sapp et al. Sep 2019 B1
10423934 Zanghi et al. Sep 2019 B1
10436615 Agarwal et al. Oct 2019 B2
10452905 Segalovitz et al. Oct 2019 B2
10460053 Olson et al. Oct 2019 B2
10467459 Chen et al. Nov 2019 B2
10468008 Beckman et al. Nov 2019 B2
10468062 Levinson et al. Nov 2019 B1
10470510 Koh et al. Nov 2019 B1
10474160 Huang et al. Nov 2019 B2
10474161 Huang et al. Nov 2019 B2
10474928 Sivakumar et al. Nov 2019 B2
10489126 Kumar et al. Nov 2019 B2
10489972 Atsmon Nov 2019 B2
10503971 Dang et al. Dec 2019 B1
10514711 Bar-Nahum et al. Dec 2019 B2
10528824 Zou Jan 2020 B2
10529078 Abreu et al. Jan 2020 B2
10529088 Fine et al. Jan 2020 B2
10534854 Sharma et al. Jan 2020 B2
10535191 Sachdeva et al. Jan 2020 B2
10542930 Sanchez et al. Jan 2020 B1
10546197 Shrestha et al. Jan 2020 B2
10546217 Albright et al. Jan 2020 B2
10552682 Jonsson et al. Feb 2020 B2
10559386 Neuman Feb 2020 B1
10565475 Lecue et al. Feb 2020 B2
10567674 Kirsch Feb 2020 B2
10568570 Sherpa et al. Feb 2020 B1
10572717 Zhu et al. Feb 2020 B1
10574905 Srikanth et al. Feb 2020 B2
10579058 Oh et al. Mar 2020 B2
10579063 Haynes et al. Mar 2020 B2
10579897 Redmon et al. Mar 2020 B2
10586280 McKenna et al. Mar 2020 B2
10591914 Palanisamy et al. Mar 2020 B2
10592785 Zhu et al. Mar 2020 B2
10599701 Liu Mar 2020 B2
10599930 Lee et al. Mar 2020 B2
10599958 He et al. Mar 2020 B2
10606990 Tuli et al. Mar 2020 B2
10609434 Singhal et al. Mar 2020 B2
10614344 Anthony et al. Apr 2020 B2
10621513 Deshpande et al. Apr 2020 B2
10627818 Sapp et al. Apr 2020 B2
10628432 Guo et al. Apr 2020 B2
10628686 Ogale et al. Apr 2020 B2
10628688 Kim et al. Apr 2020 B1
10629080 Kazemi et al. Apr 2020 B2
10636161 Uchigaito Apr 2020 B2
10636169 Estrada et al. Apr 2020 B2
10642275 Silva et al. May 2020 B2
10645344 Marman et al. May 2020 B2
10649464 Gray May 2020 B2
10650071 Asgekar et al. May 2020 B2
10652565 Zhang et al. May 2020 B1
10656657 Djuric et al. May 2020 B2
10657391 Chen et al. May 2020 B2
10657418 Marder et al. May 2020 B2
10657934 Kolen et al. May 2020 B1
10661902 Tavshikar May 2020 B1
10664750 Greene May 2020 B2
10671082 Huang et al. Jun 2020 B2
10671886 Price et al. Jun 2020 B2
10678244 Iandola et al. Jun 2020 B2
10678839 Gordon et al. Jun 2020 B2
10678997 Ahuja et al. Jun 2020 B2
10679129 Baker Jun 2020 B2
10685159 Su et al. Jun 2020 B2
10685188 Zhang et al. Jun 2020 B1
10692000 Surazhsky et al. Jun 2020 B2
10692242 Morrison et al. Jun 2020 B1
10693740 Coccia et al. Jun 2020 B2
10698868 Guggilla et al. Jun 2020 B2
10699119 Lo et al. Jun 2020 B2
10699140 Kench et al. Jun 2020 B2
10699477 Levinson et al. Jun 2020 B2
10713502 Tiziani Jul 2020 B2
10719759 Kutliroff Jul 2020 B2
10725475 Yang et al. Jul 2020 B2
10726264 Sawhney et al. Jul 2020 B2
10726279 Kim et al. Jul 2020 B1
10726374 Engineer et al. Jul 2020 B1
10732261 Wang et al. Aug 2020 B1
10733262 Miller et al. Aug 2020 B2
10733482 Lee et al. Aug 2020 B1
10733638 Jain et al. Aug 2020 B1
10733755 Liao et al. Aug 2020 B2
10733876 Moura et al. Aug 2020 B2
10740563 Dugan Aug 2020 B2
10740914 Xiao et al. Aug 2020 B2
10748062 Rippel et al. Aug 2020 B2
10748247 Paluri Aug 2020 B2
10751879 Li et al. Aug 2020 B2
10755112 Mabuchi Aug 2020 B2
10755575 Johnston et al. Aug 2020 B2
10757330 Ashrafi Aug 2020 B2
10762396 Vallespi et al. Sep 2020 B2
10768628 Martin et al. Sep 2020 B2
10768629 Song et al. Sep 2020 B2
10769446 Chang et al. Sep 2020 B2
10769483 Nirenberg et al. Sep 2020 B2
10769493 Yu et al. Sep 2020 B2
10769494 Xiao et al. Sep 2020 B2
10769525 Redding et al. Sep 2020 B2
10776626 Lin et al. Sep 2020 B1
10776673 Kim et al. Sep 2020 B2
10776939 Ma et al. Sep 2020 B2
10779760 Lee et al. Sep 2020 B2
10783381 Yu et al. Sep 2020 B2
10783454 Shoaib et al. Sep 2020 B2
10789402 Vemuri et al. Sep 2020 B1
10789544 Fiedel et al. Sep 2020 B2
10790919 Kolen et al. Sep 2020 B1
10796221 Zhang et al. Oct 2020 B2
10796355 Price et al. Oct 2020 B1
10796423 Goja Oct 2020 B2
10798368 Briggs et al. Oct 2020 B2
10803325 Bai et al. Oct 2020 B2
10803328 Bai et al. Oct 2020 B1
10803743 Abari et al. Oct 2020 B2
10805629 Liu et al. Oct 2020 B2
10809730 Chintakindi Oct 2020 B2
10810445 Kangaspunta Oct 2020 B1
10816346 Wheeler et al. Oct 2020 B2
10816992 Chen Oct 2020 B2
10817731 Vallespi et al. Oct 2020 B2
10817732 Porter et al. Oct 2020 B2
10819923 McCauley et al. Oct 2020 B1
10824122 Mummadi et al. Nov 2020 B2
10824862 Qi et al. Nov 2020 B2
10828790 Nemallan Nov 2020 B2
10832057 Chan et al. Nov 2020 B2
10832093 Taralova et al. Nov 2020 B1
10832414 Pfeiffer Nov 2020 B2
10832418 Karasev et al. Nov 2020 B1
10833785 O'Shea et al. Nov 2020 B1
10836379 Xiao et al. Nov 2020 B2
10838936 Cohen Nov 2020 B2
10839230 Charette et al. Nov 2020 B2
10839578 Coppersmith et al. Nov 2020 B2
10843628 Kawamoto et al. Nov 2020 B2
10845820 Wheeler Nov 2020 B2
10845943 Ansari et al. Nov 2020 B1
10846831 Raduta Nov 2020 B2
10846888 Kaplanyan et al. Nov 2020 B2
10853670 Sholingar et al. Dec 2020 B2
10853739 Truong et al. Dec 2020 B2
10860919 Kanazawa et al. Dec 2020 B2
10860924 Burger Dec 2020 B2
10867444 Russell et al. Dec 2020 B2
10871444 Al et al. Dec 2020 B2
10871782 Milstein et al. Dec 2020 B2
10872204 Zhu et al. Dec 2020 B2
10872254 Mangla et al. Dec 2020 B2
10872326 Garner Dec 2020 B2
10872531 Liu et al. Dec 2020 B2
10885083 Moeller-Bertram et al. Jan 2021 B2
10887433 Fu et al. Jan 2021 B2
10890898 Akella et al. Jan 2021 B2
10891715 Li Jan 2021 B2
10891735 Yang et al. Jan 2021 B2
10893070 Wang et al. Jan 2021 B2
10893107 Callari et al. Jan 2021 B1
10896763 Kempanna et al. Jan 2021 B2
10901416 Khanna et al. Jan 2021 B2
10901508 Laszlo et al. Jan 2021 B2
10902551 Mellado et al. Jan 2021 B1
10908068 Amer et al. Feb 2021 B2
10908606 Stein et al. Feb 2021 B2
10909368 Guo et al. Feb 2021 B2
10909453 Myers et al. Feb 2021 B1
10915783 Hallman et al. Feb 2021 B1
10917522 Segalis et al. Feb 2021 B2
10921817 Kangaspunta Feb 2021 B1
10922578 Banerjee et al. Feb 2021 B2
10924661 Vasconcelos et al. Feb 2021 B2
10928508 Swaminathan Feb 2021 B2
10929757 Baker et al. Feb 2021 B2
10930065 Grant et al. Feb 2021 B2
10936908 Ho et al. Mar 2021 B1
10937186 Wang et al. Mar 2021 B2
10943101 Agarwal et al. Mar 2021 B2
10943132 Wang et al. Mar 2021 B2
10943355 Fagg et al. Mar 2021 B2
11025093 Cooper et al. Dec 2021 B2
20030035481 Hahm Feb 2003 A1
20050162445 Sheasby et al. Jul 2005 A1
20060072847 Chor et al. Apr 2006 A1
20060224533 Thaler Oct 2006 A1
20060280364 Ma et al. Dec 2006 A1
20090016571 Tijerina et al. Jan 2009 A1
20100118157 Kameyama May 2010 A1
20120109915 Kamekawa May 2012 A1
20120110491 Cheung May 2012 A1
20120134595 Fonseca et al. May 2012 A1
20150104102 Carreira et al. Apr 2015 A1
20160132786 Balan et al. May 2016 A1
20160328856 Mannino et al. Nov 2016 A1
20170011281 Dihkman et al. Jan 2017 A1
20170158134 Shigemura Jun 2017 A1
20170206434 Nariyambut et al. Jul 2017 A1
20180012411 Richey et al. Jan 2018 A1
20180018590 Szeto et al. Jan 2018 A1
20180039853 Liu et al. Feb 2018 A1
20180067489 Oder et al. Mar 2018 A1
20180068459 Zhang et al. Mar 2018 A1
20180068540 Romanenko et al. Mar 2018 A1
20180074506 Branson Mar 2018 A1
20180121762 Han et al. May 2018 A1
20180150081 Gross et al. May 2018 A1
20180150740 Wang et al. May 2018 A1
20180211403 Hotson et al. Jul 2018 A1
20180308012 Mummadi et al. Oct 2018 A1
20180314878 Lee et al. Nov 2018 A1
20180357511 Misra et al. Dec 2018 A1
20180374105 Azout et al. Dec 2018 A1
20190023277 Roger et al. Jan 2019 A1
20190025773 Yang et al. Jan 2019 A1
20190042894 Anderson Feb 2019 A1
20190042919 Peysakhovich et al. Feb 2019 A1
20190042944 Nair et al. Feb 2019 A1
20190042948 Lee et al. Feb 2019 A1
20190057314 Julian et al. Feb 2019 A1
20190065637 Bogdoll et al. Feb 2019 A1
20190072978 Levi Mar 2019 A1
20190079526 Vallespi et al. Mar 2019 A1
20190080602 Rice et al. Mar 2019 A1
20190095780 Zhong et al. Mar 2019 A1
20190095946 Azout et al. Mar 2019 A1
20190101914 Coleman et al. Apr 2019 A1
20190108417 Talagala et al. Apr 2019 A1
20190122111 Min et al. Apr 2019 A1
20190130255 Yim et al. May 2019 A1
20190145765 Luo et al. May 2019 A1
20190146497 Urtasun et al. May 2019 A1
20190147112 Gordon May 2019 A1
20190147250 Zhang et al. May 2019 A1
20190147254 Bai et al. May 2019 A1
20190147255 Homayounfar et al. May 2019 A1
20190147335 Wang et al. May 2019 A1
20190147372 Luo et al. May 2019 A1
20190158784 Ahn et al. May 2019 A1
20190180154 Orlov et al. Jun 2019 A1
20190185010 Ganguli et al. Jun 2019 A1
20190189251 Horiuchi et al. Jun 2019 A1
20190197357 Anderson et al. Jun 2019 A1
20190204842 Jafari et al. Jul 2019 A1
20190205402 Sernau et al. Jul 2019 A1
20190205667 Avidan et al. Jul 2019 A1
20190217791 Bradley et al. Jul 2019 A1
20190227562 Mohammadiha et al. Jul 2019 A1
20190228037 Nicol et al. Jul 2019 A1
20190230282 Sypitkowski et al. Jul 2019 A1
20190235499 Kazemi et al. Aug 2019 A1
20190236437 Shin et al. Aug 2019 A1
20190243371 Nister et al. Aug 2019 A1
20190244138 Bhowmick et al. Aug 2019 A1
20190250622 Nister et al. Aug 2019 A1
20190250626 Ghafarianzadeh et al. Aug 2019 A1
20190250640 O'Flaherty et al. Aug 2019 A1
20190258878 Koivisto et al. Aug 2019 A1
20190266418 Xu et al. Aug 2019 A1
20190266610 Ghatage et al. Aug 2019 A1
20190272446 Kangaspunta et al. Sep 2019 A1
20190276041 Choi et al. Sep 2019 A1
20190279004 Kwon et al. Sep 2019 A1
20190286652 Habbecke et al. Sep 2019 A1
20190286972 El Husseini et al. Sep 2019 A1
20190287028 St Amant et al. Sep 2019 A1
20190289281 Badrinarayanan et al. Sep 2019 A1
20190294177 Kwon et al. Sep 2019 A1
20190294975 Sachs Sep 2019 A1
20190311290 Huang et al. Oct 2019 A1
20190318099 Carvalho et al. Oct 2019 A1
20190325088 Dubey et al. Oct 2019 A1
20190325266 Klepper et al. Oct 2019 A1
20190325269 Bagherinezhad et al. Oct 2019 A1
20190325580 Lukac et al. Oct 2019 A1
20190325595 Stein et al. Oct 2019 A1
20190329790 Nandakumar et al. Oct 2019 A1
20190332875 Vallespi-Gonzalez et al. Oct 2019 A1
20190333232 Vallespi-Gonzalez et al. Oct 2019 A1
20190336063 Dascalu Nov 2019 A1
20190339989 Liang et al. Nov 2019 A1
20190340462 Pao et al. Nov 2019 A1
20190340492 Burger et al. Nov 2019 A1
20190340499 Burger et al. Nov 2019 A1
20190347501 Kim et al. Nov 2019 A1
20190349571 Herman et al. Nov 2019 A1
20190354782 Kee et al. Nov 2019 A1
20190354786 Lee et al. Nov 2019 A1
20190354808 Park et al. Nov 2019 A1
20190354817 Shlens et al. Nov 2019 A1
20190354850 Watson et al. Nov 2019 A1
20190370398 He et al. Dec 2019 A1
20190370575 Nandakumar et al. Dec 2019 A1
20190370935 Chang et al. Dec 2019 A1
20190373322 Rojas-Echenique et al. Dec 2019 A1
20190377345 Bachrach et al. Dec 2019 A1
20190377965 Totolos et al. Dec 2019 A1
20190378049 Widmann et al. Dec 2019 A1
20190378051 Widmann et al. Dec 2019 A1
20190382007 Casas et al. Dec 2019 A1
20190384303 Muller et al. Dec 2019 A1
20190384304 Towal et al. Dec 2019 A1
20190384309 Silva et al. Dec 2019 A1
20190384994 Frossard et al. Dec 2019 A1
20190385048 Cassidy et al. Dec 2019 A1
20190385360 Yang et al. Dec 2019 A1
20200004259 Gulino et al. Jan 2020 A1
20200004351 Marchant et al. Jan 2020 A1
20200012936 Lee et al. Jan 2020 A1
20200017117 Milton Jan 2020 A1
20200025931 Liang et al. Jan 2020 A1
20200026282 Choe et al. Jan 2020 A1
20200026283 Barnes et al. Jan 2020 A1
20200026992 Zhang et al. Jan 2020 A1
20200027210 Haemel et al. Jan 2020 A1
20200033858 Xiao Jan 2020 A1
20200033865 Mellinger et al. Jan 2020 A1
20200034665 Ghanta et al. Jan 2020 A1
20200034710 Sidhu et al. Jan 2020 A1
20200036948 Song Jan 2020 A1
20200039520 Misu et al. Feb 2020 A1
20200051550 Baker Feb 2020 A1
20200060757 Ben-Haim et al. Feb 2020 A1
20200065711 Clément et al. Feb 2020 A1
20200065879 Hu et al. Feb 2020 A1
20200069973 Lou et al. Mar 2020 A1
20200073385 Jobanputra et al. Mar 2020 A1
20200074230 Englard et al. Mar 2020 A1
20200086880 Poeppel et al. Mar 2020 A1
20200089243 Poeppel et al. Mar 2020 A1
20200089969 Lakshmi et al. Mar 2020 A1
20200090056 Singhal et al. Mar 2020 A1
20200097841 Petousis et al. Mar 2020 A1
20200098095 Borcs et al. Mar 2020 A1
20200103894 Cella et al. Apr 2020 A1
20200104705 Bhowmick et al. Apr 2020 A1
20200110416 Hong et al. Apr 2020 A1
20200117180 Cella et al. Apr 2020 A1
20200117889 Laput et al. Apr 2020 A1
20200117916 Liu Apr 2020 A1
20200117917 Yoo Apr 2020 A1
20200118035 Asawa et al. Apr 2020 A1
20200125844 She et al. Apr 2020 A1
20200125845 Hess et al. Apr 2020 A1
20200126129 Lkhamsuren et al. Apr 2020 A1
20200134427 Oh et al. Apr 2020 A1
20200134461 Chai et al. Apr 2020 A1
20200134466 Weintraub et al. Apr 2020 A1
20200134848 El-Khamy et al. Apr 2020 A1
20200143231 Fusi et al. May 2020 A1
20200143279 West et al. May 2020 A1
20200148201 King et al. May 2020 A1
20200149898 Felip et al. May 2020 A1
20200151201 Chandrasekhar et al. May 2020 A1
20200151619 Mopur et al. May 2020 A1
20200151692 Gao et al. May 2020 A1
20200158822 Owens et al. May 2020 A1
20200158869 Amirloo et al. May 2020 A1
20200159225 Zeng et al. May 2020 A1
20200160064 Wang et al. May 2020 A1
20200160104 Urtasun et al. May 2020 A1
20200160117 Urtasun et al. May 2020 A1
20200160178 Kar et al. May 2020 A1
20200160532 Urtasun et al. May 2020 A1
20200160558 Urtasun et al. May 2020 A1
20200160559 Urtasun et al. May 2020 A1
20200160598 Manivasagam et al. May 2020 A1
20200162489 Bar-Nahum et al. May 2020 A1
20200167438 Herring May 2020 A1
20200167554 Wang et al. May 2020 A1
20200174481 Van Heukelom et al. Jun 2020 A1
20200175326 Shen et al. Jun 2020 A1
20200175354 Volodarskiy et al. Jun 2020 A1
20200175371 Kursun Jun 2020 A1
20200175401 Shen Jun 2020 A1
20200183482 Sebot et al. Jun 2020 A1
20200184250 Oko Jun 2020 A1
20200184333 Oh Jun 2020 A1
20200192389 ReMine et al. Jun 2020 A1
20200193313 Ghanta et al. Jun 2020 A1
20200193328 Guestrin et al. Jun 2020 A1
20200202136 Shrestha et al. Jun 2020 A1
20200202196 Guo et al. Jun 2020 A1
20200202216 Martinez-Canales Jun 2020 A1
20200209857 Djuric et al. Jul 2020 A1
20200209867 Valois et al. Jul 2020 A1
20200209874 Chen et al. Jul 2020 A1
20200210717 Hou et al. Jul 2020 A1
20200210769 Hou et al. Jul 2020 A1
20200210777 Valois et al. Jul 2020 A1
20200216064 du Toit et al. Jul 2020 A1
20200218722 Mai et al. Jul 2020 A1
20200218979 Kwon et al. Jul 2020 A1
20200223434 Campos et al. Jul 2020 A1
20200225758 Tang et al. Jul 2020 A1
20200226377 Campos et al. Jul 2020 A1
20200226430 Ahuja et al. Jul 2020 A1
20200238998 Dasalukunte et al. Jul 2020 A1
20200242381 Chao et al. Jul 2020 A1
20200242408 Kim et al. Jul 2020 A1
20200242511 Kale et al. Jul 2020 A1
20200245869 Sivan et al. Aug 2020 A1
20200249685 Elluswamy et al. Aug 2020 A1
20200250456 Wang et al. Aug 2020 A1
20200250515 Rifkin et al. Aug 2020 A1
20200250874 Assouline et al. Aug 2020 A1
20200257301 Weiser et al. Aug 2020 A1
20200257306 Nisenzon Aug 2020 A1
20200258057 Farahat et al. Aug 2020 A1
20200265247 Musk et al. Aug 2020 A1
20200272160 Djuric et al. Aug 2020 A1
20200272162 Hasselgren et al. Aug 2020 A1
20200272859 Iashyn et al. Aug 2020 A1
20200273231 Schied et al. Aug 2020 A1
20200279354 Klaiman Sep 2020 A1
20200279364 Sarkisian et al. Sep 2020 A1
20200279371 Wenzel et al. Sep 2020 A1
20200285464 Brebner Sep 2020 A1
20200286256 Houts et al. Sep 2020 A1
20200293786 Jia et al. Sep 2020 A1
20200293796 Sajjadi et al. Sep 2020 A1
20200293828 Wang et al. Sep 2020 A1
20200293905 Huang et al. Sep 2020 A1
20200294162 Shah Sep 2020 A1
20200294257 Yoo et al. Sep 2020 A1
20200294310 Lee et al. Sep 2020 A1
20200297237 Tamersoy et al. Sep 2020 A1
20200298891 Liang et al. Sep 2020 A1
20200301799 Manivasagam et al. Sep 2020 A1
20200302276 Yang et al. Sep 2020 A1
20200302291 Hong Sep 2020 A1
20200302627 Duggal et al. Sep 2020 A1
20200302662 Homayounfar et al. Sep 2020 A1
20200304441 Bradley et al. Sep 2020 A1
20200306640 Kolen et al. Oct 2020 A1
20200307562 Ghafarianzadeh et al. Oct 2020 A1
20200307563 Ghafarianzadeh et al. Oct 2020 A1
20200309536 Omari et al. Oct 2020 A1
20200309923 Bhaskaran et al. Oct 2020 A1
20200310442 Halder et al. Oct 2020 A1
20200311601 Robinson et al. Oct 2020 A1
20200312003 Borovikov et al. Oct 2020 A1
20200315708 Mosnier et al. Oct 2020 A1
20200320132 Neumann Oct 2020 A1
20200324073 Rajan et al. Oct 2020 A1
20200327192 Hackman et al. Oct 2020 A1
20200327443 Van et al. Oct 2020 A1
20200327449 Tiwari et al. Oct 2020 A1
20200327662 Liu et al. Oct 2020 A1
20200327667 Arbel et al. Oct 2020 A1
20200331476 Chen et al. Oct 2020 A1
20200334416 Vianu et al. Oct 2020 A1
20200334495 Al et al. Oct 2020 A1
20200334501 Lin et al. Oct 2020 A1
20200334551 Javidi et al. Oct 2020 A1
20200334574 Ishida Oct 2020 A1
20200337648 Saripalli et al. Oct 2020 A1
20200341466 Pham et al. Oct 2020 A1
20200342350 Madar et al. Oct 2020 A1
20200342548 Mazed et al. Oct 2020 A1
20200342652 Rowell et al. Oct 2020 A1
20200348909 Das Sarma et al. Nov 2020 A1
20200350063 Thornton et al. Nov 2020 A1
20200351438 Dewhurst et al. Nov 2020 A1
20200356107 Wells Nov 2020 A1
20200356790 Jaipuria et al. Nov 2020 A1
20200356864 Neumann Nov 2020 A1
20200356905 Luk et al. Nov 2020 A1
20200361083 Mousavian et al. Nov 2020 A1
20200361485 Zhu et al. Nov 2020 A1
20200364481 Kornienko et al. Nov 2020 A1
20200364508 Gurel et al. Nov 2020 A1
20200364540 Elsayed et al. Nov 2020 A1
20200364746 Longano et al. Nov 2020 A1
20200364953 Simoudis Nov 2020 A1
20200372362 Kim Nov 2020 A1
20200372402 Kursun et al. Nov 2020 A1
20200380362 Cao et al. Dec 2020 A1
20200380383 Kwong et al. Dec 2020 A1
20200393841 Frisbie et al. Dec 2020 A1
20200394421 Yu et al. Dec 2020 A1
20200394457 Brady Dec 2020 A1
20200394495 Moudgill et al. Dec 2020 A1
20200394813 Theverapperuma et al. Dec 2020 A1
20200396394 Zlokolica et al. Dec 2020 A1
20200398855 Thompson Dec 2020 A1
20200401850 Bazarsky et al. Dec 2020 A1
20200401886 Deng et al. Dec 2020 A1
20200402155 Kurian et al. Dec 2020 A1
20200402226 Peng Dec 2020 A1
20200410012 Moon et al. Dec 2020 A1
20200410224 Goel Dec 2020 A1
20200410254 Pham et al. Dec 2020 A1
20200410288 Capota et al. Dec 2020 A1
20200410751 Omari et al. Dec 2020 A1
20210004014 Sivakumar Jan 2021 A1
20210004580 Sundararaman et al. Jan 2021 A1
20210004611 Garimella et al. Jan 2021 A1
20210004663 Park et al. Jan 2021 A1
20210006835 Slattery et al. Jan 2021 A1
20210011908 Hayes et al. Jan 2021 A1
20210012116 Urtasun et al. Jan 2021 A1
20210012210 Sikka et al. Jan 2021 A1
20210012230 Hayes et al. Jan 2021 A1
20210012239 Arzani et al. Jan 2021 A1
20210015240 Elfakhri et al. Jan 2021 A1
20210019215 Neeter Jan 2021 A1
20210026360 Luo Jan 2021 A1
20210027112 Brewington et al. Jan 2021 A1
20210027117 McGavran et al. Jan 2021 A1
20210030276 Li et al. Feb 2021 A1
20210034921 Pinkovich et al. Feb 2021 A1
20210042575 Firner Feb 2021 A1
20210042928 Takeda et al. Feb 2021 A1
20210046954 Haynes Feb 2021 A1
20210049378 Gautam et al. Feb 2021 A1
20210049455 Kursun Feb 2021 A1
20210049456 Kursun Feb 2021 A1
20210049548 Grisz et al. Feb 2021 A1
20210049700 Nguyen et al. Feb 2021 A1
20210056114 Price et al. Feb 2021 A1
20210056306 Hu et al. Feb 2021 A1
20210056317 Golov Feb 2021 A1
20210056420 Konishi et al. Feb 2021 A1
20210056701 Vranceanu et al. Feb 2021 A1
Foreign Referenced Citations (251)
Number Date Country
2019261735 Jun 2020 AU
2019201716 Oct 2020 AU
110599537 Dec 2010 CN
102737236 Oct 2012 CN
103366339 Oct 2013 CN
104252626 Dec 2014 CN
104835114 Aug 2015 CN
103236037 May 2016 CN
103500322 Aug 2016 CN
106419893 Feb 2017 CN
106504253 Mar 2017 CN
107031600 Aug 2017 CN
107169421 Sep 2017 CN
107507134 Dec 2017 CN
107810505 Mar 2018 CN
107885214 Apr 2018 CN
108122234 Jun 2018 CN
107133943 Jul 2018 CN
107368926 Jul 2018 CN
108305299 Jul 2018 CN
105318888 Aug 2018 CN
108491889 Sep 2018 CN
108537864 Sep 2018 CN
108647591 Oct 2018 CN
108710865 Oct 2018 CN
105550701 Nov 2018 CN
108764185 Nov 2018 CN
108845574 Nov 2018 CN
108898177 Nov 2018 CN
109086867 Dec 2018 CN
107103113 Jan 2019 CN
109215067 Jan 2019 CN
109359731 Feb 2019 CN
109389207 Feb 2019 CN
109389552 Feb 2019 CN
106779060 Mar 2019 CN
109579856 Apr 2019 CN
109615073 Apr 2019 CN
106156754 May 2019 CN
106598226 May 2019 CN
106650922 May 2019 CN
109791626 May 2019 CN
109901595 Jun 2019 CN
109902732 Jun 2019 CN
109934163 Jun 2019 CN
109948428 Jun 2019 CN
109949257 Jun 2019 CN
109951710 Jun 2019 CN
109975308 Jul 2019 CN
109978132 Jul 2019 CN
109978161 Jul 2019 CN
110060202 Jul 2019 CN
110069071 Jul 2019 CN
110084086 Aug 2019 CN
110096937 Aug 2019 CN
110111340 Aug 2019 CN
110135485 Aug 2019 CN
110197270 Sep 2019 CN
110310264 Oct 2019 CN
110321965 Oct 2019 CN
110334801 Oct 2019 CN
110399875 Nov 2019 CN
110414362 Nov 2019 CN
110426051 Nov 2019 CN
110473173 Nov 2019 CN
110516665 Nov 2019 CN
110543837 Dec 2019 CN
110569899 Dec 2019 CN
110599864 Dec 2019 CN
110619282 Dec 2019 CN
110619283 Dec 2019 CN
110619330 Dec 2019 CN
110659628 Jan 2020 CN
110688992 Jan 2020 CN
107742311 Feb 2020 CN
110751280 Feb 2020 CN
110826566 Feb 2020 CN
107451659 Apr 2020 CN
108111873 Apr 2020 CN
110956185 Apr 2020 CN
110966991 Apr 2020 CN
111027549 Apr 2020 CN
111027575 Apr 2020 CN
111047225 Apr 2020 CN
111126453 May 2020 CN
111158355 May 2020 CN
107729998 Jun 2020 CN
108549934 Jun 2020 CN
111275129 Jun 2020 CN
111275618 Jun 2020 CN
111326023 Jun 2020 CN
111428943 Jul 2020 CN
111444821 Jul 2020 CN
111445420 Jul 2020 CN
111461052 Jul 2020 CN
111461053 Jul 2020 CN
111461110 Jul 2020 CN
110225341 Aug 2020 CN
111307162 Aug 2020 CN
111488770 Aug 2020 CN
111539514 Aug 2020 CN
111565318 Aug 2020 CN
111582216 Aug 2020 CN
111598095 Aug 2020 CN
108229526 Sep 2020 CN
111693972 Sep 2020 CN
106558058 Oct 2020 CN
107169560 Oct 2020 CN
107622258 Oct 2020 CN
111767801 Oct 2020 CN
111768002 Oct 2020 CN
111783545 Oct 2020 CN
111783971 Oct 2020 CN
111797657 Oct 2020 CN
111814623 Oct 2020 CN
111814902 Oct 2020 CN
111860499 Oct 2020 CN
111881856 Nov 2020 CN
111882579 Nov 2020 CN
111897639 Nov 2020 CN
111898507 Nov 2020 CN
111898523 Nov 2020 CN
111899227 Nov 2020 CN
112101175 Dec 2020 CN
112101562 Dec 2020 CN
112115953 Dec 2020 CN
111062973 Jan 2021 CN
111275080 Jan 2021 CN
112183739 Jan 2021 CN
112232497 Jan 2021 CN
112288658 Jan 2021 CN
112308095 Feb 2021 CN
112308799 Feb 2021 CN
112313663 Feb 2021 CN
112329552 Feb 2021 CN
112348783 Feb 2021 CN
111899245 Mar 2021 CN
202017102235 May 2017 DE
202017102238 May 2017 DE
102017116017 Jan 2019 DE
102018130821 Jun 2020 DE
102019008316 Aug 2020 DE
1215626 Sep 2008 EP
2228666 Sep 2012 EP
242040881 May 2013 EP
2723069 Apr 2014 EP
2741253 Jun 2014 EP
3115772 Jan 2017 EP
261855981 Aug 2017 EP
3285485 Feb 2018 EP
2863633 Feb 2019 EP
3113080 May 2019 EP
3525132 Aug 2019 EP
3531689 Aug 2019 EP
3537340 Sep 2019 EP
3543917 Sep 2019 EP
3608840 Feb 2020 EP
3657387 May 2020 EP
2396750 Jun 2020 EP
3664020 Jun 2020 EP
3690712 Aug 2020 EP
3690742 Aug 2020 EP
3722992 Oct 2020 EP
3690730 Nov 2020 EP
3739486 Nov 2020 EP
3501897 Dec 2020 EP
3751455 Dec 2020 EP
3783527 Feb 2021 EP
2402572 Aug 2005 GB
2548087 Sep 2017 GB
2577485 Apr 2020 GB
2517270 Jun 2020 GB
2578262 Aug 1998 JP
3941252 Jul 2007 JP
4282583 Jun 2009 JP
4300098 Jul 2009 JP
2015004922 Jan 2015 JP
5863536 Feb 2016 JP
6044134 Dec 2016 JP
2018-081404 May 2018 JP
6525707 Jun 2019 JP
2019101535 Jun 2019 JP
2020101927 Jul 2020 JP
2020173744 Oct 2020 JP
100326702 Feb 2002 KR
101082878 Nov 2011 KR
101738422 May 2017 KR
101969864 Apr 2019 KR
101996167 Jul 2019 KR
102022388 Aug 2019 KR
102043143 Nov 2019 KR
102095335 Mar 2020 KR
102097120 Apr 2020 KR
1020200085490 Jul 2020 KR
102189262 Dec 2020 KR
1020200142266 Dec 2020 KR
200630819 Sep 2006 TW
I294089 Mar 2008 TW
I306207 Feb 2009 TW
WO 02052835 Jul 2002 WO
WO 16032398 Mar 2016 WO
WO 16048108 Mar 2016 WO
WO 16207875 Dec 2016 WO
WO 17068692 Apr 2017 WO
WO 17158622 Sep 2017 WO
WO 18015811 Jan 2018 WO
WO 19005547 Jan 2019 WO
WO 19067695 Apr 2019 WO
WO 19089339 May 2019 WO
WO 19092456 May 2019 WO
WO 19099622 May 2019 WO
WO 19122952 Jun 2019 WO
WO 19125191 Jun 2019 WO
WO 19126755 Jun 2019 WO
WO 19144575 Aug 2019 WO
WO 19182782 Sep 2019 WO
WO 19191578 Oct 2019 WO
WO 19216938 Nov 2019 WO
WO 19220436 Nov 2019 WO
WO 20006154 Jan 2020 WO
WO 20012756 Jan 2020 WO
WO 20025696 Feb 2020 WO
WO 20034663 Feb 2020 WO
WO 20056157 Mar 2020 WO
WO 20076356 Apr 2020 WO
WO 20097221 May 2020 WO
WO 20101246 May 2020 WO
WO 20120050 Jun 2020 WO
WO 20121973 Jun 2020 WO
WO 20131140 Jun 2020 WO
WO 20139181 Jul 2020 WO
WO 20139355 Jul 2020 WO
WO 20139357 Jul 2020 WO
WO 20142193 Jul 2020 WO
WO 20146445 Jul 2020 WO
WO 20151329 Jul 2020 WO
WO 20157761 Aug 2020 WO
WO 20163455 Aug 2020 WO
WO 20167667 Aug 2020 WO
WO 20174262 Sep 2020 WO
WO 20177583 Sep 2020 WO
WO 20185233 Sep 2020 WO
WO 20185234 Sep 2020 WO
WO 20195658 Oct 2020 WO
WO 20198189 Oct 2020 WO
WO 20198779 Oct 2020 WO
WO 20205597 Oct 2020 WO
WO 20221200 Nov 2020 WO
WO 20240284 Dec 2020 WO
WO 20260020 Dec 2020 WO
WO 20264010 Dec 2020 WO
Non-Patent Literature Citations (5)
Entry
Uchida et al., 2017, Trends in research on convolutional neural networks, Institute of Electronics, Information and Communication Engineers Technical Research Report, 117(362):25-38.
Blasinski et al., Jan. 2018, Optimizing image acquisition systems for autonomous driving, Proc. IS&T Int'l Symp. on Electronic Imaging: Photography, Mobile and Immersive Imaging, 30:161-1 161-7.
Devries et al., Aug. 15, 2017, Improved regularization of convolutional neural networks with cutout, Cornell University Library 8 pp.
Zhong et al., Aug. 16, 2017, Random erasing data augmentation, Cornell University Library, 10 pp.
International Search Report and Written Opinion dated Jan. 21, 2020 in application No. OCT/US2019/0555683.
Related Publications (1)
Number Date Country
20220108130 A1 Apr 2022 US
Provisional Applications (1)
Number Date Country
62744534 Oct 2018 US
Continuations (1)
Number Date Country
Parent 16598956 Oct 2019 US
Child 17644308 US