The present disclosure relates to methods and devices for replacing heart valves.
Patients with defective aortic heart valves are often candidates for a replacement heart valve procedure. The conventional treatment is the surgical replacement of the heart valve with a prosthetic valve. This surgery involves a gross thorocotomy or median sternotomy, cardiopulmonary bypass and cardiac arrest, surgical access and excision of the diseased heart valve, and replacement of the heart valve with a prosthetic mechanical or tissue valve. Valves implanted in this manner have historically provided good long term outcomes for these patients, with durability of up to ten or fifteen years for tissue valves, and even longer for mechanical valves. However, heart valve replacement surgery is highly invasive, can require lengthy recovery time, and is associated with short and long term complications. For high surgical risk or inoperable patients, this procedure may not be an option.
Recently, a minimally invasive approach to heart valve replacement has been developed. This approach, known as transcatheter aortic valve implantation (TAVI) or replacement (TAVR), relies on the development of a collapsible prosthetic valve which is mounted onto a catheter-based delivery system. This type of prosthesis can be inserted into the patient through a relatively small incision or vascular access site, and may be implanted on the beating heart without cardiac arrest. The advantages of this approach include less surgical trauma, faster recovery time, and lower complication rates. For high surgical risk or inoperable patients, this approach offers a good alternative to conventional surgery. Examples of this technology are the Sapien Transcatheter Valve (Edwards Lifesciences, Irvine, Calif.) and the CoreValve System (Medtronic, Minneapolis, Minn.). U.S. Pat. No. 6,454,799, which is incorporated herein by reference in its entirety, describes examples of this technology.
There are two main pathways for valves inserted using the TAVI approach. The first is a vascular approach via the femoral artery (referred to as a transfemoral approach), either percutaneously or through a surgical cut-down and arteriotomy of the femoral artery. Once placed into the femoral artery, the valve mounted on the delivery system is advanced in a retrograde manner (in the reverse direction as blood flow) up the descending aorta, around the aortic arch, and across the ascending aorta in order to be positioned across the native aortic valve. Transfemoral aortic valve delivery systems are typically over 90 cm in length and require the ability to navigate around the aortic arch. The relatively small diameter of the femoral artery and the frequent presence of atherosclerotic disease in the iliofemoral anatomy limits the maximum diameter of the delivery system to about 24 French (0.312″) in diameter. The second pathway, termed transapical, involves accessing the left ventricle through the apex of the heart via a mini-thorocotomy, and advancing the valve delivery system in an antegrade fashion (in the same direction as blood flow) to the aortic valve position. This pathway is much shorter and straighter than the transfemoral path, but involves a surgical puncture and subsequent closure of the wall of the heart.
Other approaches have been described, including access from the subclavian artery, and direct puncture of the ascending aorta via a mini-thorocotomy. The subclavian approach (transsubclavian approach) has been used when the transfemoral route is contra-indicated, but may block flow to the cerebral vessel through the ipsilateral common carotid artery. A direct aortic puncture is usually considered if all other routes must be excluded due to anatomic difficulties including vascular disease. Puncture of the aortic wall, and subsequent closure, carries associated surgical risk including aortic dissection and rupture.
The transfemoral approach to the aortic valve, as opposed to the transapical or other alternative approaches, is a generally more familiar one to the medical community. Accessing the ascending aorta from the femoral artery is standard procedure for interventional cardiologists. Balloon valvuloplasty procedures via the transfemoral approach have been performed for years. The surgical approaches such as the transapical access or direct aortic puncture are less familiar and require practitioners with both surgical and endovascular skills; techniques for the surgical approaches are still evolving and whether they offer advantages over the transfemoral and transsubclavian methods have yet to be determined. However, problems also exist with the transfemoral and transsubclavian approaches. One is that the desired access vessel is often too small and/or is burdened with atherosclerotic disease, which precludes the artery as an access point. A second problem is that the pathway from the access point to the aortic valve usually involves one or more major turns of at least 90° with a relatively tight radii of curvature, 0.5″ or less, requiring a certain degree of flexibility in the delivery system. This flexibility requirement restricts the design parameters of both the valve and the delivery system, and together with the required length of the delivery system reduces the level of control in accurately positioning the valve.
Both the transfemoral and transapical approaches have as potential complications the dislodgement of atherosclerotic and/or thrombotic debris, so-called “embolization” or the creation of “embolic debris,” during access maneuvers, pre-dilation of the diseased valve, and implantation of the prosthetic valve. The most serious consequence of embolic debris is that it travels with the blood flow to the brain via one or more of the four primary conduits to the cerebral circulation, namely the right and left carotid arteries and the right and left vertebral arteries. Transfemoral TAVI procedures require passage of large device and delivery system components through the aortic arch and across the origins of the head and neck vessels that supply blood flow to the carotid and vertebral arteries, potentially loosening, fragmenting, and dislodging debris during its route to the aortic valve. The transapical TAVI procedure involves a puncture of the heart wall, which may generate embolic debris from the wall of the ventricle or ascending aorta, or may form thrombus or clot at the apical puncture location. During the vigorous motion of the beating heart, this clot can break free and travel to the brain as well. Both approaches require significant manipulation while the prosthetic valve is being placed: the TAVI implant and delivery system moves back and forth across the native aortic valve, potentially dislodging more debris from the diseased valve itself. With expansion of the valve implant, the native aortic valve is compressed and moved out of the stream of the cardiac output, another moment when the shearing and tearing of the native valve can free more debris to embolize to the brain.
Recently, there has been described an embolic filter protection device for use with TAVI procedures, as referenced in U.S. Pat. No. 8,460,335, which is incorporated herein by reference in its entirety. This device places a temporary screen over the ostium of the head and neck vessels to prevent passage of embolic particles while allowing blood flow into the vessels. While this device may offer some protection from larger embolic particles, it requires an additional vascular access and device deployment, adding to the cost and time of the procedure, and does not facilitate the passage of the prosthetic valve itself. Moreover, it does not provide protection during filter placement and retrieval; since the filter is deployed against the wall of the aorta, there is a high chance that the filter manipulation itself will be the cause of embolic complications.
There is a need for an access system for endovascular prosthetic aortic valve implantation that provides a generally shorter and straighter access path than current systems and methods. This would allow the use of shorter and more rigid delivery systems which would offer a greater degree of control and easier placement of the aortic valve. There is also a need for an access system that provides protection from cerebral embolic complications during the procedure.
Disclosed herein are devices and methods that allow transcarotid or subclavian access via the common carotid artery to the native aortic valve, and transcatheter implantation of a prosthetic aortic valve into the heart or aorta. The devices and methods also provide means for embolic protection during such an endovascular aortic valve implantation procedure.
In one aspect, there is disclosed a system for aortic valve treatment, comprising: an arterial access sheath adapted to be introduced into an access site at the left common carotid artery, right common carotid artery, left subclavian artery, or right subclavian artery, wherein the arterial access sheath includes an internal lumen sized and shaped to receive a valve delivery system configured to deliver a prosthetic valve into the heart through the arterial access sheath; and an occlusion element on the arterial access sheath, the occlusion element adapted to occlude an artery.
In another aspect, there is disclosed a system for aortic valve treatment, comprising: an arterial access sheath adapted to be introduced into an access site at the left common carotid artery, right common carotid artery, left subclavian artery, or right subclavian artery, wherein the arterial access sheath has an internal lumen sized and shaped to receive a valve delivery system configured to deliver a prosthetic valve into the heart through the arterial access sheath; and a filter coupled to the arterial access sheath to provide embolic protection.
In another aspect, there is disclosed a system for transcarotid aortic valve treatment, comprising: an arterial access sheath adapted to be introduced into an access site at the left common carotid artery, right common carotid artery, left subclavian artery, or right subclavian artery, wherein the arterial access sheath has an internal lumen sized and shaped to receive a valve delivery system adapted to deliver a prosthetic valve into the heart through the arterial access sheath; and a return shunt fluidly connected to the arterial access sheath, wherein the shunt provides a pathway for blood to flow from the arterial access sheath to a return site.
In another aspect, there is disclosed a system for aortic valve treatment, comprising: an arterial access sheath adapted to be introduced into an access site at the left or right common carotid artery, or left or right subclavian artery, wherein the arterial access sheath has a first lumen sized and shaped to receive a valve delivery system configured to deliver a prosthetic valve into the heart through the arterial access sheath; a Y-arm disposed at a proximal region of the arterial access sheath; and a flow shunt fluidly connected to the Y-arm, wherein the flow shunt is adapted to perfuse the distal carotid artery.
In another aspect, there is disclosed a system for aortic valve treatment, comprising: an arterial access sheath adapted to be introduced into an access site at the left or right common carotid artery, or left or right subclavian artery, wherein the arterial access sheath has an internal lumen sized and shaped to receive a valve delivery system configured to deliver a prosthetic valve into the heart through the arterial access sheath; a side opening in the arterial access sheath adapted to allow blood flow antegrade into the tip of the access sheath and out the side opening to perfuse the distal carotid artery; and a dilator which is inside the access sheath during insertion of the access sheath into the artery and which prevents flow through the sheath and out the side opening during access sheath insertion.
In another aspect, there is disclosed a method of treating an aortic valve, comprising: forming a penetration at the neck of a patient in a wall of a common carotid artery; introducing an access sheath through the penetration; occluding the artery; inserting a guide wire through the access sheath and across the native aortic valve; and introducing a prosthetic valve through the access sheath and percutaneously deploying the prosthetic valve at or near the position of the native aortic valve.
In another aspect, there is disclosed a method of treating an aortic valve, comprising: forming a penetration at the neck of a patient in a wall of a common carotid artery; introducing an access sheath through the penetration; deploying a filter to provide embolic protection in an artery; inserting a guide wire through the access sheath and across the native aortic valve; and introducing a prosthetic valve through the access sheath and deploying the prosthetic valve at or near the position of the native aortic valve.
Other aspects, features and advantages should be apparent from the following description of various embodiments, which illustrate, by way of example, the principles of the disclosure.
Disclosed herein are devices and methods that allow arterial access, such as transcarotid access via the common carotid artery, or subclavian access via the subclavian artery to the native aortic valve, and implantation of a prosthetic aortic valve into the heart or aorta. The devices and methods also provide means for embolic protection during such an endovascular aortic valve implantation procedure.
In an embodiment, transcarotid or subclavian access to the aortic valve is accomplished via either a percutaneous puncture or direct cut-down to the artery. A cut-down may be advantageous due to the difficulty of percutaneous vessel closure of larger arteriotomies in the common carotid artery. If desired, a pre-stitch may be placed at the arteriotomy site to facilitate closure at the conclusion of the procedure. An access sheath with associated dilator and guidewire is provided which is sized to fit into the common carotid or subclavian artery. The access sheath is inserted into the artery inferiorly towards the aortic arch. Either the left or the right common carotid or subclavian artery may be selected as the access site, based on factors including, for example, the disease state of the proximal artery and/or the aorta and the angle of entry of the carotid or innominate artery into the aorta. The carotid artery may then be occluded distal to the access site. If the access is via a direct surgical cut-down and arteriotomy, the occlusion may be accomplished via a vascular clamp, vessel loop, or Rummel tourniquet. Alternately, the access sheath itself may include an occlusion element adapted to occlude the artery, for example an occlusion balloon, to prevent embolic particulates from entering the carotid artery distal to the access site during the procedure.
Once the sheath 110 is positioned in the artery, the occlusion element 129 is expanded within the artery to occlude the artery and possibly anchor the sheath into position. The arterial access sheath 110 may include a Y-arm for delivery of contrast or saline flush, for aspiration, and/or may be fluidly connected to a shunt, wherein the shunt provides a shunt lumen or pathway for blood to flow from the arterial access sheath 110 to a return site such as a venous return site or a collection reservoir. In this regard, a retrograde or reverse blood flow state may be established in at least a portion of the artery. The sheath 110 may also include a Y-arm for inflation of the occlusion balloon via an inflation lumen, and a hemostasis valve for introduction of an endovascular valve delivery system into the sheath. Alternately, the sheath 110 may include an actuating element if the occlusion element is a mechanical occlusion structure. The endovascular valve delivery system may include a prosthetic valve and a delivery catheter. In an embodiment, the delivery catheter has a working length of 30, 40, 60, 70, or 80 cm.
In an embodiment, aspiration may be applied to the artery via the access sheath 110. In this regard, the access sheath 110 can be connected via a Y-arm 112 to an aspiration source, so that embolic debris may be captured which may otherwise enter the remaining head and neck vessels, or travel downstream to lodge into peripheral vessels. The aspiration source may be active, for example a cardiotomy suction source, a pump, or a syringe. Alternately, a passive flow condition may be established, for example, by fluidly connecting the Y-arm 112 to a shunt, which in turn is connected to a lower-pressure source such as a collection reservoir at atmospheric or negative pressure, or a venous return site in the patient. The passive flow rate may be regulated, for example, by controlling the restriction of the flow path in the shunt.
In an embodiment, the access system may be equipped with one or more embolic protection elements to provide embolic protection for one or both carotid arteries. For example, a filter may be included in the access system to provide embolic protection for one or both carotid arteries. In a variation of this embodiment, the filter is deployed via the contralateral carotid, brachial or subclavian artery, and positioned in the aortic arch across the ostium. If the sheath access site is the left common carotid artery, the filter may be positioned across the ostium of the innominate (also known as brachiocephalic) artery. If the sheath access site is the right common carotid artery, the filter may be positioned across the ostium of the left common carotid artery. In a variation of this embodiment, the filter is deployed across both the innominate and left common carotid artery, or across all three head and neck vessels (innominate artery, left common carotid artery, and left subclavian artery). The filter element may be built-in to the access sheath 110. Or, the filter element may be a separate element which is compatible with the access sheath 110. For example, the filter element may be a coaxial element which is slideably connected to the access sheath or an element which is placed side-by-side with the access sheath. The filter element may comprise an expandable frame, so that it may be inserted into the artery in a collapsed state, but then expanded at the target site to position the filter element across the opening of the artery or arteries.
In the embodiment with the filter element, occlusion and/or aspiration means may still be part of the system, to provide embolic protection during filter deployment before the valve implantation and filter retrieval after valve implantation. The filter element itself may be a primary method of embolic protection during the implantation procedure. The sheath 110 may also be equipped with both an occlusion element 129 and a filter element 111, as shown in
In another variation of this embodiment, shown in
The expandable frame of the filter element may be made from spring material such as stainless steel or nitinol wire or ribbon. As with the previous variation, occlusion and aspiration means may be included in this variation to provide protection during filter deployment and filter retrieval. The aortic filter element 113 may be integral to the sheath, or be a separate device which is compatible with the sheath, for example may be coaxial or side-by-side with the access sheath. As shown in
In certain situations, it may be desirable to provide a mechanism for perfusing the carotid artery upstream of the entry point of the access sheath 110 into the carotid or innominate artery. If the access sheath 110 is similar in size to the carotid or innominate artery, flow through the artery may be essentially blocked by the access sheath when the sheath is inserted into the artery. In this situation, the upstream cerebral vessels may not be adequately perfused due to blockage of the carotid artery by the sheath. In an embodiment of the access sheath 110, the sheath includes a mechanism to perfuse the upstream carotid and cerebral vessels.
The Y-arm 755 is removably connected to a flow shunt 760 which in turn is removably connected to the second Y-arm 767. The shunt defines an internal shunt lumen that fluidly connects the first lumen 775 to the second lumen 769. A stopcock 779 may be positioned between the Y-arm 755 and the flow shunt 760 to allow flushing and contrast injection while the shunt 760 is connected. When the sheath is positioned in the artery, arterial pressure drives blood flow into the distal end of the first lumen 775 of the arterial access sheath, out the first lumen from Y-arm 755, then into the shunt 760, and back into the sheath via the Y-arm 767. The blood then flows into the parallel lumen 769 and into the distal carotid artery at the location 765 to perfuse the vasculature distal of the arterial sheath 110. An in-line filter element 762 may be included in the flow shunt 760 so that emboli generated during the procedure are not perfused into the cerebral artery. In the event the sheath 110, shunt 760, and lumen 769 create a flow restriction that limits adequate perfusion, the flow shunt 760 may incorporate an active pump 770 to drive blood flow and provide the required level of cerebral perfusion. This may be especially true when the valve is being delivered through the first lumen 775 of the access sheath 110.
In the embodiments described above in
Although the figures show sheath insertion in the common carotid artery, a similar sheath or sheath/shunt systems may be designed for sub-clavian access.
In another embodiment, the access sheath 110 may have at least one side opening 805 located between the distal end and the proximal end of the sheath 110, as shown in
The sheath in embodiments shown in
An exemplary valve and delivery system which has been configured to be delivered through the transcarotid access sheath 110 is shown in
The balloon expandable prosthetic aortic valve 205 is mounted on the distal end of an endovascular valve delivery system 200. The delivery system has a distal tapered tip 220 and an expandable balloon 215 on the distal end of an inner shaft 210. In an embodiment, the system also has an outer sleeve, such as for example a pusher sleeve 230, that is slidable along the long axis of the device and which maintains the valve in position on the balloon during delivery. A proximal control assembly contains a mechanism for retracting the pusher sleeve, such as a sliding button 270 on a proximal handle 240. In
The working length of the valve delivery system is configured to allow delivery of the valve to the aortic annulus from a transcarotid access site. Specifically, the working length of the valve delivery system 200 is between 45 and 60 cm. The delivery system shaft is also configured for delivery from a right or left carotid access site. Specifically, the shaft has a proximal stiff section 280 and a more flexible distal section 290. In an embodiment, the distal section is 2 to 4 times more flexible than the proximal stiff section. In an embodiment, the distal flexible section is between one quarter to one third the total working length of the valve delivery system. Specifically, the distal flexible section is in the range 10 cm to 20 cm. In an alternate embodiment, the valve delivery system has a transition section of one or more flexible lengths which fall between the flexibility of the distal flexible section and the proximal flexible section.
Another exemplary valve and delivery system configured for transcarotid delivery is shown in
As with the previous embodiment, the working length of the valve delivery system is configured to allow delivery of the valve to the aortic annulus from a transcarotid access site. Specifically, the working length of the valve delivery system 300 is between 45 and 60 cm. The delivery system shaft is also configured for delivery from a right or left carotid access site. Specifically, the shaft has a proximal stiff section 380 and a more flexible distal section 390. In an embodiment, the distal section is 2 to 4 times more flexible than the proximal stiff section. In an embodiment, the distal flexible section is between one quarter to one third the total working length of the valve delivery system. Specifically, the distal flexible section is in the range 10 cm to 20 cm. In an alternate embodiment, the valve delivery system has a transition section of one or more flexible lengths which fall between the flexibility of the distal flexible section and the proximal flexible section.
Exemplary methods of use are now described. In an embodiment, a general method includes the steps of forming a penetration from the neck of a patient into a wall of a common carotid artery; introducing an access sheath through the penetration with the tip directed inferiorly towards the ostium of the artery; inserting a guide wire through the access sheath into the ascending aorta and across the native aortic valve; and introducing a prosthetic valve through the access sheath and percutaneously deploying the prosthetic valve at or near the position of the native aortic valve. In an embodiment, the artery is occluded distal (upstream) from the tip of the sheath.
In particular, the access sheath 110 is first inserted into the vasculature such as via either a percutaneous puncture or direct surgical cut-down and puncture of the carotid artery. As mentioned, a transcarotid approach to the aortic valve may be achieved via the LCCA. Once properly positioned, the occlusion element 129 may be expanded to occlude the LCCA, as shown in
Once the access sheath is positioned and the embolic protection means are deployed via occlusion, aspiration, and/or filter elements, access to the aortic valve is obtained via a guidewire 119 (such as a 0.035″ or 0.038″ guidewire) inserted into the sheath 110 and directed inferiorly into the ascending aorta and across the native aortic valve. Pre-dilation of the native aortic valve can be performed with an appropriately sized dilation balloon, for example a valvuloplasty balloon, before valve implantation. The guidewire 119 is used to position a balloon across the valve and the balloon is inflated, deflated, and then removed while the guidewire remains in place.
An endovascular prosthetic valve 205 and delivery system 200 is then inserted through the access sheath 110 over the guidewire 119 and the valve 205 positioned at the site of the native aortic valve (as shown in
The access sheath 110 is then removed and the access site is closed. If the access was a surgical cutdown direct puncture, the vessel is closed either via tying off the pre-placed stitch or with manual suturing or with a surgical vascular closure device, as described in more detail below. If the access was percutaneous, percutaneous closure methods and devices may be employed to achieve hemostasis at the access site. In an embodiment, the closure device is applied at the site of the penetration before introducing the arterial access sheath through the penetration. The type of closure device can vary.
The access site described above is either the left or right common carotid artery. Other access sites are also possible, for example the left or right subclavian artery or left or right brachial artery. These arteries may require longer and/or more tortuous pathways to the aortic valve but may offer other advantages over a carotid artery access, for example the ability to work away from the patient's head, the ability to avoid hostile neck anatomy such as previous carotid endarterectomy or other cervical surgery or radiation, or less risky in case of access site complication. In addition, carotid artery disease, or small carotid arteries may preclude common carotid artery access. In the case of any of these access sites, occlusion, aspiration, and/or filtering the head and neck vessels during TAVI may increase the speed and accuracy of the procedure, and decrease the rate of embolic complications.
Various forms of embolic protection were described above including occlusion elements and filters. Additional embodiments that incorporate filters as means of embolic protection for all the head and neck vessels are now described.
In
In another embodiment, shown in
In another embodiment, shown in
In any of the scenarios shown in
In all of the scenarios shown in
In another embodiment, as shown in
After the occlusion element 114 is deflated, the heart flow may be resumed. Next, the valve is positioned for implantation. As with the previous step, the heart flow is stopped or slowed significantly, e.g. via rapid pacing or atropine, and the occlusion element 114 is inflated or expanded to occlude the expanding aorta. The valve implantation step is then performed without risk of distal emboli. Prior to deflation of the occlusion element 114, aspiration may be applied to the ascending aorta via the side arm 112 of the sheath 110. The occlusion element is then deflated and heart flow is resumed with the newly implanted valve in place. The balloon material could be formed to create a non-compliant, complaint or semi-compliant structure. The balloon may be formed from PET, Silicone, elastomers, Nylon, Polyethylene or any other polymer of co-polymer.
In this configuration, the occlusion element 114 may be a balloon, which is expanded by inflation with a fluid contrast media. In this configuration, the sheath includes an additional inflation lumen which can be connected to an inflation device. Alternately, the occlusion element may be a mechanically expandable occlusion element such as a braid, cage, or other expandable mechanical structure with a covering that creates a seal in the vessel when expanded.
In another configuration, shown in
In a variation of the embodiment of
In another embodiment, the transcarotid valve delivery system also includes distal embolic protection elements. A shown in
In a variation of this embodiment, as shown in
If the access to the carotid artery was via a surgical cut down, the access site may be closed using standard vascular surgical techniques. Purse string sutures may be applied prior to sheath insertion, and then used to tie off the access site after sheath removal. If the access site was a percutaneous access, a wide variety of vessel closure elements may be utilized. In an embodiment, the vessel closure element is a mechanical element which include an anchor portion and a closing portion such as a self-closing portion. The anchor portion may comprise hooks, pins, staples, clips, tine, suture, or the like, which are engaged in the exterior surface of the common carotid artery about the penetration to immobilize the self-closing element when the penetration is fully open. The self-closing element may also include a spring-like or other self-closing portion which, upon removal of the sheath, will close the anchor portion in order to draw the tissue in the arterial wall together to provide closure. Usually, the closure will be sufficient so that no further measures need be taken to close or seal the penetration. Optionally, however, it may be desirable to provide for supplemental sealing of the self-closing element after the sheath is withdrawn. For example, the self-closing element and/or the tissue tract in the region of the element can be treated with hemostatic materials, such as bioabsorbable polymers, collagen plugs, glues, sealants, clotting factors, or other clot-promoting agents. Alternatively, the tissue or self-closing element could be sealed using other sealing protocols, such as electrocautery, suturing, clipping, stapling, or the like. In another method, the self-closing element will be a self-sealing membrane or gasket material which is attached to the outer wall of the vessel with clips, glue, bands, or other means. The self-sealing membrane may have an inner opening such as a slit or cross cut, which would be normally closed against blood pressure. Any of these self-closing elements could be designed to be placed in an open surgical procedure, or deployed percutaneously.
In an alternate embodiment, the vessel closure element is a suture-based vessel closure device. The suture-based vessel closure device can place one or more sutures across a vessel access site such that, when the suture ends are tied off after sheath removal, the stitch or stitches provide hemostasis to the access site. The sutures can be applied either prior to insertion of a procedural sheath through the arteriotomy or after removal of the sheath from the arteriotomy. The device can maintain temporary hemostasis of the arteriotomy after placement of sutures but before and during placement of a procedural sheath and can also maintain temporary hemostasis after withdrawal of the procedural sheath but before tying off the suture. U.S. patent application Ser. No. 12/834,869 entitled “SYSTEMS AND METHODS FOR TREATING A CAROTID ARTERY”, which is incorporated herein by reference in its entirety, describes exemplary closure devices and also describes various other devices, systems, and methods that are related to and that may be combined with the devices, systems, and methods disclosed herein.
While this specification contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results
Although embodiments of various methods and devices are described herein in detail with reference to certain versions, it should be appreciated that other versions, embodiments, methods of use, and combinations thereof are also possible. Therefore the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
The present application claims priority to the following U.S. Provisional patent applications: (1) U.S. Provisional Patent Application Ser. No. 62/155,384, filed Apr. 30, 2015 and entitled “Systems and Methods for Transcatheter Aortic Valve Treatment”; and (2) U.S. Provisional Patent Application Ser. No. 62/210,919, filed Aug. 27, 2015 and entitled “Systems and Methods for Transcatheter Aortic Valve Treatment.” The provisional applications are incorporated herein by reference in their entirety and priority to the aforementioned filing dates is claimed.
Number | Name | Date | Kind |
---|---|---|---|
4540402 | Aigner | Sep 1985 | A |
4808156 | Dean | Feb 1989 | A |
6413235 | Parodi | Jul 2002 | B1 |
6423032 | Parodi | Jul 2002 | B2 |
6454799 | Schreck | Sep 2002 | B1 |
6514226 | Levin | Feb 2003 | B1 |
6595953 | Coppi et al. | Jul 2003 | B1 |
6837881 | Barbut | Jan 2005 | B1 |
6866650 | Stevens | Mar 2005 | B2 |
7083594 | Coppi | Aug 2006 | B2 |
7491163 | Viole | Feb 2009 | B2 |
8298169 | Yacoubian | Oct 2012 | B2 |
8460335 | Carpenter | Jun 2013 | B2 |
8545432 | Renati et al. | Oct 2013 | B2 |
8858490 | Chou et al. | Oct 2014 | B2 |
9126018 | Garrison | Sep 2015 | B1 |
9241699 | Kume et al. | Jan 2016 | B1 |
10039906 | Kume et al. | Aug 2018 | B2 |
10085864 | Chou et al. | Oct 2018 | B2 |
10159479 | Hentges et al. | Dec 2018 | B2 |
20020049402 | Peacock, III | Apr 2002 | A1 |
20020128679 | Turovskiy | Sep 2002 | A1 |
20050154344 | Chang | Jul 2005 | A1 |
20050154349 | Renz et al. | Jul 2005 | A1 |
20050245892 | Elkins | Nov 2005 | A1 |
20060106338 | Chang | May 2006 | A1 |
20090018455 | Chang | Jan 2009 | A1 |
20090024072 | Criado | Jan 2009 | A1 |
20090198172 | Garrison et al. | Aug 2009 | A1 |
20090240320 | Tuval | Sep 2009 | A1 |
20090254166 | Chou et al. | Oct 2009 | A1 |
20100042118 | Garrison et al. | Feb 2010 | A1 |
20100057096 | Wolf | Mar 2010 | A1 |
20100185216 | Garrison et al. | Jul 2010 | A1 |
20100191169 | Chang | Jul 2010 | A1 |
20100191170 | Chang | Jul 2010 | A1 |
20100204684 | Garrison | Aug 2010 | A1 |
20100217276 | Garrison et al. | Aug 2010 | A1 |
20100228269 | Garrison et al. | Sep 2010 | A1 |
20100280431 | Criado et al. | Nov 2010 | A1 |
20110213459 | Garrison et al. | Feb 2011 | A1 |
20110082408 | Chang | Apr 2011 | A1 |
20110087147 | Garrison et al. | Apr 2011 | A1 |
20110125131 | Chang | May 2011 | A1 |
20110144690 | Bishop et al. | Jun 2011 | A1 |
20110166496 | Criado et al. | Jul 2011 | A1 |
20110166497 | Criado et al. | Jul 2011 | A1 |
20130172852 | Chang | Jul 2013 | A1 |
20130197621 | Ryan et al. | Aug 2013 | A1 |
20130281788 | Garrison | Oct 2013 | A1 |
20140031682 | Renati et al. | Jan 2014 | A1 |
20140031925 | Garrison | Jan 2014 | A1 |
20140058414 | Garrison et al. | Feb 2014 | A1 |
20140135661 | Garrison et al. | May 2014 | A1 |
20140296769 | Hyde et al. | Oct 2014 | A1 |
20140296868 | Garrison et al. | Oct 2014 | A1 |
20140371653 | Criado et al. | Dec 2014 | A1 |
20150025616 | Chang | Jan 2015 | A1 |
20150080942 | Garrison et al. | Mar 2015 | A1 |
20150141760 | Chou et al. | May 2015 | A1 |
20150150562 | Chang | Jun 2015 | A1 |
20150174368 | Garrison et al. | Jun 2015 | A1 |
20150327843 | Garrison | Nov 2015 | A1 |
20160128688 | Garrison et al. | May 2016 | A1 |
20160158044 | Chou et al. | Jun 2016 | A1 |
20160158502 | Kume et al. | Jun 2016 | A1 |
20160166804 | Garrison et al. | Jun 2016 | A1 |
20160242764 | Garrison et al. | Aug 2016 | A1 |
20160271315 | Chang | Sep 2016 | A1 |
20160271316 | Criado et al. | Sep 2016 | A1 |
20160279379 | Chang | Sep 2016 | A1 |
20160296690 | Kume et al. | Oct 2016 | A1 |
20160317288 | Rogers | Nov 2016 | A1 |
20170043141 | Kume et al. | Feb 2017 | A1 |
20170136212 | Garrison et al. | May 2017 | A1 |
20170209260 | Garrison et al. | Jul 2017 | A1 |
20170296798 | Kume et al. | Oct 2017 | A1 |
20170312491 | Ryan et al. | Nov 2017 | A1 |
20170354803 | Kume et al. | Dec 2017 | A1 |
20170361072 | Chou et al. | Dec 2017 | A1 |
20170368296 | Chang | Dec 2017 | A1 |
20180008294 | Garrison et al. | Jan 2018 | A1 |
20180154063 | Criado et al. | Jun 2018 | A1 |
20180185614 | Garrison et al. | Jul 2018 | A1 |
20180289884 | Criado et al. | Oct 2018 | A1 |
20190105439 | Criado et al. | Apr 2019 | A1 |
20190150916 | Hentges et al. | May 2019 | A1 |
20190175885 | Kume et al. | Jun 2019 | A1 |
20190231962 | Criado et al. | Aug 2019 | A1 |
20190254680 | Chang | Aug 2019 | A1 |
20190262530 | Criado et al. | Aug 2019 | A1 |
20190269538 | Chou et al. | Sep 2019 | A1 |
20190366070 | Kume et al. | Dec 2019 | A1 |
20190388654 | Chou et al. | Dec 2019 | A1 |
20200009406 | Garrison et al. | Jan 2020 | A1 |
20200015826 | Chang | Jan 2020 | A1 |
20200016321 | Criado et al. | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
103826571 | May 2014 | CN |
104582643 | Apr 2015 | CN |
Entry |
---|
Henry et al. (1999) “Carotid stenting with cerebral protection: First clinical experience using the PercuSurge GuardWire System” J. Endovasc. Surg. 6:321-331. |
U.S. Appl. No. 12/366,287, filed Feb. 5, 2009, US 2009-0254166. |
U.S. Appl. No. 12/686,202, filed Jan. 12, 2010, US 2010-0204684. |
U.S. Appl. No. 12/966,948, filed Dec. 13, 2010, US 2011-0087147. |
U.S. Appl. No. 13/816,670, filed Feb. 12, 2013, US 2013-0197621. |
U.S. Appl. No. 13/961,746, filed Aug. 7, 2013, US 2014-0046346. |
U.S. Appl. No. 14/042,520, filed Sep. 30, 2013, US 2014-0031925. |
U.S. Appl. No. 14/221,917, filed Mar. 21, 2014, US 2014-0296868. |
U.S. Appl. No. 14/475,346, filed Sep. 2, 2014, US 2014-0371653. |
U.S. Appl. No. 14/476,651, filed Sep. 3, 2014, US 2015-0080942. |
U.S. Appl. No. 14/508,354, filed Oct. 7, 2014, US 2015-0025616. |
U.S. Appl. No. 14/622,310, filed Feb. 13, 2015, US 2015-0150562. |
U.S. Appl. No. 15/005,770, filed Jan. 25, 2016, US 2016-0158502. |
U.S. Appl. No. 15/044,493, filed Feb. 16, 2016, US 2016-0158044. |
U.S. Appl. No. 15/050,039, filed Feb. 22, 2016, US 2016-0166804. |
PCT/US2015/030375, May 12, 2015, WO 2015/175537. |
PCT/US2015/042180, Jul. 27, 2015, WO 2016/018781. |
PCT/US2015/047717, Aug. 31, 2015, WO 2016/036660. |
U.S. Appl. No. 12/645,179, filed Dec. 22, 2009, US 2010-0217276. |
U.S. Appl. No. 14/078,149, filed Nov. 12, 2013, US 2014-0135661. |
U.S. Appl. No. 14/227,585, filed Mar. 27, 2014, US 2014-0296769. |
U.S. Appl. No. 14/710,400, filed May 12, 2015, US 2015-0327843. |
U.S. Appl. No. 14/935,252, filed Nov. 6, 2015, US 2016-0128688. |
U.S. Appl. No. 15/093,406, filed Apr. 7, 2016, US 2016-0296690. |
U.S. Appl. No. 15/168,786, filed May 31, 2016, US 2016-0271315. |
U.S. Appl. No. 15/489,055, filed Apr. 17, 2017, US 2017-0312491. |
U.S. Appl. No. 15/613,891, filed Jun. 5, 2017, US 2017-0361072. |
U.S. Appl. No. 15/613,921, filed Jun. 5, 2017, US 2017-0368296. |
U.S. Appl. No. 15/628,190, filed Jun. 20, 2017, US 2018-0008294. |
U.S. Appl. No. 15/728,747, filed Oct. 10, 2017, US 2018-0154063. |
U.S. Appl. No. 15/728,915, filed Oct. 10, 2017, US 2018-0185614. |
PCT/US18/18943, Feb. 21, 2018, WO 2018/156574. |
U.S. Appl. No. 14/227,583, filed Mar. 27, 2014, US 2014-0296769. |
U.S. Appl. No. 15/049,637, filed Feb. 22, 2016, US 2016-0242764. |
U.S. Appl. No. 15/399,638, filed Jan. 5, 2017, US 2017-0209260. |
U.S. Appl. No. 15/641,966, filed Jul. 5, 2017, US 2017-0296798. |
U.S. Appl. No. 15/901,502, filed Feb. 21, 2018, US 2018-0235789. |
U.S. Appl. No. 16/008,703, filed Jun. 14, 2018, US 2018-0289884. |
U.S. Appl. No. 16/056,208, filed Aug. 6, 2018, US 2019-0175885. |
U.S. Appl. No. 16/148,849, filed Oct. 1, 2018, US 2019-0269538. |
U.S. Appl. No. 16/171,784, filed Oct. 26, 2018, US 2019-0125512. |
U.S. Appl. No. 16/177,716, filed Nov. 1, 2018, US 2019-0150916. |
U.S. Appl. No. 16/250,825, filed Jan. 17, 2019, US 2019-0350568. |
U.S. Appl. No. 16/256,229, filed Jan. 24, 2019, US 2019-0254680. |
U.S. Appl. No. 16/281,311, filed Feb. 21, 2019, US 2019-0388654. |
U.S. Appl. No. 16/299,524, filed Mar. 12, 2019, US 2019-0366070. |
U.S. Appl. No. 16/353,492, filed Mar. 14, 2019, US 2020-0009406. |
U.S. Appl. No. 16/377,663, filed Apr. 8, 2019, US 2019-0231962. |
U.S. Appl. No. 16/581,034, filed Sep. 24, 2019, US 2020-0015826. |
U.S. Appl. No. 16/581,061, filed Sep. 24, 2019, US 2020-0016321. |
PCT/US18/40264, Jun. 29, 2018, WO 2019/010077. |
PCT/US18/57789, Oct. 26, 2018, WO 2019/089385. |
Number | Date | Country | |
---|---|---|---|
20160317288 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
62210919 | Aug 2015 | US | |
62155384 | Apr 2015 | US |