The present technology relates generally to costs associated with natural language translation. More specifically, the present technology relates to predicting the cost associated with translating textual content.
Machine translation of natural languages is presently an imperfect technology and will likely produce imperfect results in the next several decades. For certain bodies of text, a machine translation system may produce outputs of very high quality, which can be published directly to satisfy a given goal. For example, if automatic translation quality is compelling, some customer support documents translated to a target language could be published on the web in order to enable customers who speak the target language to access information that may not be otherwise available. As such, this may lead to a smaller number of customers making support calls, thus reducing overhead costs. For other documents, in contrast, possibly such as marketing materials, automatic translation quality may be too low to warrant their publication. In such cases, human translators may be necessary to translate these other documents.
A significant barrier to adopting machine translation technology is explained by potential customers not being able to know in advance the extent an existing machine translation system will be able to satisfy their needs. For example, current and projected costs of translating text may be difficult or impossible to accurately determine. Therefore, what is needed is a technology to gauge current and future costs associated with translating textual content.
Embodiments of the present technology allow costs associated with translating textual content to be determined. The present technology may predict the costs of translating existing and expected documents by a combination of human translation and machine translation from a source language to a target language. The documents can include a first textual content identified for human translation and a second textual content identified for machine translation. The cost for translating the documents to the target language may be predicted before the translations are performed.
A prediction of the cost to machine translate the second textual content may be based on a translation quality level associated with one or more portions of the second textual content. For example, a second textual content may be divided into a first portion associated with a higher quality level and a second portion associated with lower quality level. The translation cost associated with the higher quality level may differ then the translation cost associated with the lower quality level. Thus, the predicted cost of translating the second textual content may be determined based on different costs of translating different portions of the textual content via machine translation.
In one claimed embodiment, a method for determining a prediction of the cost associated with translating textual content in a source language is disclosed. The method may include determining a first quantity estimation of first textual content and determining a second quantity estimation of second textual content. The first textual content is to be translated via human translation, whereas the second textual content is to be translated via machine translation. An indication of a target language may also be obtained, wherein the source language and the target language form a language pair. Instructions stored in memory may then be executed using a processor to determine the prediction of the cost associated with translating the first textual content and the second textual content from the source language to the target language. The prediction is based at least in part on the first quantity estimation, the second quantity estimation, and the language pair.
Another claimed embodiment discloses a system for determining a prediction of the cost associated with translating textual content in a source language. The system may include a first assessment module, a second assessment module, a language module, and a cost prediction module, all of which may be stored in memory and executed by a processor to effectuate the respective functionalities attributed thereto. The first assessment module may be executed to obtain a first quantity estimation of first textual content, wherein the first textual content is to be translated via human translation. The second assessment module may be executed to obtain a second quantity estimation of second textual content. The second textual content is to be translated via machine translation. The language module may be executed to obtain an indication of a target language. The source language and the target language form a language pair. The cost prediction module may be executed to determine the prediction of the cost associated with translating the first textual content and the second textual content from the source language to the target language. The prediction is based at least in part on the first quantity estimation, the second quantity estimation, and the language pair.
A computer readable storage medium having a program embodied thereon is also disclosed as a claimed embodiment. The program is executable by a processor to perform a method for determining a prediction of the cost associated with translating textual content in a source language. The method may include determining a first quantity estimation of first textual content, wherein the first textual content is to be translated via human translation. The method may also include determining a second quantity estimation of second textual content, wherein the second textual content is to be translated via machine translation. Obtaining an indication of a target language may be further included in the method. The source language and the target language form a language pair. The method may still further include determining the prediction of the cost associated with translating the first textual content and the second textual content from the source language to the target language. The prediction may be based at least in part on the first quantity estimation, the second quantity estimation, and the language pair.
The present technology may predict the costs for translating existing and expected documents by a combination of human translation and machine translation. Such a body of textual content can include any amount of text ranging, for example, from a few words to a batch of textual items such as websites, books, articles, or letters. The documents can include a first textual content identified for human translation and a second textual content identified for machine translation. The documents that make up the existing textual content, as well as expected textual content that may be forthcoming in the future, may be translated from a current language to a target language. The cost for translating the documents to the target language may be predicted before the translations are performed.
A prediction of the cost to machine translate the second textual content may be based on a translation quality level associated with one or more portions of the second textual content. Different portions of the second textual content may have a different translation quality level, and a corresponding different cost of translation. For example, a second textual content may be divided into a first portion associated with a higher quality level and a second portion associated with lower quality level. The translation cost associated with the higher quality level may differ then the translation cost associated with the lower quality level. Hence, the predicted cost of translating the second textual content may be determined based on different costs of translating different portions of the textual content via machine translation.
It is noteworthy that machine-generated translations obtained by way of statistical-translation techniques and non-statistical-translation techniques fall within the scope of the present technology. Furthermore, while the present technology is described herein in the context of textual translations, the principles disclosed can likewise be applied to speech translations such as when employed in conjunction with speech recognition technologies.
Referring now to
As mentioned, the computing device 105 may include the network browser 110. The network browser 110 may retrieve, present, traverse, and otherwise process information located on a network, including content pages. For example, network browser 110 can be implemented as a web browser that can process a content page in the form of a web page. The network browser 110 may provide an interface as part of a content page or web page. The interface can be implemented from content page data received from the third-party web server 150 or the web server 130. Via the interface, the computing device 105 can receive an indication from a user to provide a translation from a source language to a target language along with a cost prediction of that translation. The user may provide the indication via the textual content itself, location data for the textual content such as a link (e.g., URL) associated with the textual content, or other information. The indication may convey a desire to obtain a highly accurate translation or a usable translation based on content included in or associated with the textual content. The indication may be forwarded either to the third-party website content 155 or the web server 130 via the network 125.
The computing device 105, as depicted in
The web server 130 may communicate both with the application server 135 and over the network 125, for example to provide content page data to the computing device 105 for rendering in the network browser 110. The content page data may be used by the network browser 110 to provide an interface for selecting an indication of a textual content to translate, whether stored over a network or locally to the computing device 105. The web server 130 can also receive data associated with an indication from the computing device 105. The web server 130 may process the received indication and/or provide the indication, and optionally any textual content data, to the application server 135 for processing by translation application 140.
The application server 135 communicates with web server 130 and other applications, for example the client translation applications 120, and includes the translation application 140. In addition to generating translations, the translation application 140 can generate a cost prediction associated with translating current and forthcoming textual content, as discussed in further detail herein. Both translated textual content and cost predictions may be transmitted to a user over the network 125 by the application server 135 and the web server 130, for example, through the computing device 105.
The translation application 140 may be part of a translation system that translates textual content and predicts translation costs. The translation application 140 is described in further detail in connection with
In some embodiments, a content page for allowing a user to configure translation parameters can be provided through the network browser 110. The translation configuration content page data can be provided to the network browser 110 by the web server 130 and/or by the third-party web server 150. When provided by the third-party web server 150, the third-party web server 150 may access and retrieve information from the translation system (i.e., the web server 130 and/or the application server 135) to provide a content page having an interface for configuring. In exemplary embodiments, the translation application 140 is accessed by the third-party web server 150. A graphical user interface (GUI) may be implemented within a content page by the third-party web server 150, rendered in the network browser 110, and accessed by a user via the network browser 110 of the computing device 105. According to exemplary embodiments, the GUI can enable a user to identify a document to be translated and select various options related to translating the documents.
When executed, the communications module 205 allows an indication to be received via a user interface to provide a cost prediction for translating textual content from a source language to a target language. Such a user interface may include the network browser 110 or a GUI provided by the third-party website content 155. The communications module 205 may also facilitate accessing the textual content for which a cost prediction is to be determined such as in response to an indication by a user. The textual content can be accessed based on location information associated with the textual content. Additionally, the textual content can be downloaded from the computing device 105, third-party web server 150, or any other site or device accessible via the network 125. Furthermore, the communications module 205 can be executed such that a cost prediction associated with translating the textual content is outputted from the translation application 140 to devices accessible via the network 125 (e.g., the computing device 105).
The interface module 210 can be executed to provide a graphical user interface through network browser 110, for example as a content page, that enables a user to request the cost prediction. The graphical user interface may also provide various options to a user relating to, for example, pricing or translation domain. According to various embodiments, the graphical user interface may be presented to a user as a content page for network browser 110 via the third-party web server 150 or directly by client translation application 120 at the computing device 105.
The translation engine 215 comprises a machine translation engine capable of translating from a source language to a target language. Such translation capability may result from training the translation engine 215 on various training data. Higher translation accuracy may be achieved for domain-specific translations when a machine translation engine is trained using a training dataset associated with the same domain or similar subject matter as documents being translated. For example, a translation of a car-repair manual may be of higher quality if the machine translation engine employed was trained using a car-repair-domain-specific training dataset compared to, say, a general training dataset or an unrelated-domain-specific training dataset. In some embodiments, the translation application 140 may include more than one translation engine 215. Additionally, the translation engine 215 may be based on statistical-translation techniques, non-statistical-translation techniques, or a combination thereof.
As depicted in
According to exemplary embodiments, the translation cost estimation engine 220 is executable to generate a prediction of the cost associated with translating textual content from a source language to a target language. The cost prediction may be indicative of translational costs associated with translating a portion of the textual content using human translators and another portion of the textual content using machine translation. The translation cost estimation engine 220 is described in further detail in connection with
The first assessment module 305 can be executed to obtain a first quantity estimation of first textual content. The first textual content is to be translated via human translation. Generally speaking, the first textual content includes text for which a near-perfect translation is desired. As such, human translation is invoked rather than machine translation. An example of the first textual content might include material that would suffer greatly if a nuance or underlying message was not effectively translated, such as marketing materials.
The first quantity estimation can be obtained in a number of ways. The first quantity estimation may be determined by a human. For example, a customer may select a quantity of textual material to be translated by a human, rather than by a machine. Alternatively, the first quantity estimation may be automatically determined, such as through execution of the text evaluation module 330, as discussed further herein. It is noteworthy that the first quantity estimation can be any portion of the total textual content to ultimately be translated, including all textual content or no textual content.
Execution of the second assessment module 310 allows a second quantity estimation of second textual content to be obtained. The second textual content is to be translated via machine translation. In general, the second textual content includes text for which a potentially imperfect translation is acceptable. Thus, machine translation is used, rather than human translation. The second textual content includes material where the gist is conveyable, even if grammar or word choice in not optimal. Technical documentation or casual communication such as chat can be examples of the second textual content.
Like the first quantity estimation, the second quantity estimation can be obtained in a number of ways. The second quantity estimation may be determined by a human. For example, a customer may select a quantity of textual material to be translated by a machine, rather than by a human. Alternatively, the second quantity estimation may be automatically determined, such as through execution of the text evaluation module 330, as discussed further herein. It is noteworthy that the second quantity estimation can be any portion of the total textual content to ultimately be translated, including all textual content or no textual content.
The language module 315 is executed to obtain an indication of a target language, such that the source language and the target language form a language pair. The indication of the target language may be obtained from the user via the interface module 210.
The cost prediction module 320 may be executed to determine the prediction of the cost associated with translating the first textual content and the second textual content from the source language to the target language. The prediction may be based at least in part on the first quantity estimation, the second quantity estimation, and the language pair obtained, respectively, by the first assessment module 305, second assessment module 310, and language module 315.
The quality prediction module 325 is executable to predict a quality level attainable via machine translation of at least a portion of the second textual content. The quality level may be predicted in a number of manners. Exemplary approaches for determining quality levels are disclosed in U.S. patent application Ser. No. 12/572,021 filed Oct. 1, 2009 and entitled “Providing Machine-Generated Translations and Corresponding Trust Levels,” which is incorporated herein by reference. In some embodiments, the quality level can be predicted without translating the second textual content. This may be achieved by examining the alignment between the second textual content and training data used to train a given machine translation engine.
It is noteworthy that different portions of the second textual content can each be associated with a different quality estimation. For example, a second textual content may be divided into four portions of 10%, 40%, 30%, and 20% of the total second textual content. The four portions may each be associated with a different quality level. The resulting cost prediction for translating the second textual content may be determined as the sum of the products of content volume and corresponding quality-based translation cost. For four portions or volumes of L1, L2, L3 and L4 and translation costs of C1, C2, C3 and C4, wherein each translation cost is based on a translation quality associated with a particular portion, the cost prediction for the second textual content may be determined as follows:
C=L1*C1+L2*C2+L3*C3+L4*C4
Furthermore, since machine-translated textual content can potentially require post-editing by a human, a higher predicted quality level may correspond to a lower prediction of the cost associated with translating the second textual content, relative to a lower predicted quality level.
Execution of the text evaluation module 330 supports determination of the quantity estimations of the first and second textual content. For example, the text evaluation module 330 can be executed to identify existing textual content to be translated via human translation, such that the existing textual content to be translated via human translation forms at least a portion of the first quantity estimation obtained by the first assessment module 305. The text evaluation module 330 may also be executed to estimate forthcoming textual content to be translated via human translation, such that the forthcoming textual content to be translated via human translation forms at least a portion of the first quantity estimation obtained by the first assessment module 305.
In addition, the text evaluation module 330 can be executed to identify existing textual content to be translated via machine translation, such that the existing textual content to be translated via machine translation forms at least a portion of the second quantity estimation obtained by the second assessment module 310. The text evaluation module 330 can, furthermore, be executed to estimate forthcoming textual content to be translated via machine translation, such that the forthcoming textual content to be translated via machine translation forms at least a portion of the second quantity estimation obtained by the second assessment module 310.
The report generation module 335 can be executed to generate a report that includes a schedule of cost options associated with the prediction of the cost. According to exemplary embodiments, the cost options are based at least in part on different quantities of the first textual content being translated and different quantities of the second textual content being translated. For example, a customer may want 100% of the first textual content to be translated by a human, but only 60% of the second textual content to be translated by a machine.
Execution of the content analysis module 340 allows determination of a machine translation system to perform the machine translation. Such a determination may be based on content associated with the second textual content. Exemplary approaches for determining which available translation system would best translated given textual content is described in U.S. patent application Ser. No. 12/510,913 filed Jul. 28, 2009 and entitled “Translating Documents Based on Content,” which is incorporated herein by reference.
In step 405, a first quantity of first textual content is estimated, wherein the first textual content is to be translated via human translation. The first assessment module 305 may be executed to perform step 405. In alternative embodiments, the text evaluation module 330 may be executed in conjunction with the first assessment module 305 to perform step 405.
In step 410, a second quantity of second textual content is estimated, where the second textual content is to be translated via machine translation. Step 410 may be performed through execution of the second assessment module 310. Alternatively, the text evaluation module 330 and the second assessment module 310 can be executed conjunctively to perform step 410.
In step 415, an indication of a target language is obtained, such that the source language and the target language form a language pair. The language module 315 can be executed to perform step 415.
In step 420, the prediction of the cost associated with translating the first textual content and the second textual content from the source language to the target language is determined. The prediction is based at least in part on the first quantity estimation, the second quantity estimation, and the language pair. Step 420 can be performed by executing the cost prediction module 320. The prediction of the cost associated with translating the second textual content may be based on one or more predicted quality levels, wherein each quality level may be associated with a portion of the second textual content.
The components shown in
The mass storage device 530, which may be implemented with a magnetic disk drive or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by the processor 510. The mass storage device 530 can store the system software for implementing embodiments of the present technology for purposes of loading that software into the main memory 520.
The portable storage device 540 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk, digital video disc, or USB storage device, to input and output data and code to and from the computer system 500 of
The input devices 560 provide a portion of a user interface. The input devices 560 may include an alpha-numeric keypad, such as a keyboard, for inputting alpha-numeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additionally, the computing system 500 as shown in
The display system 570 may include a liquid crystal display (LCD) or other suitable display device. The display system 570 receives textual and graphical information, and processes the information for output to the display device.
The peripheral device(s) 580 may include any type of computer support device to add additional functionality to the computer system. The peripheral device(s) 580 may include a modem or a router.
The components contained in the computer system 500 of
It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the technology. Computer-readable storage media refer to any medium or media that participate in providing instructions to a central processing unit (CPU), a processor, a microcontroller, or the like. Such media can take forms including, but not limited to, non-volatile and volatile media such as optical or magnetic disks and dynamic memory, respectively. Common forms of computer-readable storage media include a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic storage medium, a CD-ROM disk, digital video disk (DVD), any other optical storage medium, RAM, PROM, EPROM, a FLASHEPROM, any other memory chip or cartridge.
Various forms of transmission media may be involved in carrying one or more sequences of one or more instructions to a CPU for execution. A bus carries the data to system RAM, from which a CPU retrieves and executes the instructions. The instructions received by system RAM can optionally be stored on a fixed disk either before or after execution by a CPU.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments. It should be understood that the above description is illustrative and not restrictive. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art. The scope of the technology should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
The present application is a continuation application of U.S. patent application Ser. No. 12/720,536 filed Mar. 9, 2010, issued as U.S Pat. No. 10,417,646 on Sep. 17, 2019, and entitled “Predicting the Cost Associated with Translating Textual Content.” The present application is also related to U.S. patent application Ser. No. 12/510,913 filed Jul. 28, 2009, issued as U.S. Pat. No. 8,990,064 on Mar. 24, 2015, and entitled “Translating Documents Based on Content,” and to U.S. patent application Ser. No. 12/572,021 filed Oct. 1, 2009, issued as U.S. Pat. No. 8,380,486 on Feb. 19, 2013, and entitled “Providing Machine-Generated Translations and Corresponding Trust Levels.” The disclosures of all the aforementioned applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4055907 | Henson | Nov 1977 | A |
4502128 | Okajima et al. | Feb 1985 | A |
4509137 | Yoshida | Apr 1985 | A |
4599691 | Sakaki et al. | Jul 1986 | A |
4615002 | Innes | Sep 1986 | A |
4661924 | Okamoto et al. | Apr 1987 | A |
4787038 | Doi et al. | Nov 1988 | A |
4791587 | Doi | Dec 1988 | A |
4800522 | Miyao et al. | Jan 1989 | A |
4814987 | Miyao et al. | Mar 1989 | A |
4845658 | Gifford | Jul 1989 | A |
4916614 | Kaji | Apr 1990 | A |
4920499 | Skeirik | Apr 1990 | A |
4942526 | Okajima et al. | Jul 1990 | A |
4980829 | Okajima et al. | Dec 1990 | A |
5020112 | Chou | May 1991 | A |
5088038 | Tanaka et al. | Feb 1992 | A |
5091876 | Kumano et al. | Feb 1992 | A |
5146405 | Church | Sep 1992 | A |
5167504 | Mann | Dec 1992 | A |
5175684 | Chong | Dec 1992 | A |
5181163 | Nakajima et al. | Jan 1993 | A |
5212730 | Wheatley et al. | May 1993 | A |
5218537 | Hemphill et al. | Jun 1993 | A |
5220503 | Suzuki et al. | Jun 1993 | A |
5267156 | Nomiyama | Nov 1993 | A |
5268839 | Kaji | Dec 1993 | A |
5275569 | Watkins | Jan 1994 | A |
5295068 | Nishino et al. | Mar 1994 | A |
5302132 | Corder | Apr 1994 | A |
5311429 | Tominaga | May 1994 | A |
5351189 | Doi | Sep 1994 | A |
5387104 | Corder | Feb 1995 | A |
5408410 | Kaji | Apr 1995 | A |
5418717 | Su et al. | May 1995 | A |
5432948 | Davis et al. | Jul 1995 | A |
5442546 | Kaji et al. | Aug 1995 | A |
5458425 | Torok | Oct 1995 | A |
5477450 | Takeda et al. | Dec 1995 | A |
5477451 | Brown et al. | Dec 1995 | A |
5488725 | Turtle et al. | Jan 1996 | A |
5495413 | Kutsumi et al. | Feb 1996 | A |
5497319 | Chong et al. | Mar 1996 | A |
5510981 | Berger et al. | Apr 1996 | A |
5528491 | Kuno et al. | Jun 1996 | A |
5535120 | Chong et al. | Jul 1996 | A |
5541836 | Church et al. | Jul 1996 | A |
5541837 | Fushimoto | Jul 1996 | A |
5548508 | Nagami | Aug 1996 | A |
5587902 | Kugimiya | Dec 1996 | A |
5640575 | Maruyama | Jun 1997 | A |
5644774 | Fukumochi et al. | Jul 1997 | A |
5675815 | Yamauchi et al. | Oct 1997 | A |
5687383 | Nakayama et al. | Nov 1997 | A |
5696980 | Brew | Dec 1997 | A |
5708780 | Levergood et al. | Jan 1998 | A |
5715314 | Payne et al. | Feb 1998 | A |
5724424 | Gifford | Mar 1998 | A |
5724593 | Hargrave, III et al. | Mar 1998 | A |
5752052 | Richardson et al. | May 1998 | A |
5754972 | Baker et al. | May 1998 | A |
5761631 | Nasukawa | Jun 1998 | A |
5761689 | Rayson et al. | Jun 1998 | A |
5768603 | Brown et al. | Jun 1998 | A |
5779486 | Ho et al. | Jul 1998 | A |
5781884 | Pereira et al. | Jul 1998 | A |
5794178 | Caid et al. | Aug 1998 | A |
5805832 | Brown et al. | Sep 1998 | A |
5806032 | Sproat | Sep 1998 | A |
5812776 | Gifford | Sep 1998 | A |
5819265 | Ravin et al. | Oct 1998 | A |
5826219 | Kutsumi | Oct 1998 | A |
5826220 | Takeda et al. | Oct 1998 | A |
5845143 | Yamauchi et al. | Dec 1998 | A |
5848385 | Poznanski et al. | Dec 1998 | A |
5848386 | Motoyama | Dec 1998 | A |
5850561 | Church et al. | Dec 1998 | A |
5855015 | Shoham | Dec 1998 | A |
5864788 | Kutsumi | Jan 1999 | A |
5867811 | O'Donoghue | Feb 1999 | A |
5870706 | Alshawi | Feb 1999 | A |
5873056 | Liddy | Feb 1999 | A |
5893134 | O'Donoghue et al. | Apr 1999 | A |
5903858 | Saraki | May 1999 | A |
5907821 | Kaji et al. | May 1999 | A |
5909492 | Payne et al. | Jun 1999 | A |
5909681 | Passera et al. | Jun 1999 | A |
5917944 | Wakisaka et al. | Jun 1999 | A |
5930746 | Ting | Jul 1999 | A |
5960384 | Brash | Sep 1999 | A |
5963205 | Sotomayor | Oct 1999 | A |
5966685 | Flanagan et al. | Oct 1999 | A |
5966686 | Heidorn et al. | Oct 1999 | A |
5974372 | Barnes | Oct 1999 | A |
5983169 | Kozma | Nov 1999 | A |
5987402 | Murata et al. | Nov 1999 | A |
5987404 | Della Pietra et al. | Nov 1999 | A |
5991710 | Papineni et al. | Nov 1999 | A |
5995922 | Penteroudakis et al. | Nov 1999 | A |
6018617 | Sweitzer et al. | Jan 2000 | A |
6031984 | Walser | Feb 2000 | A |
6032111 | Mohri | Feb 2000 | A |
6044344 | Kanevsky | Mar 2000 | A |
6047252 | Kumano et al. | Apr 2000 | A |
6049785 | Gifford | Apr 2000 | A |
6064819 | Franssen et al. | May 2000 | A |
6064951 | Park et al. | May 2000 | A |
6073143 | Nishikawa et al. | Jun 2000 | A |
6077085 | Parry et al. | Jun 2000 | A |
6085162 | Cherny | Jul 2000 | A |
6092034 | McCarley et al. | Jul 2000 | A |
6119077 | Shinozaki | Sep 2000 | A |
6119078 | Kobayakawa et al. | Sep 2000 | A |
6131082 | Hargrave, III et al. | Oct 2000 | A |
6161082 | Goldberg et al. | Dec 2000 | A |
6182014 | Kenyon et al. | Jan 2001 | B1 |
6182026 | Tillmann et al. | Jan 2001 | B1 |
6182027 | Nasukawa et al. | Jan 2001 | B1 |
6185524 | Carus et al. | Feb 2001 | B1 |
6195649 | Gifford | Feb 2001 | B1 |
6199051 | Gifford | Mar 2001 | B1 |
6205437 | Gifford | Mar 2001 | B1 |
6205456 | Nakao | Mar 2001 | B1 |
6206700 | Brown et al. | Mar 2001 | B1 |
6212634 | Geer et al. | Apr 2001 | B1 |
6223150 | Duan et al. | Apr 2001 | B1 |
6233544 | Alshawi | May 2001 | B1 |
6233545 | Datig | May 2001 | B1 |
6233546 | Datig | May 2001 | B1 |
6236958 | Lange et al. | May 2001 | B1 |
6269351 | Black | Jul 2001 | B1 |
6275789 | Moser et al. | Aug 2001 | B1 |
6278967 | Akers et al. | Aug 2001 | B1 |
6278969 | King et al. | Aug 2001 | B1 |
6279112 | O'toole, Jr. et al. | Aug 2001 | B1 |
6285978 | Bernth et al. | Sep 2001 | B1 |
6289302 | Kuo | Sep 2001 | B1 |
6304841 | Berger et al. | Oct 2001 | B1 |
6311152 | Bai et al. | Oct 2001 | B1 |
6317708 | Witbrock et al. | Nov 2001 | B1 |
6327568 | Joost | Dec 2001 | B1 |
6330529 | Ito | Dec 2001 | B1 |
6330530 | Horiguchi et al. | Dec 2001 | B1 |
6356864 | Foltz et al. | Mar 2002 | B1 |
6356865 | Franz et al. | Mar 2002 | B1 |
6360196 | Poznanski et al. | Mar 2002 | B1 |
6389387 | Poznanski et al. | May 2002 | B1 |
6393388 | Franz et al. | May 2002 | B1 |
6393389 | Chanod et al. | May 2002 | B1 |
6415250 | van den Akker | Jul 2002 | B1 |
6415257 | Junqua | Jul 2002 | B1 |
6449599 | Payne et al. | Sep 2002 | B1 |
6460015 | Hetherington et al. | Oct 2002 | B1 |
6470306 | Pringle et al. | Oct 2002 | B1 |
6473729 | Gastaldo et al. | Oct 2002 | B1 |
6473896 | Hicken et al. | Oct 2002 | B1 |
6477524 | Taskiran | Nov 2002 | B1 |
6480698 | Ho et al. | Nov 2002 | B2 |
6490358 | Geer et al. | Dec 2002 | B1 |
6490549 | Ulicny et al. | Dec 2002 | B1 |
6490563 | Hon | Dec 2002 | B2 |
6498921 | Ho et al. | Dec 2002 | B1 |
6502064 | Miyahira et al. | Dec 2002 | B1 |
6529865 | Duan et al. | Mar 2003 | B1 |
6535842 | Roche et al. | Mar 2003 | B1 |
6587844 | Mohri | Jul 2003 | B1 |
6598046 | Goldberg et al. | Jul 2003 | B1 |
6604101 | Chan et al. | Aug 2003 | B1 |
6609087 | Miller et al. | Aug 2003 | B1 |
6647364 | Yumura et al. | Nov 2003 | B1 |
6658627 | Gallup | Dec 2003 | B1 |
6691279 | Yoden et al. | Feb 2004 | B2 |
6704741 | Lively, Jr. et al. | Mar 2004 | B1 |
6745161 | Arnold et al. | Jun 2004 | B1 |
6745176 | Probert, Jr. et al. | Jun 2004 | B2 |
6757646 | Marchisio | Jun 2004 | B2 |
6778949 | Duan et al. | Aug 2004 | B2 |
6782356 | Lopke | Aug 2004 | B1 |
6810374 | Kang | Oct 2004 | B2 |
6848080 | Lee et al. | Jan 2005 | B1 |
6857022 | Scanlan | Feb 2005 | B1 |
6865528 | Huang | Mar 2005 | B1 |
6885985 | Hull | Apr 2005 | B2 |
6901361 | Portilla | May 2005 | B1 |
6904402 | Wang et al. | Jun 2005 | B1 |
6910003 | Arnold et al. | Jun 2005 | B1 |
6920419 | Kitamura | Jul 2005 | B2 |
6952665 | Shimomura et al. | Oct 2005 | B1 |
6976207 | Rujan | Dec 2005 | B1 |
6983239 | Epstein | Jan 2006 | B1 |
6990439 | Xun | Jan 2006 | B2 |
6993473 | Cartus | Jan 2006 | B2 |
6996518 | Jones et al. | Feb 2006 | B2 |
6996520 | Levin | Feb 2006 | B2 |
6999925 | Fischer et al. | Feb 2006 | B2 |
7013262 | Tokuda et al. | Mar 2006 | B2 |
7013264 | Dolan | Mar 2006 | B2 |
7016827 | Ramaswamy et al. | Mar 2006 | B1 |
7016977 | Dunsmoir et al. | Mar 2006 | B1 |
7024351 | Wang | Apr 2006 | B2 |
7031908 | Huang | Apr 2006 | B1 |
7031911 | Zhou et al. | Apr 2006 | B2 |
7050964 | Menzes et al. | May 2006 | B2 |
7054803 | Eisele | May 2006 | B2 |
7085708 | Manson | Aug 2006 | B2 |
7089493 | Hatori et al. | Aug 2006 | B2 |
7103531 | Moore | Sep 2006 | B2 |
7107204 | Liu et al. | Sep 2006 | B1 |
7107215 | Ghali | Sep 2006 | B2 |
7113903 | Riccardi et al. | Sep 2006 | B1 |
7124092 | O'toole, Jr. et al. | Oct 2006 | B2 |
7143036 | Weise | Nov 2006 | B2 |
7146358 | Gravano et al. | Dec 2006 | B1 |
7149688 | Schalkwyk | Dec 2006 | B2 |
7171348 | Scanlan | Jan 2007 | B2 |
7174289 | Sukehiro | Feb 2007 | B2 |
7177792 | Knight et al. | Feb 2007 | B2 |
7191115 | Moore | Mar 2007 | B2 |
7191447 | Ellis et al. | Mar 2007 | B1 |
7194403 | Okura et al. | Mar 2007 | B2 |
7197451 | Carter et al. | Mar 2007 | B1 |
7200550 | Menezes et al. | Apr 2007 | B2 |
7206736 | Moore | Apr 2007 | B2 |
7207005 | Laktritz | Apr 2007 | B2 |
7209875 | Quirk et al. | Apr 2007 | B2 |
7219051 | Moore | May 2007 | B2 |
7239998 | Xun | Jul 2007 | B2 |
7249012 | Moore | Jul 2007 | B2 |
7249013 | Al-Onaizan et al. | Jul 2007 | B2 |
7272639 | Levergood et al. | Sep 2007 | B1 |
7283950 | Pournasseh et al. | Oct 2007 | B2 |
7295962 | Marcu | Nov 2007 | B2 |
7295963 | Richardson et al. | Nov 2007 | B2 |
7302392 | Thenthiruperai et al. | Nov 2007 | B1 |
7319949 | Pinkham | Jan 2008 | B2 |
7328156 | Meliksetian et al. | Feb 2008 | B2 |
7333927 | Lee | Feb 2008 | B2 |
7340388 | Soricut et al. | Mar 2008 | B2 |
7346487 | Li | Mar 2008 | B2 |
7346493 | Ringger et al. | Mar 2008 | B2 |
7349839 | Moore | Mar 2008 | B2 |
7349845 | Coffman et al. | Mar 2008 | B2 |
7353165 | Zhou | Apr 2008 | B2 |
7356457 | Pinkham et al. | Apr 2008 | B2 |
7369984 | Fairweather | May 2008 | B2 |
7369998 | Sarich et al. | May 2008 | B2 |
7373291 | Garst | May 2008 | B2 |
7383542 | Richardson et al. | Jun 2008 | B2 |
7389222 | Langmead et al. | Jun 2008 | B1 |
7389223 | Atkin | Jun 2008 | B2 |
7389234 | Schmid et al. | Jun 2008 | B2 |
7403890 | Roushar | Jul 2008 | B2 |
7409332 | Moore | Aug 2008 | B2 |
7409333 | Wilkinson et al. | Aug 2008 | B2 |
7447623 | Appleby | Nov 2008 | B2 |
7448040 | Ellis et al. | Nov 2008 | B2 |
7451125 | Bangalore | Nov 2008 | B2 |
7454326 | Marcu et al. | Nov 2008 | B2 |
7496497 | Liu | Feb 2009 | B2 |
7509313 | Colledge | Mar 2009 | B2 |
7516062 | Chen et al. | Apr 2009 | B2 |
7533013 | Marcu | May 2009 | B2 |
7536295 | Cancedda et al. | May 2009 | B2 |
7546235 | Brockett et al. | Jun 2009 | B2 |
7552053 | Gao et al. | Jun 2009 | B2 |
7565281 | Appleby | Jul 2009 | B2 |
7574347 | Wang | Aug 2009 | B2 |
7580828 | D'Agostini | Aug 2009 | B2 |
7580830 | Al-Onaizan et al. | Aug 2009 | B2 |
7584092 | Brockett et al. | Sep 2009 | B2 |
7587307 | Cancedda et al. | Sep 2009 | B2 |
7620538 | Marcu et al. | Nov 2009 | B2 |
7620549 | Di Cristo et al. | Nov 2009 | B2 |
7620632 | Andrews | Nov 2009 | B2 |
7624005 | Koehn et al. | Nov 2009 | B2 |
7624020 | Yamada et al. | Nov 2009 | B2 |
7627479 | Travieso et al. | Dec 2009 | B2 |
7636656 | Nieh | Dec 2009 | B1 |
7668782 | Reistad et al. | Feb 2010 | B1 |
7680646 | Lux-Pogodalla et al. | Mar 2010 | B2 |
7680647 | Moore | Mar 2010 | B2 |
7689405 | Marcu | Mar 2010 | B2 |
7698124 | Menezes et al. | Apr 2010 | B2 |
7698125 | Graehl et al. | Apr 2010 | B2 |
7707025 | Whitelock | Apr 2010 | B2 |
7711545 | Koehn | May 2010 | B2 |
7716037 | Precoda et al. | May 2010 | B2 |
7734459 | Menezes | Jun 2010 | B2 |
7739102 | Bender | Jun 2010 | B2 |
7739286 | Sethy | Jun 2010 | B2 |
7788087 | Corston-Oliver | Aug 2010 | B2 |
7801720 | Satake et al. | Sep 2010 | B2 |
7813918 | Muslea et al. | Oct 2010 | B2 |
7822596 | Elgazzar et al. | Oct 2010 | B2 |
7865358 | Green | Jan 2011 | B2 |
7925493 | Watanabe | Apr 2011 | B2 |
7925494 | Cheng et al. | Apr 2011 | B2 |
7945437 | Mount et al. | May 2011 | B2 |
7957953 | Moore | Jun 2011 | B2 |
7974833 | Soricut et al. | Jul 2011 | B2 |
7974843 | Schneider | Jul 2011 | B2 |
7974976 | Yahia et al. | Jul 2011 | B2 |
7983896 | Ross et al. | Jul 2011 | B2 |
7983897 | Chin et al. | Jul 2011 | B2 |
8060360 | He | Nov 2011 | B2 |
8078450 | Anisimovich | Dec 2011 | B2 |
8135575 | Dean | Mar 2012 | B1 |
8145472 | Shore et al. | Mar 2012 | B2 |
8195447 | Anismovich | Jun 2012 | B2 |
8214196 | Yamada et al. | Jul 2012 | B2 |
8219382 | Kim et al. | Jul 2012 | B2 |
8234106 | Marcu et al. | Jul 2012 | B2 |
8239186 | Chin | Aug 2012 | B2 |
8239207 | Seligman et al. | Aug 2012 | B2 |
8244519 | Bicici et al. | Aug 2012 | B2 |
8249854 | Nikitin | Aug 2012 | B2 |
8265923 | Chatterjee et al. | Sep 2012 | B2 |
8275600 | Bilac et al. | Sep 2012 | B2 |
8286185 | Ellis et al. | Oct 2012 | B2 |
8296127 | Marcu et al. | Oct 2012 | B2 |
8315850 | Furuuchi et al. | Nov 2012 | B2 |
8326598 | Macherey et al. | Dec 2012 | B1 |
8352244 | Gao et al. | Jan 2013 | B2 |
8364463 | Miyamoto | Jan 2013 | B2 |
8380486 | Soricut et al. | Feb 2013 | B2 |
8386234 | Uchimoto et al. | Feb 2013 | B2 |
8423346 | Seo et al. | Apr 2013 | B2 |
8433556 | Fraser et al. | Apr 2013 | B2 |
8442812 | Ehsani | May 2013 | B2 |
8442813 | Popat | May 2013 | B1 |
8468149 | Lung et al. | Jun 2013 | B1 |
8504351 | Waibel et al. | Aug 2013 | B2 |
8521506 | Lancaster et al. | Aug 2013 | B2 |
8527260 | Best | Sep 2013 | B2 |
8543563 | Nikoulina et al. | Sep 2013 | B1 |
8548794 | Koehn | Oct 2013 | B2 |
8554591 | Reistad et al. | Oct 2013 | B2 |
8594992 | Kuhn et al. | Nov 2013 | B2 |
8600728 | Knight et al. | Dec 2013 | B2 |
8606900 | Levergood et al. | Dec 2013 | B1 |
8612203 | Foster et al. | Dec 2013 | B2 |
8612205 | Hanneman et al. | Dec 2013 | B2 |
8615388 | Li | Dec 2013 | B2 |
8615389 | Marcu | Dec 2013 | B1 |
8635327 | Levergood et al. | Jan 2014 | B1 |
8635539 | Young et al. | Jan 2014 | B2 |
8655642 | Fux et al. | Feb 2014 | B2 |
8666725 | Och | Mar 2014 | B2 |
8676563 | Soricut et al. | Mar 2014 | B2 |
8688454 | Zheng | Apr 2014 | B2 |
8694303 | Hopkins et al. | Apr 2014 | B2 |
8725496 | Zhao et al. | May 2014 | B2 |
8762128 | Brants et al. | Jun 2014 | B1 |
8768686 | Sarikaya et al. | Jul 2014 | B2 |
8775154 | Clinchant | Jul 2014 | B2 |
8818790 | He et al. | Aug 2014 | B2 |
8825466 | Wang et al. | Sep 2014 | B1 |
8831928 | Marcu et al. | Sep 2014 | B2 |
8843359 | Lauder | Sep 2014 | B2 |
8862456 | Krack et al. | Oct 2014 | B2 |
8886515 | Van Assche | Nov 2014 | B2 |
8886517 | Soricut et al. | Nov 2014 | B2 |
8886518 | Wang et al. | Nov 2014 | B1 |
8898052 | Waibel | Nov 2014 | B2 |
8903707 | Zhao | Dec 2014 | B2 |
8930176 | Li | Jan 2015 | B2 |
8935148 | Christ | Jan 2015 | B2 |
8935149 | Zhang | Jan 2015 | B2 |
8935150 | Christ | Jan 2015 | B2 |
8935706 | Ellis et al. | Jan 2015 | B2 |
8942973 | Viswanathan | Jan 2015 | B2 |
8943080 | Marcu et al. | Jan 2015 | B2 |
8972268 | Waibel | Mar 2015 | B2 |
8977536 | Och | Mar 2015 | B2 |
8990064 | Marcu et al. | Mar 2015 | B2 |
9026425 | Nikoulina | May 2015 | B2 |
9053202 | Viswanadha | Jun 2015 | B2 |
9081762 | Wu et al. | Jul 2015 | B2 |
9122674 | Wong et al. | Sep 2015 | B1 |
9141606 | Marciano | Sep 2015 | B2 |
9152622 | Marcu et al. | Oct 2015 | B2 |
9176952 | Aikawa | Nov 2015 | B2 |
9183192 | Ruby, Jr. | Nov 2015 | B1 |
9183198 | Shen et al. | Nov 2015 | B2 |
9197736 | Davis et al. | Nov 2015 | B2 |
9201870 | Jurach | Dec 2015 | B2 |
9208144 | Abdulnasyrov | Dec 2015 | B1 |
9213694 | Hieber et al. | Dec 2015 | B2 |
9396184 | Roy | Jul 2016 | B2 |
9465797 | Ji | Oct 2016 | B2 |
9471563 | Trese | Oct 2016 | B2 |
9519640 | Perez | Dec 2016 | B2 |
9552355 | Dymetman | Jan 2017 | B2 |
9600473 | Leydon | Mar 2017 | B2 |
9613026 | Hodson | Apr 2017 | B2 |
10261994 | Marcu et al. | Apr 2019 | B2 |
10319252 | Galley et al. | Jun 2019 | B2 |
10402498 | Marcu et al. | Sep 2019 | B2 |
10417646 | Soricut et al. | Sep 2019 | B2 |
20010009009 | Iizuka | Jul 2001 | A1 |
20010029455 | Chin et al. | Oct 2001 | A1 |
20020002451 | Sukehiro | Jan 2002 | A1 |
20020013693 | Fuji | Jan 2002 | A1 |
20020040292 | Marcu | Apr 2002 | A1 |
20020046018 | Marcu et al. | Apr 2002 | A1 |
20020046262 | Heilig et al. | Apr 2002 | A1 |
20020059566 | Delcambre et al. | May 2002 | A1 |
20020078091 | Vu et al. | Jun 2002 | A1 |
20020083029 | Chun et al. | Jun 2002 | A1 |
20020083103 | Ballance | Jun 2002 | A1 |
20020086268 | Shpiro | Jul 2002 | A1 |
20020087313 | Lee et al. | Jul 2002 | A1 |
20020099744 | Coden et al. | Jul 2002 | A1 |
20020107683 | Eisele | Aug 2002 | A1 |
20020111788 | Kimpara | Aug 2002 | A1 |
20020111789 | Hull | Aug 2002 | A1 |
20020111967 | Nagase | Aug 2002 | A1 |
20020115044 | Shpiro | Aug 2002 | A1 |
20020124109 | Brown | Sep 2002 | A1 |
20020143537 | Ozawa et al. | Oct 2002 | A1 |
20020152063 | Tokieda et al. | Oct 2002 | A1 |
20020169592 | Aityan | Nov 2002 | A1 |
20020188438 | Knight et al. | Dec 2002 | A1 |
20020188439 | Marcu | Dec 2002 | A1 |
20020198699 | Greene et al. | Dec 2002 | A1 |
20020198701 | Moore | Dec 2002 | A1 |
20020198713 | Franz et al. | Dec 2002 | A1 |
20030004705 | Kempe | Jan 2003 | A1 |
20030009320 | Furuta | Jan 2003 | A1 |
20030009322 | Marcu | Jan 2003 | A1 |
20030014747 | Spehr | Jan 2003 | A1 |
20030023423 | Yamada et al. | Jan 2003 | A1 |
20030040900 | D'Agostini | Feb 2003 | A1 |
20030061022 | Reinders | Mar 2003 | A1 |
20030077559 | Braunberger et al. | Apr 2003 | A1 |
20030129571 | Kim | Jul 2003 | A1 |
20030144832 | Harris | Jul 2003 | A1 |
20030154071 | Shreve | Aug 2003 | A1 |
20030158723 | Masuichi et al. | Aug 2003 | A1 |
20030176995 | Sukehiro | Sep 2003 | A1 |
20030182102 | Corston-Oliver et al. | Sep 2003 | A1 |
20030191626 | Al-Onaizan et al. | Oct 2003 | A1 |
20030192046 | Spehr | Oct 2003 | A1 |
20030200094 | Gupta | Oct 2003 | A1 |
20030204400 | Marcu et al. | Oct 2003 | A1 |
20030216905 | Chelba et al. | Nov 2003 | A1 |
20030217052 | Rubenczyk et al. | Nov 2003 | A1 |
20030233222 | Soricut et al. | Dec 2003 | A1 |
20040006560 | Chan et al. | Jan 2004 | A1 |
20040015342 | Garst | Jan 2004 | A1 |
20040023193 | Wen et al. | Feb 2004 | A1 |
20040024581 | Koehn et al. | Feb 2004 | A1 |
20040030551 | Marcu et al. | Feb 2004 | A1 |
20040034520 | Langkilde-Geary | Feb 2004 | A1 |
20040044517 | Palmquist | Mar 2004 | A1 |
20040044530 | Moore | Mar 2004 | A1 |
20040059708 | Dean et al. | Mar 2004 | A1 |
20040059730 | Zhou | Mar 2004 | A1 |
20040068411 | Scanlan | Apr 2004 | A1 |
20040093327 | Anderson et al. | May 2004 | A1 |
20040098247 | Moore | May 2004 | A1 |
20040102956 | Levin | May 2004 | A1 |
20040102957 | Levin | May 2004 | A1 |
20040111253 | Luo et al. | Jun 2004 | A1 |
20040115597 | Butt | Jun 2004 | A1 |
20040122656 | Abir | Jun 2004 | A1 |
20040167768 | Travieso et al. | Aug 2004 | A1 |
20040167784 | Travieso et al. | Aug 2004 | A1 |
20040176945 | Inagaki et al. | Sep 2004 | A1 |
20040193401 | Ringger et al. | Sep 2004 | A1 |
20040230418 | Kitamura | Nov 2004 | A1 |
20040237044 | Travieso et al. | Nov 2004 | A1 |
20040255281 | Imamura et al. | Dec 2004 | A1 |
20040260532 | Richardson et al. | Dec 2004 | A1 |
20050021322 | Richardson et al. | Jan 2005 | A1 |
20050021323 | Li | Jan 2005 | A1 |
20050021517 | Marchisio | Jan 2005 | A1 |
20050026131 | Elzinga et al. | Feb 2005 | A1 |
20050033565 | Koehn | Feb 2005 | A1 |
20050038643 | Koehn | Feb 2005 | A1 |
20050054444 | Okada | Mar 2005 | A1 |
20050055199 | Ryzchachkin et al. | Mar 2005 | A1 |
20050055217 | Sumita et al. | Mar 2005 | A1 |
20050060160 | Roh et al. | Mar 2005 | A1 |
20050075858 | Pournasseh et al. | Apr 2005 | A1 |
20050086226 | Krachman | Apr 2005 | A1 |
20050102130 | Quirk et al. | May 2005 | A1 |
20050107999 | Kempe et al. | May 2005 | A1 |
20050125218 | Rajput et al. | Jun 2005 | A1 |
20050149315 | Flanagan et al. | Jul 2005 | A1 |
20050171757 | Appleby | Aug 2005 | A1 |
20050171944 | Palmquist | Aug 2005 | A1 |
20050204002 | Friend | Sep 2005 | A1 |
20050228640 | Aue et al. | Oct 2005 | A1 |
20050228642 | Mau et al. | Oct 2005 | A1 |
20050228643 | Munteanu et al. | Oct 2005 | A1 |
20050234701 | Graehl et al. | Oct 2005 | A1 |
20050267738 | Wilkinson et al. | Dec 2005 | A1 |
20060004563 | Campbell et al. | Jan 2006 | A1 |
20060015320 | Och | Jan 2006 | A1 |
20060015323 | Udupa et al. | Jan 2006 | A1 |
20060018541 | Chelba et al. | Jan 2006 | A1 |
20060020448 | Chelba et al. | Jan 2006 | A1 |
20060041428 | Fritsch et al. | Feb 2006 | A1 |
20060095248 | Menezes et al. | May 2006 | A1 |
20060095526 | Levergood et al. | May 2006 | A1 |
20060111891 | Menezes et al. | May 2006 | A1 |
20060111892 | Menezes et al. | May 2006 | A1 |
20060111896 | Menezes et al. | May 2006 | A1 |
20060129424 | Chan | Jun 2006 | A1 |
20060136193 | Lux-Pogodalla et al. | Jun 2006 | A1 |
20060136824 | Lin | Jun 2006 | A1 |
20060142995 | Knight et al. | Jun 2006 | A1 |
20060150069 | Chang | Jul 2006 | A1 |
20060165040 | Rathod et al. | Jul 2006 | A1 |
20060167984 | Fellenstein et al. | Jul 2006 | A1 |
20060190241 | Goutte et al. | Aug 2006 | A1 |
20060282255 | Lu et al. | Dec 2006 | A1 |
20070010989 | Faruquie et al. | Jan 2007 | A1 |
20070015121 | Johnson et al. | Jan 2007 | A1 |
20070016400 | Soricutt et al. | Jan 2007 | A1 |
20070016401 | Ehsani et al. | Jan 2007 | A1 |
20070016918 | Alcorn et al. | Jan 2007 | A1 |
20070020604 | Chulet | Jan 2007 | A1 |
20070033001 | Muslea et al. | Feb 2007 | A1 |
20070043553 | Dolan | Feb 2007 | A1 |
20070050182 | Sneddon et al. | Mar 2007 | A1 |
20070060114 | Ramer et al. | Mar 2007 | A1 |
20070073532 | Brockett et al. | Mar 2007 | A1 |
20070078654 | Moore | Apr 2007 | A1 |
20070078845 | Scott et al. | Apr 2007 | A1 |
20070083357 | Moore et al. | Apr 2007 | A1 |
20070094169 | Yamada et al. | Apr 2007 | A1 |
20070112553 | Jacobson | May 2007 | A1 |
20070112555 | Lavi et al. | May 2007 | A1 |
20070112556 | Lavi et al. | May 2007 | A1 |
20070122792 | Galley et al. | May 2007 | A1 |
20070168202 | Changela et al. | Jul 2007 | A1 |
20070168450 | Prajapat et al. | Jul 2007 | A1 |
20070180373 | Bauman et al. | Aug 2007 | A1 |
20070208719 | Tran | Sep 2007 | A1 |
20070219774 | Quirk et al. | Sep 2007 | A1 |
20070233460 | Lancaster et al. | Oct 2007 | A1 |
20070233547 | Younger et al. | Oct 2007 | A1 |
20070250306 | Marcu et al. | Oct 2007 | A1 |
20070265825 | Cancedda et al. | Nov 2007 | A1 |
20070265826 | Chen et al. | Nov 2007 | A1 |
20070269775 | Andreev et al. | Nov 2007 | A1 |
20070294076 | Shore et al. | Dec 2007 | A1 |
20080040095 | Sinha et al. | Feb 2008 | A1 |
20080046229 | Maskey et al. | Feb 2008 | A1 |
20080052061 | Kim et al. | Feb 2008 | A1 |
20080065478 | Kohlmeier et al. | Mar 2008 | A1 |
20080065974 | Campbell | Mar 2008 | A1 |
20080086298 | Anismovich | Apr 2008 | A1 |
20080109209 | Fraser et al. | May 2008 | A1 |
20080109374 | Levergood et al. | May 2008 | A1 |
20080114583 | Al-Onaizan et al. | May 2008 | A1 |
20080154577 | Kim et al. | Jun 2008 | A1 |
20080154581 | Lavi et al. | Jun 2008 | A1 |
20080183555 | Walk | Jul 2008 | A1 |
20080195461 | Li et al. | Aug 2008 | A1 |
20080201344 | Levergood et al. | Aug 2008 | A1 |
20080215418 | Kolve et al. | Sep 2008 | A1 |
20080243450 | Feblowitz et al. | Oct 2008 | A1 |
20080249760 | Marcu et al. | Oct 2008 | A1 |
20080270109 | Och | Oct 2008 | A1 |
20080270112 | Shimohata | Oct 2008 | A1 |
20080281578 | Kumaran et al. | Nov 2008 | A1 |
20080288240 | D'Agostini | Nov 2008 | A1 |
20080300857 | Barbaiani et al. | Dec 2008 | A1 |
20080307481 | Panje | Dec 2008 | A1 |
20090076792 | Lawson-Tancred | Mar 2009 | A1 |
20090083023 | Foster et al. | Mar 2009 | A1 |
20090094017 | Chen | Apr 2009 | A1 |
20090106017 | D'Agostini | Apr 2009 | A1 |
20090119091 | Sarig | May 2009 | A1 |
20090125497 | Jiang et al. | May 2009 | A1 |
20090198487 | Wong et al. | Aug 2009 | A1 |
20090217196 | Neff et al. | Aug 2009 | A1 |
20090234634 | Chen et al. | Sep 2009 | A1 |
20090234635 | Bhatt et al. | Sep 2009 | A1 |
20090240539 | Slawson | Sep 2009 | A1 |
20090241115 | Raffo et al. | Sep 2009 | A1 |
20090248662 | Murdock | Oct 2009 | A1 |
20090313005 | Jaquinta | Dec 2009 | A1 |
20090313006 | Tang | Dec 2009 | A1 |
20090326912 | Ueffing | Dec 2009 | A1 |
20090326913 | Simard et al. | Dec 2009 | A1 |
20100005086 | Wang et al. | Jan 2010 | A1 |
20100017293 | Lung et al. | Jan 2010 | A1 |
20100042398 | Marcu et al. | Feb 2010 | A1 |
20100057439 | Ideuchi et al. | Mar 2010 | A1 |
20100057561 | Gifford | Mar 2010 | A1 |
20100082326 | Bangalore et al. | Apr 2010 | A1 |
20100121630 | Mende et al. | May 2010 | A1 |
20100138210 | Seo et al. | Jun 2010 | A1 |
20100138213 | Bicici et al. | Jun 2010 | A1 |
20100158238 | Saushkin | Jun 2010 | A1 |
20100174524 | Koehn | Jul 2010 | A1 |
20100179803 | Sawaf | Jul 2010 | A1 |
20100204978 | Gao et al. | Aug 2010 | A1 |
20110029300 | Marcu et al. | Feb 2011 | A1 |
20110066469 | Kadosh | Mar 2011 | A1 |
20110066643 | Cooper | Mar 2011 | A1 |
20110082683 | Soricut et al. | Apr 2011 | A1 |
20110082684 | Soricut et al. | Apr 2011 | A1 |
20110097693 | Crawford | Apr 2011 | A1 |
20110184722 | Sneddon et al. | Jul 2011 | A1 |
20110191096 | Sarikaya et al. | Aug 2011 | A1 |
20110191410 | Refuah et al. | Aug 2011 | A1 |
20110202330 | Dai et al. | Aug 2011 | A1 |
20110225104 | Soricut et al. | Sep 2011 | A1 |
20110289405 | Fritsch et al. | Nov 2011 | A1 |
20110307241 | Waibel et al. | Dec 2011 | A1 |
20120016657 | He et al. | Jan 2012 | A1 |
20120022852 | Tregaskis | Jan 2012 | A1 |
20120096019 | Manickam et al. | Apr 2012 | A1 |
20120116751 | Bernardini et al. | May 2012 | A1 |
20120136646 | Kraenzel et al. | May 2012 | A1 |
20120150441 | Ma et al. | Jun 2012 | A1 |
20120150529 | Kim et al. | Jun 2012 | A1 |
20120185478 | Topham et al. | Jul 2012 | A1 |
20120191457 | Minnis et al. | Jul 2012 | A1 |
20120203776 | Nissan | Aug 2012 | A1 |
20120232885 | Barbosa et al. | Sep 2012 | A1 |
20120253783 | Castelli et al. | Oct 2012 | A1 |
20120265711 | Assche | Oct 2012 | A1 |
20120278302 | Choudhury et al. | Nov 2012 | A1 |
20120278356 | Furuta et al. | Nov 2012 | A1 |
20120323554 | Hopkins et al. | Dec 2012 | A1 |
20120330990 | Chen et al. | Dec 2012 | A1 |
20130018650 | Moore et al. | Jan 2013 | A1 |
20130024184 | Vogel et al. | Jan 2013 | A1 |
20130103381 | Assche | Apr 2013 | A1 |
20130124185 | Sarr et al. | May 2013 | A1 |
20130144594 | Bangalore et al. | Jun 2013 | A1 |
20130173247 | Hodson | Jul 2013 | A1 |
20130226563 | Hirate | Aug 2013 | A1 |
20130226945 | Swinson et al. | Aug 2013 | A1 |
20130238310 | Viswanathan | Sep 2013 | A1 |
20130290339 | LuVogt et al. | Oct 2013 | A1 |
20130325442 | Dahlmeier | Dec 2013 | A1 |
20140006003 | Soricut et al. | Jan 2014 | A1 |
20140019114 | Travieso et al. | Jan 2014 | A1 |
20140058718 | Kunchukuttan | Feb 2014 | A1 |
20140142917 | D'Penha | May 2014 | A1 |
20140142918 | Dotterer | May 2014 | A1 |
20140149102 | Marcu et al. | May 2014 | A1 |
20140188453 | Marcu et al. | Jul 2014 | A1 |
20140229257 | Reistad et al. | Aug 2014 | A1 |
20140297252 | Prasad et al. | Oct 2014 | A1 |
20140350931 | Levit et al. | Nov 2014 | A1 |
20140358519 | Mirkin | Dec 2014 | A1 |
20140358524 | Papula | Dec 2014 | A1 |
20140365201 | Gao | Dec 2014 | A1 |
20150051896 | Simard et al. | Feb 2015 | A1 |
20150106076 | Hieber et al. | Apr 2015 | A1 |
20150186362 | Li | Jul 2015 | A1 |
20190042566 | Marcu et al. | Feb 2019 | A1 |
20190303952 | Soricut et al. | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
5240198 | May 1998 | AU |
694367 | Jul 1998 | AU |
5202299 | Oct 1999 | AU |
2221506 | Dec 1996 | CA |
2408819 | Nov 2006 | CA |
2475857 | Dec 2008 | CA |
2480398 | Jun 2011 | CA |
102193914 | Sep 2011 | CN |
102662935 | Sep 2012 | CN |
102902667 | Jan 2013 | CN |
69525374 | Aug 2002 | DE |
69431306 | May 2003 | DE |
69633564 | Nov 2005 | DE |
202005022113.9 | Feb 2014 | DE |
0469884 | Feb 1992 | EP |
0715265 | Jun 1996 | EP |
0830774 | Mar 1998 | EP |
0933712 | Aug 1999 | EP |
0933712 | Jan 2001 | EP |
1128301 | Aug 2001 | EP |
1128302 | Aug 2001 | EP |
1128303 | Aug 2001 | EP |
0803103 | Feb 2002 | EP |
1235177 | Aug 2002 | EP |
0734556 | Sep 2002 | EP |
1488338 | Sep 2004 | EP |
0830774 | Oct 2004 | EP |
1489523 | Dec 2004 | EP |
1947574 | Jul 2008 | EP |
1488338 | Apr 2010 | EP |
2299369 | Mar 2011 | EP |
2241359 | Aug 1991 | GB |
07244666 | Sep 1995 | JP |
H08101837 | Apr 1996 | JP |
10011447 | Jan 1998 | JP |
H10509543 | Sep 1998 | JP |
H11507752 | Jul 1999 | JP |
11272672 | Oct 1999 | JP |
3190881 | Jul 2001 | JP |
3190882 | Jul 2001 | JP |
3260693 | Feb 2002 | JP |
3367675 | Jan 2003 | JP |
2003157402 | May 2003 | JP |
2004501429 | Jan 2004 | JP |
2004062726 | Feb 2004 | JP |
3762882 | Apr 2006 | JP |
2006216073 | Aug 2006 | JP |
2007042127 | Feb 2007 | JP |
4485548 | Jun 2010 | JP |
4669373 | Apr 2011 | JP |
4669430 | Apr 2011 | JP |
5452868 | Jan 2014 | JP |
WO9516971 | Jun 1995 | WO |
WO9613013 | May 1996 | WO |
WO9642041 | Dec 1996 | WO |
WO9715885 | May 1997 | WO |
WO9819224 | May 1998 | WO |
WO9952626 | Oct 1999 | WO |
WO2002039318 | May 2002 | WO |
WO2003083709 | Oct 2003 | WO |
WO2003083710 | Oct 2003 | WO |
WO2004042615 | May 2004 | WO |
WO2007056563 | May 2007 | WO |
WO2007068123 | Jun 2007 | WO |
WO2010062540 | Jun 2010 | WO |
WO2010062542 | Jun 2010 | WO |
WO-2010062542 | Jun 2010 | WO |
WO2011041675 | Apr 2011 | WO |
WO2011162947 | Dec 2011 | WO |
Entry |
---|
Shaalan etal., Machine Translation of English Noun Phrases into Arabic:, (2004), vol. 17, No. 2, International Journal of Computer Processing of Oriental Languages, 14 pages (Year: 2004). |
Isahara et al., Analysis, Generation and Semantic Representation in CONTRAST—A Context-Based Machine Translation System, 1995, Systems and Computers in Japan, vol. 26, No. 14, pp. 37-53 (Year: 1995). |
Shahahbi, Mitra, “An Evaluation of Output Quality of Machine Translation Program”, 2009, Student Research Workshop, RANLP 2009—Borovets, Bulgaria, pp. 71-75 (Year: 2009). |
Knight, K. and Al-Onaizan, Y., “A Primer on Finite-State Software for Natural Language Processing”, 1999 (available at http://www.isLedullicensed-sw/carmel). |
Knight, K. and Al-Onaizan, Y., “Translation with Finite-State Devices,” Proceedings of the 4th AMTA Conference, 1998. |
Knight, K. and Chander, I., “Automated Postediting of Documents,” 1994, Proc. of the 12th Conference on Artificial Intelligence, pp. 779-784. |
Knight, K. and Graehl, J., “Machine Transliteration”, 1997, Proc. of the ACL-97, Madrid, Spain, pp. 128-135. |
Knight, K. and Hatzivassiloglou, V., “Two-Level, Many-Paths Generation,” 1995, Proc. of the 33rd Annual Conference of the ACL, pp. 252-260. |
Knight, K. and Luk, S., “Building a Large-Scale Knowledge Base for Machine Translation,” 1994, Proc. of the 12th Conference on Artificial Intelligence, pp. 773-778. |
Knight, K. and Marcu, D., “Statistics-Based Summarization—Step One: Sentence Compression,” 2000, American Association for Artificial Intelligence Conference, pp. 703-710. |
Knight, K. and Yamada, K., “A Computational Approach to Deciphering Unknown Scripts,” 1999, Proc. of the ACL Workshop on Unsupervised Learning in Natural Language Processing. |
Knight, Kevin, “A Statistical MT Tutorial Workbook,” 1999, JHU Summer Workshop (available at http://www.isLedu/natural-language/mUwkbk.rtf). |
Knight, Kevin, “Automating Knowledge Acquisition for Machine Translation,” 1997, AI Magazine, vol. 18, No. 4. |
Knight, Kevin, “Connectionist Ideas and Algorithms,” Nov. 1990, Communications of the ACM, vol. 33, No. 11, pp. 59-74. |
Knight, Kevin, “Decoding Complexity in Word-Replacement Translation Models”, 1999, Computational Linguistics, vol. 25, No. 4. |
Knight, Kevin, “Integrating Knowledge Acquisition and Language Acquisition”, May 1992, Journal of Applied Intelligence, vol. 1, No. 4. |
Knight, Kevin, “Learning Word Meanings by Instruction,” 1996, Proc. of the D National Conference on Artificial Intelligence, vol. 1, pp. 447-454. |
Knight, Kevin, “Unification: A Multidisciplinary Survey,” 1989, ACM Computing Surveys, vol. 21, No. 1. |
Koehn, Philipp, “Noun Phrase Translation,” A PhD Dissertation for the University of Southern California, pp. i-105, Dec. 2003. |
Koehn, P. and Knight, K., “ChunkMT: Statistical Machine Translation with Richer Linguistic Knowledge,” Apr. 2002, Information Sciences Institution. |
Koehn, P. and Knight, K., “Estimating Word Translation Probabilities from Unrelated Monolingual Corpora Using the EM Algorithm,” 2000, Proc. of the 17th meeting of the AAAI. |
Koehn, P. and Knight, K., “Knowledge Sources for Word-Level Translation Models,” 2001, Conference on Empirical Methods in Natural Language Processing. |
Kumar, R. and Li, H., “Integer Programming Approach to Printed Circuit Board Assembly Time Optimization,” 1995, IEEE Transactions on Components, Packaging, and Manufacturing, Part B: Advance Packaging, vol. 18, No. 4. pp. 720-727. |
Kupiec, Julian, “An Algorithm for Finding Noun Phrase Correspondences in Bilingual Corpora,” In Proceedings of the 31st Annual Meeting of the ACL, 1993, pp. 17-22. |
Kurohashi, S. and Nagao, M., “Automatic Detection of Discourse Structure by Checking Surface Information in Sentences,” 1994, Proc. of COL-LING '94, vol. 2, pp. 1123-1127. |
Langkilde, I. and Knight, K., “Generation that Exploits Corpus-Based Statistical Knowledge,” 1998, Proc. of the COLING-ACL, pp. 704-710. |
Langkilde, I. and Knight, K., “The Practical Value of N-Grams in Generation,” 1998, Proc. of the 9th International Natural Language Generation Workshop, pp. 248-255. |
Langkilde, Irene, “Forest-Based Statistical Sentence Generation,” 2000, Proc. of the 1st Conference on North American chapter of the ACL, Seattle, WA, pp. 170-177. |
Langkilde-Geary, Irene, “A Foundation for General-Purpose Natural Language Generation: Sentence Realization Using Probabilistic Models of Language,” 2002, Ph.D. Thesis, Faculty of the Graduate School, University of Southern California. |
Langkilde-Geary, Irene, “An Empirical Verification of Coverage and Correctness for a General-Purpose Sentence Generator,” 1998, Proc. 2nd Int'l Natural Language Generation Conference. |
Lee, Yue-Shi, “Neural Network Approach to Adaptive Learning: with an Application to Chinese Homophone Disambiguation,” IEEE 2001 pp. 1521-1526. Jul. 2001. |
Lita, L., et al., “tRuEcasIng,” 2003 Proceedings of the 41st Annual Meeting of the Assoc. for Computational Linguistics (In Hinrichs, E. and Roth, D.—editors), pp. 152-159. Jul. 2003. |
Llitjos, A. F. et al., “The Translation Correction Tool: English-Spanish User Studies,” Citeseer © 2004, downloaded from: http://gs37.sp.cs.cmu.edu/ari/papers/lrec04/fontll, pp. 1-4. |
Mann, G. and Yarowsky, D., “Multipath Translation Lexicon Induction via Bridge Languages,” 2001, Proc. of the 2nd Conference of the North American Chapter of the ACL, Pittsburgh, PA, pp. 151-158. |
Manning, C. and Schutze, H., “Foundations of Statistical Natural Language Processing,” 2000, The MIT Press, Cambridge, MA [Front Matter]. |
Marcu, D. and Wong, W., “A Phrase-Based, Joint Probability Model for Statistical Machine Translation,” 2002, Proc. of ACL-2 conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 133-139. |
Marcu, Daniel, “Building Up Rhetorical Structure Trees,” 1996, Proc. of the National Conference on Artificial Intelligence and Innovative Applications of Artificial Intelligence Conference, vol. 2, pp. 1069-1074. |
Marcu, Daniel, “Discourse trees are good indicators of importance in text,” 1999, Advances in Automatic Text Summarization, The MIT Press, Cambridge, MA. |
Marcu, Daniel, “Instructions for Manually Annotating the Discourse Structures of Texts,” 1999, Discourse Annotation, pp. 1-49. |
Marcu, Daniel, “The Rhetorical Parsing of Natural Language Texts,” 1997, Proceedings of ACLIEACL '97, pp. 96-103. |
Marcu, Daniel, “The Rhetorical Parsing, Summarization, and Generation of Natural Language Texts,” 1997, Ph.D. Thesis, Graduate Department of Computer Science, University of Toronto. |
Marcu, Daniel, “Towards a Unified Approach to Memory- and Statistical-Based Machine Translation,” 2001, Proc. of the 39th Annual Meeting of the ACL, pp. 378-385. |
McCallum, A. and Li, W., “Early Results for Named Entity Recognition with Conditional Random Fields, Feature Induction and Web-enhanced Lexicons,” In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL, 2003, vol. 4 (Edmonton, Canada), Assoc. for Computational Linguistics, Morristown, NJ, pp. 188-191. |
McDevitt, K. et al., “Designing of a Community-based Translation Center,” Technical Report TR-03-30, Computer Science, Virginia Tech, © 2003, pp. 1-8. |
Melamed, I. Dan, “A Word-to-Word Model of Translational Equivalence,” 1997, Proc. of the 35th Annual Meeting of the ACL, Madrid, Spain, pp. 490-497. |
Melamed, I. Dan, “Automatic Evaluation and Uniform Filter Cascades for Inducing N-Best Translation Lexicons,” 1995, Proc. of the 3rd Workshop on Very Large Corpora, Boston, MA, pp. 184-198. |
Melamed, I. Dan, “Empirical Methods for Exploiting Parallel Texts,” 2001, MIT Press, Cambridge, MA [table of contents]. |
Meng et al.. “Generating Phonetic Cognates to Handle Named Entities in English-Chinese Cross-Language Spoken Document Retrieval,” 2001, IEEE Workshop on Automatic Speech Recognition and Understanding. pp. 311-314. |
Metze, F. et al., “The NESPOLE! Speech-to-Speech Translation System,” Proc. of the HLT 2002, 2nd Int'l. Conf. on Human Language Technology (San Francisco, CA), © 2002, pp. 378-383. |
Mikheev et al., “Named Entity Recognition without Gazeteers,” 1999, Proc. of European Chapter of the ACL, Bergen, Norway, pp. 1-8. |
Miike et al., “A Full-Text Retrieval System with a Dynamic Abstract Generation Function,” 1994, Proceedings of SI-GIR '94, pp. 152-161. |
Mohri, M. and Riley, M., “An Efficient Algorithm for the N-Best-Strings Problem,” 2002, Proc. of the 7th Int. Conf. on Spoken Language Processing (ICSLP'02), Denver, CO, pp. 1313-1316. |
Mohri, Mehryar, “Regular Approximation of Context Free Grammars Through Transformation”, 2000, pp. 251-261, “Robustness in Language and Speech Technology”, Chapter 9, Kluwer Academic Publishers. |
Nepveu et al. “Adaptive Language and Translation Models for Interactive Machine Translation” Conference on Empirical Methods in Natural Language Processing, Jul. 25, 2004, 8 pages. Retrieved from: http://www.cs.jhu.edu/˜yarowsky/sigdat.html. |
Ortiz-Martinez et al. “Online Learning for Interactive Statistical Machine Translation” Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, Jun. 10, 2010, pp. 546-554. Retrieved from: https://www.researchgate.net/publication/220817231_Online_Learning_for_Interactive_Statistical_Machine_Translation. |
Callison-Burch et al. “Proceedings of the Seventh Workshop on Statistical Machine Translation” [W12-3100] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 10-51. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Lopez, Adam. “Putting Human Assessments of Machine Translation Systems in Order” [W12-3101] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 1-9. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Avramidis, Eleftherios. “Quality estimation for Machine Translation output using linguistic analysis and decoding features” [W12-3108] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 84-90. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Buck, Christian. “Black Box Features for the WMT 2012 Quality Estimation Shared Task” [W12-3109] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 91-95. Retrieved from: Proceedings of the Seventh Workshop on Statistical Machine Translation. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Felice et al. “Linguistic Features for Quality Estimation” [W12-3110] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 96-103. Retrieved at: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Gonzalez-Rubio et al. “PRHLT Submission to the WMT12 Quality Estimation Task” [W12-3111] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 104-108. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Hardmeier et al. “Tree Kernels for Machine Translation Quality Estimation” [W12-3112] Proceedings of the Seventh Workshop on Statistical Machine Translation,Jun. 7, 2012, pp. 109-113. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Langlois et al. “LORIA System for the WMT12 Quality Estimation Shared Task” [W12-3113] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 114-119. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Moreau et al. “Quality Estimation: an experimental study using unsupervised similarity measures” [W12-3114] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 120-126. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Gonzalez et al. “The UPC Submission to the WMT 2012 Shared Task on Quality Estimation” [W12-3115] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 127-132. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Popovic, Maja. “Morpheme- and POS-based IBM1 and language model scores for translation quality estimation” Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 133-137. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Rubino et al. “DCU-Symantec Submission for the WMT 2012 Quality Estimation Task” [W12-3117] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 138-144. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Soricut et al. “The SDL Language Weaver Systems in the WMT12 Quality Estimation Shared Task” [W12-3118] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 145-151. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Wu et al. “Regression with Phrase Indicators for Estimating MT Quality” [W12-3119] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 152-156. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation. |
Wuebker et al. “Hierarchical Incremental Adaptation for Statistical Machine Translation” Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1059-1065, Lisbon, Portugal, Sep. 17-21, 2015. |
“Best Practices—Knowledge Base,” Lilt website [online], Mar. 6, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/best-practices>, 2 pages. |
“Data Security—Knowledge Base,” Lilt website [online], Oct. 14, 2016 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/security>, 1 pages. |
“Data Security and Confidentiality,” Lilt website [online], 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/security>, 7 pages. |
“Memories—Knowledge Base,” Lilt website [online], Jun. 7, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/project-managers/memory>, 4 pages. |
“Memories (API)—Knowledge Base,” Lilt website [online], Jun. 2, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/api/memories>, 1 page. |
“Quoting—Knowledge Base,” Lilt website [online], Jun. 7, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/project-managers/quoting>, 4 pages. |
“The Editor—Knowledge Base,” Lilt website [online], Aug. 15, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/editor>, 5 pages. |
“Training Lilt—Knowledge Base,” Lilt website [online], Oct. 14, 2016 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/troubleshooting/training-lilt>, 1 page. |
“What is Lilt_—Knowledge Base,” Lilt website [online],Dec. 15, 2016 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/what-is-lilt>, 1 page. |
“Getting Started—Knowledge Base,” Lilt website [online], Apr. 11, 2017 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/getting-started>, 2 pages. |
“The Lexicon—Knowledge Base,” Lilt website [online], Jun. 7, 2017 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/lexicon>, 4 pages. |
“Simple Translation—Knowledge Base,” Lilt website [online], Aug. 17, 2017 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/api/simple-translation>, 3 pages. |
“Split and Merge—Knowledge Base,” Lilt website [online], Oct. 14, 2016 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/split-merge>, 4 pages. |
“Lilt API _ API Reference,” Lilt website [online], retrieved on Oct. 20, 2017, Retrieved from the Internet:<https://lilt.com/docs/api>, 53 pages. |
“Automatic Translation Quality—Knowledge Base”, Lilt website [online], Dec. 1, 2016, retrieved on Oct. 20, 2017, Retrieved from the Internet:<https://lilt.com/kb/evaluation/evaluate-mt>, 4 pages. |
“Projects—Knowledge Base,” Lilt website [online], Jun. 7, 2017, retrieved on Oct. 20, 2017, Retrieved from the Internet:<https://lilt.com/kb/project-managers/projects>, 3 pages. |
“Getting Started with lilt.js—Knowledge Base,” Lilt website [online], May 30, 2017, retrieved on Oct. 20, 2017, Retrieved from the Internet:<https://lilt.com/kb/api/lilt-js>, 6 pages. |
“Interactive Translation—Knowledge Base,” Lilt website [online], Aug. 17, 2017, retrieved on Oct. 20, 2017, Retrieved from the Internet:<https://lilt.com/kb/api/interactive-translation>, 2 pages. |
Ueffing et al., “Using POS Information for Statistical Machine Translation into Morphologically Rich Languages,” In EACL, 2003: Proceedings of the Tenth Conference on European Chapter of the Association for Computational Linguistics, pp. 347-354. |
Frederking et al., “Three Heads are Better Than One,” In Proceedings of the 4th Conference on Applied Natural Language Processing, Stuttgart, Germany, 1994, pp. 95-100. |
Yasuda et al., “Automatic Machine Translation Selection Scheme to Output the Best Result,” Proc. of LREC, 2002, pp. 525-528. |
Huang et al., “A syntax-directed translator with extended domain of locality,” Jun. 9, 2006, In Proceedings of the Workshop on Computationally Hard Problems and Joint Inference in Speech and Language Processing, pp. 1-8, New York City, New York, Association for Computational Linguistics. |
Melamed et al., “Statistical machine translation by generalized parsing,” 2005, Technical Report 05-001, Proteus Project, New York University, http://nlp.cs.nyu.edu/pubs/. |
Huang et al., “Statistical syntax-directed translation with extended domain of locality,” Jun. 9, 2006, In Proceedings of AMTA, pp. 1-8. |
“Office Action,” German Application No. 112005002534.9, dated Feb. 7, 2018, 6 pages (9 pages including translation). |
Papineni et al., “Bleu: a Method for Automatic Evaluation of Machine Translation”, Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Jul. 2002, pp. 311-318. |
Shaalan et al., “Machine Translation of English Noun Phrases into Arabic”, (2004), vol. 17, No. 2, International Journal of Computer Processing of Oriental Languages, 14 pages. |
Isahara et al., “Analysis, Generation and Semantic Representation in CONTRAST—A Context-Based Machine Translation System”, 1995, Systems and Computers in Japan, vol. 26, No. 14, pp. 37-53. |
Graehl, J and Knight, K, May 2004, “Training Tree Transducers,” in NAACL-HLT (2004), pp. 105-112. |
Niessen et al, “Statistical machine translation with scarce resources using morphosyntactic information”, Jun. 2004, Computational Linguistics, vol. 30, issue 2, pp. 181-204. |
Liu et al., “Context Discovery Using Attenuated Bloom Filters in Ad-Hoc Networks,” Springer, pp. 13-25, 2006. |
First Office Action dated Jun. 7, 2004 in Canadian Patent Application 2408819, filed May 11, 2001. |
First Office Action dated Jun. 14, 2007 in Canadian Patent Application 2475857, filed Mar. 11, 2003. |
Carl, M. “A Constructivist Approach to Machine Translation,” 1998, New Methods of Language Processing and Computational Natural Language Learning, pp. 247-256. |
Chen, et al., “Machine Translation: An Integrated Approach,” 1995, Proc. of 6th Int'l Cont. on Theoretical and Methodological Issue in MT, pp. 287-294. |
Cheng et al., “Creating Multilingual Translation Lexicons with Regional Variations Using Web Corpora,” In Proceedings of the 42nd Annual Meeting on Assoc. for Computational Linguistics (Barcelona, Spain, Jul. 21-26, 2004). Annual Meeting of the ACL. Assoc. for Computational Linguistics, Morristown, NJ, 53. |
Cheung et al., “Sentence Alignment in Parallel, Comparable, and Quasi-comparable Corpora”, In Proceedings of LREC, 2004, pp. 30-33. |
Chinchor, Nancy, “MUC-7 Named Entity Task Definition,” 1997, Version 3.5. |
Clarkson, P. and Rosenfeld, R., “Statistical Language Modeling Using the CMU-Cambridge Toolkit”, 1997, Proc. ESCA Eurospeech, Rhodes, Greece, pp. 2707-2710. |
Cohen et al., “Spectral Bloom Filters,” SIGMOD 2003, Jun. 9-12, 2003, ACM pp. 241-252. |
Cohen, “Hardware-Assisted Algorithm for Full-text Large-Dictionary String Matching Using n-gram Hashing,” 1998, Information Processing and Management, vol. 34, No. 4, pp. 443-464. |
Yossi, Cohen “Interpreter for FUF,” available at URL <ftp://ftp.cs.bgu.ac.il/pub/people/elhadad/fuf-life.lf> (downloaded Jun. 1, 2008). |
Corston-Oliver, S., “Beyond String Matching and Cue Phrases: Improving Efficiency and Coverage in Discourse Analysis”, 1998, The AAAI Spring Symposium on Intelligent Text Summarization, pp. 9-15. |
Covington, “An Algorithm to Align Words for Historical Comparison”, Computational Linguistics, 1996,vol. 22, No. 4, pp. 481-496. |
Dagan et al., “Word Sense Disambiguation Using a Second Language Monolingual Corpus”, 1994, Association for Computational Linguistics, vol. 20, No. 4, pp. 563-596. |
Dempster et al., “Maximum Likelihood from Incomplete Data via the EM Algorithm”, 1977, Journal of the Royal Statistical Society, vol. 39, No. 1, pp. 1-38. |
Diab et al., “A Statistical Word-Level Translation Model for Comparable Corpora,” 2000, In Proc. of the Conference on Content Based Multimedia Information Access (RIAO). |
Diab, M., “An Unsupervised Method for Multilingual Word Sense Tagging Using Parallel Corpora: A Preliminary Investigation”, 2000, SIGLEX Workshop on Word Senses and Multi-Linguality, pp. 1-9. |
Eisner, Jason, “Learning Non-Isomorphic Tree Mappings for Machine Translation,” 2003, in Proc. of the 41st Meeting of the ACL, pp. 205-208. |
Elhadad et al., “Floating Constraints in Lexical Choice”, 1996, ACL, vol. 23 No. 2, pp. 195-239. |
Elhadad, M. and Robin, J., “An Overview of SURGE: a Reusable Comprehensive Syntactic Realization Component,” 1996, Technical Report 96-03, Department of Mathematics and Computer Science, Ben Gurion University, Beer Sheva, Israel. |
Elhadad, M. and Robin, J., “Controlling Content Realization with Functional Unification Grammars”, 1992, Aspects of Automated Natural Language Generation, Dale et al. (eds)., Springer Verlag, pp. 89-104. |
Elhadad, Michael, “FUF: the Universal Unifier User Manual Version 5.2”, 1993, Department of Computer Science, Ben Gurion University, Beer Sheva, Israel. |
Elhadad, Michael, “Using Argumentation to Control Lexical Choice: A Functional Unification Implementation”, 1992, Ph.D. Thesis, Graduate School of Arts and Sciences, Columbia University. |
Elhadad, M. and Robin, J., “SURGE: a Comprehensive Plug-in Syntactic Realization Component for Text Generation”, 1999 (available at http://www.cs.bgu.ac.il/-elhadad/pub.html). |
Fleming, Michael et al., “Mixed-Initiative Translation of Web Pages,” AMTA 2000, LNAI 1934, Springer-Verlag, Berlin, Germany, 2000, pp. 25-29. |
Och, Franz Josef and Ney, Hermann, “Improved Statistical Alignment Models” ACLOO:Proc. of the 38th Annual Meeting of the Association for Computational Linguistics, ′Online! Oct. 2-6, 2000, pp. 440-447, XP002279144 Hong Kong, China Retrieved from the Internet: <URL:http://www-i6.informatik.rwth-aachen.de/Colleagues/och/ACLOO.ps>, retrieved on May 6, 2004, abstract. |
Ren, Fuji and Shi, Hongchi, “Parallel Machine Translation: Principles and Practice,” Engineering of Complex Computer Systems, 2001 Proceedings, Seventh IEEE Int'l. Conference, pp. 249-259, 2001. |
Fung et al, “Mining Very-Non-Parallel Corpora: Parallel Sentence and Lexicon Extraction via Bootstrapping and EM”, In EMNLP 2004. |
Fung, P. and Yee, L., “An IR Approach for Translating New Words from Nonparallel, Comparable Texts”, 1998, 36th Annual Meeting of the ACL, 17th International Conference on Computational Linguistics, pp. 414-420. |
Fung, Pascale, “Compiling Bilingual Lexicon Entries From a Non-Parallel English-Chinese Corpus”, 1995, Proc., of the Third Workshop on Very Large Corpora, Boston, MA, pp. 173-183. |
Gale, W. and Church, K., “A Program for Aligning Sentences in Bilingual Corpora,” 1991, 29th Annual Meeting of the ACL, pp. 177-183. |
Galley et al., “Scalable Inference and Training of Context-Rich Syntactic Translation Models,” Jul. 2006, in Proc. of the 21st International Conference on Computational Linguistics, pp. 961-968. |
Galley et al., “What's in a translation rule?”, 2004, in Proc. of HLT/NAACL '04, pp. 1-8. |
Gaussier et al, “A Geometric View on Bilingual Lexicon Extraction from Comparable Corpora”, In Proceedings of ACL Jul. 2004. |
Germann et al., “Fast Decoding and Optimal Decoding for Machine Translation”, 2001, Proc. of the 39th Annual Meeting of the ACL, Toulouse, France, pp. 228-235. |
Germann, Ulrich: “Building a Statistical Machine Translation System from Scratch: How Much Bang for the Buck Can We Expect?” Proc. of the Data-Driven MT Workshop of ACL-01, Toulouse, France, 2001. |
Gildea, D., “Loosely Tree-based Alignment for Machine Translation,” In Proceedings of the 41st Annual Meeting on Assoc. for Computational Linguistics—vol. 1 (Sapporo, Japan, Jul. 7-12, 2003). Annual Meeting of the ACL Assoc. for Computational Linguistics, Morristown, NJ, 80-87. DOI=http://dx.doi.org/10.3115/1075096.1075107. |
Grefenstette, Gregory, “The World Wide Web as a Resource for Example-Based Machine Translation Tasks”, 1999, Translating and the Computer 21, Proc. of the 21 st International Conf. on Translating and the Computer. London, UK, 12 pp. |
Grossi et al, “Suffix Trees and Their Applications in String Algorithms”, In. Proceedings of the 1st South American Workshop on String Processing, Sep. 1993, pp. 57-76. |
Gupta et al., “Kelips: Building an Efficient and Stable P2P DHT thorough Increased Memory and Background Overhead,” 2003 IPTPS, LNCS 2735, pp. 160-169. |
Habash, Nizar, “The Use of a Structural N-gram Language Model in Generation-Heavy Hybrid Machine Translation,” University of Maryland, Univ. Institute for Advance Computer Studies, Sep. 8, 2004. |
Hatzivassiloglou, V. et al., “Unification-Based Glossing”, 1995, Proc. of the International Joint Conference on Artificial Intelligence, pp. 1382-1389. |
Huang et al., “Relabeling Syntax Trees to Improve Syntax-Based Machine Translation Quality,” Jun. 4-9, 2006, in Proc. of the Human Language Technology Conference of the North American Chapter of the ACL, pp. 240-247. |
Ide, N. and Veronis, J., “Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art”, Mar. 1998, Computational Linguistics, vol. 24, Issue 1, pp. 2-40. |
Bikel, D., Schwartz, R., and Weischedei, R., “An Algorithm that Learns What's in a Name,” Machine Learning 34, 211-231 (1999). |
Imamura et al., “Feedback Cleaning of Machine Translation Rules Using Automatic Evaluation,” 2003 Computational Linguistics, pp. 447-454. |
Imamura, Kenji, “Hierarchical Phrase Alignment Harmonized with Parsing”, 2001, in Proc. of NLPRS, Tokyo. |
Jelinek, F., “Fast Sequential Decoding Algorithm Using a Stack”, Nov. 1969, IBM J. Res. Develop., vol. 13, No. 6, pp. 675-685. |
Jones, K. Sparck, “Experiments in Relevance Weighting of Search Terms”, 1979, Information Processing & Management, vol. 15, Pergamon Press Ltd., UK, pp. 133-144. |
Klein et al., “Accurate Unlexicalized Parsing,” Jul. 2003, in Proc. of the 41st Annual Meeting of the ACL, pp. 423-430. |
Knight et al., “Integrating Knowledge Bases and Statistics in MT,” 1994, Proc. of the Conference of the Association for Machine Translation in the Americas. |
Knight et al., “Filling Knowledge Gaps in a Broad-Coverage Machine Translation System”, 1995, Proc. of the14th International Joint Conference on Artificial Intelligence, Montreal, Canada, vol. 2, pp. 1390-1396. |
Varga et al., “Parallel Corpora for Medium Density Languages”, In Proceedings of RANLP 2005, pp. 590-596. |
Veale, T. and Way, A., “Gaijin: A Bootstrapping, Template-Driven Approach to Example-Based MT,” 1997, Proc. of New Methods in Natural Language Processing (NEMPLP97), Sofia, Bulgaria. |
Vogel et al., “The CMU Statistical Machine Translation System,” 2003, Machine Translation Summit IX, New Orleans, LA. |
Vogel et al., “The Statistical Translation Module in the Verbmobil System,” 2000, Workshop on Multi-Lingual Speech Communication, pp. 69-74. |
Vogel, S. and Ney, H., “Construction of a Hierarchical Translation Memory,” 2000, Proc. of Cooling 2000, Saarbrucken, Germany, pp. 1131-1135. |
Wang, Y. and Waibel, A., “Decoding Algorithm in Statistical Machine Translation,” 1996, Proc. of the 35th Annual Meeting of the ACL, pp. 366-372. |
Wang, Ye-Yi, “Grammar Inference and Statistical Machine Translation,” 1998, Ph.D Thesis, Carnegie Mellon University, Pittsburgh, PA. |
Watanabe et al., “Statistical Machine Translation Based on Hierarchical Phrase Alignment,” 2002, 9th International Conference on Theoretical and Methodological Issues in Machine Translation (TMI-2002), Keihanna, Japan, pp. 188-198. |
Witbrock, M. and Mittal, V., “Ultra-Summarization: A Statistical Approach to Generating Highly Condensed Non-Extractive Summaries,” 1999, Proc. of SIGIR '99, 22nd International Conference on Research and Development in Information Retrieval, Berkeley, CA, pp. 315-316. |
Wu, Dekai, “A Polynomial-Time Algorithm for Statistical Machine Translation,” 1996, Proc. of 34th Annual Meeting of the ACL, pp. 152-158. |
Wu, Dekai, “Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora,” 1997, Computational Linguistics, vol. 23, Issue 3, pp. 377-403. |
Yamada, K. and Knight, K. “A Syntax-Based Statistical Translation Model,” 2001, Proc. of the 39th Annual Meeting of the ACL, pp. 523-530. |
Yamada, K. and Knight, K., “A Decoder for Syntax-Based Statistical MT,” 2001, Proceedings of the 40th Annual Meeting of the ACL, pp. 303-310. |
Yamada K., “A Syntax-Based Statistical Translation Model,” 2002 PhD Dissertation, pp. 1-141. |
Yamamoto et al., “A Comparative Study on Translation Units for Bilingual Lexicon Extraction,” 2001, Japan Academic Association for Copyright Clearance, Tokyo, Japan. |
Yamamoto et al, “Acquisition of Phrase-level Bilingual Correspondence using Dependency Structure” In Proceedings of COLING-2000, pp. 933-939. |
Yarowsky, David, “Unsupervised Word Sense Disambiguation Rivaling Supervised Methods,” 1995, 33rd Annual Meeting of the ACL, pp. 189-196. |
Zhang et al., “Synchronous Binarization for Machine Translations,” Jun. 4-9, 2006, in Proc. of the Human Language Technology Conference of the North American Chapter of the ACL, pp. 256-263. |
Zhang et al., “Distributed Language Modeling for N-best List Re-ranking,” In Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (Sydney, Australia, Jul. 22-23, 2006). ACL Workshops. Assoc. for Computational Linguistics, Morristown, NJ, 216-223. |
Patent Cooperation Treaty International Preliminary Report on Patentability and The Written Opinion, International application No. PCT/US2008/004296, dated Oct. 6, 2009, 5 pgs. |
Document, Wikipedia.com, web.archive.org (Feb. 22, 2004) /http://en.wikipedia.org/wikii/Document>, Feb. 22, 2004. |
Identifying, Dictionary.com, wayback.archive.org (Feb. 28, 2007) </http://dictionary.reference.com/browse/identifying>, accessed Oct. 27, 2011 <http://web.archive.org/web/20070228150533/http://dictionary.reference.com/browse/identifying>. |
Koehn, P. et al, “Statistical Phrase-Based Translation,” Proceedings of HLT-NAACL 2003 Main Papers , pp. 48-54 Edmonton, May-Jun. 2003. |
Abney, S.P., “Stochastic Attribute Value Grammars”, Association for Computational Linguistics, 1997, pp. 597-618. |
Fox, H., “Phrasal Cohesion and Statistical Machine Translation” Proceedings of the Conference on Empirical Methods in Natural Language Processing, Philadelphia, Jul. 2002, pp. 304-311. Association for Computational Linguistics. <URL: http://acl.ldc.upenn.edu/W/W02/W02-1039.pdf>. |
Tillman, C., et al, “Word Reordering and a Dynamic Programming Beam Search Algorithm for Statistical Machine Translation,” 2003, Association for Computational Linguistics, vol. 29, No. 1, pp. 97-133 <URL: http://acl.ldc.upenn.edu/J/J03/J03-1005.pdf>. |
Wang, W., et al. “Capitalizing Machine Translation” In HLT-NAACL '06 Proceedings Jun. 2006. <http://www.isi.edu/natural-language/mt/hlt-naacl-06-wang.pdf>. |
Langlais, P. et al., “TransType: a Computer-Aided Translation Typing System” EmbedMT '00 ANLP-NAACL 2000 Workshop: Embedded Machine Translation Systems, 2000, pp. 46-51. <http://acl.ldc.upenn.edu/W/W00/W00-0507.pdf>. |
Dreyer, Markus et al., “HyTER: Meaning-Equivalent Semantics for Translation Evaluation,” in Proceedings of the 2012 Conference of the North American Chapter of the Association of Computational Linguistics: Human Language Technologies. Jun. 3, 2012. 10 pages. |
Przybocki, M.; Peterson, K.; Bronsart, S.; Official results of the NIST 2008 “Metrics for MAchine TRanslation” Challenge (MetricsMATR08), 7 pages. http://nist.gov/speech/tests/metricsmatr/2008/results/; https://www.nist.gov/multimodal-information-group/metrics-machine-translation-evaluation#history; https://www.nist.gov/itl/iad/mig/metrics-machine-translation-2010-evaluation. |
Bangalore, S. and Rambow, O., “Using TAGs, a Tree Model, and a Language Model for Generation,” May 2000, Workshop TAG+5, Paris. |
Gale, W. and Church, K., “A Program for Aligning Sentences in Bilingual Corpora,” 1993, Computational Linguistics, vol. 19, No. 1, pp. 75-102. |
Leusch et al.. , “A Novel String-to-String Distance Measure with Applications to Machine Translation Evaluation”, 2003, https://www-i6.informatik.rwth-aachen.de, pp. 1-8. |
Oflazer, Kemal., “Error-tolerant Finite-state Recognition with Application to Morphological Analysis and Spelling Correction”, 1996, https://www.ucrel.lancs.ac.uk, pp. 1-18. |
Snover et al., “A Study of Translation Edit Rate with Targeted Human Annotation”, In Proceedings of the Association for Machine Translation n the Americas, pp. 223-231, 2006, available at https://www.cs.umd.edu/˜snover/pub/amta06/ter_amta.pdf. |
Levenshtein, V.I., “Binary Codes Capable of Correcting Deletions, Insertions, and Reversals”, 1966, Doklady Akademii Nauk SSSR, vol. 163, No. 4, pp. 707-710. |
Hildebrand et al., “Adaptation of the Translation Model for Statistical Machine Translation based on Information Retrieval,” EAMT 2005 Conference Proceedings (May 2005), pp. 133-142 (10 pages). |
Och et al., “The Alignment Template Approach to Statitstical Machine Translation,” Journal Computational Linguistics, vol. 30, Issue 4, Dec. 2004, pp. 417-449 (39 pages). |
Sethy et al, “Buidling Topic Specific Language Models from Webdata Using Competitive Models,” INTERSPEECH 2005—Eurospeech, 9th European Conference on Speech Communication and Technology, Lisbon, Portugal, Sep. 4-8, 2005. 4 pages. |
Potet et al., “Preliminary Experiments on Using Users; Post-Edititions to Enhance a SMT System,” Proceedings of the15th Conference of the European Association for Machine Translation, May 2011, pp. 161-168. |
Ortiz-Martinez et al., “An Interactive Machine Translation System with Online Learning,” Proceedings of the ACL-HLT 2011 System Demonstrations, Jun. 21, 2011, pp. 68-73. |
Lopez-Salcedo et al., “Online Learning of Log-Linear Weights in Interactive Machine Translation,” Communications in Computer and Information Science, vol. 328, 2012. 10 pages. |
Blanchon et al., “A Web Service Enabling Gradable Post-edition of Pre-translations Produced by Existing Translation Tools: Practical Use to Provide High Quality Translation of an Online Encyclopedia,” Jan. 2009. 8 pages. |
Levenberg et al., “Stream-based Translation Models for Statistical Machine Translation,” Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, Jun. 2010, pp. 394-402. |
Lagarda et al., “Statistical Post-Editing of a Rule-Based Machine Translation System,” Proceedings of NAACL HLT 2009, Jun. 2009, pp. 217-220. |
Ehara, “Rule Based Machine Translation Combined with Statistical Post Editor for Japanese to English Patent Translation,” MT Summit XI, 2007, pp. 13-18. |
Bechara et al., “Statistical Post-Editing for a Statistical MT System,” Proceedings of the 13th Machine Translation Summit, 2011, pp. 308-315. |
Dobrinkat, “Domain Adaptation in Statistical Machine Translation Systems via User Feedback,” Abstract of Master's Thesis, Helsinki University of Technology, Nov. 25, 2008, 103 pages. |
Business Wire, “Language Weaver Introduces User-Managed Customization Tool,” Oct. 25, 2005, 3 pages. http://www.businesswire.com/news/home/20051025005443/en/Language-Weaver-Introduces-User-Managed-Customization-Tool-Newest. |
Winiwarter, “Learning Transfer Rules for Machine Translation from Parallel Corpora,” Journal of Digital Information Management, vol. 6, No. 4, Aug. 1, 2008, pp. 285-293 (9 pages). |
Office Action dated Mar. 26, 2012 in German Patent Application 10392450.7, filed Mar. 28, 2003. |
First Office Action dated Nov. 5, 2008 in Canadian Patent Application 2408398, filed Mar. 27, 2003. |
Second Office Action dated Sep. 25, 2009 in Canadian Patent Application 2408398, filed Mar. 27, 2003. |
First Office Action dated Mar. 1, 2005 in European Patent Application No. 03716920.8, filed Mar. 27, 2003. |
Second Office Action dated Nov. 9, 2006 in European Patent Application No. 03716920.8, filed Mar. 27, 2003. |
Third Office Action dated Apr. 30, 2008 in European Patent Application No. 03716920.8, filed Mar. 27, 2003. |
Office Action dated Oct. 25, 2011 in Japanese Patent Application 2007-536911 filed Oct. 12, 2005. |
Office Action dated Jul. 24, 2012 in Japanese Patent Application 2007-536911 filed Oct. 12, 2005. |
Final Office Action dated Apr. 9, 2013 in Japanese Patent Application 2007-536911 filed Oct. 12, 2005. |
Office Action dated May 13, 2005 in Chinese Patent Application 1812317.1, filed May 11, 2001. |
Office Action dated Apr. 21, 2006 in Chinese Patent Application 1812317.1, filed May 11, 2001. |
Office Action dated Jul. 19, 2006 in Japanese Patent Application 2003-577155, filed Mar. 11, 2003. |
Office Action dated Mar. 1, 2007 in Chinese Patent Application 3805749.2, filed Mar. 11, 2003. |
Office Action dated Feb. 27, 2007 in Japanese Patent Application 2002-590018, filed May 13, 2002. |
Office Action dated Jan. 26, 2007 in Chinese Patent Application 3807018.9, filed Mar. 27, 2003. |
Office Action dated Dec. 7, 2005 in Indian Patent Application 2283/DELNP/2004, filed Mar. 11, 2003. |
Office Action dated Mar. 31, 2009 in European Patent Application 3714080.3, filed Mar. 11, 2003. |
Agichtein et al., “Snowball: Extracting Information from Large Plain-Text Collections,” ACM DL '00, the Fifth ACM Conference on Digital Libraries, Jun. 2, 2000, San Antonio, TX, USA. |
Satake, Masaomi, “Anaphora Resolution for Named Entity Extraction in Japanese Newspaper Articles,” Master's Thesis [online], Feb. 15, 2002, School of Information Science, JAIST, Nomi, Ishikaw, Japan. |
Office Action dated Aug. 29, 2006 in Japanese Patent Application 2003-581064, filed Mar. 27, 2003. |
Office Action dated Jan. 26, 2007 in Chinese Patent Application 3807027.8, filed Mar. 28, 2003. |
Office Action dated Jul. 25, 2006 in Japanese Patent Application 2003-581063, filed Mar. 28, 2003. |
Proz.com, Rates for proofreading versus Translating, http://www.proz.com/forum/business_issues/202-rates_for_proofreading_versus_translating.html, Apr. 23, 2009, retrieved Jul. 13, 2012. |
Graciet C., Volume discounts on large translation project, naked translations, http://www.nakedtranslations.com/en/2007/volume-discounts-on-large-translation-projects/, Aug. 1, 2007, retrieved Jul. 16, 2012. |
Editorial FreeLancer Association, Guidelines for Fees, https://web.archive.org/web/20090604130631/http://www.the-efa.org/res/code_2.php, Jun. 4, 2009, retrieved Aug. 9, 2014. |
Wasnak, L., “Beyond the Basics: How Much Should I Charge”, https://web.archive.org/web/20070121231531/http://www.writersmarket.com/assets/pdf/How_Much_Should_I_Charge.pdf, Jan. 21, 2007, retrieved Aug. 19, 2014. |
Huang et al. “Automatic Extraction of Named Entity Translingual Equivalence Based on Multi-Feature Cost Minimization”. In Proceedings of the ACL 2003 Workshop on Multilingual and Mixed-Language Name Entry Recognition. |
Notice of Allowance dated Dec. 10, 2013 in Japanese Patent Application 2007-536911, filed Oct. 12, 2005. |
Makoushina, J. “Translation Quality Assurance Tools: Current State and Future Approaches.” Translating and the Computer, Dec. 17, 2007, 29, 1-39, retrieved at <http://www.palex.ru/fc/98/Translation%20Quality%Assurance%20Tools.pdf>. |
Specia et al. “Improving the Confidence of Machine Translation Quality Estimates,” MT Summit XII, Ottawa, Canada, 2009, 8 pages. |
Soricut et al., “TrustRank: Inducing Trust in Automatic Translations via Ranking”, published in Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL), Jul. 2010, pp. 612-621. |
Marcu, D., “System and Method for Language Translation and Online Advertisement Generation,” U.S. Appl. No. 11/454,212, filed Jun. 15, 2006, Specification, Claims, Abstract, and Drawings, 32 pages. |
Summons to Attend Oral Proceedings mailed Sep. 18, 2014 in German Patent Application 10392450.7, filed Mar. 28, 2003. |
Examination Report dated Jul. 22, 2013 in German Patent Application 112005002534.9, filed Oct. 12, 2005. |
Gao et al., Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and Metrics (MATR), 2010, pp. 1-10 and 121-126. |
Callison-Burch et al., “Findings of the 2011 Workshop on Statistical Machine Translation,” In Proceedings of the Sixth Workshop on Statistical Machine Translation, Edinburgh, Scotland, July. Association for Computational Linguistics, 2011, pp. 22-64. |
Bojar et al., “A Grain of Salt for the WMT Manual Evaluation,” In Proceedings of the Sixth Workshop on Statistical Machine Translation, Edinburgh, Scotland, Association for Computational Linguistics, Jul. 2011, pp. 1-11. |
Przybocki et al., “GALE Machine Translation Metrology: Definition, Implementation, and Calculation,” Chapter 5.4 in Handbook of Natural Language Processing and Machine Translation, Olive et al., eds., Springer, 2011, pp. 783-811. |
Snover et al., “Fluency, Adequacy, or HTER? Exploring Different Human Judgements with a Tunable MT Metric”, In Proceedings of the Fourth Workshop on Statistical Machine Translation at the 12th Meeting of the EACL, pp. 259-268, 2009. |
Cormode et al., “The String Edit Distance Matching Problem with Moves,” in ACM Transactions on Algorithms (TALG), 3(1):1-19, 2007. |
Kanthak et al., “Novel Reordering Approaches in Phrase-Based Statistical Machine Translation,” In Proceedings of the ACL Workshop on Building and Using Parallel Texts, Jun. 2005, pp. 167-174. |
Allauzen et al., “OpenFst: A General and Efficient Weighted Finitestate Transducer Library,” In Proceedings of the 12th International Conference on Implementation and Application of Automata (CIAA), 2007, pp. 11-23. |
Denkowski et al., “Meteor 1.3: Automatic Metric for Reliable Optimization and Evaluation of Machine Translation Systems,” In Proceedings of the EMNLP 2011 Workshop on Statistical Machine Translation, Jul. 2011, pp. 85-91. |
Lavie et al., “The Meteor Metric for Automatic Evaluation of Machine Translation,” Machine Translation, Sep. 2009, 23: 105-115. |
Crammer et al., “On the Algorithmic Implementation of Multi-Class Kernel-based Vector Machines,” In Journal of Machine Learning Research 2, Dec. 2001, pp. 265-292. |
Kumar, Shankar, “Minimum Bayes-Risk Techniques in Automatic Speech Recognition and Statistical Machine Translation: A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy,” Baltimore, MD Oct. 2004. |
Office Action dated Feb. 2, 2015 in German Patent Application 10392450.7, filed Mar. 28, 2003. |
Abney, Steven P. , “Parsing by Chunks,” 1991, Principle-Based Parsing: Computation and Psycholinguistics, vol. 44, pp. 257-279. |
Agbago, A., et al., “Truecasing for the Portage System,” In Recent Advances in Natural Language Processing (Borovets, Bulgaria), Sep. 21-23, 2005, pp. 21-24. |
Al-Onaizan et al., “Statistical Machine Translation,” 1999, JHU Summer Tech Workshop, Final Report, pp. 1-42. |
Al-Onaizan et al., “Translating with Scarce Resources,” 2000, 17th National Conference of the American Association for Artificial Intelligence, Austin, TX, pp. 672-678. |
Al-Onaizan, Y. and Knight K., “Machine Transliteration of Names in Arabic Text,” Proceedings of ACL Workshop on Computational Approaches to Semitic Languages. Philadelphia, 2002. |
Al-Onaizan, Y. and Knight, K., “Named Entity Translation: Extended Abstract”, 2002, Proceedings of HLT-02, San Diego, CA. |
Al-Onaizan, Y. and Knight, K., “Translating Named Entities Using Monolingual and Bilingual Resources,” 2002, Proc. of the 40th Annual Meeting of the ACL, pp. 400-408. |
Alshawi et al., “Learning Dependency Translation Models as Collections of Finite-State Head Transducers,” 2000, Computational Linguistics, vol. 26, pp. 45-60. |
Alshawi, Hiyan, “Head Automata for Speech Translation”, Proceedings of the ICSLP 96, 1996, Philadelphia, Pennsylvania. |
Ambati, V., “Dependency Structure Trees in Syntax Based Machine Translation,” Spring 2008 Report <http://www.cs.cmu.edu/˜vamshi/publications/DependencyMT_report.pdf>, pp. 1-8. |
Arbabi et al., “Algorithms for Arabic name transliteration,” Mar. 1994, IBM Journal of Research and Development, vol. 38, Issue 2, pp. 183-194. |
Arun, A., et al., “Edinburgh System Description for the 2006 TC-STAR Spoken Language Translation Evaluation,” in TC-STAR Workshop on Speech-to-Speech Translation (Barcelona, Spain), Jun. 2006, pp. 37-41. |
Ballesteros, L. et al., “Phrasal Translation and Query Expansion Techniques for Cross-Language Information Retrieval,” SIGIR 97, Philadelphia, PA, © 1997, pp. 84-91. |
Bangalore, S. and Rambow, O., “Evaluation Metrics for Generation,” 2000, Proc. of the 1st International Natural Language Generation Conf., vol. 14, pp. 1-8. |
Bangalore, S. and Rambow, O., “Corpus-Based Lexical Choice in Natural Language Generation,” 2000, Proc. of the 38th Annual ACL, Hong Kong, pp. 464-471. |
Bangalore, S. and Rambow, O., “Exploiting a Probabilistic Hierarchical Model for Generation,” 2000, Proc. of 18th conf. on Computational Linguistics, vol. 1, pp. 42-48. |
Bannard, C. and Callison-Burch, C., “Paraphrasing with Bilingual Parallel Corpora,” In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (Ann Arbor, MI, Jun. 25-30, 2005), Annual Meeting of the ACL Assoc. for Computational Linguistics, Morristown, NJ, 597-604. DOI=http://dx.doi.org/10.3115/1219840. |
Barnett et al., “Knowledge and Natural Language Processing,” Aug. 1990, Communications of the ACM, vol. 33, Issue 8, pp. 50-71. |
Baum, L., “An Inequality and Associated Maximization Technique in Statistical Estimation for Probabilistic Functions of Markov Processes”, 1972, Inequalities 3:1-8. |
Berhe, G. et al., “Modeling Service-based Multimedia Content Adaptation in Pervasive Computing,” CF '04 (Ischia, Italy) Apr. 14-16, 2004, pp. 60-69. |
Boitet, C. et al., “Main Research Issues in Building Web Services for Mutualized, Non-Commercial Translation,” Proc. of the 6th Symposium on Natural Language Processing, Human and Computer Processing of Language and Speech, © 2005, pp. 1-11. |
Brants, T., “TnT—A Statistical Part-of-Speech Tagger,” 2000, Proc. of the 6th Applied Natural Language Processing Conference, Seattle. |
Brill, E., “Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part of Speech Tagging”, 1995, Computational Linguistics, vol. 21, No. 4, pp. 543-565. |
Brown et al., “A Statistical Approach to Machine Translation,” Jun. 1990, Computational Linguistics, vol. 16, No. 2, pp. 79-85. |
Brown et al., “Word-Sense Disambiguation Using Statistical Methods,” 1991, Proc. of 29th Annual ACL, pp. 264-270. |
Brown et al., “The Mathematics of Statistical Machine Translation: Parameter Estimation,” 1993, Computational Linguistics, vol. 19, Issue 2, pp. 263-311. |
Brown, Ralf, “Automated Dictionary Extraction for “Knowledge-Free” Example-Based Translation,” 1997, Proc. of 7th Int'l Cont. on Theoretical and Methodological Issues in MT, Santa Fe, NM, pp. 111-118. |
Callan et al., “TREC and TIPSTER Experiments with INQUERY,” 1994, Information Processing and Management, vol. 31, Issue 3, pp. 327-343. |
Callison-Burch, C. et al., “Statistical Machine Translation with Word- and Sentence-aligned Parallel Corpora,” In Proceedings of the 42nd Meeting on Assoc. for Computational Linguistics (Barcelona, Spain, Jul. 21-26, 2004). Annual Meeting of the ACL. Assoc. for Computational Linguistics, Morristown, NJ, 1. |
Monasson et al., “Determining Computational Complexity from Characteristic ‘Phase Transitions’,” Jul. 1999, Nature Magazine, vol. 400, pp. 133-137. |
Mooney, Raymond, “Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning,” 1996, Proc. of the Conference on Empirical Methods in Natural Language Processing, pp. 82-91. |
Nagao, K. et al., “Semantic Annotation and Transcoding: Making Web Content More Accessible,” IEEE Multimedia, vol. 8, Issue 2 Apr.-Jun. 2001, pp. 69-81. |
Nederhof, M. and Satta, G., “IDL-Expressions: A Formalism for Representing and Parsing Finite Languages in Natural Language Processing,” 2004, Journal of Artificial Intelligence Research, vol. 21, pp. 281-287. |
Niessen, S. and Ney, H, “Toward Hierarchical Models for Statistical Machine Translation of Inflected Languages,” 2001, Data-Driven Machine Translation Workshop, Toulouse, France, pp. 47-54. |
Norvig, Peter, “Techniques for Automatic Memorization with Applications to Context-Free Parsing”, Computational Linguistics,1991, pp. 91-98, vol. 17, No. 1. |
Och et al., “Improved Alignment Models for Statistical Machine Translation,” 1999, Proc. of the Joint Conf. of Empirical Methods in Natural Language Processing and Very Large Corpora, pp. 20-28. |
Och et al. “A Smorgasbord of Features for Statistical Machine Translation.” HLTNAACL Conference. Mar. 2004, 8 pages. |
Och, F., “Minimum Error Rate Training in Statistical Machine Translation,” In Proceedings of the 41st Annual Meeting on Assoc. for Computational Linguistics—vol. 1 (Sapporo, Japan, Jul. 7-12, 2003). Annual Meeting of the ACL. Assoc. for Computational Linguistics, Morristown, NJ, 160-167. DOI= http://dx.doi.org/10.3115/1075096. |
Och et al., “Discriminative Training and Maximum Entropy Models for Statistical Machine Translation.” Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics (ACL), Philadelphia, Jul. 2002; pp. 295-302. |
Och, F. and Ney, H., “A Systematic Comparison of Various Statistical Alignment Models,” Computational Linguistics, 2003, 29:1, 19-51. |
Papineni et al., “BLEU: a Method for Automatic Evaluation of Machine Translation,” IBM Research Report, RC22176 (WQ102-022), 2001, 12 pages. |
Perugini, Saviero et al., “Enhancing Usability in CITIDEL: Multimodal, Multilingual and Interactive Visualization Interfaces,” JCDL '04, Tucson, AZ, Jun. 7-11, 2004, pp. 315-324. |
Petrov et al., “Learning Accurate, Compact and Interpretable Tree Annotation,” Jun. 4-9, 2006, in Proc. of the Human Language Technology Conference of the North American Chapter of the ACL, pp. 433-440. |
Pla et al., “Tagging and Chunking with Bigrams,” 2000, Proc. of the 18th Conference on Computational Linguistics, vol. 2, pp. 614-620. |
Qun, Liu, “A Chinese-English Machine Translation System Based on Micro-Engine Architecture,” An Int'l. Conference on Translation and Information Technology, Hong Kong, Dec. 2000, pp. 1-10. |
Rapp, Reinhard, Automatic Identification of Word Translations from Unrelated English and German Corpora, 1999, 37th Annual Meeting of the ACL, pp. 519-526. |
Rapp, Reinhard, “Identifying Word Translations in Non-Parallel Texts,” 1995, 33rd Annual Meeting of the ACL, pp. 320-322. |
Rayner et al.,“Hybrid Language Processing in the Spoken Language Translator,” IEEE 1997, pp. 107-110. |
Resnik, P. and Smith, A., “The Web as a Parallel Corpus,” Sep. 2003, Computational Linguistics, Special Issue on Web as Corpus, vol. 29, Issue 3, pp. 349-380. |
Resnik, P. and Yarowsky, D. “A Perspective on Word Sense Disambiguation Methods and Their Evaluation,” 1997, Proceedings of SIGLEX '97, Washington, D.C., pp. 79-86. |
Resnik, Philip, “Mining the Web for Bilingual Text,” 1999, 37th Annual Meeting of the ACL, College Park, MD, pp. 527-534. |
Rich, E. and Knight, K., “Artificial Intelligence, Second Edition,” 1991, McGraw-Hill Book Company [Front Matter]. |
Richard et al., “Visiting the Traveling Salesman Problem with Petri nets and application in the glass industry,” Feb. 1996, IEEE Emerging Technologies and Factory Automation, pp. 238-242. |
Robin, Jacques, “Revision-Based Generation of Natural Language Summaries Providing Historical Background: Corpus-Based Analysis, Design Implementation and Evaluation,” 1994, Ph.D. Thesis, Columbia University, New York. |
Rogati et al., “Resource Selection for Domain-Specific Cross-Lingual IR,” ACM 2004, pp. 154-161. |
Zhang, R. et al., “The NiCT-ATR Statistical Machine Translation System for the IWSLT 2006 Evaluation,” submitted to IWSLT, 2006. |
Russell, S. and Norvig, P., “Artificial Intelligence: A Modern Approach,” 1995, Prentice-Hall, Inc., New Jersey [Front Matter]. |
Sang, E. and Buchholz, S., “Introduction to the CoNLL-2000 Shared Task: Chunking,” 2002, Proc. of CoNLL-2000 and LLL-2000, Lisbon, Portugal, pp. 127-132. |
Schmid, H., and Schulte im Walde, S., “Robust German Noun Chunking With a Probabilistic Context-Free Grammar,” 2000, Proc. of the 18th Conference on Computational Linguistics, vol. 2, pp. 726-732. |
Schutze, Hinrich, “Automatic Word Sense Discrimination,” 1998, Computational Linguistics, Special Issue on Word Sense Disambiguation, vol. 24, Issue 1, pp. 97-123. |
Selman et al., “A New Method for Solving Hard Satisfiability Problems,” 1992, Proc. of the 10th National Conference on Artificial Intelligence, San Jose, CA, pp. 440-446. |
Kumar, S. and Byrne, W., “Minimum Bayes-Risk Decoding for Statistical Machine Translation.” HLTNAACL Conference. Mar. 2004, 8 pages. |
Shapiro, Stuart (ed.), “Encyclopedia of Artificial Intelligence, 2nd edition”, vol. D 2,1992, John Wiley & Sons Inc; “Unification” article, K. Knight, pp. 1630-1637. |
Shirai, S., “A Hybrid Rule and Example-based Method for Machine Translation,” 1997, NTT Communication Science Laboratories, pp. 1-5. Dec. 1997. |
Sobashima et al., “A Bidirectional Transfer-Driven Machine Translation System for Spoken Dialogues,” 1994, Proc. of 15th Conference on Computational Linguistics, vol. 1, pp. 64-68. |
Soricut et al., “Using a Large Monolingual Corpus to Improve Translation Accuracy,” 2002, Lecture Notes in Computer Science, vol. 2499, Proc. of the 5th Conference of the Association for Machine Translation in the Americas on Machine Translation: From Research to Real Users, pp. 155-164. |
Stalls, B. and Knight, K., “Translating Names and Technical Terms in Arabic Text,” 1998, Proc. of the COLING/ACL Workshop on Computational Approaches to Semitic Language. |
Sumita et al., “A Discourse Structure Analyzer for Japanese Text,” 1992, Proc. of the International Conference on Fifth Generation Computer Systems, vol. 2, pp. 1133-1140. |
Sun et al., “Chinese Named Entity Identification Using Class-based Language Model,” 2002, Proc. of 19th International Conference on Computational Linguistics, Taipei, Taiwan, vol. 1, pp. 1-7. |
Tanaka, K. and Iwasaki, H. “Extraction of Lexical Translations from Non-Aligned Corpora,” Proceedings of COLING 1996. |
Taskar, B., et al., “A Discriminative Matching Approach to Word Alignment,” In Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing (Vancouver, BC, Canada, Oct. 6-8, 2005). Human Language Technology Conference. Assoc. for Computational Linguistics, Morristown, NJ. |
Taylor et al., “The Penn Treebank: An Overview,” in A. Abeill (ed.), D Treebanks: Building and Using Parsed Corpora, 2003, pp. 5-22. |
Tiedemann, Jorg, “Automatic Construction of Weighted String Similarity Measures,” 1999, In Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora. |
Tillman, C. and Xia, F., “A Phrase-Based Unigram Model for Statistical Machine Translation,” 2003, Proc. of the North American Chapter of the ACL on Human Language Technology, vol. 2, pp. 106-108. Mar. 2003. |
Tillmann et al., “A DP Based Search Using Monotone Alignments in Statistical Translation,” 1997, Proc. of the Annual Meeting of the ACL, pp. 366-372. |
Tomas, J., “Binary Feature Classification for Word Disambiguation in Statistical Machine Translation,” Proceedings of the 2nd Int'l. Workshop on Pattern Recognition, 2002, pp. 1-12. |
Uchimoto, K. et al., “Word Translation by Combining Example-Based Methods and Machine Learning Models,” Natural Language Processing (Shizen Gengo Shori), vol. 10, No. 3, Apr. 2003, pp. 87-114. (Japanese original). |
Uchimoto, K. et al., “Word Translation by Combining Example-based Methods and Machine Learning Models,” Natural Language Processing (Shizen Gengo Shori), vol. 10, No. 3, Apr. 2003, pp. 87-114. (English Translation). |
Ueffing et al., “Generation of Word Graphs in Statistical Machine Translation,” 2002, Proc. of Empirical Methods in Natural Language Processing (EMNLP), pp. 156-163. |
O'Brien, Sharon, “Towards predicting post-editing productivity”, Sep. 27, 2011, pp. 197-215. |
Tatsumi, Midori, “Correlation between Automatic Evaluation Metric Scores, Post-Editing Speed, and Some Other Factors”, Jan. 2009, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20190303952 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12720536 | Mar 2010 | US |
Child | 16443873 | US |