Systems and methods for transcatheter treatment of valve regurgitation

Abstract
The invention relates to a device for use in the transcatheter treatment of mitral valve regurgitation, specifically a coaptation assistance devices for implantation across the valve; a system including the coaptation enhancement element and anchors for implantation; a system including the coaptation enhancement element, and one or more of the following: transseptal sheath, anchor delivery catheter, implant delivery catheter, and clip delivery catheter; and methods for transcatheter implantation of a coaptation element across a heart valve.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention generally provides improved medical devices, systems, and methods, typically for treatment of heart valve disease and/or for altering characteristics of one or more valves of the body. Embodiments of the invention include implants for treatment of mitral valve regurgitation.


The human heart receives blood from the organs and tissues via the veins, pumps that blood through the lungs where the blood becomes enriched with oxygen, and propels the oxygenated blood out of the heart to the arteries so that the organ systems of the body can extract the oxygen for proper function. Deoxygenated blood flows back to the heart where it is once again pumped to the lungs.


The heart includes four chambers: the right atrium (RA), the right ventricle (RV), the left atrium (LA) and the left ventricle (LV). The pumping action of the left and right sides of the heart occurs generally in synchrony during the overall cardiac cycle.


The heart has four valves generally configured to selectively transmit blood flow in the correct direction during the cardiac cycle. The valves that separate the atria from the ventricles are referred to as the atrioventricular (or AV) valves. The AV valve between the left atrium and the left ventricle is the mitral valve. The AV valve between the right atrium and the right ventricle is the tricuspid valve. The pulmonary valve directs blood flow to the pulmonary artery and thence to the lungs; blood returns to the left atrium via the pulmonary veins. The aortic valve directs flow through the aorta and thence to the periphery. There are normally no direct connections between the ventricles or between the atria.


The mechanical heartbeat is triggered by an electrical impulse which spreads throughout the cardiac tissue. Opening and closing of heart valves may occur primarily as a result of pressure differences between chambers, those pressures resulting from either passive filling or chamber contraction. For example, the opening and closing of the mitral valve may occur as a result of the pressure differences between the left atrium and the left ventricle.


At the beginning of ventricular filling (diastole) the aortic and pulmonary valves are closed to prevent back flow from the arteries into the ventricles. Shortly thereafter, the AV valves open to allow unimpeded flow from the atria into the corresponding ventricles. Shortly after ventricular systole (i.e., ventricular emptying) begins, the tricuspid and mitral valves normally shut, forming a seal which prevents flow from the ventricles back into the corresponding atria.


Unfortunately, the AV valves may become damaged or may otherwise fail to function properly, resulting in improper closing. The AV valves are complex structures that generally include an annulus, leaflets, chordae and a support structure. Each atrium interfaces with its valve via an atrial vestibule. The mitral valve has two leaflets; the analogous structure of the tricuspid valve has three leaflets, and opposition or engagement of corresponding surfaces of leaflets against each other helps provide closure or sealing of the valve to prevent blood flowing in the wrong direction. Failure of the leaflets to seal during ventricular systole is known as malcoaptation, and may allow blood to flow backward through the valve (regurgitation). Heart valve regurgitation can have serious consequences to a patient, often resulting in cardiac failure, decreased blood flow, lower blood pressure, and/or a diminished flow of oxygen to the tissues of the body. Mitral regurgitation can also cause blood to flow back from the left atrium to the pulmonary veins, causing congestion. Severe valvular regurgitation, if untreated, can result in permanent disability or death.


DESCRIPTION OF THE RELATED ART

A variety of therapies have been applied for treatment of mitral valve regurgitation, and still other therapies may have been proposed but not yet actually used to treat patients. While several of the known therapies have been found to provide benefits for at least some patients, still further options would be desirable. For example, pharmacologic agents (such as diuretics and vasodilators) can be used with patients having mild mitral valve regurgitation to help reduce the amount of blood flowing back into the left atrium. However, medications can suffer from lack of patient compliance. A significant number of patients may occasionally (or even regularly) fail to take medications, despite the potential seriousness of chronic and/or progressively deteriorating mitral valve regurgitation. Pharmacological therapies of mitral valve regurgitation may also be inconvenient, are often ineffective (especially as the condition worsens), and can be associated with significant side effects (such as low blood pressure).


A variety of surgical options have also been proposed and/or employed for treatment of mitral valve regurgitation. For example, open-heart surgery can replace or repair a dysfunctional mitral valve. In annuloplasty ring repair, the posterior mitral annulus can be reduced in size along its circumference, optionally using sutures passed through a mechanical surgical annuloplasty sewing ring to provide coaptation. Open surgery might also seek to reshape the leaflets and/or otherwise modify the support structure. Regardless, open mitral valve surgery is generally a very invasive treatment carried out with the patient under general anesthesia while on a heart-lung machine and with the chest cut open. Complications can be common, and in light of the morbidity (and potentially mortality) of open-heart surgery, the timing becomes a challenge—sicker patients may be in greater need of the surgery, but less able to withstand the surgery. Successful open mitral valve surgical outcomes can also be quite dependent on surgical skill and experience.


Given the morbidity and mortality of open-heart surgery, innovators have sought less invasive surgical therapies. Procedures that are done with robots or through endoscopes are often still quite invasive, and can also be time consuming, expensive, and in at least some cases, quite dependent on the surgeon's skill. Imposing even less trauma on these sometimes frail patients would be desirable, as would be providing therapies that could be successfully implemented by a significant number of physicians using widely distributed skills. Toward that end, a number of purportedly less invasive technologies and approaches have been proposed. These include devices which seek to re-shape the mitral annulus from within the coronary sinus; devices that attempt to reshape the annulus by cinching either above to below the native annulus; devices to fuse the leaflets (imitating the Alfieri stitch); devices to re-shape the left ventricle, and the like.


Perhaps most widely known, a variety of mitral valve replacement implants have been developed, with these implants generally replacing (or displacing) the native leaflets and relying on surgically implanted structures to control the blood flow paths between the chambers of the heart. While these various approaches and tools have met with differing levels of acceptance, none has yet gained widespread recognition as an ideal therapy for most or all patients suffering from mitral valve regurgitation.


Because of the challenges and disadvantages of known minimally invasive mitral valve regurgitation therapies and implants, still further alternative treatments have been proposed. Some of the alternative proposals have called for an implanted structure to remain within the valve annulus throughout the heart beat cycle. One group of these proposals includes a cylindrical balloon or the like to remain implanted on a tether or rigid rod extending between the atrium and the ventricle through the valve opening. Another group relies on an arcuate ring structure or the like, often in combination with a buttress or structural cross-member extending across the valve so as to anchor the implant. Unfortunately, sealing between the native leaflets and the full perimeter of a balloon or other coaxial body may prove challenging, while the significant contraction around the native valve annulus during each heart beat may result in significant fatigue failure issues during long-term implantation if a buttress or anchor interconnecting cross member is allowed to flex. Moreover, the significant movement of the tissues of the valve may make accurate positioning of the implant challenging regardless of whether the implant is rigid or flexible.


In light of the above, it would be desirable to provide improved medical devices, systems, and methods. It would be particularly desirable to provide new techniques for treatment of mitral valve regurgitation and other heart valve diseases, and/or for altering characteristics of one or more of the other valves of the body. The need remains for a device which can directly enhance leaflet coaptation (rather than indirectly via annular or ventricular re-shaping) and which does not disrupt leaflet anatomy via fusion or otherwise, but which can be deployed simply and reliably, and without excessive cost or surgical time. It would be particularly beneficial if these new techniques could be implemented using a less-invasive approach, without stopping the heart or relying on a heart-lung machine for deployment, and without relying on exceptional skills of the surgeon to provide improved valve and/or heart function.


SUMMARY OF THE INVENTION

The invention generally provides improved medical devices, systems, and methods. In some embodiments, the invention provides new implants, implant systems, and methods for treatment of mitral valve regurgitation and other valve diseases. In some embodiments, the implants comprise a coaptation assist body which remains within the blood flow path as the valve moves back and forth between an open-valve configuration and a closed valve configuration. The coaptation assist body may extend laterally across some, most, or all of the width of the valve opening, allowing coaptation between at least one of the native leaflets and the implant body. In some embodiments, also disclosed is an implant, which can be a cardiac implant, such as a coaptation assist body, cardiac patch, replacement heart valve, annuloplasty ring, pacemaker, sensor, or other device. At least one ribbon (e.g., clip) can be configured to extend from the implant body. The ribbon can be made of a shape memory material having a preformed shape with at least one curve. The ribbon can be movable from a first compressed configuration to a second expanded configuration. The ribbon can be configured to provide a force, such as a compressive force to clip to a body structure, such as an intracardiac structure. In some embodiments, the intracardiac structure is a single native valve leaflet, and the force is applied between a first surface of the ribbon and a second surface of the ribbon opposed from the first surface of the ribbon. The compressive force can be sufficient to secure the implant in the vicinity of the native valve annulus.


In some embodiments, an implant for treating mal-coaptation of a heart valve is provided. The heart valve can have an annulus and first and second leaflets with an open configuration and a closed configuration. The implant can include a coaptation assist body having a first coaptation surface configured to be disposed to the posterior leaflet, an opposed second surface configured to be disposed toward the anterior leaflet. The implant can include at least one ribbon configured to extend from the coaptation assist body. The ribbon can comprise a shape memory material having a preformed shape with at least one, two, or more discrete curves. The ribbon can be movable from a first compressed configuration to a second expanded configuration. The ribbon can be configured to provide a compressive force on a native valve leaflet between a first surface and a second surface opposed from the first surface of the ribbon. The compressive force can be sufficient to secure the implant, such as the coaptation assist body, in the vicinity of the native valve annulus. The ribbon can be configured to provide ventricular attachment of the implant. The ribbon can comprise a nitinol alloy. The ribbon can be self-expanding. The implant can include a plurality of ribbons. The ribbon can be configured to engage the left ventricle wall. The ribbon can be configured to engage the anterior or the posterior leaflet. The ribbons can resist movement of the implant. The implant can include at least one eyelet configured to accept a portion of an anchor there through. The implant can include a clip and pledget configured to secure the anchor to the coaptation assist body.


In some embodiments, an implant for treating mal-coaptation of a heart valve is provided. The heart valve can have an annulus and first and second leaflets with an open configuration and a closed configuration. The implant can include a coaptation assist body having a first coaptation surface configured to be disposed to the posterior leaflet, an opposed second surface configured to be disposed toward the anterior leaflet. The implant can include a first anchor selectively deployable at a first target location. The implant can include a first rail coupled to the first anchor. The implant can include a second anchor selectively deployable, independently of the deployment of the first anchor, at a second location of the heart. The implant can include a second rail coupled to the second anchor. The coaptation assist body can be configured to slide along the first rail and the second rail to the implantation site. The coaptation assist body can be configured to slide along the first rail and the second rail when collapsed to fit within a delivery catheter. The coaptation assist body can be configured to slide along the first rail and the second rail when expanded upon exiting a delivery catheter. The first rail can be a suture. The second rail can be a suture. The ventricular anchor can be unfolded and held in relation to the coaptation assist body when the coaptation assist body slides along the first rail and the second rail. The ventricular anchor can traverse the mitral valve when the coaptation assist body slides along the first rail and the second rail. The implant can include a clip and pledget configured to secure the first anchor to the coaptation assist body. The implant can include a clip and pledget configured to secure the second anchor to the coaptation assist body. The first rail can be configured to be removed once first anchor is secured to the coaptation assist body. The second rail can be configured to be removed once second anchor is secured to the coaptation assist body.


In some embodiments, an implant for treating mal-coaptation of a heart valve, comprises a coaptation assist body having a first coaptation surface, an opposed second surface, each surface bounded by a first lateral edge; a first anchor selectively deployable at a first target location of the heart near the second leaflet on the annulus and coupleable to the coaptation assist body near the superior edge; a second anchor selectively deployable, independently of the deployment of the first anchor, at a second location of the heart in the ventricle such that the coaptation assist body, when coupled to both the first anchor and the second anchor, extends from the first target location across the valve to the second target location; and wherein the second anchor is a ventricular anchor capable of engaging a wall of the left ventricle.


In some embodiments, a method for treating mal-coaptation of a heart valve in a patient, the heart valve having an annulus and first and second leaflets, the first and second leaflets each comprising a proximal surface, a distal surface, a coaptation edge and an annular edge; the annulus further defining a valve plane, the valve plane separating an atrium proximally and a ventricle distally, the method comprises: selectively deploying a first anchor into heart tissue near anterior and posterior fibrous trigones; selectively deploying a second anchor near the left ventricle wall; coupling the first anchor and the second anchor to a coaptation assist body comprising a coaptation surface and a leaflet surface such that the coaptation assist body is suspended across the valve plane from the atrium proximally to the ventricle distally.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A-1F schematically illustrate some of the tissues of the heart and mitral valve, as described in the Background section and below, and which may interact with the implants and systems described herein.



FIG. 2A illustrates a simplified cross-section of a heart, schematically showing mitral valve function during diastole. FIG. 2B illustrates a simplified cross-section of a heart, schematically showing mitral valve function during systole.



FIGS. 3A-3B illustrate a simplified cross-section of a heart, schematically showing mitral valve regurgitation during systole in the setting of mal-coaptation of the mitral valve leaflets.



FIG. 4A illustrates a stylized cross section of a heart, showing mitral valve mal-coaptation in the settings of functional mitral valve regurgitation. FIG. 4B illustrates a stylized cross section of a heart, showing mitral valve mal-coaptation in the settings of degenerative mitral valve regurgitation.



FIG. 5A schematically illustrates an embodiment of the coaptation assistance device; FIG. 5B schematically illustrates a top view of the coaptation assistance device of FIG. 5A; FIGS. 5C-5D schematically illustrates lateral views of the coaptation assistance device of FIG. 5A.



FIG. 6A schematically illustrates the coaptation assistance device of FIG. 5A in its collapsed state; FIG. 6B schematically illustrates the coaptation assistance device of FIG. 5A as it is deployed; FIG. 6C schematically illustrates the coaptation assistance device of FIG. 5A deployed with connecting struts; FIG. 6D schematically illustrates the coaptation assistance device of FIG. 5A deployed.



FIG. 7 schematically illustrates an embodiment of the transseptal sheath.



FIG. 8 illustrates an embodiment of the anchor delivery catheter.



FIG. 9A schematically illustrates an embodiment of an implant delivery catheter and the transseptal sheath of FIG. 7; FIG. 9B schematically illustrates the attachment of the coaptation assistance device to the implant delivery catheter; FIG. 9C schematically illustrates the advancement of the coaptation assistance device over two rails.



FIG. 10 schematically illustrates an embodiment of a clip delivery catheter.



FIG. 11A schematically illustrates the insertion of the transseptal sheath; FIG. 11B schematically illustrates the engagement of the first trigonal anchor and the placement of the anchors; FIG. 11C schematically illustrates the coaptation assistance device deployed and advanced over two rails; FIG. 11D schematically illustrates the engagement of a ventricular anchor; FIG. 11E schematically illustrates the engagement of a clip and a pledget; FIG. 11F schematically illustrates the coaptation assistance device deployed across the mitral valve.



FIG. 12A schematically illustrates a clip and a pledget initially loaded on a hypotube of the clip delivery catheter of FIG. 10; FIG. 12B schematically illustrates the engagement of the clip with an anchor suture; FIG. 12C schematically illustrates the hypotube crimped over a guide suture; FIG. 12D schematically illustrates the cutting of the guide suture.



FIG. 13 schematically illustrates an embodiment of the coaptation assistance device.



FIG. 14A schematically illustrates the insertion of the transseptal catheter; FIG. 14B schematically illustrates the collapsed coaptation assistance device of FIG. 13 and the placement of the anchors; FIG. 14C schematically illustrates the coaptation assistance device deployed and advanced over guidewires; FIG. 14D schematically illustrates the engagement of a ventricular anchor.



FIG. 15 schematically illustrates an embodiment of the coaptation assistance device.



FIG. 16 schematically illustrates an embodiment of the coaptation assistance device.



FIG. 17A schematically illustrates an embodiment of the coaptation assistance device; FIG. 17B schematically illustrates a lateral view of an embodiment of the coaptation assistance device.



FIG. 18A schematically illustrates an embodiment of the delivery catheter; FIG. 18B schematically illustrates the coaptation assistance device of FIG. 17A deployed across the mitral valve; FIG. 18C schematically illustrates the top view of the coaptation assistance device deployed across the mitral valve.





DETAILED DESCRIPTION

Disclosed herein are improved medical devices, systems, and methods, often for treatment of mitral valve regurgitation and other valve diseases including tricuspid regurgitation. While the description that follows includes reference to the anterior leaflet in a valve with two leaflets such as the mitral valve, it is understand that “anterior leaflet” could refer to one or more leaflets in a valve with multiple leaflets. For example, the aortic valve or tricuspid valve typically has 3 leaflets so the “anterior” could refer to one or two of the medial, lateral, and posterior leaflets. The implants described herein will generally include a coaptation assist body (sometimes referred to herein as a valve body) which is generally along the blood flow path as the leaflets of the valve move back and forth between an open-valve configuration (with the anterior leaflet separated from valve body) and a closed-valve configuration (with the anterior leaflet engaging opposed surfaces of the valve body). The valve body will be disposed between the native leaflets to close the gap caused by mal-coaptation of the native leaflets by providing a surface for at least one of the native leaflets to coapt against, while effectively replacing second native leaflet in the area of the valve which it would occlude during systole, were it functioning normally. The gaps may be lateral (such as may be caused by a dilated left ventricle and/or mitral valve annulus) and/or axial (such as where one leaflet prolapses or is pushed by fluid pressure beyond the annulus when the valve should close).


Among other uses, the coaptation assistance devices, implants, and methods described herein may be configured for treating functional and/or degenerative mitral valve regurgitation (MR) by creating an artificial coaptation zone within which at least one of the native mitral valve leaflets can seal. The structures and methods herein will largely be tailored to this application, though alternative embodiments might be configured for use in other valves of the heart and/or body, including the tricuspid valve, valves of the peripheral vasculature, the inferior vena cava, or the like.


Referring to FIGS. 1A-1D, the four chambers of the heart are shown, the left atrium 10, right atrium 12, left ventricle 14, and right ventricle 16. The mitral valve 20 is disposed between the left atrium 10 and left ventricle 14. Also shown are the tricuspid valve 22 which separates the right atrium 12 and right ventricle 16, the aortic valve 24, and the pulmonary valve 26. The mitral valve 20 is composed of two leaflets, the anterior leaflet 30 and posterior leaflet 32. In a healthy heart, the edges of the two leaflets oppose during systole at the coaptation zone 34.


The fibrous annulus 36, part of the cardiac skeleton, provides attachment for the two leaflets 30, 32 of the mitral valve 20, referred to as the anterior leaflet 30 and the posterior leaflet 32. The leaflets 30, 32 are axially supported by attachment to the chordae tendinae 40. The chordae 40, in turn, attach to one or both of the papillary muscles 42, 44 of the left ventricle 14. In a healthy heart, the chordae 40 support structures tether the mitral valve leaflets 30, 32, allowing the leaflets 30, 32 to open easily during diastole but to resist the high pressure developed during ventricular systole. In addition to the tethering effect of the support structure, the shape and tissue consistency of the leaflets 30, 32 helps promote an effective seal or coaptation. The leading edges of the anterior and posterior leaflet come together along a funnel-shaped zone of coaptation 34, with a lateral cross-section 46 of the three-dimensional coaptation zone (CZ) being shown schematically in FIG. 1E.


The anterior and posterior mitral leaflets 30, 32 are dissimilarly shaped. The anterior leaflet 30 is more firmly attached to the annulus overlying the central fibrous body (cardiac skeleton), and is somewhat stiffer than the posterior leaflet 32, which is attached to the more mobile posterior mitral annulus. Approximately 80 percent of the closing area is the anterior leaflet 30. Adjacent to the commissures 50, 52, on or anterior to the annulus 36, lie the left (lateral) 56 and right (septal) 60 fibrous trigones which are formed where the mitral annulus is fused with the base of the non-coronary cusp of the aorta (FIG. 1F). The fibrous trigones 56, 60 form the septal and lateral extents of the central fibrous body 62. The fibrous trigones 56, 60 may have an advantage, in some embodiments, as providing a firm zone for stable engagement with one or more annular or atrial anchors. The coaptation zone 34 between the leaflets 30, 32 is not a simple line, but rather a curved funnel-shaped surface interface. The first 50 (lateral or left) and second 52 (septal or right) commissures are where the anterior leaflet 30 meets the posterior leaflet 32 at the annulus 36. As seen most clearly in the axial views from the atrium of FIGS. 1C, 1D, and 1F, an axial cross-section of the coaptation zone 34 generally shows the curved line CL that is separated from a centroid of the annulus CA as well as from the opening through the valve during diastole CO. In addition, the leaflet edges are scalloped, more so for the posterior leaflet 32 versus the anterior leaflet 30. Mal-coaptation can occur between one or more of these A-P (anterior-posterior) segment pairs A1/P1, A2/P2, and A3/P3, so that mal-coaptation characteristics may vary along the curve of the coaptation zone 34.


Referring now to FIG. 2A, a properly functioning mitral valve 20 of a heart is open during diastole to allow blood to flow along a flow path FP from the left atrium 10 toward the left ventricle 14 and thereby fill the left ventricle 14. As shown in FIG. 2B, the functioning mitral valve 20 closes and effectively seals the left ventricle 14 from the left atrium 10 during systole, first passively then actively by increase in ventricular pressure, thereby allowing contraction of the heart tissue surrounding the left ventricle 14 to advance blood throughout the vasculature.


Referring to FIGS. 3A-3B and 4A-4B, there are several conditions or disease states in which the leaflet edges of the mitral valve 20 fail to oppose sufficiently and thereby allow blood to regurgitate in systole from the left ventricle 14 into the left atrium 10. Regardless of the specific etiology of a particular patient, failure of the leaflets to seal during ventricular systole is known as mal-coaptation and gives rise to mitral regurgitation.


Generally, mal-coaptation can result from either excessive tethering by the support structures of one or both leaflets 30, 32, or from excessive stretching or tearing of the support structures. Other, less common causes include infection of the heart valve, congenital abnormalities, and trauma. Valve malfunction can result from the chordae tendinae 40 becoming stretched, known as mitral valve prolapse, and in some cases tearing of the chordae 40 or papillary muscle 44, known as a flail leaflet 64, as shown in FIG. 3A. Or if the leaflet tissue itself is redundant, the valves may prolapse so that the level of coaptation occurs higher into the left atrium 10, opening the valve 20 higher in the left atrium 10 during ventricular systole 66. Either one of the leaflets 30, 32 can undergo prolapse or become flail. This condition is sometimes known as degenerative mitral valve regurgitation.


In excessive tethering, as shown in FIG. 3B, the leaflets 30, 32 of a normally structured valve may not function properly because of enlargement of or shape change in the valve annulus 36: so-called annular dilation 70. Such functional mitral regurgitation generally results from heart muscle failure and concomitant ventricular dilation. And the excessive volume load resulting from functional mitral regurgitation can itself exacerbate heart failure, ventricular and annular dilation, thus worsening mitral regurgitation.



FIG. 4A-4B illustrate the backflow BF of blood during systole in functional mitral valve regurgitation (FIG. 4A) and degenerative mitral valve regurgitation (FIG. 4B). The increased size of the annulus 36 in FIG. 4A, coupled with increased tethering due to hypertrophy of the left ventricle 14 and papillary muscles 42, 44, prevents the anterior leaflet 30 and posterior leaflet 32 from opposing, thereby preventing coaptation. In FIG. 4B, the tearing of the chordae 40 causes prolapse of the posterior leaflet 32 upward into the left atrium 10, which prevents opposition against the anterior leaflet 30. In either situation, the result is backflow of blood into the left atrium 10, which decreases the effectiveness of left ventricle compression.



FIGS. 5A-5D show four views of an embodiment of a coaptation assistance device 80 which comprises a body 82. The body 82 comprises a first surface 84 disposed toward a mal-coapting native leaflet, in the instance of a mitral valve 20, the posterior leaflet 32 and a second surface 86 which may be disposed toward the anterior leaflet 30. The first and second surfaces 84, 86 can be considered a coaptation surface. The superior edge 90 of the body 82 may be curved to match the general shape of the annulus 36 or adjoining atrial wall. The coaptation assistance device 80 can comprise a frame 88 configured to provide structural support to the coaptation assistance device 80. In some embodiments, the frame 88 is collapsible to fit within a delivery catheter, as described herein.


The coaptation assistance device 80 may include one or a plurality of anchors to stabilize the device, such as atrial anchors and/or ventricular anchors, with the anchors optionally providing redundant fixation. As shown in FIG. 5A, the implant has lateral commissural anchors 92 which may help maintain the shape and position of the coaptation assistance device 80 once deployed in the heart. In some embodiments, the lateral commissural anchors 92 are placed under the leaflets 30, 32 at the site of commissures 50, 52. The coaptation assistance device 80 can also have a posterior anchor 94. In some embodiments, the posterior anchor 94 engages the area under the posterior leaflet 32. As shown in FIG. 5A, the commissural anchors 92 and the posterior anchors 94 can each comprise ribbons 98 that have a bias such that they can exert a force, and rest against the tissue of the heart, such as the ventricle. The ribbons 98 function as anchors and resist movement of the coaptation assistance device 80, and can do so without penetrating the myocardium in some embodiments. The positioning of the ribbons 98 against features of the anatomy may provide stability of the coaptation assistance device 80. The ribbons 98 may comprise bio-inert materials such as, for example, Platinum/Ir, a Nitinol alloy, and/or stainless steel. In some embodiments, the ribbons 98 comprise NiTi. In some embodiments, the ribbons 98 have a pre-determined curve. The material selection combined with the selected shape provides anchors 92, 94 that are spring loaded. The ribbons 98 extend in a direction, such as downward, from the frame 88. The ribbons 98 curve and then extend upward, forming a generally U-shaped configuration. The ribbons 98 comprise a rounded top surface configured to abut tissue. Other shapes for the ribbons 98 are contemplated. As disclosed herein, the coaptation assistance device 80 is collapsed inside the delivery catheter 100 as shown in FIG. 6A. The spring loaded ribbons 98 are capable of being collapsed within the delivery catheter. Upon exiting the catheter, the spring loaded ribbons 98 rapidly expand into the preformed shape. In some embodiments, the ribbons 98 are provided for ventricular attachment. The ribbons 98 allow for very rapid attachment of the coaptation assistance device 80 to the tissue, since the ribbons 98 do not rely on annular sutures and do not require tying knots in some embodiments. The deployment of the ribbons 98 can be faster than engaging a helical anchor, for instance.


In some embodiments, the coaptation assistance device 80 includes an annular anchor 96. The annular anchor 96 can be, in some embodiments, a radially expandable stent-like structure, as shown in FIG. 5A. Like the commissural anchors 92, the annular anchor 96 can be collapsed to fit inside a catheter, described herein. In some embodiments, the annular anchor 96 can be delivered to the site of the mitral valve 20. In some embodiments, the annular anchor 92 is intended for placement in the mitral annulus 36. The annular anchor 96 may include a plurality of barbs for acute fixation to the surrounding tissue. In some embodiments, the annular anchor 96 may be simply held in place via radial forces. The annular anchor 96, if it is included, may be covered with biocompatible materials such as ePTFE or Dacron to promote endothelialization and, optionally, chronic tissue in-growth or encapsulation of the annular anchor for additional stability.


In other embodiments, the atrial anchors may comprise a plurality of helixes, clips, harpoon or barb-shaped anchors, or the like, appropriate for screwing or engaging into the annulus 36 of the mitral valve 20, tissues of the ventricle 14, other tissues of the atrium 10, or other tissue. The body 82 can include one or more features such as eyelets or tethers to couple with the atrial anchors.


The coaptation assistance device 80 has a geometry which permits it to traverse the mitral valve 20 between attachment sites in the left atrium 10 and left ventricle 14, to provide a coaptation surface 86 for the anterior leaflet 30 to coapt against, and attach to the left atrium 10 or annulus 36 such that it effectively seals off the posterior leaflet 32. In the instance that the posterior leaflet 32 is or has been removed, the coaptation assistance device 80 replaces the posterior leaflet 32.


Different sized coaptation assistance device 80, particularly the different sized bodies 82, can be placed such that the native anterior leaflet 30 opposes the coaptation surface 86 at the appropriately established coaptation point, blocking flow of blood during contraction of the left ventricle 14. In order to accomplish this, a variety of sizes of coaptation assistance device 80 are provided, with differing dimensions configured to fit varying anatomies. As seen in the top view of FIG. 5B, there is a dimension A which is an inter-commissural distance. This distance may be, for example, within a range of about 20 mm to about 80 mm, and in one embodiment about 40 mm. There is a dimension B which is an anterior-posterior diameter. This diameter may be, for example, within a range of about 20 mm to about 60 mm, and in one embodiment about 35 mm. There is a dimension C which is the anterior-posterior projection. This dimension may be within a range of, e.g., about 10 mm to about 30 mm depending on the mitral valve regurgitation (MR). For degenerative MR, this dimension may be, e.g., within a range of about 10 mm to about 20 mm. For functional MR, this dimension may be, e.g., within a range of about 20 mm to about 30 mm. As shown in FIG. 5D, there is a dimension D which is the coaptation assistance device 80 height. This dimension may be, e.g., within a range of about 20 mm to about 50 mm, and in one embodiment about 25 mm.


Turning now to FIGS. 6A-6D, an embodiment of the coaptation assistance device 80 is shown. It can be seen that in some embodiments, the coaptation assistance device 80 is collapsed inside the delivery catheter 100. The stent-like structure of the frame 88 of the coaptation assistance device 80 including the structure of the annular anchor 96 and commissural anchors 92 allows the coaptation assistance device 80 to be collapsed.


In the embodiment shown in FIGS. 6B-6C, a number of struts 102 may couple to the coaptation assistance device 80. The struts 102 may connect to the coaptation assistance device 80 at any number of locations, e.g., superior edge 90, annular anchor 94, commissural anchors 92, to a ventricular hub described herein. The struts 102 couple the coaptation assistance device 80 to the catheter 100 and/or implant introducer 104. Each strut 102 may comprise a single longitudinal element or be doubled over to comprise two or more strands. A single strut 102 may be comprised of a strand of Nitinol wire, suture, or other material which loops toward the superior aspect of the implant. This loop area may provide reinforcement around an interruption in the covering material. In some embodiments, the struts 102 could include clips, jaws, adhesive, or another mechanism to form a releasable attachment between the struts 102 and the coaptation assistance device 80. The struts 102 may be, as shown, placed such that they are relatively evenly spaced, or may be concentrated toward the center or lateral edges of the coaptation assistance device 80. The struts 102 may be coupleable with the anchors 92, 94, 96 which may be deployed into various locations including the mitral annulus 36, left atrium 10, left auricle, one of the fibrous trigones 56, or the left ventricle 14.


As shown in FIGS. 6A-6D, the body 82 of the coaptation assistance device 80 can be delivered by a delivery catheter 100 and may be capable of expanding from a smaller profile to a larger profile to dimensions appropriate for placement in between the valve's native leaflets 30, 32. The coaptation assistance device 80 is expanded as it is exposed from the tip of the delivery catheter 100. In some embodiments, the delivery catheter 100 is pulled back to expose the coaptation assistance device 80 as shown by the arrow in FIG. 6B. The exposed coaptation assistance device 80 is detached from the delivery catheter 100 as shown in FIG. 6D, for instance by releasing the struts 102.


Turning now toward implantation, a coaptation assistance device 180 may be implanted through a minimally invasive or transcatheter technique utilizing a delivery system 106. The coaptation assistance device 180 can be substantially similar to the coaptation assistance device 80 described herein. The delivery system 106 can include one or more of the following devices: a transseptal sheath 110 shown in FIG. 7, an anchor delivery catheter 112 shown in FIG. 8, an implant delivery catheter 114 shown in FIGS. 9A-9B, and a clip delivery catheter 116 shown in FIG. 10. As illustrated in FIG. 7, the delivery system 106 may include a transseptal sheath 110 having a shaft 120 that may be made of a polymeric or other material. In some embodiments, the shaft 120 is a braid or coil reinforced polymer shaft. In some embodiments, the shaft 120 has multiple durometers, such as a first smaller durometer at a first location and a second larger durometer at a second location distal or proximal to the first location. In some embodiments, the transseptal sheath 110 is pre-shaped. The shaft 120 can include at least one through lumen (e.g., two, or more through lumens). In some embodiments, the transseptal sheath 110 comprises an actively deflectable tip 122 to facilitate navigation into the left ventricle 14. The deflectable tip 122 can be controlled by various mechanisms, for instance via pullwires operably attached to the deflectable tip 122 and connected to a proximal control.


The transseptal sheath 110 may include a seal 124 to accommodate various instruments and guidewires inserted therein. The seal can accommodate diameters including the outer diameter of the anchor delivery catheter 112, the implant delivery catheter 114, and the clip delivery catheter 116. In some embodiments, the accommodated diameters can be up to 22 Fr. The transseptal sheath 110 may include lined inner diameter 126. The lined inner diameter 126 may be within a range of about 10 to about 22 Fr, and in one embodiment preferably 16 Fr. The transseptal sheath 110 has sufficient length over a section 130 to span from the access point (e.g., outside the body) to the tip of the left ventricle 14. The access point may be via groin/femoral access. This length may be, e.g., within a range of about 80 cm to about 120 cm, and in one embodiment about 100 cm. The transseptal sheath 110 may include atraumatic tip 132. The tip 132 may include a marker band 134 for visualization. The transseptal sheath 110 may include flush port 136 operably connected to the central lumen of shaft 120 at a proximal hub 140 as illustrated. The system may further include additional ports, including flush, irrigation and/or aspiration ports to remove fluid or air from the system and allow injection of fluids such as saline or contrast media to the site of implantation.


Referring now to FIG. 8, aspects of the anchor delivery catheter 112 are illustrated. FIG. 8 shows an embodiment of the anchor delivery catheter 112. The anchor delivery catheter 112 may include a shaft 142 made of a material such as a polymer. In some embodiments, the shaft 142 is a braid or coil reinforced polymer shaft. In some embodiments, the shaft 142 has multiple durometers, such as a first smaller durometer at a first location and a second larger durometer at a second location distal or proximal to the first location. The anchor delivery catheter 112 has sufficient length over a section 162 to span from the access point (e.g., outside the body) and through the transseptal sheath 110. This length may be, e.g., within a range of about 90 cm to about 130 cm, and in one embodiment about 110 cm. In other embodiments, the anchor delivery catheter 112 comprises an actively deflectable tip 144 to facilitate navigation of the anchors to the anchoring sites. The anchor delivery catheter 112 is configured to deploy an anchor 146.


The anchor delivery catheter 112 may include a drive shaft 150. The drive shaft 150 is configured to couple with a drive continuation 152 to allow transmission of torque to the anchor 146. In some embodiments, the drive shaft 150 is flexible. In some embodiments, the drive shaft 150 is capable of being advanced or retracted. The anchor delivery catheter 112 may include a handle 154. The handle 154 may include a knob 156 to enable simple manipulation of the torque or position of the anchor 146. The knob is internally connected to the drive shaft 150 thereby allowing transmission of torque to the anchor 146 when the knob 156 is rotated.


The anchor 146 has an outer diameter which may be within a range of about 1 to about 6 mm, and in one embodiment preferably 4 mm. The anchor 146 may be helical with a pitch within a range of about 0.4 to about 1.5 mm, and in one embodiment preferably 0.8 mm. The anchor 146 in some embodiments has a wire diameter which may be within a range of about 0.25 to about 0.75 mm, and in one embodiment preferably 0.5 mm. The anchor 146 may be coupled to the drive continuation 152. As shown, the drive continuation 152 can be a square continuation of the anchor helix. However, the drive continuation 152 may be of any shape, such as triangular or hexagonal, capable of transmitting the torque imparted by the drive shaft 150. The anchor 146 can include anchor suture 158. The anchor delivery catheter 112 may include one or more rails 160 (e.g., sutures, guidewires) attached to the proximal end of anchor 146 and/or the anchor suture 158. For the anchor 146 shown in FIG. 8, such as the trigonal anchor, the rails 160 (e.g., sutures, guidewires) facilitate subsequent proper placement of the coaptation assistance device 180. For some method, the rails 160 are cut after anchor placement.


Referring now to FIG. 9A, aspects of the implant delivery catheter 114 are illustrated. The implant delivery catheter 114 can be inserted into the transseptal sheath 110 shown. The seal 124 is sized to accommodate the implant delivery catheter 114. The transseptal sheath 110 allows the introduction of the implant delivery catheter 114 through a lumen of the shaft 120 and into the left atrium 10. The transseptal sheath 110 may include a variable stiffness outer shaft 120 with at least one lumen, the lumen sized to allow insertion of the implant delivery catheter 114 and/or coaptation assistance device 180 through the lumen. The deflectable tip 122 and/or a deflectable portion of the shaft 120 may facilitate alignment of the coaptation assistance device 180 with the valve leaflets 30, 32.


The implant delivery catheter 114 comprises a shaft 164. The shaft 164 can be a variable stiffness shaft, with the stiffness varying along a dimension, for instance along the length. The shaft 164 can include at least one through lumen (e.g., two, or more through lumens). The shaft 164 can be include a deflectable tip 166 configured for deflecting along at least a distal section. The deflectable tip 166 can be controlled by various mechanisms, for instance via pullwires operably attached to the deflectable tip 166 and connected to a proximal control.


The delivery catheter may further include an implant introducer 170. The implant introducer 170 can be sized to pass through the shaft 164 of the implant delivery catheter 114. The implant introducer 170 can include a slot 172. The implant delivery catheter 114 may further include a handle 174 to manipulate the implant delivery catheter 114 within the transseptal sheath 110 and/or body of the patient. The handle 174 may include a knob 176 to enable simple manipulation of the position of the coaptation assistance device 180. The knob 176 is internally connected to the implant introducer 170 thereby allowing transmission of movement to the implant introducer 170 when the knob 176 is manipulated. In some embodiments, the knob 176 can manipulate the docking and undocking of the coaptation assistance device 180 with the implant delivery catheter 114. The handle 174 may further include one or more ports 182, such as a flush, irrigation and/or aspiration port to remove the air from the system and allow injection of fluids such as saline or contrast media to the site of implantation.


As shown in FIG. 9B, the coaptation assistance device 180 is inserted into the implant delivery catheter 114. The coaptation assistance device 180 is shown in the top view of FIG. 9B. In some embodiments, the coaptation assistance device 180 is unfolded in the direction of the arrows as shown in the middle view of FIG. 9B. The coaptation assistance device 180 can be coupled to the implant introducer 170. In some embodiments, a portion of the coaptation assistance device 180 is held within the slot 172. In some embodiments, a portion of the coaptation assistance device 180 folds around the deflectable tip 166 of the implant delivery catheter 114 in the direction of the arrows shown in the bottom view of FIG. 9B. The coaptation assistance device 180 can be coupled to the implant introducer 170 and the deflectable tip 166 of the implant delivery catheter 114. As shown in FIG. 9C, the attached coaptation assistance device 180 can slide along (e.g., engage) one or more rails 184 (e.g., two rails 184), which may be rails 160 coupled to anchor 146. The rails 184 can extend through transseptal sheath 110 from the anchor 146 to the coaptation assistance device 180. The coaptation assistance device 180 can advance over two rails as shown in FIG. 9C. In some embodiments, the rails 184 extend through eyelets or other apertures of the coaptation assistance device 180. The rails 184 can extend through (e.g., be pulled through) the implant delivery catheter 114. The rails 184 can help guide the coaptation assistance device 180 toward the implantation site and/or toward the anchor 146. The rails 184 in some embodiments are flexible guidewires and/or sutures. In some embodiments, the rails 184 are pulled in the direction of the arrows to advance the coaptation assistance device 180 and/or implant delivery catheter 114 through the transseptal sheath 110 In some embodiments, systems that include a plurality of rails 160, such as two rails 160 for example advantageously allows for more controlled and symmetric deployment of the coaptation assistance device.


Referring now to FIG. 10, aspects of the clip delivery catheter 116 are illustrated. The clip delivery catheter 116 comprises a shaft 186. The shaft 186 can be a variable stiffness shaft, with the stiffness varying along a dimension, for instance along the length. The shaft 186 may include a polymer shaft. In some embodiments, the shaft 186 is a braid or coil reinforced polymer shaft. In some embodiments, the shaft 186 has multiple durometers. The shaft 186 can include at least one through lumen (e.g., two, or more through lumens). In some embodiments, the shaft 186 comprises an actively deflectable tip 190 to facilitate navigation of various clips 192 and/or pledgets 194 to the anchoring sites. The clips 192 and pledgets 194 may be comprised of any suitable material, such as suture, flexible material, Nitinol, metal, or plastic. In one embodiment, the preferred material is Nitinol. The deflectable tip 190 can be configured for deflecting along at least a distal section. The deflectable tip 190 can be controlled by various mechanisms, for instance via pullwires operably attached to the deflectable tip 190 and connected to a proximal control.


The clip delivery catheter 116 has sufficient length to fully pass through the transseptal sheath 110 with additional length provided for tip deflection. This distance may be within a range of, e.g., about 90 cm to about 130 cm, and in one embodiment about 110 cm. The delivery catheter may further include a hypotube 196. The implant hypotube 196 can be sized to pass through the shaft 186 of the clip delivery catheter 116. The clip delivery catheter 116 may further include a handle 200 to manipulate the clip delivery catheter 116 within the transseptal sheath 110 and/or body of the patient to steer the hypotube 196 of the clip delivery catheter. The handle 200 may also deploy the clip 192 and/or pledget 194 to the intended site. The handle 200 may further include one or more ports 202, such as a flush, irrigation and/or aspiration port to remove the air from the system and allow injection of fluids such as saline or contrast media to the site of implantation.


The hypotube 196 or other elongate member extends through the clip 192 and/or the pledget 194. In some embodiments, the clip 192 and/or the pledget 194 are initially loaded on the hypotube 196, as shown. In some embodiments, a second hypotube 204 coaxial with and having a larger diameter than the hypotube 196 is used to push the clip 192 and/or the pledget 194 from the hypotube 196. In some embodiments, the deflectable tip 190 having a larger diameter than the hypotube 196 is used to push the clip 192 and/or the pledget 194 from the hypotube 196. Other mechanism can be used to push the clip 192 and/or the pledget 194 (e.g., pusher wire, jaws).


The clip delivery catheter 116 may include pledget 194. The pledget 194 may be of generally circular shape as shown, or may be square or rectangular, elliptical, or any other desired form. The pledget 194 may be comprised of any one of a number of suitable materials known to those of skill in the art. In some instances it may be advantageous to use a material which promotes tissue ingrowth, enhancing the connection of the coaptation assist device 180 to the patient's tissue. In other embodiments, a material which inhibits or is inert with respect to tissue ingrowth may be preferred, such as ePTFE, VTFE, PTFE (poly tetrafluoroethylene), Teflon, polypropylene, polyester, polyethylene terephthalate, or any suitable material. In some embodiments, a coating may be placed on the pledget 194 to inhibit or encourage tissue ingrowth. One or more anchors 146 may penetrate the material of the pledget 194 at a suitable position, securing the pledget 194 to underlying cardiac tissue. Thus, in some embodiments, the pledget 194 may comprise an easily punctured material, such as structural mesh, felt, or webbing.


The clip delivery catheter 116 may include clip 192. In one embodiment, the clip 192 is made from twisted strands of a metal or alloy, e.g., NiTi 2-30 to form a cable. In some embodiments, eight strands are twisted to form clip 192. In one embodiment, the strand diameters are within a range of about 0.01 to about 0.010 inches, and in one embodiment about 0.006 inches.


Referring now to FIGS. 11A-11F, the implantation steps of one embodiment of the method is shown. As shown in FIG. 11A, a transseptal method for treatment of MR will often include gaining access to the left atrium 10 via a transseptal sheath 110. Access to the femoral vein may be obtained, for example, using the Seldinger technique. From the femoral vein, access can then be obtained via the right atrium 12 to the left atrium 10 by a transseptal procedure. A variety of conventional transseptal access techniques and structures may be employed, so that the various imaging, guidewire advancement, septal penetration, and contrast injection or other positioning verification steps need not be detailed herein.


Transseptal sheaths, such as the transseptal sheath 110 and/or other transseptal sheaths, can have an elongate outer sheath body of the shaft 120 extending between a proximal handle 140 to a distal end, with the handle 140 having an actuator (not shown) for steering a distal segment and/or deflectable tip 122 of the shaft 120 similar to that described above. A distal electrode and/or marker 134 near the distal end of sheath body can help position the sheath within the left atrium. In some embodiments, an appropriately sized deflectable transseptal sheath 110 without steering capability may be guided into position in the left atrium 10 by a steerable transseptal sheath 110 or may be advanced into the left atrium 10 without use of a steerable transseptal sheath 110. Alternatively, deployment may proceed through a lumen of the steerable sheath. Regardless, in some embodiments an outer access sheath will preferably be positioned so as to provide access to the left atrium LA via a sheath lumen.


Referring now to FIG. 11B, the anchor delivery catheter 112 may be advanced through the outer transseptal sheath 110 and into the left atrium 10. The distal end and/or the deflectable tip 144 of the anchor delivery catheter 112 moves within the left atrium 10 by manipulating the proximal handle 154 and by articulating the actuator of the handle (not shown) so as to selectively bend the distal end and/or the deflectable tip 144 of the anchor delivery catheter 112, bringing the distal end of the anchor delivery catheter 112 into alignment and/or engagement with candidate locations for deployment of an anchor 146. The anchor delivery catheter 112 can be aligned optionally under guidance of 2D or 3D intracardiac, transthoracic, and/or transesophageal ultrasound imaging, Doppler flow characteristics, fluoroscopic or X-ray imaging, or another imaging modality.


In some embodiments, an electrode (not shown) at the distal end of the anchor delivery catheter 112 optionally senses electrogram signals and transmits them to an electrogram system EG so as to help determine if the candidate site is suitable, such as by determining that the electrogram signals include a mix of atrial and ventricular components within a desired range (such as within an acceptable threshold of 1:2). Contrast agent or saline may be introduced through the anchor delivery catheter 112.


As shown in FIG. 11B, the anchor 146, for instance a first trigonal anchor, is delivered and engaged with the implantation site. Another anchor, for instance a second trigonal anchor is delivered and engaged with another implantation site. The locations of the anchors 146 are shown in relationship to the anterior leaflet 30 and the posterior leaflet 32 as shown in the smaller snapshot. As shown in FIG. 11C, in some embodiments, each anchor 146 comprises at least one rail 160 (e.g., suture, guidewire) such that the coaptation assistance device 180 can be advance over the rail 160. The coaptation assistance device 180 is advanced over one or more rails 160 (e.g., two rails) as shown by the arrows in FIG. 11C. In this way, the rails 160 facilitate placement of the coaptation assistance device 180. The coaptation assistance device 180 is advanced over the posterior leaflet 32, as shown.


As shown in FIG. 11D, the coaptation assistance device 180 is extended through the mitral valve 20 into the left ventricle 14. In some embodiments, the coaptation assistance device 180 may have a ventricular anchor 208 (e.g., ribbon such as the ribbons described herein or other ventricular anchor) that is expanded and engaged to attach the coaptation assistance device 180. After placement of the coaptation assistance device 180 the coaptation assistance device 180 can be locked on the anchors 146 (such as trigonal anchors) by one or more clips 192 and/or one or more pledgets 194, as shown in FIG. 11E. After the coaptation assistance device 180 is deployed and/or locked on the anchors 146, the delivery system 106 is removed, as shown in FIG. 11F.


The aforementioned method can be performed by a physician. In one embodiment, a manufacturer can provides one, some or all of the following: coaptation assistance devices, for instance coaptation assistance device 180, transseptal sheath 110, anchor delivery catheter 112, implant delivery catheter 114, and clip delivery catheter 116. In some embodiments, the manufacturer provides a kit containing some or all of the devices previously described.


In some embodiments, the manufacturer provides instructions for use of the system including one or more of the following steps, or any step previously described in the drawings. The steps may include: gaining access to the left atrium 10 via the transseptal sheath 110; gaining access to the femoral vein via the Seldinger technique; gaining access via the right atrium 12 to the left atrium 10 by a transseptal procedure, utilizing a variety of conventional transseptal access techniques and structures. The steps may include: positioning the transseptal sheath 110 within the left atrium 10; deploying the anchor delivery catheter 112 through the transseptal sheath 110 and into the left atrium 10; bringing the distal end of the anchor delivery catheter 112 into alignment and/or engagement with candidate locations for deployment of the anchor 146; and determining if the candidate site is suitable. The steps may include: delivering and/or engaging the anchor 146, which may be the first trigonal anchor; deploying the rail 160 attached to the anchor 146; advancing the coaptation assistance device 180 over the rail 160; delivering and/or engaging the second anchor 146, which may be a second trigonal anchor; deploying the rail 160 attached to the second anchor; advancing the coaptation assistance device 180 over the rail 160 of the first anchor 146 and the rail 160 of the second anchor 146; facilitating placement of the coaptation assistance device 180 with the rails 160; and positioning the coaptation assistance device 180 over the posterior leaflet 32. The steps may include: extending the coaptation assistance device 180 through the mitral valve 20 into the left ventricle 14; expanding a ventricular anchor 208 of the coaptation assistance device 180; locking the coaptation assistance device 180 on the one or more anchors 146 by the clip 192 and/or the pledget 194; and removing the delivery system 106. These instructions can be written, oral, or implied.


Referring now to FIGS. 12A-12D, the method of clip 192 and pledget 194 placement is shown. As shown in FIG. 12A, in some embodiments the clip 192 and pledget 194 are initially loaded on the hypotube 196. A guide suture 210 extends in a loop from the hypotube 196. The guide suture 210 can engage the anchor suture 158. The anchor suture 158 is connected to the anchor 146 as shown in FIG. 12A. The hypotube 196 is retracted into the clip delivery catheter 116, as shown by the upward arrow in FIG. 12B. The distal tip of the clip delivery catheter 116 pushes downward on the clip 192, as shown by the downward arrow in FIG. 12B. The clip 192 presses against the pledget 194 and both the clip 192 and the pledget 194 are pressed downward by the clip delivery catheter 116. The clip 192 and the pledget 194 are advanced along the anchor suture 158. The compression force of the clip 192 on the anchor suture 158 locks the clip 192 on the anchor suture 158. The pledget 194 is prevented from translation along the anchor suture 158 by the locking of the clip 192. In some embodiments, the second hypotube 204 is pressed downward on the clip 192 and the pledget 194 instead of, or in addition to, the tip of the clip delivery catheter 116.


As shown in FIG. 12C, the guide suture 210 can extend from the hypotube 196. In some embodiments, the hypotube 196 is crimped over the guide suture 210. This crimping allows easy introduction of the clip 192 and/or the pledget 194 over the guide suture 210. This crimping also ensures a proper connection between the hypotube 196 and the anchor 146. After the clip 192 and/or the pledget 194 is locked, the guide suture 210 can be cut and retracted through the clip delivery catheter 116, as shown in FIG. 12D.


The aforementioned method can be performed by a physician. In one embodiment, a manufacturer can provide one, some or all of the following: the clip 192, the pledget 194, the hypotube 196, the second hypotube 204, the anchor 146, the anchor suture 158, the guide suture 210, and clip delivery catheter 116. In some embodiments, the manufacture provides a kit containing some or all of the devices previously described.


In some embodiments, the manufacturer provides instructions for use of the system including one or more of the following steps, or any step previously described or inherent in the drawings. The steps may include: initially loading the clip 192 and/or the pledget 194 on the hypotube 196; extending the guide suture 210 from the hypotube 196; engaging the guide suture 210 to the anchor suture 158; connecting the anchor suture 158 to the anchor 146; retracting the hypotube 196 into the clip delivery catheter 116; pressing the distal tip of the clip delivery catheter 116 downward on the clip 192; pressing the clip 192 against the pledget 194; pressing both the clip 192 and the pledget 194 downward; and advancing the clip 192 and the pledget 194 along the anchor suture 158. The steps may include: crimping the hypotube 196 over the guide suture 210; cutting the guide suture 210 after the clip 192 is locked; and retracting the guide suture 210 through the clip delivery catheter 116. These instructions can be written, oral, or implied.


Turning now to FIG. 13, an embodiment of the coaptation assistance device 280 is shown. The coaptation assistance device 280 can be substantially similar to the coaptation assistance device 80, 180 described herein. The coaptation assistance device 280 can include frame 282 configured to provide structural support to the coaptation assistance device 280. In some embodiments, the frame 282 is collapsible to fit within a delivery catheter, as described herein. In some embodiments, the frame 282 defines a superior edge 284. The frame 282 can include anchor eyelets 286 configured to accept an anchor, such as anchor 146 or other trigonal anchors. The eyelets 286 can be integrated into the surface of the coaptation assistance device 280 or coupled to the coaptation assistance device 280 by any mechanism known in the art. The eyelets 286 correspond to the region of the coaptation assistance device 280 that may be secured to the anterior and posterior fibrous trigones 56, 60. In general, the trigones 56, 60 are located approximately 1-10 mm lateral or medial to their respective commissures 50, 52, and about 1-10 mm more anterior than the commissures 50, 52. In other embodiments, different anchor arrangements may connect the superior edge 284 of the coaptation assistance device 280 can to an anchor, such as anchor 146. For instance, the superior edge 284 can include a hub (not shown) for an anchor to extent or a tether (not shown) connecting the anchor or a hub to the superior edge 284. In some embodiments, the medial end of a tether or the hub is connected to the eyelet 286.


Alternate engagement means are contemplated for connecting the coaptation assistance device 280 to each anchor, including the eyelets 286 and hubs (not shown), but also including other connection means such as, for example, sutures, staples, adhesive or clips. In alternative embodiments, the anchors may form an integrated part of the device. In some embodiments, both anchors inserted within the eyelet 286 are helical anchors. There are many possible configurations for anchoring means, compositions of anchors, and designs for anchoring means.


The coaptation assistance device 280 comprises a body 290. The body 290 comprises a first surface 292 disposed toward a mal-coapting native leaflet, in the instance of a mitral valve 20, the posterior leaflet 32 and a second surface 294 which may be disposed toward the anterior leaflet 30. The first and second surfaces 292, 294 can be considered cooptation surface. The coaptation assistance device 280 can have a geometry which permits it to traverse the mitral valve 20 between attachment sites in the left atrium 10 and/or the left ventricle 14, to provide a coaptation surface 294 for the anterior leaflet 30 to coapt against, and attach to the left atrium 10 or annulus 36 such that it effectively seals off the posterior leaflet 32. In the instance that the posterior leaflet 32 is or has been removed, the coaptation assistance device 280 replaces the posterior leaflet 32.


In some embodiments, the coaptation surface 292, 294 of the coaptation assistance device 280 passes superiorly and radially inwardly from the superior edge 284, before passing distally, in a longitudinal direction perpendicular to the valve plane, or radially inwardly or outwardly with respect to the valve plane.


In some embodiments, the first surface 292 and the second surface 294 of the coaptation assistance device 280 further comprise a covering comprised of ePTFE, polyurethane foam, polycarbonate foam, biologic tissue such as porcine pericardium, or silicone.


One possible frame 282 structure is shown, with frame 282 connecting the eyelets 286. Other frame elements may be incorporated into the coaptation assistance device 280. The frame 282 may be shaped in any number of ways to assist in maintaining the desired shape and curvature of the coaptation assistance device 280. The frame 282 can be made of Nitinol, stainless steel, polymer, or other appropriate materials, and can substantially assist in maintain the geometry of the coaptation assistance device 280, permitting choice of any of a wide variety of covering materials best suited for long term implantation in the heart and for coaptation against the anterior leaflet 30.


The coaptation assistance device 280 may include one or a plurality of anchors, such as anchor 146, to stabilize the coaptation assistance device 280. The coaptation assistance device 280 can also have a ventricular anchor 296 (e.g., ribbons described herein). In some embodiments, the ventricular anchor 296 engages the area under the posterior leaflet 32. the atrial and/or ventricular anchors optionally providing redundant fixation. The anchors may include a plurality of barbs for acute fixation to the surrounding tissue. In other embodiments, the anchors may comprise a plurality of helixes, clips, harpoon or barb-shaped anchors, or the like, appropriate for screwing or engaging the annulus 36 of the mitral valve 20, tissues of the ventricle, and/or other tissues of the atrium, or the atrial or ventricular anchors may attach to the tissue by welding using RF or other energy delivered via the elongate anchor coupling body.


In some embodiments, a ventricular anchor 296 may be included in the form of a tether or other attachment means extending from the valve 20 thru the ventricle septum to the right ventricle 16, or through the apex into the epicardium or pericardium, which may be secured from outside the heart in and combined endo/epi procedure. When helical anchors are used, they may comprise bio-inert materials such as Platinum/Ir, a Nitinol alloy, and/or stainless steel.


Referring now to FIGS. 14A-14D, the implantation steps of one embodiment of the method is shown. As shown in FIG. 14A, a transseptal method for treatment of MR can include gaining access to the left atrium 10 via the transseptal sheath 110. Access to the femoral vein may be obtained using the Seldinger technique. From the femoral vein, access can then be obtained via the right atrium 12 to the left atrium 10 by a transseptal procedure. A variety of conventional transseptal access techniques and structures may be employed, so that the various imaging, guidewire advancement, septal penetration, and contrast injection or other positioning verification steps need not be detailed herein.


Referring now to FIG. 14A, non-limiting candidate locations are illustrated for deployment of an anchor, such as anchor 146, optionally under guidance of 2D or 3D intracardiac, transthoracic, and/or transesophageal ultrasound imaging, Doppler flow characteristics, fluoroscopic or X-ray imaging, or another imaging modality. In some embodiments, a guidewire is used to advance the anchors 146 to the desired location. In some embodiment, a posteromedial trigonal anchor 146 is placed and an anterolateral trigonal anchor 146 is placed using the guidewire.


As shown in FIG. 14B, the first and second trigonal anchors 146 are delivered and engaged. The locations of the trigonal anchors 146 are shown in relationship to the anterior leaflet 30, the posterior leaflet 32, and mitral valve 20 as shown. In some embodiments, each trigonal anchor 146 comprises at least one guidewire or rail 160 such that the coaptation assistance device 280 can be advanced over the rails 160. In some embodiments, the rails 160 advance through a portion of the coaptation assistance device 280 and through the transseptal catheter 110. In some embodiments, the rails 160 extend through eyelets 286.


It can be seen that in some embodiments, the coaptation assistance device 280 is collapsed inside the anchor delivery catheter 112. The radially expandable and/or collapsible structure including frame 282, which can be stent-like in some embodiments, allows the implant to be collapsed. In some embodiments, the coaptation assistance device 280 is collapsed and delivered through the transseptal catheter 110 over the rails 160.


As shown, after two trigonal anchors 146 are delivered and received; the coaptation assistance device 280 is advanced over two rails 160 as shown by the arrows in FIG. 14C. In this way, the rails 160 facilitate placement of the coaptation assistance device 280. As the coaptation assistance device 280 is delivered over the rails 160, the coaptation assistance device 280 exits the implant delivery catheter 114, allowing the coaptation assistance device 280 to be exposed and expanded.


The coaptation assistance device 280 can be delivered by the implant delivery catheter 114 and may be capable of expanding from a smaller profile to a larger profile to dimensions appropriate for placement in between the valve's native leaflets 30, 32. The coaptation assistance device 280 is expanded as it is exposed from the tip of the implant delivery catheter 114 as shown. In some embodiments, the implant delivery catheter 114 is pulled back to expose the coaptation assistance device 280. The coaptation assistance device 280 is advanced over the posterior leaflet 32.


As shown in FIG. 14C, the coaptation assistance device 280 can extend through the mitral valve 20 into the left ventricle 14. In some embodiments, the coaptation assistance device 280 may have a ventricular anchor 296 that is expanded to attach the coaptation assistance device 280 to ventricular tissue. The ventricular anchor 296 of the coaptation assistance device 280 can be delivered by the implant delivery catheter 114. A shown in FIG. 14D, the implant delivery catheter 114 is retracted into the transseptal catheter 110. The ventricular anchor 296 of the coaptation assistance device 280 is released and can assume a curved shape as shown. After placement of the coaptation assistance device 280, in some embodiments, the coaptation assistance device 280 is locked on the anchors 146 by one or more clips 192 and/or pledget 194, as shown in FIG. 14D. After the coaptation assistance device 280 is locked on the anchors 146, the catheter delivery system 106 is removed. In some embodiments, the rails 160 are also removed.


The aforementioned method can be performed by a physician. In one embodiment, a manufacturer can provide one, some or all of the following: coaptation assistance device 280, transseptal sheath 110, anchor delivery catheter 112, implant delivery catheter 114, and clip delivery catheter 116. In some embodiments, the manufacturer provides a kit containing some or all of the devices previously described.


In some embodiments, the manufacturer provides instructions for use of the system including one or more of the following steps, or any step previously described or inherent in the drawings. The steps may include: gaining access to the left atrium 10 via a transseptal sheath 110; gaining access to the femoral vein via the Seldinger technique; gaining access via the right atrium 12 to the left atrium 10 by a transseptal procedure, utilizing a variety of conventional transseptal access techniques and structures. The steps may include: positioning the transseptal sheath 110 within the left atrium 10; deploying an anchor delivery catheter 112 through the transseptal sheath 110 and into the left atrium 10; bringing the distal end of the anchor delivery catheter 112 into alignment and/or engagement with candidate locations for deployment of an anchor 146; and determining if the candidate site is suitable. The steps may include: collapsing the coaptation assistance device 280 inside the implant delivery catheter 114; delivering the coaptation assistance device 280 through the transseptal sheath 110 over the rails 160; expanding the coaptation assistance device 280 as it exits the implant delivery catheter 114; and retracting the implant delivery catheter 114. The steps may include: delivering and/or engaging the anchor 146, which may be the first trigonal anchor; deploying a raid 160 attached to each anchor 146; advancing the coaptation assistance device 280 over the rail 160; delivering and/or engaging the second anchor 146, which may be the second trigonal anchor; deploying the rail 160 attached to the second anchor; advancing the coaptation assistance device 180 over the rails 160 delivering and/or engaging the second anchor 146; facilitating placement of the coaptation assistance device 180; and positioning the coaptation assistance device 180 over the posterior leaflet 32. The steps may include: extending the coaptation assistance device 180 through the mitral valve 20 into the left ventricle 14; expanding a ventricular anchor 296 of the coaptation assistance device 180; locking the coaptation assistance device 180 on the anchors 146 by one or more clips 192 and/or pledgets 194; and removing the catheter delivery system 106. These instructions can be written, oral, or implied.


Turning now to FIG. 15, an embodiment of the coaptation assistance device 380 is shown. The coaptation assistance device 380 can be substantially similar to the coaptation assistance device 80, 180, 280 described herein. The coaptation assistance device 380 can include frame 382 configured to provide structural support to the coaptation assistance device 380. In some embodiments, the frame 382 is collapsible to fit within a delivery catheter, such as implant delivery catheter 114. In some embodiments, the frame 382 defines a superior edge 384. The frame 382 can include anchor eyelets 386 configured to accept an anchor, such as anchor 146. In some embodiments, such as shown in FIG. 15, the eyelets 386 are configured to accept a commissure anchor 390. Commissure anchor locations are provided, such as at lateral ends of an arcuate body portion of the coaptation assistance device 380 as shown. In some embodiments, the commissure anchor 390 is substantially similar or identical to the anchor 146 described herein. The eyelets 386 can be integrated into the surface of the coaptation assistance device 380 or coupled to the coaptation assistance device 380 by any mechanism known in the art. The eyelets 386 correspond to the region of the coaptation assistance device 280 that may be secured to the lateral commissures 50, 52. In other embodiments, different anchor arrangements may connect the frame 382 of the coaptation assistance device 280 to anchors. In other embodiments, different anchor arrangements may connect the frame 282 and/or edge of the coaptation assistance device 380 to the corresponding anatomic structure. In some embodiments, one or more of the commissure anchors 390 are helical anchors, as shown. There are many possible configurations for anchoring, compositions of anchors, and designs as, for example, previously described.


The coaptation assistance device 380 comprises a body 392, which may be configured to permit relatively normal circulation of blood in the ventricular chamber. The body 392 may be elongate and narrow between the anterior and posterior surfaces, taking up minimal space and allowing movement of blood from one side to another and past both lateral aspects of the coaptation assistance device 380.


The coaptation assistance device 380 may include one or a plurality of ventricular anchors 394. The atrial anchors and ventricular anchors can optionally provide redundant fixation. The atrial anchors may include a plurality of barbs for acute fixation to the surrounding tissue. In other embodiments, the atrial anchors may comprise a plurality of helixes, clips, harpoon or barb-shaped anchors, or the like, appropriate for engaging tissues of the ventricle. As shown in FIG. 15, the ventricular anchor can comprise two ribbons 396 that rest against the wall of the left ventricle 14. While two ribbons 396 are shown, in some embodiments one or more ribbons 396 are used (e.g., one, two, three, four etc.). This position may provide stability of the coaptation assistance device 380 and/or the base 398 of the coaptation assistance device 380. When ventricular anchors 394 are used, they may comprise bio-inert materials such as, for example, Platinum/Ir, a Nitinol alloy, and/or stainless steel. In some embodiments, the ribbons 396 comprise NiTi. In some embodiments, the ribbons 396 have a pre-determined curve. The material selection combined with the selected shape provides a ventricular anchor 394 that is spring loaded. In some embodiments, the spring loaded ribbons 396 engage tissues of the left ventricle 14 as shown. Each ribbon 396 can form, for example, a generally U-shaped configuration. The ribbons 396 function as anchors and resist movement of the coaptation assistance device 380. The ribbons 396 together can form a generally W-shaped configuration. The ribbons 396 comprise a rounded surface configured to abut tissue. In some embodiments, the anchors abut tissue and can exert a force on the tissue to stabilize the coaptation assistance device 380, but do not penetrate through one or more tissue layers, e.g., the endocardium or myocardium. In some embodiments, the anchors include a pair of arms with a bias that when in an unstressed configuration can clip onto a portion of the ventricular wall to stabilize the coaptation assistance device, such as in a non-traumatic manner with respect to the ventricular wall. The size and shape of the ribbons can be determined based upon the dimensions of the left ventricle 14, and the left ventricle wall which the ribbons 396 may abut. The ribbons 396 can be generally parallel to the base of the posterior leaflet 32. Other shapes for the ribbons 396 are contemplated. As disclosed herein, the coaptation assistance device 380 is collapsed inside the delivery catheter, such as implant delivery catheter 114. The spring loaded ribbons 396 are capable of being collapsed within the delivery catheter. Upon exiting the catheter, the spring loaded ribbons 396 rapidly expand into the preformed shape. In some embodiments, the ribbons 396 are provided for ventricular attachment. The ribbons 396 allow for very rapid attachment of the coaptation assistance device 380 to the tissue, since the ribbons 396 do not rely on annular sutures and do not require tying knots. The deployment of the ribbons 396 can be faster than engaging a helical anchor, for instance.


Turning now to FIG. 16, an embodiment of the coaptation assistance device 480 is shown. The coaptation assistance device 480 can be substantially similar to the coaptation assistance device 80, 180, 280, 380 described herein. The coaptation assistance device 480 can include frame 482 configured to provide structural support to the coaptation assistance device 480. In some embodiments, the frame 482 is collapsible to fit within a delivery catheter, such as implant delivery catheter 114. In some embodiments, the frame 482 defines a superior edge 484. The frame 482 can include anchor eyelets 486 configured to accept an anchor, such as anchor 146. In some embodiments, such as shown in FIG. 16, the eyelets 486 are configured to accept an anchor 490. A plurality of locations for eyelets 486 are provided as shown in FIG. 16. In other embodiments, different anchor arrangements may connect the edge of the coaptation assistance device 480 to the corresponding anatomic structure. In some embodiments, the anchors 490 are helical anchors, as shown. There are many possible configurations for anchoring means, compositions of anchors, and designs for anchoring means. In some embodiments, the anchor 490 can be substantially similar or identical to anchor 146.


The coaptation assistance device 480 may include one or a plurality of atrial anchors 490 and ventricular anchors 494, with the anchors optionally providing redundant fixation. In some embodiments, the atrial anchors 490 may comprise a plurality of helixes, clips, harpoon or barb-shaped anchors, or the like, appropriate for engaging tissues of the ventricle. The atrial anchors 490 may extend through the posterior leaflet as shown. As shown in FIG. 16, the ventricular anchor 494 comprises a plurality of, e.g., three spring-loaded clips or ribbons 496 configured to engage at least a portion of a mitral valve 20, e.g., a portion of posterior leaflet 32 resides in between the ribbons 496 and the body 482. A clip or ribbon can has a bias (e.g., by virtue of its shape memory properties) such that one, two, or more surfaces exert a force, such as a compressive force, on a body structure such as a valve leaflet as shown sufficient to anchor the implant in place. For example, a first portion of a clip can apply a force against a first surface of a valve leaflet as illustrated, and a second portion of the clip can apply a force or rest against a second side of the leaflet, the second side of the leaflet opposite the first side of the leaflet. While three ribbons 496 are shown, in some embodiments any number of ribbons 496 can be used (e.g., one, two, three, four, etc.). This position may provide stability of the coaptation assistance device 480 and/or the implant base 498. This position may not require additional anchoring of the coaptation assistance device to the ventricle 14 or elsewhere. When ribbons 496 are used, they may comprise, e.g., bio-inert materials such as Platinum/Ir, a Nitinol alloy, and/or stainless steel. In some embodiments, the ribbons 496 comprise NiTi. In some embodiments, the ribbons 496 have a pre-determined curve. The material selection combined with the selected shape provides a ventricular anchor 496 that is spring loaded. The ribbons 496 rest against the posterior leaflet, as shown. In some embodiments, the spring loaded ribbons 496 engage other tissues of the mitral valve. Each ribbon 496 can form a generally S-shaped configuration. The ribbons 496 function as anchors and resist movement of the coaptation assistance device 480. The ribbons 496 comprise a rounded surface configured to abut tissue. The size and shape of the ribbons 496 can be determined based upon the dimensions of the posterior leaflet 32 which the ribbons 496 may abut. The ribbons 496 can be generally parallel to the tip of the posterior leaflets 32. Other shapes for the ribbons 496 are contemplated. As disclosed herein, the coaptation assistance device 480 is collapsed inside the delivery catheter. The spring loaded ribbons 496 are capable of being collapsed within the delivery catheter, such as implant delivery catheter 114. Upon exiting the catheter, the spring loaded ribbons 496 rapidly expand into the preformed shape. In some embodiments, the ribbons 496 are provided for ventricular attachment. The ribbons 496 allow for very rapid attachment of the coaptation assistance device 480 to the tissue, since the ribbons 496 do not rely on annular sutures and do not require tying knots. The deployment of the ribbons 496 can be faster than engaging a helical anchor, for instance.


In an alternative embodiment, the ribbons 500 are provided. The ribbons 500 extend to the base of the posterior leaflet 32 and align with the anchor 490. The anchor 490 positioned on the posterior leaflet 32 may penetrate the leaflet 32 and connect with the ribbon 500. Alternatively, anchors 490 positioned on the ribbons 500 may penetrate the posterior leaflet from the opposite direction. In some embodiments, the anchor 490 can engage the upper, left atrium side of the coaptation assistance device 480 and the ribbons 500 located in the left ventricle. This configuration may improve the stability of the coaptation assistance device 480. Each ribbon 500 can form a generally L-shaped configuration. The ribbons 500 comprise a rounded surface configured to abut the ventricular side of the posterior leaflet 32. The size and shape of the ribbons can be determined based upon the dimensions of the posterior leaflet 32 which the ribbons 500 may abut. The ribbons 500 can be generally parallel to the tip of the posterior leaflet 32. Other shapes for the ribbons 500 are contemplated. As disclosed herein, the coaptation assistance device 480 is collapsed inside the delivery catheter. The spring loaded ribbons 500 are capable of being collapsed within the delivery catheter, such as implant delivery catheter 114. Upon exiting the catheter, the spring loaded ribbons 500 rapidly transform from a first compressed configuration into the preformed shape of the second expanded configuration. In some embodiments, the clips or ribbons 500 are linear or substantially linear in a compressed configuration. In some embodiments, the ribbons 500 are provided for ventricular attachment. The ribbons 500 allow for very rapid attachment of the coaptation assistance device 480 to the tissue, since the ribbons 500 do not rely on annular sutures and do not require tying knots. The deployment of the ribbons 500 can be faster in some cases than engaging a helical anchor, for instance.


In some embodiments, the clips or ribbons as disclosed in connection with various embodiments herein can be advantageously utilized with a wide variety of cardiac implants not limited to the coaptation assistance devices disclosed herein. For example, the clips or ribbons can be operably connected to replacement heart valves such as mitral or aortic valves, for example, for anchoring and stabilization. In some embodiments, the clips or ribbons can exert a force to clip or otherwise attach onto one or more native valve leaflets, in order to anchor a replacement heart valve in the valve annulus.


Turning now to FIGS. 17A-17B, an embodiment of the coaptation assistance device 580 is shown. The coaptation assistance device 580 can be substantially similar to the coaptation assistance device 80, 180, 280, 380, 480 described herein. The coaptation assistance device 580 can include frame 582 configured to provide structural support to the coaptation assistance device 580. In some embodiments, the frame 582 is collapsible to fit within a delivery catheter, such as implant delivery catheter 114. In some embodiments, the frame 582 defines a superior edge 584. The frame 582 can include anchor eyelets 586 configured to accept an anchor, such as anchor 146. In some embodiments, such as shown in FIG. 17, the eyelets 586 are configured to accept a trigonal anchor such as anchor 146. In some embodiments, the eyelets 586 correspond to the region of the coaptation assistance device 580 that may be secured to the anterior and posterior fibrous trigones 56, 60. In some embodiments, the coaptation assistance device 580 comprises a ventricular anchor hub 590. In some embodiments, the hub 590 provides an attachment structure for a ventricular anchor 594.


The coaptation assistance device 580 comprises a body 592. The body 592 comprises a first surface 596 disposed toward a mal-coapting native leaflet, in the instance of a mitral valve 20, the posterior leaflet 32 and a second surface 598 which may be disposed toward the anterior leaflet 30. The first and second surfaces 596, 598 can be considered cooptation surface. The coaptation assistance device 580 can have a geometry which permits it to traverse the mitral valve 20 between attachment sites in the left atrium 10 and left ventricle 14, to provide a coaptation surfaces 598 for the anterior leaflet 30 to coapt against, and attach to the atrium 10 or annulus 36 such that it effectively seals off the posterior leaflet 32. In the instance that the posterior leaflet 32 is or has been removed, the coaptation assistance device 580 replaces the posterior leaflet 32.


In some embodiments, the coaptation surface 598 of the coaptation enhancement element passes superiorly and radially inwardly from the superior edge, before passing distally, in a longitudinal direction perpendicular to the valve plane, or radially inwardly or outwardly with respect to the valve plane.


In some embodiments, the anterior surface 598 and posterior surface 596 of the coaptation assist device 580 further comprise a covering comprised of ePTFE, polyurethane foam, polycarbonate foam, biologic tissue such as porcine pericardium, or silicone.


One possible frame 582 is shown, with frame connecting the eyelets 586. Other frame elements may be incorporated into the coaptation assistance device 580. The frame 582 may be shaped in any number of ways to assist in maintaining the desired shape and curvature of the coaptation assistance device 580. The frame can be made of Nitinol, stainless steel, polymer or other appropriate materials, can substantially assist in maintain the geometry of the coaptation assistance device 580, permitting choice of any of a wide variety of covering materials best suited for long term implantation in the heart and for coaptation against the anterior leaflet 30.


The coaptation assistance device 580 may include one or a plurality of anchors to stabilize the coaptation assistance device 580, with the anchors optionally providing redundant fixation. The anchors may include a plurality of barbs for acute fixation to the surrounding tissue. In other embodiments, the anchors may comprise a plurality of helixes, clips, harpoon or barb-shaped anchors, or the like, appropriate for screwing or engaging into the annulus of the mitral valve 20, tissues of the left ventricle 14, and/or other tissues of the left atrium 10. The anchors may attach to the tissue by welding using RF or other energy delivered via the elongate anchor coupling body.


Referring now to FIGS. 18A-18C, the implantation steps of one embodiment of the method is shown. As shown in FIG. 18A, a delivery catheter 600 is advanced into the left atrium 10. The delivery catheter 600 can be substantially similar to implant delivery catheter 114. In some embodiments, the delivery catheter 600 may be advanced through the outer transseptal sheath 110 and into the left atrium 10. FIG. 18A shows an embodiment of the delivery catheter 600. The delivery catheter 600 may include a shaft 602 made of a polymer for example. In some embodiments, the shaft 602 is a braid or coil reinforced polymer shaft. In some embodiments, the shaft 602 has multiple durometers. In other embodiments, the delivery catheter 600 comprises an actively deflectable tip 604 to facilitate navigation of one or more anchors 594 to the anchoring sites. For instance, the deflectable tip 604 can access the site under the posterior leaflet. The delivery catheter 600 may include a deflection knob 606 to control the deflectable tip 604.


The delivery catheter may include a drive shaft 610. The drive shaft 610 has a feature at the tip to engage with and allow transmission of torque to the anchor 594. In some embodiments, the drive shaft 610 is flexible. In some embodiments, the drive shaft 610 is capable of being advanced or retracted. The delivery catheter 600 may include a knob 612 that is connected to the drive shaft 610. The knob 612 is internally connected to the drive shaft 610 thereby allowing transmission of torque to the anchor 594 when the knob 612 is rotated. This enables simple manipulation of the anchor position and torque.


The coaptation assistance device 580 can be delivered by the delivery catheter 600 and may be capable of expanding from a smaller profile to a larger profile to dimensions appropriate for placement in between the valve's native leaflets 30, 32. The coaptation assistance device 580 is expanded as it is exposed from the tip of the delivery catheter 600. In some embodiments, the delivery catheter 600 is pulled back to expose the coaptation assistance device 580. The delivery catheter 600 may further include a control handle 614 to manipulate the coaptation assistance device 580 and/or, to manipulate the docking and undocking of the coaptation assistance device 580 with the delivery catheter 600 and/or to facilitate placement of the coaptation assistance device 580.


Referring now to FIG. 18A, the distal end of the delivery catheter 600 moves within the left atrium 10 by manipulating the control handle 614 and by articulating the actuator of deflection knob 612 so as to selectively bend the deflectable tip 604 and/or the distal end of the delivery catheter 600. The deflectable tip 604 and/or the distal end of the delivery catheter 600 can be brought into alignment and/or engagement with candidate locations for deployment of the anchor 594. The deflectable tip 604 and/or distal end of the delivery catheter 600 can be deflected to access the site under the posterior leaflet 32. In some embodiments, the distal end of the delivery catheter 600 is brought into alignment with the wall of the left ventricle 14 to facilitate placement of the ventricle hub 590 and/or ventricle anchor 594.


As shown in FIG. 18A, the trigonal anchors 146 are delivered and engaged as described herein. The coaptation assistance device 580 is extended through the mitral valve 20 into the left ventricle 14. In some embodiments, the coaptation assistance device 580 may have a ventricular hub 590 and/or ventricular anchor 594. The ventricular anchor 594 as shown is a helical anchor, but other anchor designs are contemplated. In some embodiments, the ventricular anchor 594 extends from the left ventricle 14 to the left atrium 10 as shown.


As shown in FIGS. 18B-18C, the coaptation assistance device 580 is anchored and the delivery catheter 600 is removed. The coaptation surface 598 is placed between the anterior leaflet 30 and the posterior leaflet 32. The ventricular anchor 594 and the trigonal anchors 146 are secured. In some embodiments, there is an anteriolateral trigonal anchor 146 and a posteriomedial trigonal anchor 146 as shown in FIG. 18C.


The aforementioned method can be performed by a physician. In one embodiment, the manufacturer can provide one, some or all of the following: coaptation assistance device 580, delivery catheter 600, trigonal anchor 146, and ventricular anchor 594. In some embodiments, the manufacturer provides a kit containing some or all of the devices previously described.


In some embodiments, the manufacturer provides instructions for use of the system including one or more of the following steps, or any step previously described or inherent in the drawings. The steps may include: positioning the delivery catheter 600 within the left atrium 10; bringing the deflectable tip 604 and/or the distal end of the delivery catheter 600 into alignment and/or engagement with candidate locations for deployment of an anchor; and determining if the candidate site is suitable. The steps may include: delivering and/or engaging the first trigonal anchor 146; delivering and/or engaging the second trigonal anchor 146; facilitating placement of the coaptation assistance device 580; and positioning the coaptation assistance device 580 over the posterior leaflet. The steps may include: extending the coaptation assistance device 580 through the mitral valve 20 into the left ventricle 14; locking the coaptation assistance device 580 on the trigonal anchors 146 by one or more clips 192 and/or pledgets 194; and removing the catheter delivery system. These instructions can be written, oral, or implied.


It is contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments disclosed above may be made and still fall within one or more of the inventions. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above. Moreover, while the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “inserting a coaptation assist body proximate the mitral valve” includes “instructing the inserting of a coaptation assist body proximate the mitral valve.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately”, “about”, and “substantially” as used herein include the recited numbers, and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.

Claims
  • 1. An implant for treating mal-coaptation of a heart valve, the heart valve having an annulus and posterior and anterior leaflets with an open configuration and a closed configuration, the implant comprising: a fixation ring comprising an expandable stent-like structure defining a height between upper peaks and lower peaks, wherein the fixation ring defines a lumen,a body comprising a different material than the fixation ring, the body extending along a portion of the circumference of the fixation ring and protruding into the lumen, the body comprising a first surface disposed toward the posterior leaflet and a second surface disposed toward the anterior leaflet, wherein the second surface provides an atraumatic surface against which the anterior leaflet coapts, wherein the body is positioned entirely below the upper peaks of the fixation ring such that the upper peaks are uncovered by the body, wherein the body extends below the lower peaks of the fixation ring, wherein the body does not overlie a portion of the fixation ring, anda posterior extension extending below the lower peaks of the fixation ring and forming an obtuse angle with the fixation ring, wherein the posterior extension has a bias that exerts a force and rests against tissue of a heart, wherein the posterior extension comprises a pre-determined curve, wherein the posterior extension extends downward, curves, and extends upward forming a generally U-shaped configuration.
  • 2. The implant of claim 1, wherein the expandable stent-like structure comprises a zigzag pattern of struts.
  • 3. The implant of claim 1, wherein the body comprises a foam.
  • 4. The implant of claim 1, wherein the body comprises ePTFE.
  • 5. The implant of claim 1, wherein the body is configured to extend beyond the posterior leaflet.
  • 6. The implant of claim 1, wherein the body tapers from a superior edge to an inferior edge.
  • 7. The implant of claim 1, wherein the posterior extension is configured to provide a force on the posterior leaflet.
  • 8. The implant of claim 1, further comprising one or more barbs.
  • 9. An implant for treating mal-coaptation of a heart valve, the heart valve having an annulus and posterior and anterior leaflets with an open configuration and a closed configuration, the implant comprising: a fixation ring comprising an expandable stent-like structure defining a height, wherein the fixation ring defines a lumen,a body comprising a first surface disposed toward the posterior leaflet and a second surface disposed toward the anterior leaflet, wherein the second surface provides an atraumatic surface against which the anterior leaflet coapts;a single body supporting ribbon configured to provide structural support to the body, wherein the single body supporting ribbon extends downward from the fixation ring, wherein the single body supporting ribbon comprises a pre-determined curve, wherein the body extends between the fixation ring and the single body supporting ribbon, wherein at least a portion of the circumference of the fixation ring is not covered by the body, wherein the body is not continuous with any other covering; anda plurality of hooks extending from the frame, wherein the plurality of hooks extend only from the portion of the circumference of the fixation ring not covered by the body.
  • 10. The implant of claim 9, wherein the implant comprises a shape memory material.
  • 11. The implant of claim 9, wherein the implant comprises a foam.
  • 12. The implant of claim 9, wherein the implant comprises ePTFE, pericardium, or other biocompatible tissue.
  • 13. The implant of claim 9, wherein the fixation ring comprises a zigzag pattern of struts.
  • 14. The implant of claim 9, wherein the body tapers from a superior edge to an inferior edge.
  • 15. An implant for treating mal-coaptation of a heart valve, the heart valve having an annulus and posterior and anterior leaflets with an open configuration and a closed configuration, the implant comprising: a fixation ring comprising an expandable stent-like structure defining a height, wherein the fixation ring defines a lumen,a coaptation assist body comprising a covering material having a first surface configured to be disposed toward the posterior leaflet and an opposed second surface configured to be disposed toward the anterior leaflet to allow the anterior leaflet to coapt with the coaptation assist body, the coaptation assist body forming a curved superior edge configured to be positioned along the annulus, the coaptation assist body extending from the curved superior edge toward a curved inferior edge, the curved inferior edge configured to be positioned along the posterior leaflet, the coaptation assist body having lateral sides tapering from the curved superior edge to the curved inferior edge;a posterior support extending from the fixation ring, wherein the posterior support extends through an opening in the coaptation assist body such that a least a portion of the posterior support is surrounded, the posterior support comprising at least one curve, the posterior support movable from a first compressed configuration to a second expanded configuration, the posterior support configured to exert a force on the posterior leaflet to anchor the implant in place.
  • 16. The implant of claim 15, wherein the posterior support comprises a straight portion and a portion which curves in a posterior direction.
  • 17. The implant of claim 15, further comprising one or more barbs.
  • 18. The implant of claim 15, wherein the body comprises a foam.
  • 19. The implant of claim 15, wherein the body comprises ePTFE.
  • 20. The implant of claim 15, wherein the fixation ring comprises a zigzag pattern of struts.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of U.S. application Ser. No. 17/227,749 filed Apr. 12, 2021, which is a continuation application of U.S. application Ser. No. 16/220,322 filed Dec. 14, 2018, which is a continuation application of U.S. application Ser. No. 14/313,975 filed Jun. 24, 2014, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 61/895,647, filed on Oct. 25, 2013. Each of the foregoing applications of which are hereby incorporated by reference in their entireties. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application, are hereby incorporated by reference in their entirety under 37 CFR 1.57.

US Referenced Citations (624)
Number Name Date Kind
3491376 Shiley Jan 1970 A
3503079 Smith Mar 1970 A
3656185 Carpentier Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3874388 King et al. Apr 1975 A
3898701 La Russa Aug 1975 A
3938197 Milo Feb 1976 A
4007743 Blake Feb 1977 A
4011601 Clune et al. Mar 1977 A
4042979 Angell Aug 1977 A
4078268 Possis Mar 1978 A
4204283 Bellhouse et al. May 1980 A
4218783 Reul et al. Aug 1980 A
4261342 Aranguren Duo Apr 1981 A
4263680 Ruel et al. Apr 1981 A
4275469 Gabbay Jun 1981 A
RE31040 Possis Sep 1982 E
4352211 Parravicini Oct 1982 A
4488318 Kaster Dec 1984 A
4490859 Black et al. Jan 1985 A
4491986 Gabbay Jan 1985 A
4561129 Arpesella Dec 1985 A
4687483 Fisher et al. Aug 1987 A
4705516 Barone et al. Nov 1987 A
4759758 Gabbay Jul 1988 A
4790843 Carpentier et al. Dec 1988 A
4960424 Grooters Oct 1990 A
4994077 Dobben Feb 1991 A
5002567 Bona et al. Mar 1991 A
5078737 Bona et al. Jan 1992 A
5131905 Grooters Jul 1992 A
5197980 Gorshkov et al. Mar 1993 A
5217484 Marks Jun 1993 A
5258023 Reger Nov 1993 A
5332402 Teitelbaum Jul 1994 A
5344442 Deac Sep 1994 A
5370662 Stone et al. Dec 1994 A
5397347 Cuilleron et al. Mar 1995 A
5397348 Campbell et al. Mar 1995 A
5413599 Imachi et al. May 1995 A
5487760 Villafana Jan 1996 A
5500015 Deac Mar 1996 A
5522886 Milo Jun 1996 A
5554186 Guo et al. Sep 1996 A
5582616 Bolduc et al. Dec 1996 A
5593435 Carpentier et al. Jan 1997 A
5626613 Schmieding May 1997 A
5658313 Thal Aug 1997 A
5662683 Kay Sep 1997 A
5662704 Gross Sep 1997 A
5716370 Williamson, IV et al. Feb 1998 A
5733331 Peredo Mar 1998 A
5824065 Gross Oct 1998 A
5824066 Gross Oct 1998 A
5824067 Gross Oct 1998 A
5855601 Bessler et al. Jan 1999 A
5888240 Carpentier et al. Mar 1999 A
5957949 Leonhardt et al. Sep 1999 A
6007577 Vanney et al. Dec 1999 A
6024096 Buckberg Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6045497 Schweich et al. Apr 2000 A
6045573 Wenstrom et al. Apr 2000 A
6063114 Nash et al. May 2000 A
6066160 Colvin et al. May 2000 A
6086612 Jansen Jul 2000 A
6113631 Jansen Sep 2000 A
6162233 Williamson, IV et al. Dec 2000 A
6217610 Carpentier et al. Apr 2001 B1
6221104 Buckberg et al. Apr 2001 B1
6250308 Cox Jun 2001 B1
6264602 Mortier et al. Jul 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6296662 Caffey Oct 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6312447 Grimes Nov 2001 B1
6312464 Navia Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6358277 Duran Mar 2002 B1
6383147 Stobie May 2002 B1
6391053 Brendzel et al. May 2002 B1
6391054 Carpentier et al. May 2002 B2
6402679 Mortier et al. Jun 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6409758 Stobie et al. Jun 2002 B2
6419695 Gabbay Jul 2002 B1
6439237 Buckberg et al. Aug 2002 B1
6450171 Buckberg et al. Sep 2002 B1
6451024 Thompson et al. Sep 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6482228 Norred Nov 2002 B1
6540782 Snyders Apr 2003 B1
6544167 Buckberg et al. Apr 2003 B2
6565603 Cox May 2003 B2
6569198 Wilson May 2003 B1
6602288 Cosgrove et al. Aug 2003 B1
6602289 Colvin et al. Aug 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 Goar et al. Oct 2003 B1
6652578 Bailey et al. Nov 2003 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6702852 Stobie et al. Mar 2004 B2
6719790 Brendzel et al. Apr 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6780200 Jansen Aug 2004 B2
6790237 Stinson Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6800090 Alferness et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6821297 Snyders Nov 2004 B2
6837247 Buckberg et al. Jan 2005 B2
6840246 Downing Jan 2005 B2
6846324 Stobie Jan 2005 B2
6869444 Gabbay Mar 2005 B2
6908478 Alferness et al. Jun 2005 B2
6911043 Myers et al. Jun 2005 B2
6926730 Nguyen et al. Aug 2005 B1
6966925 Stobie Nov 2005 B2
6991649 Sievers Jan 2006 B2
6997950 Chawla Feb 2006 B2
7018408 Bailey et al. Mar 2006 B2
7037333 Myers et al. May 2006 B2
7048754 Martin et al. May 2006 B2
7056280 Buckberg et al. Jun 2006 B2
7070618 Streeter Jul 2006 B2
7077861 Spence Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7083628 Bachman Aug 2006 B2
7087064 Hyde Aug 2006 B1
7112207 Allen et al. Sep 2006 B2
7122043 Greenhalgh et al. Oct 2006 B2
7160322 Gabbay Jan 2007 B2
7166126 Spence et al. Jan 2007 B2
7175656 Khairkhahan Feb 2007 B2
7195641 Palmaz et al. Mar 2007 B2
7217284 Houser et al. May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7275546 Buckberg et al. Oct 2007 B2
7291168 Macoviak et al. Nov 2007 B2
7294148 McCarthy Nov 2007 B2
7296577 Taylor et al. Nov 2007 B2
7316706 Bloom et al. Jan 2008 B2
7320704 Lashinski et al. Jan 2008 B2
7335213 Hyde et al. Feb 2008 B1
7338520 Bailey et al. Mar 2008 B2
7341584 Starkey Mar 2008 B1
7357814 Gabbay Apr 2008 B2
7374572 Gabbay May 2008 B2
RE40377 Williamson, IV et al. Jun 2008 E
7381220 Macoviak et al. Jun 2008 B2
7396364 Moaddeb et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7435257 Lashinski et al. Oct 2008 B2
7445630 Lashinski et al. Nov 2008 B2
7455689 Johnson Nov 2008 B2
7485143 Webler et al. Feb 2009 B2
7510573 Gabbay Mar 2009 B2
7510576 Langberg et al. Mar 2009 B2
7527646 Rahdert et al. May 2009 B2
7527647 Spence May 2009 B2
7530998 Starkey May 2009 B1
7534259 Lashinski et al. May 2009 B2
7556645 Lashinski et al. Jul 2009 B2
7559936 Levine Jul 2009 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7591847 Navia et al. Sep 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7611534 Kapadia et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7648532 Greenhalgh et al. Jan 2010 B2
7655015 Goldfarb et al. Feb 2010 B2
7658762 Lashinski et al. Feb 2010 B2
7658763 Stobie Feb 2010 B2
7666224 Vidlund et al. Feb 2010 B2
7674286 Alfieri et al. Mar 2010 B2
7678145 Vidlund et al. Mar 2010 B2
7682391 Johnson Mar 2010 B2
7691144 Chang et al. Apr 2010 B2
7699892 Rafiee et al. Apr 2010 B2
7704269 St. Goar et al. Apr 2010 B2
7704277 Zakay et al. Apr 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7740638 Hyde Jun 2010 B2
7744609 Allen et al. Jun 2010 B2
7753923 St. Goar et al. Jul 2010 B2
7758491 Buckner et al. Jul 2010 B2
7758595 Allen et al. Jul 2010 B2
7776084 Johnson Aug 2010 B2
7785366 Maurer et al. Aug 2010 B2
7799038 Sogard et al. Sep 2010 B2
7803187 Hauser Sep 2010 B2
7819915 Stobie et al. Oct 2010 B2
7846203 Cribier Dec 2010 B2
7887552 Bachman Feb 2011 B2
7901454 Kapadia et al. Mar 2011 B2
7909866 Stobie Mar 2011 B2
7914576 Navia et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7935144 Robin et al. May 2011 B2
7935145 Alfieri et al. May 2011 B2
7938827 Hauck et al. May 2011 B2
7942928 Webler et al. May 2011 B2
7951195 Antonsson et al. May 2011 B2
7951196 McCarthy May 2011 B2
7955385 Crittenden Jun 2011 B2
7959673 Carpentier et al. Jun 2011 B2
7981139 Martin et al. Jul 2011 B2
7988725 Gross et al. Aug 2011 B2
7993396 McCarthy Aug 2011 B2
7998151 St. Goar et al. Aug 2011 B2
8012201 Lashinski et al. Sep 2011 B2
8012202 Alameddine Sep 2011 B2
8016882 Macoviak et al. Sep 2011 B2
8029518 Goldfarb et al. Oct 2011 B2
8052751 Aklog et al. Nov 2011 B2
8057493 Goldfarb et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8070804 Hyde et al. Dec 2011 B2
8070805 Vidlund et al. Dec 2011 B2
8092525 Eliasen et al. Jan 2012 B2
8118866 Herrmann et al. Feb 2012 B2
8128691 Keranen Mar 2012 B2
8133272 Hyde Mar 2012 B2
8142494 Rahdert et al. Mar 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8147542 Maisano et al. Apr 2012 B2
8152844 Rao et al. Apr 2012 B2
8163013 Machold et al. Apr 2012 B2
8187207 Machold et al. May 2012 B2
8187299 Goldfarb et al. May 2012 B2
8187323 Mortier et al. May 2012 B2
8204605 Hastings et al. Jun 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216230 Hauck et al. Jul 2012 B2
8216256 Raschdorf, Jr. et al. Jul 2012 B2
8216302 Wilson et al. Jul 2012 B2
8216303 Navia Jul 2012 B2
8221493 Boyle et al. Jul 2012 B2
8226711 Mortier et al. Jul 2012 B2
8241304 Bachman Aug 2012 B2
8241351 Cabiri Aug 2012 B2
8252050 Maisano Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8262725 Subramanian Sep 2012 B2
8277502 Miller et al. Oct 2012 B2
8287591 Keidar et al. Oct 2012 B2
8292884 Levine et al. Oct 2012 B2
8308796 Lashinski et al. Nov 2012 B2
8323336 Hill et al. Dec 2012 B2
8337390 Ferrazzi Dec 2012 B2
8353956 Miller et al. Jan 2013 B2
8361086 Allen et al. Jan 2013 B2
8377118 Lashinski et al. Feb 2013 B2
8382796 Blaeser et al. Feb 2013 B2
8382828 Roberts Feb 2013 B2
8382829 Call et al. Feb 2013 B1
RE44075 Williamson et al. Mar 2013 E
8398708 Meiri et al. Mar 2013 B2
8408214 Spenser Apr 2013 B2
8413573 Rebecchi Apr 2013 B2
8414644 Quadri et al. Apr 2013 B2
8449606 Eliasen et al. May 2013 B2
8454683 Rafiee et al. Jun 2013 B2
8470028 Thornton et al. Jun 2013 B2
8500800 Maisano et al. Aug 2013 B2
8506624 Vidlund et al. Aug 2013 B2
8523881 Cabiri et al. Sep 2013 B2
8545553 Zipory et al. Oct 2013 B2
8608797 Gross et al. Dec 2013 B2
8657872 Seguin Feb 2014 B2
8690939 Miller et al. Apr 2014 B2
8715342 Zipory et al. May 2014 B2
8734467 Miller et al. May 2014 B2
8784483 Navia Jul 2014 B2
8790394 Miller et al. Jul 2014 B2
8795352 O'beirne et al. Aug 2014 B2
8808368 Maisano et al. Aug 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8858623 Miller et al. Oct 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8888844 Eliasen et al. Nov 2014 B2
8911494 Hammer et al. Dec 2014 B2
8926695 Gross et al. Jan 2015 B2
8926696 Cabiri et al. Jan 2015 B2
8926697 Gross et al. Jan 2015 B2
8940042 Miller et al. Jan 2015 B2
8940044 Hammer et al. Jan 2015 B2
9005279 Gabbay Apr 2015 B2
9011520 Miller et al. Apr 2015 B2
9011530 Reich et al. Apr 2015 B2
9056006 Edelman et al. Jun 2015 B2
9119719 Zipory et al. Sep 2015 B2
9180007 Reich et al. Nov 2015 B2
9192472 Gross et al. Nov 2015 B2
9204964 Dahlgren et al. Dec 2015 B2
9232999 Maurer et al. Jan 2016 B2
9265608 Miller et al. Feb 2016 B2
9277994 Miller et al. Mar 2016 B2
9351830 Gross et al. May 2016 B2
9414921 Miller et al. Aug 2016 B2
9452048 O'beirne et al. Sep 2016 B2
9474606 Zipory et al. Oct 2016 B2
9526613 Gross et al. Dec 2016 B2
9549817 Rafiee Jan 2017 B2
9554906 Aklog et al. Jan 2017 B2
9561104 Miller et al. Feb 2017 B2
9592118 Khairkhahan et al. Mar 2017 B2
9592121 Khairkhahan Mar 2017 B1
9592122 Zipory et al. Mar 2017 B2
9610162 Zipory et al. Apr 2017 B2
9610163 Khairkhahan et al. Apr 2017 B2
9622861 Miller et al. Apr 2017 B2
9636224 Zipory et al. May 2017 B2
9662209 Gross et al. May 2017 B2
9713530 Cabiri et al. Jul 2017 B2
9724192 Sheps et al. Aug 2017 B2
9730793 Reich et al. Aug 2017 B2
9775709 Miller et al. Oct 2017 B2
9814572 Edelman et al. Nov 2017 B2
9872769 Gross et al. Jan 2018 B2
9883943 Gross et al. Feb 2018 B2
9918840 Reich et al. Mar 2018 B2
9937042 Cabiri et al. Apr 2018 B2
9949828 Sheps et al. Apr 2018 B2
9968452 Sheps et al. May 2018 B2
9968454 Reich et al. May 2018 B2
9974653 Gross et al. May 2018 B2
10028832 Quill et al. Jul 2018 B2
10098737 Miller Oct 2018 B2
10123874 Khairkhahan et al. Nov 2018 B2
10130472 O'beirne et al. Nov 2018 B2
10166098 Khairkhahan et al. Jan 2019 B2
10195030 Gross et al. Feb 2019 B2
10226342 Kutzik et al. Mar 2019 B2
10251635 Khairkhahan et al. Apr 2019 B2
10265170 Zipory et al. Apr 2019 B2
10299793 Zipory et al. May 2019 B2
10350068 Miller et al. Jul 2019 B2
10357366 Gross et al. Jul 2019 B2
10363136 Miller et al. Jul 2019 B2
10363137 Gross et al. Jul 2019 B2
10368982 Weber et al. Aug 2019 B2
10376266 Herman et al. Aug 2019 B2
10376365 Khairkhahan et al. Aug 2019 B2
10383726 Kramer Aug 2019 B2
10433955 Edelman et al. Oct 2019 B2
10449046 Rafiee Oct 2019 B2
10449333 Hammer et al. Oct 2019 B2
10470882 Gross et al. Nov 2019 B2
10470883 Khairkhahan et al. Nov 2019 B2
10478303 Khairkhahan et al. Nov 2019 B2
10492909 Miller et al. Dec 2019 B2
10500048 Khairkhahan et al. Dec 2019 B2
10512542 Khairkhahan et al. Dec 2019 B2
10517719 Miller et al. Dec 2019 B2
10543088 Lashinski Jan 2020 B2
10548729 Zipory et al. Feb 2020 B2
10548731 Lashinski et al. Feb 2020 B2
10561498 Gross et al. Feb 2020 B2
10568738 Sheps et al. Feb 2020 B2
10610360 Reich et al. Apr 2020 B2
10653524 Khairkhahan et al. May 2020 B2
10702386 Khairkhahan et al. Jul 2020 B2
10751180 Schewel Aug 2020 B2
11000372 Khairkhahan et al. May 2021 B2
11160656 Khairkhahan Nov 2021 B2
20010007956 Letac et al. Jul 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20020029080 Mortier et al. Mar 2002 A1
20020058995 Stevens May 2002 A1
20020116024 Goldberg et al. Aug 2002 A1
20020138135 Duerig Sep 2002 A1
20020188301 Dallara et al. Dec 2002 A1
20030023248 Parodi Jan 2003 A1
20030100943 Bolduc May 2003 A1
20030105474 Bonutti Jun 2003 A1
20030135263 Rourke et al. Jul 2003 A1
20030191497 Cope Oct 2003 A1
20030199975 Gabbay Oct 2003 A1
20040082956 Baldwin et al. Apr 2004 A1
20040088047 Spence et al. May 2004 A1
20040143323 Chawla Jul 2004 A1
20040172046 Hlavka et al. Sep 2004 A1
20040193217 Lubbers et al. Sep 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20050004665 Aklog Jan 2005 A1
20050004668 Aklog et al. Jan 2005 A1
20050010287 Macoviak Jan 2005 A1
20050075727 Wheatley et al. Apr 2005 A1
20050096740 Langberg et al. May 2005 A1
20050107871 Realyvasquez May 2005 A1
20050159810 Filsoufi Jul 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050228495 Macoviak Oct 2005 A1
20050261708 Pasricha et al. Nov 2005 A1
20050283232 Gabbay Dec 2005 A1
20060058871 Zakay et al. Mar 2006 A1
20060122608 Fallin et al. Jun 2006 A1
20060149368 Spence Jul 2006 A1
20060190030 To et al. Aug 2006 A1
20060252984 Rahdert et al. Nov 2006 A1
20070005069 Contiliano et al. Jan 2007 A1
20070049970 Belef et al. Mar 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070112352 Sorensen et al. May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070129758 Saadat Jun 2007 A1
20070185571 Kapadia et al. Aug 2007 A1
20070233239 Navia et al. Oct 2007 A1
20070239272 Navia et al. Oct 2007 A1
20070244554 Rafiee et al. Oct 2007 A1
20070244555 Rafiee et al. Oct 2007 A1
20070244556 Rafiee et al. Oct 2007 A1
20070250160 Rafiee Oct 2007 A1
20070255399 Eliasen et al. Nov 2007 A1
20070265658 Nelson et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20070265702 Lattouf Nov 2007 A1
20070293943 Quinn Dec 2007 A1
20080065204 Macoviak et al. Mar 2008 A1
20080109075 Keranen May 2008 A1
20080125860 Webler et al. May 2008 A1
20080125861 Webler et al. May 2008 A1
20080195205 Schwartz Aug 2008 A1
20080262609 Gross et al. Oct 2008 A1
20080319541 Filsoufi Dec 2008 A1
20090012354 Wood Jan 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090177277 Milo Jul 2009 A1
20090234404 Fitzgerald et al. Sep 2009 A1
20090259304 O'Beirne et al. Oct 2009 A1
20090259307 Gross et al. Oct 2009 A1
20090287304 Dahlgren et al. Nov 2009 A1
20090326648 Machold et al. Dec 2009 A1
20100069954 Blaeser et al. Mar 2010 A1
20100121435 Subramanian et al. May 2010 A1
20100131057 Subramanian et al. May 2010 A1
20100161043 Maisano et al. Jun 2010 A1
20100161047 Cabiri et al. Jun 2010 A1
20100249947 Lesh et al. Sep 2010 A1
20100262233 He Oct 2010 A1
20100280603 Maisano et al. Nov 2010 A1
20100280604 Zipory et al. Nov 2010 A1
20100280605 Hammer Nov 2010 A1
20100280606 Naor Nov 2010 A1
20100286767 Zipory et al. Nov 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20100312333 Navia et al. Dec 2010 A1
20110004299 Navia et al. Jan 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110106245 Miller et al. May 2011 A1
20110106247 Miller et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110166649 Gross et al. Jul 2011 A1
20110224785 Hacohen Sep 2011 A1
20110288635 Miller et al. Nov 2011 A1
20110301698 Miller et al. Dec 2011 A1
20120016468 Robin et al. Jan 2012 A1
20120022557 Cabiri et al. Jan 2012 A1
20120022644 Reich et al. Jan 2012 A1
20120078360 Rafiee Mar 2012 A1
20120136436 Cabiri et al. May 2012 A1
20120165930 Gifford et al. Jun 2012 A1
20120197388 Khairkhahan Aug 2012 A1
20120203336 Annest Aug 2012 A1
20120283757 Miller et al. Nov 2012 A1
20120323316 Chau et al. Dec 2012 A1
20120330410 Hammer et al. Dec 2012 A1
20120330411 Gross et al. Dec 2012 A1
20130023985 Khairkhahan et al. Jan 2013 A1
20130096672 Reich et al. Apr 2013 A1
20130116776 Gross et al. May 2013 A1
20130116780 Miller et al. May 2013 A1
20130131792 Miller et al. May 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130190866 Zipory et al. Jul 2013 A1
20130238024 Taylor et al. Sep 2013 A1
20130282028 Conklin et al. Oct 2013 A1
20130338763 Rowe et al. Dec 2013 A1
20140018906 Rafiee Jan 2014 A1
20140025163 Padala et al. Jan 2014 A1
20140039615 Padala et al. Feb 2014 A1
20140067048 Chau Mar 2014 A1
20140094903 Miller et al. Apr 2014 A1
20140128965 Rafiee May 2014 A1
20140142695 Gross et al. May 2014 A1
20140148898 Gross et al. May 2014 A1
20140222137 Miller et al. Aug 2014 A1
20140243963 Sheps et al. Aug 2014 A1
20140276648 Hammer et al. Sep 2014 A1
20140277088 Friedman Sep 2014 A1
20140309661 Sheps et al. Oct 2014 A1
20140343668 Zipory et al. Nov 2014 A1
20140358223 Rafiee et al. Dec 2014 A1
20140379075 Maurer et al. Dec 2014 A1
20150012087 Miller et al. Jan 2015 A1
20150039083 Rafiee et al. Feb 2015 A1
20150081014 Gross et al. Mar 2015 A1
20150100116 Mohl et al. Apr 2015 A1
20150105855 Cabiri et al. Apr 2015 A1
20150112429 Khairkhahan et al. Apr 2015 A1
20150112432 Reich et al. Apr 2015 A1
20150119981 Khairkhahan et al. Apr 2015 A1
20150164637 Khairkhahan et al. Jun 2015 A1
20150182336 Zipory et al. Jul 2015 A1
20150202043 Zakai et al. Jul 2015 A1
20150230924 Miller et al. Aug 2015 A1
20150257877 Hernandez Sep 2015 A1
20150272586 Herman et al. Oct 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150297212 Reich et al. Oct 2015 A1
20150366556 Khairkhahan et al. Dec 2015 A1
20150366666 Khairkhahan et al. Dec 2015 A1
20160008132 Cabiri et al. Jan 2016 A1
20160030176 Mohl et al. Feb 2016 A1
20160058557 Reich et al. Mar 2016 A1
20160074164 Naor Mar 2016 A1
20160089233 Lee et al. Mar 2016 A1
20160106437 van der Burg et al. Apr 2016 A1
20160113767 Miller et al. Apr 2016 A1
20160157862 Hernandez et al. Jun 2016 A1
20160158008 Miller et al. Jun 2016 A1
20160262755 Zipory et al. Sep 2016 A1
20160324639 Nguyen et al. Nov 2016 A1
20160331523 Chau et al. Nov 2016 A1
20160361168 Gross et al. Dec 2016 A1
20160361169 Gross et al. Dec 2016 A1
20170000609 Gross et al. Jan 2017 A1
20170100249 Miller et al. Apr 2017 A1
20170105839 Subramanian et al. Apr 2017 A1
20170135815 Gross et al. May 2017 A1
20170135816 Lashinski et al. May 2017 A1
20170189186 Mohl Jul 2017 A1
20170196691 Zipory et al. Jul 2017 A1
20170209270 Miller et al. Jul 2017 A1
20170245993 Gross et al. Aug 2017 A1
20170245994 Khairkhahan et al. Aug 2017 A1
20170258588 Zipory et al. Sep 2017 A1
20170258590 Khairkhahan et al. Sep 2017 A1
20170265995 Khairkhahan et al. Sep 2017 A1
20170296340 Gross et al. Oct 2017 A1
20170325958 Reich et al. Nov 2017 A1
20170325959 Sheps et al. Nov 2017 A1
20170354500 Martinez et al. Dec 2017 A1
20170367825 Cabiri et al. Dec 2017 A1
20180008409 Kutzik et al. Jan 2018 A1
20180014933 Miller et al. Jan 2018 A1
20180014934 Miller et al. Jan 2018 A1
20180049875 Iflah et al. Feb 2018 A1
20180116797 Miller et al. May 2018 A9
20180125657 Dahlgren et al. May 2018 A1
20180228608 Sheps et al. Aug 2018 A1
20180250133 Reich et al. Sep 2018 A1
20180256318 Khairkhahan Sep 2018 A1
20180256333 Cabiri et al. Sep 2018 A1
20180256334 Sheps et al. Sep 2018 A1
20180263776 Gross et al. Sep 2018 A1
20180263777 Gross et al. Sep 2018 A1
20180318080 Quill et al. Nov 2018 A1
20190008641 Dahlgren et al. Jan 2019 A1
20190046318 Miller et al. Feb 2019 A1
20190070004 Ifah et al. Mar 2019 A1
20190076247 Zeng Mar 2019 A1
20190076249 Khairkhahan Mar 2019 A1
20190125325 Sheps et al. May 2019 A1
20190133586 Zipory et al. May 2019 A1
20190151090 Gross et al. May 2019 A1
20190151093 Keidar et al. May 2019 A1
20190159898 Kutzik et al. May 2019 A1
20190167425 Reich et al. Jun 2019 A1
20190175344 Khairkhahan Jun 2019 A1
20190183644 Hacohen Jun 2019 A1
20190201191 McLean et al. Jul 2019 A1
20190216600 Zipory et al. Jul 2019 A1
20190254821 Rafiee et al. Aug 2019 A1
20190269512 Lashinski Sep 2019 A9
20190269513 Cabiri et al. Sep 2019 A9
20190274830 Miller et al. Sep 2019 A1
20190282358 Khairkhahan et al. Sep 2019 A1
20190282364 Khairkhahan et al. Sep 2019 A1
20190298332 Khairkhahan et al. Oct 2019 A1
20190298522 Subramanian et al. Oct 2019 A1
20190321049 Herman et al. Oct 2019 A1
20190336288 Gross et al. Nov 2019 A1
20190336289 Miller et al. Nov 2019 A1
20190350703 Weber et al. Nov 2019 A1
20190350705 Schewel et al. Nov 2019 A1
20190374343 Lashinski et al. Dec 2019 A1
20190374750 Hammer et al. Dec 2019 A1
20190380834 Rafiee Dec 2019 A1
20200015971 Brauon et al. Jan 2020 A1
20200030097 Khairkhahan et al. Jan 2020 A1
20200038186 Gross et al. Feb 2020 A1
20200100899 Miller et al. Apr 2020 A1
20200113685 Miller et al. Apr 2020 A1
20200205966 Khairkhahan et al. Jul 2020 A1
20200205975 Khairkhahan Jul 2020 A1
20200205980 Khairkhahan et al. Jul 2020 A1
20200214841 Khairkhahan et al. Jul 2020 A1
20200222185 Kappetein et al. Jul 2020 A1
20200275974 Gifford et al. Sep 2020 A1
20200289265 Gifford et al. Sep 2020 A1
20200330229 Serraf et al. Oct 2020 A1
20200337843 Khairkhahan et al. Oct 2020 A1
20200383776 Schewel Dec 2020 A1
20200397567 Khairkhahan et al. Dec 2020 A1
20210085462 Gifford et al. Mar 2021 A1
20210196462 Khairkhahan Jul 2021 A1
20210298901 Khairkhahan et al. Sep 2021 A1
20220000621 Gifford et al. Jan 2022 A1
20220039944 Khairkhahan Feb 2022 A1
20220039951 Khairkhahan Feb 2022 A1
20220054269 Khairkhahan Feb 2022 A1
20220079753 Zimmerman et al. Mar 2022 A1
20220079755 Zimmerman et al. Mar 2022 A1
20220096236 Guidotti et al. Mar 2022 A1
20220160499 Miyashiro et al. May 2022 A1
20220160508 Miyashiro et al. May 2022 A1
20220125579 McLean et al. Jul 2022 A1
Foreign Referenced Citations (70)
Number Date Country
102256568 Dec 2002 CN
1984621 Jun 2007 CN
101056596 Oct 2007 CN
101068508 Nov 2007 CN
101947146 Jan 2011 CN
102065777 May 2011 CN
102458309 May 2012 CN
202821715 Mar 2013 CN
103338726 Oct 2013 CN
102905648 Jan 2015 CN
104394803 Mar 2015 CN
104582637 Apr 2015 CN
105451688 Mar 2016 CN
1 294 310 Mar 2003 EP
1 959 865 Aug 2008 EP
2 410 948 Feb 2012 EP
1 796 597 Jan 2013 EP
2 661 239 Nov 2013 EP
2 667 824 Dec 2013 EP
2 995 279 Mar 2016 EP
S54-088693 Jul 1979 JP
2005-535384 Nov 2005 JP
2007-518492 Jul 2007 JP
2008-517672 May 2008 JP
2010-511469 Apr 2010 JP
2012-511402 May 2012 JP
2012-520716 Sep 2012 JP
2014-510563 May 2014 JP
2014-231015 Dec 2014 JP
2015-523898 Aug 2016 JP
2016-533798 Nov 2016 JP
2017-18675 Jan 2017 JP
WO 97007744 Mar 1997 WO
WO 9953869 Oct 1998 WO
WO 2004014258 Feb 2004 WO
WO 2005069875 Aug 2005 WO
WO 2006032051 Mar 2006 WO
WO 2006041877 Apr 2006 WO
WO 2006086434 Aug 2006 WO
WO 2007062054 May 2007 WO
WO 2007135101 Nov 2007 WO
WO 2007140470 Dec 2007 WO
WO 2008068756 Jun 2008 WO
WO 2008141322 Nov 2008 WO
WO 2010106438 Sep 2010 WO
WO 2011037891 Mar 2011 WO
WO 2011047168 Apr 2011 WO
WO 2012061809 May 2012 WO
WO 2012092437 Jul 2012 WO
WO 2012102928 Aug 2012 WO
WO 2013131069 Sep 2013 WO
WO 2013173587 Nov 2013 WO
WO 2013178335 Dec 2013 WO
WO 2013192107 Dec 2013 WO
WO 2014181336 Nov 2014 WO
WO 2014207575 Dec 2014 WO
WO 2015020971 Feb 2015 WO
WO 2015052570 Apr 2015 WO
WO 2015061533 Apr 2015 WO
WO 2015195823 Dec 2015 WO
WO 2015200497 Dec 2015 WO
WO 2016178136 Nov 2016 WO
WO 2016183485 Nov 2016 WO
WO 2017079279 May 2017 WO
WO 2017136596 Aug 2017 WO
WO 2018169878 Sep 2018 WO
WO 2019116322 Jun 2019 WO
WO 2019222694 Nov 2019 WO
WO 2019241777 Dec 2019 WO
WO 2020055811 Mar 2020 WO
Non-Patent Literature Citations (84)
Entry
Biocina et al., Mitral Valve Repair With The New Mitrofast® Repair System, Dubrava University Hospital, Zagreb, Crotia, Mitrofast Abstract European Soc CVS 55th Congress—May 11-14, 2006 Suppl 1 to vol. 5.
Biocina, The arteficial coaptation surface concept in mitral valve repair, University of Zagreb School of Medicine, Department of Cardiac Surgery, Savudrija Mitrofast 2010.
Chiam et al., Percutaneous Transcatheter Mitral Valve Repair, The American College of Cardiology Foundation, JACC: Cardiovascular Interventions, vol. 4 No. 1, Jan. 2011:1-13.
Jassar et al., Posterior Leaflet Augmentation in Ischemic Mitral Regurgitation Increases Leaflet Coaptation and Mobility, The Society of Thoracic Surgeons, Ann Thorac Surg 2012; 94:1438-45.
Langer et al., Posterior mitral leaflet extension: An adjunctive repair option for ischemic mitral regurgitation?, Surgery for Acquired Cardiovascular Disease, The Journal of Thoracic and Cardiovascular Surgery, Apr. 2006, downloaded Jun. 18, 2011.
Mohl et al., The Angel Valve Concept, Vienna University of Technology, Medical University of Vienna, Technology Offer, 1 page.
Mohl et al., An Innovative Concept For Transcatheter Treatment of Annular Dilatation and Restrictive Leaflet Motion in Mitral Insufficiency, Medical University of Vienna, 1 page.
Piemonte et al., Cardiovascular™: The Mitral Valve Spacer, Presented at Transcatheter Cardiovascular Therapeutics Conference—TCT Conference, Oct. 2008.
Rumel et al., The Correction of Mitral Insufficiency with a Trans-Valvular Polyvinyl Formalinized Plastic (Ivalon) Sponge Prosthesis: A Preliminary Report, American College of Chest Physicians, 1958;33;401-413, Dec. 2, 2010.
International Preliminary Report on Patentability for PCT/US2012/021744 dated Aug. 8, 2013 in 15 pages.
International Search Report for Application No. PCT/US2013/046173 dated Oct. 4, 2013 in 15 pages.
International Search Report for Application No. PCT/US2014/061901 dated Jan. 26, 2015 in 14 pages.
International Search Report for Application No. PCT/US2015/036260 dated Oct. 1, 2015 in 20 pages.
International Search Report for Application No. PCT/US2015/037451 dated Oct. 6, 2015 in 12 pages.
International Search Report for Application No. PCT/US2016/060094 dated Feb. 9, 2017 in 8 pages.
International Search Report for Application No. PCT/US2018/022043 dated Jun. 25, 2018 in 13 pages.
Extended European Search Report, EP 12738989.8, dated May 24, 2016.
Office Action for EP 12738989.8 dated Mar. 3, 2017.
Office Action for EP 12738989.8 dated Sep. 19, 2017.
Extended European Search Report, EP 13806272.4, dated Nov. 11, 2015.
Extended European Search Report, EP 14856738.1, dated Jun. 7, 2017.
Extended European Search Report, EP 15809346.8, dated Feb. 13, 2018.
Extended European Search Report, EP 15812032.9, dated Oct. 18, 2017.
Extended European Search Report, EP 16862864.2, dated May 10, 2019.
Office Action for CA 2,825,520 dated Nov. 27, 2017.
Office Action for CA 2,825,520 dated Aug. 21, 2018.
Office Action for CA 2,877,344 dated Mar. 12, 2019.
Office Action for CA 2,877,344 dated Oct. 9, 2019.
Office Action for CA 2,877,344 dated Jul. 21, 2020.
Office Action for CN 201280006673.7 dated Dec. 10, 2014.
Office Action for CN 201280006673.7 dated Sep. 22, 2015.
Office Action for CN 201280006673.7 dated Feb. 1, 2016.
Office Action for CN 201380044122.4 dated Nov. 4, 2015.
Office Action for CN 201380044122.4 dated Aug. 24, 2016.
Office Action for CN 201480070933.6 dated May 10, 2017.
Office Action for CN 201480070933.6 dated Aug. 10, 2018.
Office Action for CN 201580044329.0 dated Jan. 17, 2018.
Office Action for CN 201580044329.0 dated Jul. 29, 2019.
Office Action for CN 201580045375.2 dated Mar. 29, 2018.
Office Action for CN 201580045375.2 dated Nov. 12, 2018.
Office Action for CN 201680077877.8 dated Aug. 15, 2019.
Office Action for JP 2013-552015 dated Dec. 7, 2015.
Office Action for JP 2013-552015 dated Oct. 7, 2016.
Office Action for JP 2015-518499 dated Feb. 27, 2017.
Office Action for JP 2015-518499 dated Aug. 31, 2017.
Office Action for JP 2015-518499 dated Aug. 20, 2018.
Office Action for JP 2016-525999 dated Jul. 9, 2018.
International Search Report for Application No. PCT/US2019/050331 dated Jan. 23, 2020 in 9 pages.
Office Action for CN 201580044329.0 dated Mar. 3, 2020.
Office Action for EP 15812032.9, dated Jul. 6, 2020.
Office Action for CA 2,877,344 dated Dec. 23, 2020.
Office Action for CA 2,934,182 dated Dec. 9, 2020.
Extended European Search Report, EP 18768736.3, dated Oct. 9, 2020.
International Search Report for Application No. PCT/US2020/065261 dated Apr. 13, 2021 in 13 pages.
Office Action for CN 201880031519.2 dated May 19, 2021.
Office Action for EP 13806272.4, dated Mar. 23, 2021.
Office Action for EP 14856738.1, dated Apr. 23, 2021.
Office Action for CA 2,934,182 dated Jun. 30, 2021.
Office Action for CA 2,958,065 dated Jul. 9, 2021.
Office Action for JP 2018-543021 dated Oct. 4, 2021.
Office Action for JP 2020-085273 dated Aug. 23, 2021.
Office Action for JP 2020-082001 dated Nov. 29, 2021.
Office Action for CN 201480070933.6 dated Dec. 25, 2017.
Office Action for CN 201480070933.6 dated Apr. 17, 2019.
Office Action for EP 15812032.9, dated Oct. 10, 2019.
Office Action for JP 2013-552015 dated Jun. 5, 2017.
Office Action for JP 2016-525999 dated Jun. 27, 2019.
Office Action for JP 2016-525999 dated Mar. 16, 2020.
Office Action for 2016-573983 dated Apr. 1, 2019.
Office Action for 2016-573983 dated Nov. 11, 2019.
Office Action for JP 2016-574967 dated May 7, 2019.
Office Action for JP 2016-574967 dated Dec. 26, 2019.
Office Action for 2016-573983 dated May 11, 2020.
Office Action for CN 201580044329.0 dated Aug. 26, 2020.
Office Action for JP 2016-574967 dated Jun. 29, 2020.
Office Action for JP 2018-543021 dated Oct. 27, 2020.
Office Action for JP 2020-082001 dated Mar. 29, 2021.
Office Action for JP 2020-085273 dated May 31, 2021.
Office Action for CA 2,934,182 dated Mar. 2, 2022.
Office Action for CA 2,958,065 dated Mar. 2, 2022.
Office Action for 2020-041944 dated Feb. 21, 2022.
Office Action for 2019-572351 dated Feb. 28, 2022.
International Search Report for Application No. PCT/US2021/061248 dated Mar. 29, 2022 in 15 pages.
Extended European Search Report, EP 19860754.1 dated Jun. 1, 2022.
Related Publications (1)
Number Date Country
20220039951 A1 Feb 2022 US
Provisional Applications (1)
Number Date Country
61895647 Oct 2013 US
Continuations (3)
Number Date Country
Parent 17227749 Apr 2021 US
Child 17480750 US
Parent 16220322 Dec 2018 US
Child 17227749 US
Parent 14313975 Jun 2014 US
Child 16220322 US