The present disclosure generally relates to systems, devices, and methods for treating cardiac arrhythmias, and more particularly, to systems, devices, and methods for detecting cardiac arrhythmias and coordinating therapy between multiple devices.
Pacing instruments can be used to treat patients suffering from various heart conditions that result in a reduced ability of the heart to deliver sufficient amounts of blood to a patient's body. These heart conditions may lead to rapid, irregular, and/or inefficient heart contractions. To help alleviate some of these conditions, various devices (e.g., pacemakers, defibrillators, etc.) have been implanted in a patient's body. Such devices may monitor and provide electrical stimulation to the heart to help the heart operate in a more normal, efficient and/or safe manner. In some cases, a patient may have multiple implanted devices.
The present disclosure generally relates to systems, devices, and methods for treating cardiac arrhythmias, and more particularly, to systems, devices, and methods for detecting cardiac arrhythmias and coordinating treatment of anti-tachycardia pacing (ATP) therapy and defibrillation shock therapy between a leadless cardiac pacemaker and another medical device.
In one embodiment, a subcutaneous implantable cardioverter defibrillator (SICD) for delivering a defibrillation shock to a heart of a patient comprises two or more electrodes, a charge storage device for storing a charge that can be delivered to shock the heart via two or more of the electrodes, and a controller operatively coupled to two or more of the electrodes and the charge storage device. The controller may be configured to monitor cardiac activity of the heart of the patient via cardiac signals received via two or more of the electrodes, detect an occurrence of a cardiac arrhythmia based on the cardiac activity, and determine a type of the detected cardiac arrhythmia from two or more types of cardiac arrhythmias. If the determined type of cardiac arrhythmia is one of a first set of cardiac arrhythmia types, the controller may send an instruction via two or more of the electrodes for reception by a Leadless Cardiac Pacemaker (LCP) to initiate the application of ATP therapy by the LCP. If the determined type of cardiac arrhythmia is not one of the first set cardiac arrhythmia types, the controller may not send the instruction.
Additionally, or alternatively, in the previous embodiment, the instruction may also include one or more ATP parameters that define one or more characteristics of the ATP therapy.
Additionally, or alternatively, in any of the previous embodiments, the one or more characteristics of the ATP therapy may comprise a method of ATP therapy.
Additionally, or alternatively, in any of the previous embodiments, the one or more characteristics of the ATP therapy may comprise a number of ATP bursts applied during the ATP therapy.
Additionally, or alternatively, in any of the previous embodiments, the controller may further be configured to initiate charging of the charge storage device if the determined type of the cardiac arrhythmia is one of a second set cardiac arrhythmia types, and wait to initiate charging of the charge storage device if the determined type of the cardiac arrhythmia is one of the first set of cardiac arrhythmia types.
Additionally, or alternatively, in any of the previous embodiments, if an instruction was sent to initiate the application of ATP therapy by the LCP, the controller may be further configured to determine if the application of the ATP therapy by the LCP was successful in terminating the cardiac arrhythmia, and if so, not initiate charging of the charge storage device if the determined type of the cardiac arrhythmia is one of the first set of cardiac arrhythmia types.
Additionally, or alternatively, in any of the previous embodiments, if an instruction was sent to initiate the application of ATP therapy by the LCP, the controller may be further configured to determine if the application of the ATP therapy by the LCP was successful in terminating the cardiac arrhythmia, and if so, terminate the charging of the charge storage device if the determined type of the cardiac arrhythmia is one of the second cardiac arrhythmia types.
Additionally, or alternatively, in any of the previous embodiments, the first set of type of cardiac arrhythmia types may include Monomorphic Ventricular Tachycardia (MVT).
Additionally, or alternatively, in any of the previous embodiments, the second set of cardiac arrhythmia types may include one or more of Polymorphic Ventricular Tachycardia (PVT), Supra Ventricular Tachycardia (SVT), and Ventricular Fibrillation (VF).
Additionally, or alternatively, in any of the previous embodiments, the second set of cardiac arrhythmia types may include Polymorphic Ventricular Tachycardia (PVT).
Additionally, or alternatively, in any of the previous embodiments, the second set of cardiac arrhythmia types may include Supra Ventricular Tachycardia (SVT).
Additionally, or alternatively, in any of the previous embodiments, the second set of cardiac arrhythmia types may include Monomorphic Ventricular Tachycardia (MVT).
Additionally, or alternatively, in any of the previous embodiments, the first set of cardiac arrhythmia types and the second set of cardiac arrhythmia types may share one or more common cardiac arrhythmia types, but this is not required.
Additionally, or alternatively, in any of the previous embodiments, the cardiac arrhythmia types in the first set of cardiac arrhythmia types may be user selectable.
Additionally, or alternatively, in any of the previous embodiments, the SICD may further comprise an energy storage module, and the cardiac arrhythmia types in the first set of cardiac arrhythmia types may depend at least partially on a charge level of the storage module.
Additionally, or alternatively, in any of the previous embodiments, to determine a type of the detected cardiac arrhythmia from two or more types of cardiac arrhythmias, the controller may be configured to compare the cardiac signals to one or more templates of cardiac signals.
In another embodiment, a subcutaneous implantable cardioverter defibrillator (SICD) for delivering a defibrillation shock to a heart of a patient may comprise two or more electrodes, a charge storage device for storing a charge that can be delivered to shock the heart via two or more of the electrodes, and a controller operatively coupled to two or more of the electrodes and the charge storage device. The controller may be configured to monitor cardiac activity of the heart of the patient via cardiac signals received via two or more of the electrodes, detect an occurrence of a cardiac arrhythmia based on the cardiac activity; and determine a type of the detected cardiac arrhythmia from two or more types of cardiac arrhythmias. If the determined type of cardiac arrhythmia is one of a first set of cardiac arrhythmia types, the controller may send an instruction via two or more of the electrodes for reception by a Leadless Cardiac Pacemaker (LCP) to initiate the application of ATP therapy by the LCP. If the determined type of cardiac arrhythmia is not one of the first set of cardiac arrhythmia types, the controller may not send the instruction.
Additionally, or alternatively, in the previous embodiment, the instruction may also include one or more ATP parameters that define one or more characteristics of the ATP therapy.
Additionally, or alternatively, in any of the previous embodiments, the one or more characteristics of the ATP therapy may comprise a method of ATP therapy.
Additionally, or alternatively, in any of the previous embodiments, the one or more characteristics of the ATP therapy may comprise a number of ATP bursts applied during the ATP therapy.
Additionally, or alternatively, in any of the previous embodiments, the controller may be further configured to initiate charging of the charge storage device if the determined type of the cardiac arrhythmia is one of a second set of cardiac arrhythmia types, and wait to initiate charging of the charge storage device if the determined type of the cardiac arrhythmia is not one of the second set of cardiac arrhythmia types.
Additionally, or alternatively, in any of the previous embodiments, if an instruction was sent to initiate the application of ATP therapy by the LCP, the controller may be further configured to determine if the application of the ATP therapy by the LCP was successful in terminating the cardiac arrhythmia, and if so, not initiate charging of the charge storage device if the determined type of the cardiac arrhythmia is one of the first set of cardiac arrhythmia types.
Additionally, or alternatively, in any of the previous embodiments, if an instruction was sent to initiate the application of ATP therapy by the LCP, the controller may be further configured to determine if the application of the ATP therapy by the LCP was successful in terminating the cardiac arrhythmia, and if so, terminate the charging of the charge storage device if the determined type of the cardiac arrhythmia is one of the second set of cardiac arrhythmia types.
Additionally, or alternatively, in any of the previous embodiments, the first set of cardiac arrhythmia types may include Monomorphic Ventricular Tachycardia (MVT).
Additionally, or alternatively, in any of the previous embodiments, the second set of cardiac arrhythmia types may include one or more of Polymorphic Ventricular Tachycardia (PVT), Supra Ventricular Tachycardia (SVT), and Ventricular Fibrillation (VF).
Additionally, or alternatively, in any of the previous embodiments, the second set of cardiac arrhythmia types may include Polymorphic Ventricular Tachycardia (PVT).
Additionally, or alternatively, in any of the previous embodiments, the second set of cardiac arrhythmia types may include Supra Ventricular Tachycardia (SVT).
Additionally, or alternatively, in any of the previous embodiments, the second set of cardiac arrhythmia types may include Monomorphic Ventricular Tachycardia (MVT).
Additionally, or alternatively, in any of the previous embodiments, the first set of cardiac arrhythmia types and the second set of cardiac arrhythmia types may share one or more common cardiac arrhythmia types, but this is not required.
In yet another embodiment, an implantable cardioverter defibrillator (ICD) for delivering a defibrillation shock to a heart of a patient may comprise a charge storage device for storing a charge that can be delivered to shock the heart and a controller operatively coupled to the charge storage device. The controller may be configured to monitor cardiac activity of the heart of the patient, detect an occurrence of a cardiac arrhythmia based on the cardiac activity, and determine a type of the detected cardiac arrhythmia from two or more types of cardiac arrhythmias. If the determined type of cardiac arrhythmia is one of a first set of cardiac arrhythmia types, the controller may be configured to send an instruction for reception by a Leadless Cardiac Pacemaker (LCP) to initiate the application of ATP therapy by the LCP. If the determined type of cardiac arrhythmia is not one of the first set of cardiac arrhythmia types, the controller may not send the instruction.
Additionally, or alternatively, in the previous embodiment, the instruction may include one or more ATP parameters that define one or more characteristics of the ATP therapy.
Additionally, or alternatively, in any of the previous embodiments, the one or more characteristics of the ATP therapy may comprise a method of ATP therapy.
Additionally, or alternatively, in any of the previous embodiments, the one or more characteristics of the ATP therapy may comprise a number of ATP bursts applied during the ATP therapy.
Additionally, or alternatively, in any of the previous embodiments, the controller may be further configured to initiate charging of the charge storage device if the determined type of the cardiac arrhythmia is one of a second set of cardiac arrhythmia types, and wait to initiate charging of the charge storage device if the determined type of the cardiac arrhythmia is not one of the second set of cardiac arrhythmia types.
Additionally, or alternatively, in any of the previous embodiments, if an instruction was sent to initiate the application of ATP therapy by the LCP, the controller may be further configured to determine if the application of the ATP therapy by the LCP was successful in terminating the cardiac arrhythmia, and if so, not initiate charging of the charge storage device if the determined type of the cardiac arrhythmia is the first set of cardiac arrhythmia types.
Additionally, or alternatively, in any of the previous embodiments, if an instruction was sent to initiate the application of ATP therapy by the LCP, the controller may be further configured to determine if the application of the ATP therapy by the LCP was successful in terminating the cardiac arrhythmia, and if so, terminate the charging of the charge storage device if the determined type of the cardiac arrhythmia is one of the second set of cardiac arrhythmia types.
In still another embodiment, a method implemented by an implantable cardioverter defibrillator (ICD) may comprise determining an occurrence of a cardiac arrhythmia and determining a type of the detected cardiac arrhythmia from two or more types of cardiac arrhythmias. The method may further comprise, if the determined type of cardiac arrhythmia is one of a first set of cardiac arrhythmia types, sending an instruction for reception by a Leadless Cardiac Pacemaker (LCP) to initiate the application of ATP therapy by the LCP. Additionally, the method may also comprise, if the determined type of cardiac arrhythmia is not one of the first set of cardiac arrhythmia types, not sending the instruction to the LCP.
Additionally, or alternatively, in the previous embodiment, the method may further comprise charging the charge storage device if the determined type of the cardiac arrhythmia is one of a second set of cardiac arrhythmia types, and waiting to charge the charge storage device if the determined type of the cardiac arrhythmia is not one of the second set of cardiac arrhythmia types.
The above summary is not intended to describe each embodiment or every implementation of the present disclosure. Advantages and attainments, together with a more complete understanding of the disclosure, will become apparent and appreciated by referring to the following description and claims taken in conjunction with the accompanying drawings.
The disclosure may be more completely understood in consideration of the following description of various illustrative embodiments in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of embodiment in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular illustrative embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
The following description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.
This disclosure describes systems, devices, and methods for detecting and treating cardiac arrhythmias, and more particularly, to systems, devices, and methods implementing different treatment protocols for different types of arrhythmias. One option for treating tachyarrhythmias, one type of cardiac arrhythmia, includes using anti-tachycardia therapy (ATP) techniques. Some embodiments of these techniques include delivering pacing pulses to the heart of the patient at a faster rate than the tachycardia in an effort to get the heart to track the ATP pulses, thereby terminating the physiologically induced tachycardia. If ATP therapy does not work, then other measures, such as delivering a defibrillation pulse to the heart may be employed to attempt to terminate the tachycardia. Tachycardias may be classified into a number of different types of tachycardias—including monomorphic ventricular tachycardia (MVT), polymorphic ventricular tachycardia (PVT), supraventricular tachycardia (SVT) and Ventricular Fibrillation (VF). ATP therapy may be more likely to be effective at terminating some of these tachycardias than other of these tachycardias. For example, ATP may be most effective at terminating MVT (perhaps 80-90% termination). Efficacy may decrease for PVT (e.g. e.g. 20-40% termination), and SVT and VF (10-20% termination). Moreover, applying ATP therapy to only certain well-suited tachyarrhythmias may help reduce acceleration of other less-suited tachyarrhythmias into the defibrillation/cardioversion zone. Accordingly, it may be beneficial to employ different therapy protocols for different types of tachycardias, as will be more fully detailed below.
As depicted in
Electrodes 114 may include one or more biocompatible conductive materials such as various metals or alloys that are known to be safe for implantation within a human body. In some instances, electrodes 114 may be generally disposed on either end of LCP 100 and may be in electrical communication with one or more of modules 102, 104, 106, 108, and 110. In embodiments where electrodes 114 are secured directly to housing 120, an insulative material may electrically isolate the electrodes 114 from adjacent electrodes, housing 120, and/or other parts of LCP 100. In some instances, some or all of electrodes 114 may be spaced from housing 120 and connected to housing 120 and/or other components of LCP 100 through connecting wires. In such instances, the electrodes 114 may be placed on a tail (not shown) that extends out away from the housing 120. As shown in
Electrodes 114 and/or 114′ may assume any of a variety of sizes and/or shapes, and may be spaced at any of a variety of spacings. For example, electrodes 114 may have an outer diameter of two to twenty millimeters (mm). In other embodiments, electrodes 114 and/or 114′ may have a diameter of two, three, five, seven millimeters (mm), or any other suitable diameter, dimension and/or shape. Example lengths for electrodes 114 and/or 114′ may include, for example, one, three, five, ten millimeters (mm), or any other suitable length. As used herein, the length is a dimension of electrodes 114 and/or 114′ that extends away from the outer surface of the housing 120. In some instances, at least some of electrodes 114 and/or 114′ may be spaced from one another by a distance of twenty, thirty, forty, fifty millimeters (mm), or any other suitable spacing. The electrodes 114 and/or 114′ of a single device may have different sizes with respect to each other, and the spacing and/or lengths of the electrodes on the device may or may not be uniform.
In the embodiment shown, communication module 102 may be electrically coupled to electrodes 114 and/or 114′ and may be configured to deliver communication pulses to tissues of the patient for communicating with other devices such as sensors, programmers, other medical devices, and/or the like. Communication pulses, as used herein, may be any modulated signal that conveys information to another device, either by itself or in conjunction with one or more other modulated signals. In some embodiments, communication pulses may be limited to sub-threshold signals that do not result in capture of the heart yet still convey information. The communication pulses may be delivered to another device that is located either external or internal to the patient's body. Communication module 102 may additionally be configured to sense for communication pulses delivered by other devices, which may be located external or internal to the patient's body.
Communication module 102 may communicate to help accomplish one or more desired functions. Some example functions include delivering sensed data, using communicated data for determining occurrences of events such as arrhythmias, coordinating delivery of electrical stimulation therapy, and/or other functions. In some cases, LCP 100 may use communication pulses to communicate raw information, processed information, messages and/or commands, and/or other data. Raw information may include information such as sensed electrical signals (e.g. a sensed ECG), signals gathered from coupled sensors, and the like. In some embodiments, the processed information may include signals that have been filtered using one or more signal processing techniques. Processed information may also include parameters and/or events that are determined by the LCP 100 and/or another device, such as a determined heart rate, timing of determined heartbeats, timing of other determined events, determinations of threshold crossings, expirations of monitored time periods, activity level parameters, blood-oxygen parameters, blood pressure parameters, heart sound parameters, and the like. Messages and/or commands may include instructions or the like directing another device to take action, notifications of imminent actions of the sending device, requests for reading from the receiving device, requests for writing data to the receiving device, information messages, and/or other messages commands.
In at least some embodiments, communication module 102 (or LCP 100) may further include switching circuitry to selectively connect one or more of electrodes 114 and/or 114′ to communication module 102 in order to select which electrodes 114 and/or 114′ that communication module 102 delivers communication pulses. It is contemplated that communication module 102 may communicating with other devices via conducted signals, radio frequency (RF) signals, optical signals, acoustic signals, inductive coupling, and/or any other suitable communication methodology.
In the embodiment shown, a pulse generator module 104 may be electrically connected to one or more of electrodes 114 and/or 114′. Pulse generator module 104 may be configured to generate electrical stimulation pulses and deliver the electrical stimulation pulses to tissues of a patient via one or more of the electrodes 114 and/or 114′ in order to effectuate one or more electrical stimulation therapies. Electrical stimulation pulses as used herein are meant to encompass any electrical signals that may be delivered to tissue of a patient for purposes of treatment of any type of disease or abnormality. For example, when used to treat heart disease, the pulse generator module 104 may generate electrical stimulation pacing pulses for capturing the heart of the patient, i.e. causing the heart to contract in response to the delivered electrical stimulation pulse. In another embodiment, the electrical stimulation pulses may be defibrillation/cardioversion pulses for shocking the heart out of fibrillation. In yet another embodiment, the electrical stimulation pulses may be anti-tachycardia pacing (ATP) pulses. These are just some examples. When used to treat other ailments, the pulse generator module 104 may generate electrical stimulation pulses suitable for neurostimulation therapy or the like. Pulse generator module 104 may include one or more capacitor elements and/or other charge storage devices to aid in generating and delivering appropriate electrical stimulation pulses. In the embodiment shown, pulse generator module 104 may use energy stored in energy storage module 112 to generate the electrical stimulation pulses.
Pulse generator module 104 may include the capability to modify the electrical stimulation pulses, such as by adjusting the pulse width and/or amplitude of the electrical stimulation pulses. When pacing the heart, this may help tailor the electrical stimulation pulses to capture the heart a particular patient, sometimes with reduced battery usage. For neurostimulation therapy, adjusting the pulse width and/or amplitude may help tailor the therapy for a particular application and/or help make the therapy more effective for a particular patient.
In some embodiments, LCP 100 may include an electrical sensing module 106 and mechanical sensing module 108. Electrical sensing module 106 may be configured to sense intrinsic cardiac electrical signals conducted from electrodes 114 and/or 114′ to electrical sensing module 106. For example, electrical sensing module 106 may be electrically connected to one or more electrodes 114 and/or 114′ and electrical sensing module 106 may be configured to receive cardiac electrical signals conducted through electrodes 114 and/or 114′. In some embodiments, the cardiac electrical signals may represent local information from the chamber in which LCP 100 is implanted. For instance, if LCP 100 is implanted within a ventricle of the heart, cardiac electrical signals sensed by LCP 100 through electrodes 114 and/or 114′ may represent ventricular cardiac electrical signals. Mechanical sensing module 108 may include, or be electrically connected to, various sensors, such as accelerometers, blood pressure sensors, heart sound sensors, blood-oxygen sensors, and/or other sensors which measure one or more physiological parameters of the heart and/or patient. Mechanical sensing module 108, when present, may gather signals from the sensors indicative of the various physiological parameters. Both electrical sensing module 106 and mechanical sensing module 108 may be connected to processing module 110 and may provide signals representative of the sensed cardiac electrical signals and/or physiological signals to processing module 110. Although described with respect to
Processing module 110 may be configured to control the operation of LCP 100. For example, processing module 110 may be configured to receive cardiac electrical signals from electrical sensing module 106 and/or physiological signals from mechanical sensing module 108. Based on the received signals, processing module 110 may determine, for example, occurrences and types of arrhythmias. Processing module 110 may further receive information from communication module 102. In some embodiments, processing module 110 may additionally use such received information to determine occurrences and types of arrhythmias. However, in other embodiments, LCP 100 may use the received information instead of the signals received from electrical sensing module 106 and/or mechanical sensing module 108—for instance if the received information is more accurate than the signals received from electrical sensing module 106 and/or mechanical sensing module 108 or if electrical sensing module 106 and/or mechanical sensing module 108 have been disabled or omitted from LCP 100.
Based on a determined arrhythmia, processing module 110 may control pulse generator module 104 to generate electrical stimulation pulses in accordance with one or more electrical stimulation therapies to treat the determined arrhythmia. For example, processing module 110 may control pulse generator module 104 to generate pacing pulses with varying parameters and in different sequences to effectuate one or more electrical stimulation therapies. For example, in controlling pulse generator module 104 to deliver bradycardia pacing therapy, processing module 110 may control pulse generator module 104 to deliver pacing pulses designed to capture the heart of the patient at a regular interval to help prevent the heart of a patient from falling below a predetermined threshold. In some cases, the rate of pacing may be increased with an increased activity level of the patient (e.g. rate adaptive pacing). For ATP therapy, processing module 110 may control pulse generator module 104 to deliver pacing pulses at a rate faster than an intrinsic heart rate of a patient in attempt to force the heart to beat in response to the delivered pacing pulses rather than in response to intrinsic cardiac electrical signals. Once the heart is following the pacing pulses, processing module 110 may control pulse generator module 104 to reduce the rate of delivered pacing pulses down to a safer level. In CRT, processing module 110 may control pulse generator module 104 to deliver pacing pulses in coordination with another device to cause the heart to contract more efficiently. In cases where pulse generator module 104 is capable of generating defibrillation and/or cardioversion pulses for defibrillation/cardioversion therapy, processing module 110 may control pulse generator module 104 to generate such defibrillation and/or cardioversion pulses. In some cases, processing module 110 may control pulse generator module 104 to generate electrical stimulation pulses to provide electrical stimulation therapies different than those examples described above.
Aside from controlling pulse generator module 104 to generate different types of electrical stimulation pulses and in different sequences, in some embodiments, processing module 110 may also control pulse generator module 104 to generate the various electrical stimulation pulses with varying pulse parameters. For example, each electrical stimulation pulse may have a pulse width and a pulse amplitude. Processing module 110 may control pulse generator module 104 to generate the various electrical stimulation pulses with specific pulse widths and pulse amplitudes. For example, processing module 110 may cause pulse generator module 104 to adjust the pulse width and/or the pulse amplitude of electrical stimulation pulses if the electrical stimulation pulses are not effectively capturing the heart. Such control of the specific parameters of the various electrical stimulation pulses may help LCP 100 provide more effective delivery of electrical stimulation therapy.
In some embodiments, processing module 110 may further control communication module 102 to send information to other devices. For example, processing module 110 may control communication module 102 to generate one or more communication pulses for communicating with other devices of a system of devices. For instance, processing module 110 may control communication module 102 to generate communication pulses in particular sequences, where the specific sequences convey different information. Communication module 102 may also receive communication signals for potential action by processing module 110.
In further embodiments, processing module 110 may control switching circuitry by which communication module 102 and pulse generator module 104 deliver communication pulses and/or electrical stimulation pulses to tissue of the patient. As described above, both communication module 102 and pulse generator module 104 may include circuitry for connecting one or more electrodes 114 and/114′ to communication module 102 and/or pulse generator module 104 so those modules may deliver the communication pulses and electrical stimulation pulses to tissue of the patient. The specific combination of one or more electrodes by which communication module 102 and/or pulse generator module 104 deliver communication pulses and electrical stimulation pulses may influence the reception of communication pulses and/or the effectiveness of electrical stimulation pulses. Although it was described that each of communication module 102 and pulse generator module 104 may include switching circuitry, in some embodiments, LCP 100 may have a single switching module connected to the communication module 102, the pulse generator module 104, and electrodes 114 and/or 114′. In such embodiments, processing module 110 may control the switching module to connect modules 102/104 and electrodes 114/114′ as appropriate.
In some embodiments, processing module 110 may include a pre-programmed chip, such as a very-large-scale integration (VLSI) chip or an application specific integrated circuit (ASIC). In such embodiments, the chip may be pre-programmed with control logic in order to control the operation of LCP 100. By using a pre-programmed chip, processing module 110 may use less power than other programmable circuits while able to maintain basic functionality, thereby potentially increasing the battery life of LCP 100. In other instances, processing module 110 may include a programmable microprocessor or the like. Such a programmable microprocessor may allow a user to adjust the control logic of LCP 100 after manufacture, thereby allowing for greater flexibility of LCP 100 than when using a pre-programmed chip.
Processing module 110, in additional embodiments, may include a memory circuit and processing module 110 may store information on and read information from the memory circuit. In other embodiments, LCP 100 may include a separate memory circuit (not shown) that is in communication with processing module 110, such that processing module 110 may read and write information to and from the separate memory circuit. The memory circuit, whether part of processing module 110 or separate from processing module 110, may be volatile memory, non-volatile memory, or a combination of volatile memory and non-volatile memory.
Energy storage module 112 may provide a power source to LCP 100 for its operations. In some embodiments, energy storage module 112 may be a non-rechargeable lithium-based battery. In other embodiments, the non-rechargeable battery may be made from other suitable materials. In some embodiments, energy storage module 112 may include a rechargeable battery. In still other embodiments, energy storage module 112 may include other types of energy storage devices such as super capacitors.
To implant LCP 100 inside a patient's body, an operator (e.g., a physician, clinician, etc.), may fix LCP 100 to the cardiac tissue of the patient's heart. To facilitate fixation, LCP 100 may include one or more anchors 116. Anchor 116 may include any number of fixation or anchoring mechanisms. For example, anchor 116 may include one or more pins, staples, threads, screws, helix, tines, and/or the like. In some embodiments, although not shown, anchor 116 may include threads on its external surface that may run along at least a partial length of anchor 116. The threads may provide friction between the cardiac tissue and the anchor to help fix anchor 116 within the cardiac tissue. In other embodiments, anchor 116 may include other structures such as barbs, spikes, or the like to facilitate engagement with the surrounding cardiac tissue.
While MD 200 may be another leadless device such as shown in
Leads 212, in some embodiments, may additionally contain one or more sensors, such as accelerometers, blood pressure sensors, heart sound sensors, blood-oxygen sensors, and/or other sensors which are configured to measure one or more physiological parameters of the heart and/or patient. In such embodiments, mechanical sensing module 208 may be in electrical communication with leads 212 and may receive signals generated from such sensors.
While not required, in some embodiments MD 200 may be an implantable medical device. In such embodiments, housing 220 of MD 200 may be implanted in, for example, a transthoracic region of the patient. Housing 220 may generally include any of a number of known materials that are safe for implantation in a human body and may, when implanted, hermetically seal the various components of MD 200 from fluids and tissues of the patient's body. In such embodiments, leads 212 may be implanted at one or more various locations within the patient, such as within the heart of the patient, adjacent to the heart of the patient, adjacent to the spine of the patient, or any other desired location.
In some embodiments, MD 200 may be an implantable cardiac pacemaker (ICP). In these embodiments, MD 200 may have one or more leads, for example leads 212, which are implanted on or within the patient's heart. The one or more leads 212 may include one or more electrodes 214 that are in contact with cardiac tissue and/or blood of the patient's heart. MD 200 may be configured to sense intrinsically generated cardiac electrical signals and determine, for example, one or more cardiac arrhythmias based on analysis of the sensed signals. MD 200 may be configured to deliver CRT, ATP therapy, bradycardia therapy, and/or other therapy types via leads 212 implanted within the heart. In some embodiments, MD 200 may additionally be configured to provide defibrillation/cardioversion therapy.
In some instances, MD 200 may be an implantable cardioverter-defibrillator (ICD). In such embodiments, MD 200 may include one or more leads implanted within a patient's heart. MD 200 may also be configured to sense electrical cardiac signals, determine occurrences of tachyarrhythmias based on the sensed electrical cardiac signals, and deliver defibrillation and/or cardioversion therapy in response to determining an occurrence of a tachyarrhythmia (for example by delivering defibrillation and/or cardioversion pulses to the heart of the patient). In other embodiments, MD 200 may be a subcutaneous implantable cardioverter-defibrillator (SICD). In embodiments where MD 200 is an SICD, one of leads 212 may be a subcutaneously implanted lead. In at least some embodiments where MD 200 is an SICD, MD 200 may include only a single lead which is implanted subcutaneously but outside of the chest cavity, however this is not required.
In some embodiments, MD 200 may not be an implantable medical device. Rather, MD 200 may be a device external to the patient's body, and electrodes 214 may be skin-electrodes that are placed on a patient's body. In such embodiments, MD 200 may be able to sense surface electrical signals (e.g. electrical cardiac signals that are generated by the heart or electrical signals generated by a device implanted within a patient's body and conducted through the body to the skin). In such embodiments, MD 200 may be configured to deliver various types of electrical stimulation therapy, including, for example, defibrillation therapy.
Various devices of system 300 may communicate via communication pathway 308. For example, LCPs 302 and/or 304 may sense intrinsic cardiac electrical signals and may communicate such signals to one or more other devices 302/304, 306, and 310 of system 300 via communication pathway 308. In one embodiment, one or more of devices 302/304 may receive such signals and, based on the received signals, determine an occurrence of an arrhythmia. In some cases, device or devices 302/304 may communicate such determinations to one or more other devices 306 and 310 of system 300. In some cases, one or more of devices 302/304, 306, and 310 of system 300 may take action based on the communicated determination of an arrhythmia, such as by delivering a suitable electrical stimulation to the heart of the patient. One or more of devices 302/304, 306, and 310 of system 300 may additionally communicate command or response messages via communication pathway. The command messages may cause a receiving device to take a particular action whereas response messages may include requested information or a confirmation that a receiving device did, in fact, receive a communicated message or data.
It is contemplated that the various devices of system 300 may communicate via pathway 308 using conducted signals, RF signals, inductive coupling, optical signals, acoustic signals, or any other signals suitable for communication. In some instances, the various devices of system 300 may communicate via pathway 308 using different signal types. For instance, other sensors/device 310 may communicate with external device 306 using a first signal type (e.g. RF communication) but communicate with LCPs 302/304 using a second signal type (e.g. conducted communication). Further, in some embodiments, communication between devices may be limited. For instance, as described above, in some embodiments, LCPs 302/304 may communicate with external device 306 only through other sensors/devices 310, where LCPs 302/304 send signals to other sensors/devices 310, and other sensors/devices 310 relay the received signals to external device 306. This is just one example.
In some cases, the various devices of system 300 may communicate via pathway 308 using conducted communication signals. Accordingly, devices of system 300 may have components that allow for such conducted communication. For instance, the devices of system 300 may be configured to transmit conducted communication signals (e.g. current and/or voltage pulses) into the patient's body via one or more electrodes of a transmitting device, and may receive the conducted communication signals (e.g. pulses) via one or more electrodes of a receiving device. The patient's body may “conduct” the conducted communication signals (e.g. pulses) from the one or more electrodes of the transmitting device to the electrodes of the receiving device in the system 300. In such embodiments, the delivered conducted communication signals (e.g. pulses) may differ from pacing pulses, defibrillation and/or cardioversion pulses, or other electrical stimulation therapy signals. For example, the devices of system 300 may deliver electrical communication pulses at an amplitude/pulse width that is sub-threshold (e.g. does not capture the heart, phrenic nerve, and/or other tissue). Although, in some cases, the amplitude/pulse width of the delivered electrical communication pulses may be above a capture threshold, but may be delivered during an irrelevant time period. For example, the amplitude/pulse width of the delivered electrical communication pulses may be above a capture threshold of the heart, but may be delivered during a refractory period of the heart and/or may be incorporated in or modulated onto a pacing pulse, as desired.
Delivered electrical communication pulses may be modulated in any suitable manner to encode communicated information. In some cases, the communication pulses may be pulse width modulated and/or amplitude modulated. Alternatively, or in addition, the time between pulses may be modulated to encode desired information. In some cases, conducted communication pulses may be voltage pulses, current pulses, biphasic voltage pulses, biphasic current pulses, or any other suitable electrical pulse as desired.
In
The medical device systems 400 and 500 may also include an external support device, such as external support devices 420 and 520. External support devices 420 and 520 can be used to perform functions such as device identification, device programming and/or transfer of real-time and/or stored data between devices using one or more of the communication techniques described herein. As one embodiment, communication between external support device 420 and the pulse generator 406 is performed via a wireless mode, and communication between the pulse generator 406 and LCP 402 is performed via a conducted mode. In some embodiments, communication between the LCP 402 and external support device 420 is accomplished by sending communication information through the pulse generator 406. However, in other embodiments, communication between the LCP 402 and external support device 420 may be via a communication module.
Using the system of
In some embodiments, the ICD may operate to determine occurrences of tachyarrhythmias and types of tachyarrhythmias in accordance with the illustrative flow chart shown in
If, however, the correlation between the current heart beat and the template beat is not greater than or equal to the first correlation threshold, the ICD may then compare the morphology of the current heart beat with the morphology of one or more previous heart beats, as at 607. For example, the ICD may isolate the QRS complexes of the current heart beat and the previous heart beat and perform a correlation analysis between the morphologies of the two beats. If the correlation between the two beats is less than a second correlation threshold, the ICD may determine that the tachyarrhythmia is a polymorphic ventricular tachyarrhythmia (PVT), as at 609. However, if the correlation between the two beats is greater than or equal to the second correlation threshold, the ICD may further compare the width of the QRS complex of the current beat with the width of the QRS complex of the template normal beat, as at 611. For example, the ICD may compare the difference in QRS widths between the current beat and the template beat to a QRS width threshold. If the difference in QRS widths is greater than or equal to the QRS width threshold (indicating that the width of the QRS complex of the current beat is wider than the width of the QRS complex of the template beat by a threshold amount), the ICD may determine that the tachyarrhythmia is a monomorphic ventricular tachyarrhythmia (MVT), as at 613. However, if the ICD determines that the difference in QRS widths is less than the QRS width threshold (indicating that the width of the QRS complex of the current beat is narrower than the width of the QRS complex of the template beat), the ICD may determine that the tachyarrhythmia is a supraventricular tachyarrhythmia (SVT), as at 615.
It should be noted that the flow chart of
Where the ICD discriminates between different types of tachyarrhythmias, the ICD may coordinate with LCP 402 to implement differing treatment protocols. For example, the ICD may have stored in memory a first set of tachyarrhythmia types. If the determined tachyarrhythmia is one of the types of tachyarrhythmias in the first set of tachyarrhythmia types, the ICD may communicate an instruction to LCP 402 to initiate application of ATP therapy. In some cases, the ICD may also wait to initiate charging of its charge storage device for delivery of defibrillation and/or cardioversion therapy. The ICD may then monitor the cardiac electrical signals to determine if the ATP therapy delivered by LCP 402 terminates the tachyarrhythmia. If the ICD determines that the tachyarrhythmia was not terminated by the ATP, the ICD may initiate charging of its charge storage device and deliver defibrillation and/or cardioversion therapy once the charge is complete. In determining whether the delivery of ATP therapy has terminated the tachyarrhythmia, the ICD may determine the current heart rate and compare it to a threshold or compare it to the heart rate at the time the tachyarrhythmia was detected. If the heart rate is less than the comparison heart rate, the ICD may determine that the tachyarrhythmia was terminated. In other embodiments, the ICD may perform the process detailed in
In embodiments where the types of tachyarrhythmias in the first set of tachyarrhythmia types are types that are likely to be susceptible to ATP therapy, the ICD may conserve energy by waiting to charge its charge storage device until after confirmation that the ATP therapy failed to terminate the tachyarrhythmia. In some embodiments, the types of tachyarrhythmia in the first set of tachyarrhythmia types may include MVT. However, in other embodiments, PVT may also be included in the first set of tachyarrhythmia types. In still other embodiments, SVT and/or VF may also be included in the first set of tachyarrhythmia types. These are just examples.
In embodiments where the type of tachyarrhythmia is not one of the tachyarrhythmias in the first set of tachyarrhythmia types, the ICD may not send the instruction to LCP 402 to initiate ATP therapy. Instead, the ICD may initiate charging of the charge storage device and deliver defibrillation and/or cardioversion therapy once the charging is complete. In some embodiments, VF may be excluded from the first set of tachyarrhythmia types. In some embodiments, PVT and/or SVT may be excluded from the first set of tachyarrhythmia types.
In some instances, the ICD may alter the treatment protocol based on the determined type of tachyarrhythmia. For instance, if the ICD determines that the tachyarrhythmia is one of the tachyarrhythmia types in the first set of tachyarrhythmia types, the ICD may send the instruction to LCP 402 to initiate ATP therapy but also begin charging its charge storage device for delivery of defibrillation and/or cardioversion therapy. This may best be applied when the determined type of tachyarrhythmia has some non-trivial chance that ATP therapy would terminate the tachyarrhythmia, but is still un-likely to be successful. The ICD may monitor the cardiac electrical activity while charging the charge storage device and while LCP 402 is delivering ATP therapy. If delivery of ATP therapy does actually terminate the tachyarrhythmia, the ICD may terminate the charging of its charge storage device, and then subsequently slowly leak off the accumulated charge without performing defibrillation and/or cardioversion therapy. In such embodiments, the ICD may save some energy by not unnecessarily fully charging its charge storage device, and may also not harm or scare the patient by delivering an unnecessary defibrillation and/or cardioversion pulse. If delivery of ATP therapy fails to terminate the tachyarrhythmia, the ICD may continue to fully charge the charge storage device and perform defibrillation and/or cardioversion therapy. In these embodiments, the ICD has saved time between the detection of the tachyarrhythmia and the delivery of the defibrillation and/or cardioversion therapy by initiating charging of its charge storage device earlier than if the determined tachyarrhythmia was one of the first set of tachyarrhythmia types. In some embodiments, the charge storage device may begin charging, without first waiting for ATP therapy, when the tachyarrhythmia is a PVT or SVT type tachyarrhythmia. In other embodiments, the charge storage device may begin charging, without first waiting for ATP therapy, when the tachyarrhythmia is a MVT and/or VF.
In additional or alternative embodiments, the instruction sent to LCP 402 to initiate ATP therapy may include one or more ATP parameters that define one or more characteristics of the ATP therapy. For example, the instruction may specify a number of ATP therapy attempts that are to be attempted by LCP 402 before terminating the ATP therapy protocol. For instance, if the tachyarrhythmia type is a first type of tachyarrhythmia, the ICD may communicate an instruction that LCP 402 should attempt a defined ATP therapy two, or three, or five, or any other suitable number of times. Each attempt may include applying a plurality of spaced ATP pulses to the heart. If the tachyarrhythmia type is a second type of tachyarrhythmia, different and distinguishable from the first type of tachyarrhythmia, the ICD may communicate an instruction that LCP 402 should only provide one ATP therapy attempt. For example, for MVT, ATP therapy may be applied in multiple bursts (sometimes as programmed by a clinician) and more time may be allowed to terminate the tachyarrhythmia given the higher chance of success for ATP therapy when applied to MVT, whereas for other types of tachyarrhythmia (e.g. PVT, SVT and/or VF), it may be more appropriate to apply a single burst (single ATP attempt) to help reduce the time to defibrillation and/or cardioversion therapy given the lower chance of success for ATP therapy.
In some cases, the charge storage device of the ICD may be charged in parallel with the ATP therapy delivered by the LCP 402. In these cases, the instruction sent to LCP 402 may command LCP 402 to perform a number of ATP therapy attempts that tend to fill up the time it takes the ICD to charge its charge storage device. In other instances, each instruction the ICD sends to LCP 402 commanding LCP 402 to perform ATP therapy may instruct LCP 402 to perform a single ATP attempt. Then, if the ICD determines that the ATP attempt did not terminate the detected tachyarrhythmia, the ICD may communicate an additional instruction to LCP 402 to perform another ATP attempt. In such instances, the result may be that the ICD may communicate a different number of instructions for delivery of ATP therapy, depending on whether the ATP therapy was successful or not.
The instructions sent by the ICD to the LCP 402 commanding LCP 402 to perform ATP may define one or more characteristics of the ATP therapy. Example parameters may include a number of ATP bursts—e.g. ATP pulses—to be delivered by LCP 402 during each ATP therapy attempt. This parameter may be in addition to the number of ATP therapy attempts or an alternative. In some embodiments, the number of ATP pulses may be specified differently for each ATP therapy attempt, where LCP 402 is instructed to perform multiple ATP therapy attempts. Also, the number of ATP pulses may be specified differently depending on the determined type of tachyarrhythmia. Additionally, in embodiments where the instruction to LCP 402 includes a number of ATP therapy attempts, the instructions may, in some embodiments, further include specific rates of ATP pulse delivery during each ATP therapy attempt. As with the number of ATP pulses in each attempt, the rates of ATP pulse delivery may differ between ATP therapy attempts and/or depending on the detected tachyarrhythmia type. Additionally, or alternatively, the instructions may specify a length of a break period between ATP therapy attempts. Other example parameters may include a pulse amplitude and/or a pulse width of the ATP pulses to be delivered during each ATP therapy attempt. As with the other parameters, the instructions may specify different amplitudes and/or pulse widths for each ATP therapy attempt and/or based on the determined type of tachyarrhythmia.
The instructions sent by the ICD to the LCP 402 commanding LCP 402 to perform ATP may additionally, or alternatively, include an instruction to perform ATP according one of a number of methods. According to a burst method, LCP 402 may deliver consecutive electrical stimulation pulses with a constant time interval between each electrical stimulation pulse. Additionally, when delivering ATP according to the burst method, LCP 402 may deliver each sequence of electrical stimulation pulses with a constant time interval between each of the sequences of electrical stimulation pulses. In another method, the ramp method, LCP 402 may deliver electrical stimulation pulses within a sequence of electrical stimulation pulses, or ATP therapy attempt, with a decreasing time interval between each pair of successive electrical stimulation pulses. In yet another method, the scan method, LCP 402 may deliver sequences of electrical stimulation pulses, or ATP therapy attempts, with a time interval between electrical stimulation pulses within each sequence of electrical stimulation pulses that decreases for each successive sequence of electrical stimulation pulses. In still another method, the ramp/scan method, LCP 402 may deliver ATP therapy according to the features of both the ramp method and the scan method.
In embodiments where the ICD includes an instruction to perform ATP according to specific method, the specific method may depend at least partially on the type of cardiac arrhythmia. For instance, if the arrhythmia is one of the first set of arrhythmia types, the ICD may communicate a message to LCP 402 to perform ATP therapy according to the burst method. However, if the arrhythmia type is one of the second set of arrhythmia types, the ICD may communicate a message to LCP 402 to perform ATP therapy according to the ramp method. Of course, in other embodiments, the type of method associated with each arrhythmia type may differ and may be any of the burst, ramp, scan, or ramp/scan methods.
In some embodiments, the types of tachyarrhythmias in the first and second sets of tachyarrhythmia types may be user programmable. For instance, as described with respect to
In some embodiments, the types of tachyarrhythmias in the first and second sets of tachyarrhythmia types may depend at least partially on the level of charge in the energy storage module that powers the ICD. For example, the ICD may determine a percentage of remaining energy capacity of energy storage module 218. The ICD may begin with, for example, MVT and PVT in the first set of tachyarrhythmia types, and PVT in the second set of tachyarrhythmia types. That is, if either MVT or PVT is detected, the ICD may send an instruction to the LCP 402 to initiate the application of ATP therapy by the LCP 402. If PVT is detected, the ICD may initiate charging of the charge storage device, and if MVT is detected, the ICD may wait on initiating charging of the charge storage device until ATP is given a chance to terminate the tachyarrhythmia. Once the ICD determines that the percentage of capacity of remaining energy storage module 218 has dropped below, for example, fifty percent, the ICD may recommend and/or automatically remove PVT from the first set of tachyarrhythmia types. Then, if the ICD detects PVT, the ICD may not send an instruction to the LCP 402 to initiate the application of ATP therapy by the LCP 402. Removing PVT from the first set of tachyarrhythmia types may help increase the remaining life of the battery of the ICD by not performing ATP therapy in cases wherein ATP therapy is less likely to be successful (e.g. PVT verses MVT). This is just one example. In other embodiments, different types of tachyarrhythmias may be moved, added or deleted from each of the sets. In some cases, one or more thresholds may be used for adjusting which tachyarrhythmia types are in each set of tachyarrhythmia types.
In some embodiments, MD 200 may determine an occurrence of a cardiac arrhythmia, as shown at 701. In some cases, MD 200 may determine an occurrence of a cardiac arrhythmia, and specifically a tachyarrhythmia, according to the flow diagram of
After determining a type of cardiac arrhythmia, MD 200 may, if the determined type of cardiac arrhythmia is one of a first set of cardiac arrhythmia types, send an instruction for reception by a Leadless Cardiac Pacemaker (LCP) to initiate the application of ATP therapy by the LCP, as shown at 705. In some embodiments, the instruction may include one or more parameters that define a characteristic of the ATP therapy. Some example parameters include a number of ATP therapy attempts, a number of ATP bursts in each ATP therapy attempt, a length of a break between ATP therapy attempts, an amplitude and/or pulse width of each ATP burst, among other parameters. If the determined type of cardiac arrhythmia is not one of the first set of cardiac arrhythmia types, MD 200 may not send the instruction to the LCP, as shown at 707.
In some additional or alternative embodiments, MD 200 may further begin charging a charge storage device (for instance, a charge storage device that may be a part of pulse generator module 204) if the determined type of the cardiac arrhythmia is one of a second set of cardiac arrhythmia types in addition to sending the instruction. However, if the determined type of tachyarrhythmia is not one of the second set of cardiac arrhythmia types, MD 200 may wait to charge the charge storage device until after confirming that the delivered ATP therapy failed to terminate the tachyarrhythmia.
In some embodiments, MD 200 may determine an occurrence of a cardiac arrhythmia, as shown at 801. In some cases, MD 200 may determine an occurrence of a cardiac arrhythmia, and specifically a tachyarrhythmia, according to the flow diagram of
After sending the instruction, MD 200 may determine a type of the detected cardiac arrhythmia from two or more types of cardiac arrhythmias, as shown at 805. For example, MD 200 may discriminate between two or more different cardiac arrhythmias types. In embodiments where MD 200 discriminates between different types of tachyarrhythmias, MD 200 may operate according to a method detailed in
After determining a type of cardiac arrhythmia, MD 200 may, if the determined type of cardiac arrhythmia is one of a first set of cardiac arrhythmia types, wait to initiate charging of its charge storage device, as shown at 807. For instance, MD 200 may monitor received electrical cardiac signals during and after delivery of ATP therapy by the LCP. In these embodiments, MD 200 may attempt to save battery energy by waiting until confirming that the delivery of ATP therapy did not terminate the tachycardia. Once MD 200 has confirmed that delivery of ATP therapy has failed to terminate the tachycardia, MD 200 may initiate charging of its charge storage device for delivery of defibrillation and/or cardioversion therapy. In instances where delivery of ATP therapy did terminate the tachycardia, MD 200 has saved energy by not charging its charge storage device.
However, if the determine type of cardiac arrhythmia is not one of the first set of cardiac arrhythmia types, MD 200 may initiate charging of its charge storage device, as shown at 809. In some embodiments, while charging its charge storage device, MD 200 may monitor received cardiac electrical signals. MD 200 may determine, based at least in part on the received signals, whether delivery of ATP therapy by the LCP has terminated the tachycardia. If MD 200 determines that the delivery of ATP therapy has terminated the tachycardia, MD 200 may cease charging its charge storage device. MD 200 may then slowly leak off the accumulated charge. However, if MD 200 determines that the delivery of ATP therapy has not terminated the tachycardia, MD 200 may deliver defibrillation and/or cardioversion therapy once charging of its charge storage device is complete.
The above description of determining occurrences of tachyarrhythmias and discriminating between the various tachyarrhythmia types used a system including an ICD/SICD and an LCP as an example only. In other embodiments, other devices may be used as part of the system implementing the disclosed techniques. In still other embodiments, a system implementing the disclosed techniques may include additional devices. In such embodiments, determining occurrences of tachyarrhythmias, discriminating between the different types of tachyarrhythmias, communicating instructions, delivering ATP therapy, and/or delivering defibrillation/cardioversion therapy may be coordinated between the devices, as desired.
Those skilled in the art will recognize that the present disclosure may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. For instance, as described herein, various embodiments include one or more modules described as performing various functions. However, other embodiments may include additional modules that split the described functions up over more modules than that described herein. Additionally, other embodiments may consolidate the described functions into fewer modules. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present disclosure as described in the appended claims.
This is a continuation of co-pending U.S. patent application Ser. No. 15/587,033, filed May 4, 2017, which is a continuation of co-pending U.S. patent application Ser. No. 15/012,443 filed Feb. 1, 2016, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/113,173 filed on Feb. 6, 2015, both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3835864 | Rasor et al. | Sep 1974 | A |
3943936 | Rasor et al. | Mar 1976 | A |
4142530 | Wittkampf | Mar 1979 | A |
4151513 | Menken et al. | Apr 1979 | A |
4157720 | Greatbatch | Jun 1979 | A |
RE30366 | Rasor et al. | Aug 1980 | E |
4250884 | Hartlaub et al. | Feb 1981 | A |
4256115 | Bilitch | Mar 1981 | A |
4263919 | Levin | Apr 1981 | A |
4310000 | Lindemans | Jan 1982 | A |
4312354 | Walters | Jan 1982 | A |
4323081 | Wiebusch | Apr 1982 | A |
4333470 | Barthel | Jun 1982 | A |
4357946 | Dutcher et al. | Nov 1982 | A |
4365639 | Goldreyer | Dec 1982 | A |
4440173 | Hudziak et al. | Apr 1984 | A |
4476868 | Thompson | Oct 1984 | A |
4522208 | Buffet | Jun 1985 | A |
4531527 | Reinhold, Jr. et al. | Jul 1985 | A |
4539999 | Mans | Sep 1985 | A |
4556063 | Thompson et al. | Dec 1985 | A |
4562841 | Brockway et al. | Jan 1986 | A |
4585004 | Brownlee | Apr 1986 | A |
4589420 | Adams et al. | May 1986 | A |
4593702 | Kepski et al. | Jun 1986 | A |
4593955 | Leiber | Jun 1986 | A |
4630611 | King | Dec 1986 | A |
4635639 | Hakala et al. | Jan 1987 | A |
RE32378 | Barthel | Mar 1987 | E |
4674508 | DeCote | Jun 1987 | A |
4712554 | Garson | Dec 1987 | A |
4729376 | DeCote | Mar 1988 | A |
4754753 | King | Jul 1988 | A |
4759366 | Callaghan | Jul 1988 | A |
4787389 | Tarjan | Nov 1988 | A |
4793353 | Borkan | Dec 1988 | A |
4819662 | Heil et al. | Apr 1989 | A |
4858610 | Callaghan et al. | Aug 1989 | A |
4884345 | Long | Dec 1989 | A |
4886064 | Strandberg | Dec 1989 | A |
4924875 | Chamoun | May 1990 | A |
4928688 | Mower | May 1990 | A |
4967746 | Vandegriff | Nov 1990 | A |
4987897 | Funke | Jan 1991 | A |
4989602 | Sholder et al. | Feb 1991 | A |
5000189 | Throne et al. | Mar 1991 | A |
5002052 | Haluska | Mar 1991 | A |
5012806 | De Bellis | May 1991 | A |
5014698 | Cohen | May 1991 | A |
5036849 | Hauck et al. | Aug 1991 | A |
5058581 | Silvian | Oct 1991 | A |
5078134 | Heilman et al. | Jan 1992 | A |
5107850 | Olive | Apr 1992 | A |
5109845 | Yuuchi et al. | May 1992 | A |
5113859 | Funke | May 1992 | A |
5113869 | Nappholz et al. | May 1992 | A |
5117824 | Keimel et al. | Jun 1992 | A |
5127401 | Grevious et al. | Jul 1992 | A |
5133353 | Hauser | Jul 1992 | A |
5139028 | Steinhaus et al. | Aug 1992 | A |
5144950 | Stoop et al. | Sep 1992 | A |
5156148 | Cohen | Oct 1992 | A |
5161527 | Nappholz et al. | Nov 1992 | A |
5170784 | Ramon et al. | Dec 1992 | A |
5179945 | Von Hofwegen et al. | Jan 1993 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5193550 | Duffin | Mar 1993 | A |
5205283 | Olson | Apr 1993 | A |
5215098 | Steinhaus et al. | Jun 1993 | A |
5217021 | Steinhaus et al. | Jun 1993 | A |
5241961 | Henry | Sep 1993 | A |
5243977 | Trabucco et al. | Sep 1993 | A |
5255186 | Steinhaus et al. | Oct 1993 | A |
5265602 | Anderson et al. | Nov 1993 | A |
5269326 | Verrier | Dec 1993 | A |
5271411 | Ripley et al. | Dec 1993 | A |
5273049 | Steinhaus et al. | Dec 1993 | A |
5275621 | Mehra | Jan 1994 | A |
5284136 | Hauck et al. | Feb 1994 | A |
5292348 | Saumarez et al. | Mar 1994 | A |
5300107 | Stokes et al. | Apr 1994 | A |
5301677 | Hsung | Apr 1994 | A |
5312439 | Loeb | May 1994 | A |
5312445 | Nappholz et al. | May 1994 | A |
5313953 | Yomtov et al. | May 1994 | A |
5314459 | Swanson et al. | May 1994 | A |
5318597 | Hauck et al. | Jun 1994 | A |
5324310 | Greeninger et al. | Jun 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5334222 | Salo et al. | Aug 1994 | A |
5342408 | Decoriolis et al. | Aug 1994 | A |
5360436 | Alt et al. | Nov 1994 | A |
5366487 | Adams et al. | Nov 1994 | A |
5372606 | Lang et al. | Dec 1994 | A |
5376106 | Stahmann et al. | Dec 1994 | A |
5378775 | Shimizu et al. | Jan 1995 | A |
5379775 | Kruse | Jan 1995 | A |
5379776 | Murphy et al. | Jan 1995 | A |
5383915 | Adams | Jan 1995 | A |
5388578 | Yomtov et al. | Feb 1995 | A |
5400795 | Murphy et al. | Mar 1995 | A |
5404877 | Nolan et al. | Apr 1995 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5411031 | Yomtov | May 1995 | A |
5411525 | Swanson et al. | May 1995 | A |
5411535 | Fujii et al. | May 1995 | A |
5447524 | Alt | Sep 1995 | A |
5448997 | Kruse et al. | Sep 1995 | A |
5456261 | Luczyk | Oct 1995 | A |
5456691 | Snell | Oct 1995 | A |
5458623 | Lu et al. | Oct 1995 | A |
5466246 | Silvian | Nov 1995 | A |
5468254 | Hahn et al. | Nov 1995 | A |
5503160 | Pering et al. | Apr 1996 | A |
5509927 | Epstein et al. | Apr 1996 | A |
5520191 | Karlsson et al. | May 1996 | A |
5522866 | Fernald | Jun 1996 | A |
5531767 | Fain | Jul 1996 | A |
5540727 | Tockman et al. | Jul 1996 | A |
5545186 | Olson et al. | Aug 1996 | A |
5545202 | Dahl et al. | Aug 1996 | A |
5591214 | Lu | Jan 1997 | A |
5620466 | Haefner et al. | Apr 1997 | A |
5620471 | Duncan | Apr 1997 | A |
5630425 | Panescu et al. | May 1997 | A |
5634468 | Platt et al. | Jun 1997 | A |
5634938 | Swanson et al. | Jun 1997 | A |
5645070 | Turcott | Jul 1997 | A |
5662688 | Haefner et al. | Sep 1997 | A |
5674259 | Gray et al. | Oct 1997 | A |
5682900 | Arand et al. | Nov 1997 | A |
5683425 | Hauptmann | Nov 1997 | A |
5683426 | Greenhut et al. | Nov 1997 | A |
5683432 | Goedeke et al. | Nov 1997 | A |
5712801 | Turcott | Jan 1998 | A |
5713367 | Arnold et al. | Feb 1998 | A |
5713932 | Gillberg et al. | Feb 1998 | A |
5720770 | Nappholz et al. | Feb 1998 | A |
5728154 | Crossett et al. | Mar 1998 | A |
5738105 | Kroll | Apr 1998 | A |
5741314 | Daly et al. | Apr 1998 | A |
5741315 | Lee et al. | Apr 1998 | A |
5752976 | Duffin et al. | May 1998 | A |
5752977 | Grevious et al. | May 1998 | A |
5755736 | Gillberg et al. | May 1998 | A |
5759199 | Snell et al. | Jun 1998 | A |
5766225 | Kramm | Jun 1998 | A |
5774501 | Halpern et al. | Jun 1998 | A |
5776168 | Gunderson | Jul 1998 | A |
5779645 | Olson et al. | Jul 1998 | A |
5792065 | Xue et al. | Aug 1998 | A |
5792202 | Reuter | Aug 1998 | A |
5792203 | Schroeppel | Aug 1998 | A |
5792205 | Alt et al. | Aug 1998 | A |
5792208 | Gray | Aug 1998 | A |
5795303 | Swanson et al. | Aug 1998 | A |
5814089 | Stokes et al. | Sep 1998 | A |
5817133 | Houben | Oct 1998 | A |
5819741 | Karlsson et al. | Oct 1998 | A |
5827197 | Bocek et al. | Oct 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5836985 | Goyal et al. | Nov 1998 | A |
5836987 | Baumann et al. | Nov 1998 | A |
5842977 | Lesho et al. | Dec 1998 | A |
5848972 | Triedman et al. | Dec 1998 | A |
5855593 | Olson et al. | Jan 1999 | A |
5857977 | Caswell et al. | Jan 1999 | A |
5873894 | Vandegriff et al. | Feb 1999 | A |
5873897 | Armstrong et al. | Feb 1999 | A |
5891170 | Nitzsche et al. | Apr 1999 | A |
5891184 | Lee et al. | Apr 1999 | A |
5897586 | Molina | Apr 1999 | A |
5899876 | Flower | May 1999 | A |
5899928 | Sholder et al. | May 1999 | A |
5919214 | Ciciarelli et al. | Jul 1999 | A |
5935078 | Feierbach | Aug 1999 | A |
5935081 | Kadhiresan | Aug 1999 | A |
5941906 | Barreras et al. | Aug 1999 | A |
5954662 | Swanson et al. | Sep 1999 | A |
5954757 | Gray | Sep 1999 | A |
5978707 | Krig et al. | Nov 1999 | A |
5978713 | Prutchi et al. | Nov 1999 | A |
5991660 | Goyal | Nov 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
5999857 | Weijand et al. | Dec 1999 | A |
6026320 | Carlson et al. | Feb 2000 | A |
6044298 | Salo et al. | Mar 2000 | A |
6044300 | Gray | Mar 2000 | A |
6055454 | Heemels | Apr 2000 | A |
6073050 | Griffith | Jun 2000 | A |
6076016 | Feierbach et al. | Jun 2000 | A |
6080187 | Alt et al. | Jun 2000 | A |
6083248 | Thompson | Jul 2000 | A |
6106551 | Crossett et al. | Aug 2000 | A |
6108578 | Bardy et al. | Aug 2000 | A |
6115636 | Ryan | Sep 2000 | A |
6141581 | Olson et al. | Oct 2000 | A |
6141588 | Cox et al. | Oct 2000 | A |
6141592 | Pauly et al. | Oct 2000 | A |
6144879 | Gray | Nov 2000 | A |
6151524 | Krig et al. | Nov 2000 | A |
6162195 | Igo et al. | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6167310 | Grevious | Dec 2000 | A |
6169918 | Haefner et al. | Jan 2001 | B1 |
6178350 | Olson et al. | Jan 2001 | B1 |
6179865 | Hsu et al. | Jan 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6211799 | Post et al. | Apr 2001 | B1 |
6212428 | Hsu et al. | Apr 2001 | B1 |
6221011 | Bardy | Apr 2001 | B1 |
6223078 | Marcovecchio | Apr 2001 | B1 |
6230055 | Sun et al. | May 2001 | B1 |
6230059 | Duffin | May 2001 | B1 |
6240316 | Richmond et al. | May 2001 | B1 |
6240317 | Villaseca et al. | May 2001 | B1 |
6256534 | Dahl | Jul 2001 | B1 |
6259947 | Olson et al. | Jul 2001 | B1 |
6266554 | Hsu et al. | Jul 2001 | B1 |
6266558 | Gozani et al. | Jul 2001 | B1 |
6266567 | Ishikawa et al. | Jul 2001 | B1 |
6270457 | Bardy | Aug 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6275732 | Hsu et al. | Aug 2001 | B1 |
6277072 | Bardy | Aug 2001 | B1 |
6280380 | Bardy | Aug 2001 | B1 |
6285907 | Kramer et al. | Sep 2001 | B1 |
6292698 | Duffin et al. | Sep 2001 | B1 |
6295473 | Rosar | Sep 2001 | B1 |
6298271 | Weijand | Oct 2001 | B1 |
6308095 | Hsu et al. | Oct 2001 | B1 |
6312378 | Bardy | Nov 2001 | B1 |
6312388 | Marcovecchio et al. | Nov 2001 | B1 |
6315721 | Schulman et al. | Nov 2001 | B2 |
6317632 | Krig et al. | Nov 2001 | B1 |
6336903 | Bardy | Jan 2002 | B1 |
6345202 | Richmond et al. | Feb 2002 | B2 |
6351667 | Godie | Feb 2002 | B1 |
6351669 | Hartley et al. | Feb 2002 | B1 |
6353759 | Hartley et al. | Mar 2002 | B1 |
6358203 | Bardy | Mar 2002 | B2 |
6361780 | Ley et al. | Mar 2002 | B1 |
6368284 | Bardy | Apr 2002 | B1 |
6371922 | Baumann et al. | Apr 2002 | B1 |
6398728 | Bardy | Jun 2002 | B1 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6400990 | Silvian | Jun 2002 | B1 |
6405083 | Rockwell et al. | Jun 2002 | B1 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6411848 | Kramer et al. | Jun 2002 | B2 |
6424865 | Ding | Jul 2002 | B1 |
6430435 | Hsu et al. | Aug 2002 | B1 |
6434417 | Lovett | Aug 2002 | B1 |
6434429 | Kraus et al. | Aug 2002 | B1 |
6438410 | Hsu et al. | Aug 2002 | B2 |
6438417 | Rockwell et al. | Aug 2002 | B1 |
6438421 | Stahmann et al. | Aug 2002 | B1 |
6440066 | Bardy | Aug 2002 | B1 |
6441747 | Khair et al. | Aug 2002 | B1 |
6442426 | Kroll | Aug 2002 | B1 |
6442432 | Lee | Aug 2002 | B2 |
6443891 | Grevious | Sep 2002 | B1 |
6445953 | Bulkes et al. | Sep 2002 | B1 |
6449503 | Hsu | Sep 2002 | B1 |
6453200 | Koslar | Sep 2002 | B1 |
6456871 | Hsu et al. | Sep 2002 | B1 |
6459929 | Hopper et al. | Oct 2002 | B1 |
6470215 | Kraus et al. | Oct 2002 | B1 |
6471645 | Warkentin et al. | Oct 2002 | B1 |
6477404 | Yonce et al. | Nov 2002 | B1 |
6480733 | Turcott | Nov 2002 | B1 |
6480745 | Nelson et al. | Nov 2002 | B2 |
6484055 | Marcovecchio | Nov 2002 | B1 |
6487443 | Olson et al. | Nov 2002 | B2 |
6490487 | Kraus et al. | Dec 2002 | B1 |
6493579 | Gilkerson et al. | Dec 2002 | B1 |
6505067 | Lee et al. | Jan 2003 | B1 |
6507755 | Gozani et al. | Jan 2003 | B1 |
6507759 | Prutchi et al. | Jan 2003 | B1 |
6512940 | Brabec et al. | Jan 2003 | B1 |
6522915 | Ceballos et al. | Feb 2003 | B1 |
6522917 | Hsu et al. | Feb 2003 | B1 |
6522925 | Gilkerson et al. | Feb 2003 | B1 |
6526311 | Begemann | Feb 2003 | B2 |
6526313 | Sweeney et al. | Feb 2003 | B2 |
6542775 | Ding et al. | Apr 2003 | B2 |
6553258 | Stahmann et al. | Apr 2003 | B2 |
6561975 | Pool et al. | May 2003 | B1 |
6564807 | Schulman et al. | May 2003 | B1 |
6574506 | Kramer et al. | Jun 2003 | B2 |
6584352 | Combs et al. | Jun 2003 | B2 |
6597948 | Rockwell et al. | Jul 2003 | B1 |
6597951 | Kramer et al. | Jul 2003 | B2 |
6622046 | Fraley et al. | Sep 2003 | B2 |
6628985 | Sweeney et al. | Sep 2003 | B2 |
6647292 | Bardy et al. | Nov 2003 | B1 |
6658283 | Bornzin et al. | Dec 2003 | B1 |
6658286 | Seim | Dec 2003 | B2 |
6666844 | Igo et al. | Dec 2003 | B1 |
6671548 | Mouchawar et al. | Dec 2003 | B1 |
6687540 | Marcovecchio | Feb 2004 | B2 |
6689117 | Sweeney et al. | Feb 2004 | B2 |
6690959 | Thompson | Feb 2004 | B2 |
6704602 | Berg et al. | Mar 2004 | B2 |
6708058 | Kim et al. | Mar 2004 | B2 |
6718204 | DeGroot et al. | Apr 2004 | B2 |
6718212 | Parry et al. | Apr 2004 | B2 |
6721597 | Bardy et al. | Apr 2004 | B1 |
6728572 | Hsu et al. | Apr 2004 | B2 |
6738670 | Almendinger et al. | May 2004 | B1 |
6745068 | Koyrakh et al. | Jun 2004 | B2 |
6749566 | Russ | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6760615 | Ferek-Petric | Jul 2004 | B2 |
6763269 | Cox | Jul 2004 | B2 |
6766190 | Ferek-Petric | Jul 2004 | B2 |
6778860 | Ostroff et al. | Aug 2004 | B2 |
6788971 | Sloman et al. | Sep 2004 | B1 |
6788974 | Bardy et al. | Sep 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
6847844 | Sun et al. | Jan 2005 | B2 |
6871095 | Stahmann et al. | Mar 2005 | B2 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6885889 | Chinchoy | Apr 2005 | B2 |
6889081 | Hsu | May 2005 | B2 |
6892094 | Ousdigian et al. | May 2005 | B2 |
6897788 | Khair et al. | May 2005 | B2 |
6904315 | Panken et al. | Jun 2005 | B2 |
6922592 | Thompson et al. | Jul 2005 | B2 |
6931282 | Esler | Aug 2005 | B2 |
6934585 | Schloss et al. | Aug 2005 | B1 |
6957107 | Rogers et al. | Oct 2005 | B2 |
6959212 | Hsu et al. | Oct 2005 | B2 |
6978176 | Lattouf | Dec 2005 | B2 |
6978177 | Chen et al. | Dec 2005 | B1 |
6985773 | Von Arx et al. | Jan 2006 | B2 |
7003350 | Denker et al. | Feb 2006 | B2 |
7006864 | Echt et al. | Feb 2006 | B2 |
7013178 | Reinke et al. | Mar 2006 | B2 |
7027871 | Burnes et al. | Apr 2006 | B2 |
7031764 | Schwartz et al. | Apr 2006 | B2 |
7039463 | Marcovecchio | May 2006 | B2 |
7050849 | Echt et al. | May 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7063693 | Guenst | Jun 2006 | B2 |
7082336 | Ransbury et al. | Jul 2006 | B2 |
7085606 | Flach et al. | Aug 2006 | B2 |
7110824 | Amundson et al. | Sep 2006 | B2 |
7120504 | Osypka | Oct 2006 | B2 |
7139613 | Reinke et al. | Nov 2006 | B2 |
7142912 | Wagner et al. | Nov 2006 | B2 |
7146225 | Guenst et al. | Dec 2006 | B2 |
7146226 | Lau et al. | Dec 2006 | B2 |
7149581 | Goedeke | Dec 2006 | B2 |
7149588 | Lau et al. | Dec 2006 | B2 |
7158839 | Lau | Jan 2007 | B2 |
7162307 | Patrias | Jan 2007 | B2 |
7164952 | Lau et al. | Jan 2007 | B2 |
7177700 | Cox | Feb 2007 | B1 |
7181505 | Haller et al. | Feb 2007 | B2 |
7184830 | Echt et al. | Feb 2007 | B2 |
7186214 | Ness | Mar 2007 | B2 |
7191015 | Lamson et al. | Mar 2007 | B2 |
7200437 | Nabutovsky et al. | Apr 2007 | B1 |
7200439 | Zdeblick et al. | Apr 2007 | B2 |
7203535 | Hsu et al. | Apr 2007 | B1 |
7206423 | Feng et al. | Apr 2007 | B1 |
7209790 | Thompson et al. | Apr 2007 | B2 |
7212849 | Zhang et al. | May 2007 | B2 |
7212871 | Morgan | May 2007 | B1 |
7226440 | Gelfand et al. | Jun 2007 | B2 |
7228176 | Smith et al. | Jun 2007 | B2 |
7228183 | Sun et al. | Jun 2007 | B2 |
7236821 | Cates et al. | Jun 2007 | B2 |
7236829 | Farazi et al. | Jun 2007 | B1 |
7254448 | Almendinger et al. | Aug 2007 | B2 |
7260433 | Falkenberg et al. | Aug 2007 | B1 |
7260436 | Kilgore et al. | Aug 2007 | B2 |
7270669 | Sra | Sep 2007 | B1 |
7272448 | Morgan et al. | Sep 2007 | B1 |
7277755 | Falkenberg et al. | Oct 2007 | B1 |
7280872 | Mosesov et al. | Oct 2007 | B1 |
7288096 | Chin | Oct 2007 | B2 |
7289847 | Gill et al. | Oct 2007 | B1 |
7289852 | Helfinstine et al. | Oct 2007 | B2 |
7289853 | Campbell et al. | Oct 2007 | B1 |
7289855 | Nghiem et al. | Oct 2007 | B2 |
7302294 | Kamath et al. | Nov 2007 | B2 |
7305266 | Kroll | Dec 2007 | B1 |
7310556 | Bulkes | Dec 2007 | B2 |
7319905 | Morgan et al. | Jan 2008 | B1 |
7333853 | Mazar et al. | Feb 2008 | B2 |
7336994 | Hettrick et al. | Feb 2008 | B2 |
7347819 | Lebel et al. | Mar 2008 | B2 |
7366572 | Heruth et al. | Apr 2008 | B2 |
7373207 | Lattouf | May 2008 | B2 |
7384403 | Sherman | Jun 2008 | B2 |
7386342 | Falkenberg et al. | Jun 2008 | B1 |
7392090 | Sweeney et al. | Jun 2008 | B2 |
7406105 | DelMain et al. | Jul 2008 | B2 |
7406349 | Seeberger et al. | Jul 2008 | B2 |
7410497 | Hastings et al. | Aug 2008 | B2 |
7425200 | Brockway et al. | Sep 2008 | B2 |
7433739 | Salys et al. | Oct 2008 | B1 |
7496409 | Greenhut et al. | Feb 2009 | B2 |
7496410 | Heil | Feb 2009 | B2 |
7502652 | Gaunt et al. | Mar 2009 | B2 |
7512448 | Malick et al. | Mar 2009 | B2 |
7515956 | Thompson | Apr 2009 | B2 |
7515969 | Tockman et al. | Apr 2009 | B2 |
7526342 | Chin et al. | Apr 2009 | B2 |
7529589 | Williams et al. | May 2009 | B2 |
7532933 | Hastings et al. | May 2009 | B2 |
7536222 | Bardy et al. | May 2009 | B2 |
7536224 | Ritscher et al. | May 2009 | B2 |
7539541 | Quiles et al. | May 2009 | B2 |
7544197 | Kelsch et al. | Jun 2009 | B2 |
7558631 | Cowan et al. | Jul 2009 | B2 |
7565195 | Kroll et al. | Jul 2009 | B1 |
7584002 | Burnes et al. | Sep 2009 | B2 |
7590455 | Heruth et al. | Sep 2009 | B2 |
7606621 | Brisken et al. | Oct 2009 | B2 |
7610088 | Chinchoy | Oct 2009 | B2 |
7610092 | Cowan et al. | Oct 2009 | B2 |
7610099 | Almendinger et al. | Oct 2009 | B2 |
7610104 | Kaplan et al. | Oct 2009 | B2 |
7616991 | Mann et al. | Nov 2009 | B2 |
7617001 | Penner et al. | Nov 2009 | B2 |
7617007 | Williams et al. | Nov 2009 | B2 |
7630767 | Poore et al. | Dec 2009 | B1 |
7634313 | Kroll et al. | Dec 2009 | B1 |
7637867 | Zdeblick | Dec 2009 | B2 |
7640060 | Zdeblick | Dec 2009 | B2 |
7647109 | Hastings et al. | Jan 2010 | B2 |
7650186 | Hastings et al. | Jan 2010 | B2 |
7657311 | Bardy et al. | Feb 2010 | B2 |
7668596 | Von Arx et al. | Feb 2010 | B2 |
7691047 | Ferrari | Apr 2010 | B2 |
7702392 | Echt et al. | Apr 2010 | B2 |
7713194 | Zdeblick | May 2010 | B2 |
7713195 | Zdeblick | May 2010 | B2 |
7729783 | Michels et al. | Jun 2010 | B2 |
7734333 | Ghanem et al. | Jun 2010 | B2 |
7734343 | Ransbury et al. | Jun 2010 | B2 |
7738958 | Zdeblick et al. | Jun 2010 | B2 |
7738964 | Von Arx et al. | Jun 2010 | B2 |
7742812 | Ghanem et al. | Jun 2010 | B2 |
7742816 | Masoud et al. | Jun 2010 | B2 |
7742822 | Masoud et al. | Jun 2010 | B2 |
7743151 | Vallapureddy et al. | Jun 2010 | B2 |
7747335 | Williams | Jun 2010 | B2 |
7751881 | Cowan et al. | Jul 2010 | B2 |
7751890 | McCabe et al. | Jul 2010 | B2 |
7758521 | Morris et al. | Jul 2010 | B2 |
7761150 | Ghanem et al. | Jul 2010 | B2 |
7761164 | Verhoef et al. | Jul 2010 | B2 |
7765001 | Echt et al. | Jul 2010 | B2 |
7769452 | Ghanem et al. | Aug 2010 | B2 |
7783362 | Whitehurst | Aug 2010 | B2 |
7792588 | Harding | Sep 2010 | B2 |
7797059 | Bornzin et al. | Sep 2010 | B1 |
7801596 | Fischell et al. | Sep 2010 | B2 |
7809438 | Echt et al. | Oct 2010 | B2 |
7840281 | Kveen et al. | Nov 2010 | B2 |
7844348 | Swoyer et al. | Nov 2010 | B2 |
7846088 | Ness | Dec 2010 | B2 |
7848815 | Brisken et al. | Dec 2010 | B2 |
7848823 | Drasler et al. | Dec 2010 | B2 |
7860455 | Fukumoto et al. | Dec 2010 | B2 |
7871433 | Lattouf | Jan 2011 | B2 |
7877136 | Moffitt et al. | Jan 2011 | B1 |
7877142 | Moaddeb et al. | Jan 2011 | B2 |
7881798 | Miesel et al. | Feb 2011 | B2 |
7881810 | Chitre et al. | Feb 2011 | B1 |
7890173 | Brisken et al. | Feb 2011 | B2 |
7890181 | Denzenne et al. | Feb 2011 | B2 |
7890192 | Kelsch et al. | Feb 2011 | B1 |
7894894 | Stadler et al. | Feb 2011 | B2 |
7894907 | Cowan et al. | Feb 2011 | B2 |
7894910 | Cowan et al. | Feb 2011 | B2 |
7894915 | Chitre et al. | Feb 2011 | B1 |
7899537 | Kroll et al. | Mar 2011 | B1 |
7899541 | Cowan et al. | Mar 2011 | B2 |
7899542 | Cowan et al. | Mar 2011 | B2 |
7899554 | Williams et al. | Mar 2011 | B2 |
7901360 | Yang et al. | Mar 2011 | B1 |
7904170 | Harding et al. | Mar 2011 | B2 |
7907993 | Ghanem et al. | Mar 2011 | B2 |
7920928 | Yang et al. | Apr 2011 | B1 |
7925343 | Min et al. | Apr 2011 | B1 |
7930040 | Kelsch et al. | Apr 2011 | B1 |
7937135 | Ghanem et al. | May 2011 | B2 |
7937148 | Jacobson | May 2011 | B2 |
7937161 | Hastings et al. | May 2011 | B2 |
7941214 | Kleckner et al. | May 2011 | B2 |
7945333 | Jacobson | May 2011 | B2 |
7946997 | Hübinette | May 2011 | B2 |
7949404 | Hill | May 2011 | B2 |
7949405 | Feher | May 2011 | B2 |
7953493 | Fowler et al. | May 2011 | B2 |
7962202 | Bhunia | Jun 2011 | B2 |
7974702 | Fain et al. | Jul 2011 | B1 |
7979136 | Young et al. | Jul 2011 | B2 |
7983753 | Severin | Jul 2011 | B2 |
7991467 | Markowitz et al. | Aug 2011 | B2 |
7991471 | Ghanem et al. | Aug 2011 | B2 |
7996087 | Cowan et al. | Aug 2011 | B2 |
8000791 | Sunagawa et al. | Aug 2011 | B2 |
8000807 | Morris et al. | Aug 2011 | B2 |
8001975 | DiSilvestro et al. | Aug 2011 | B2 |
8002700 | Ferek-Petric et al. | Aug 2011 | B2 |
8010209 | Jacobson | Aug 2011 | B2 |
8019419 | Panescu et al. | Sep 2011 | B1 |
8019434 | Quiles et al. | Sep 2011 | B2 |
8027727 | Freeberg | Sep 2011 | B2 |
8027729 | Sunagawa et al. | Sep 2011 | B2 |
8032219 | Neumann et al. | Oct 2011 | B2 |
8036743 | Savage et al. | Oct 2011 | B2 |
8046079 | Bange et al. | Oct 2011 | B2 |
8046080 | Von Arx et al. | Oct 2011 | B2 |
8050297 | Delmain et al. | Nov 2011 | B2 |
8050759 | Stegemann et al. | Nov 2011 | B2 |
8050774 | Kveen et al. | Nov 2011 | B2 |
8055345 | Li et al. | Nov 2011 | B2 |
8055350 | Roberts | Nov 2011 | B2 |
8060212 | Rios et al. | Nov 2011 | B1 |
8065018 | Haubrich et al. | Nov 2011 | B2 |
8073542 | Doerr | Dec 2011 | B2 |
8078278 | Penner | Dec 2011 | B2 |
8078283 | Cowan et al. | Dec 2011 | B2 |
8095123 | Gray | Jan 2012 | B2 |
8102789 | Rosar et al. | Jan 2012 | B2 |
8103359 | Reddy | Jan 2012 | B2 |
8103361 | Moser | Jan 2012 | B2 |
8112148 | Giftakis et al. | Feb 2012 | B2 |
8114021 | Robertson et al. | Feb 2012 | B2 |
8121680 | Falkenberg et al. | Feb 2012 | B2 |
8123684 | Zdeblick | Feb 2012 | B2 |
8126545 | Flach et al. | Feb 2012 | B2 |
8131334 | Lu et al. | Mar 2012 | B2 |
8131360 | Perschbacher et al. | Mar 2012 | B2 |
8140161 | Willerton et al. | Mar 2012 | B2 |
8150521 | Crowley et al. | Apr 2012 | B2 |
8160672 | Kim et al. | Apr 2012 | B2 |
8160702 | Mann et al. | Apr 2012 | B2 |
8160704 | Freeberg | Apr 2012 | B2 |
8165694 | Carbanaru et al. | Apr 2012 | B2 |
8170663 | DeGroot et al. | May 2012 | B2 |
8175715 | Cox | May 2012 | B1 |
8180451 | Hickman et al. | May 2012 | B2 |
8185213 | Kveen et al. | May 2012 | B2 |
8187161 | Li et al. | May 2012 | B2 |
8204595 | Pianca et al. | Jun 2012 | B2 |
8204605 | Hastings et al. | Jun 2012 | B2 |
8209014 | Doerr | Jun 2012 | B2 |
8214043 | Matos | Jul 2012 | B2 |
8224244 | Kim et al. | Jul 2012 | B2 |
8233985 | Bulkes et al. | Jul 2012 | B2 |
8265748 | Liu et al. | Sep 2012 | B2 |
8265757 | Mass et al. | Sep 2012 | B2 |
8280521 | Haubrich et al. | Oct 2012 | B2 |
8285387 | Utsi et al. | Oct 2012 | B2 |
8290598 | Boon et al. | Oct 2012 | B2 |
8290600 | Hastings et al. | Oct 2012 | B2 |
8295939 | Jacobson | Oct 2012 | B2 |
8301254 | Mosesov et al. | Oct 2012 | B2 |
8315701 | Cowan et al. | Nov 2012 | B2 |
8315708 | Berthelsdorf et al. | Nov 2012 | B2 |
8321021 | Kisker et al. | Nov 2012 | B2 |
8321036 | Brockway et al. | Nov 2012 | B2 |
8332036 | Hastings et al. | Dec 2012 | B2 |
8335563 | Stessman | Dec 2012 | B2 |
8335568 | Heruth et al. | Dec 2012 | B2 |
8340750 | Prakash et al. | Dec 2012 | B2 |
8340780 | Hastings et al. | Dec 2012 | B2 |
8352025 | Jacobson | Jan 2013 | B2 |
8352028 | Wenger | Jan 2013 | B2 |
8352038 | Mao et al. | Jan 2013 | B2 |
8359098 | Lund et al. | Jan 2013 | B2 |
8364276 | Willis | Jan 2013 | B2 |
8369959 | Meskens | Feb 2013 | B2 |
8369962 | Abrahamson | Feb 2013 | B2 |
8380320 | Spital | Feb 2013 | B2 |
8386051 | Rys | Feb 2013 | B2 |
8391981 | Mosesov | Mar 2013 | B2 |
8391990 | Smith et al. | Mar 2013 | B2 |
8406874 | Liu et al. | Mar 2013 | B2 |
8406886 | Gaunt et al. | Mar 2013 | B2 |
8412352 | Griswold et al. | Apr 2013 | B2 |
8417340 | Goossen | Apr 2013 | B2 |
8417341 | Freeberg | Apr 2013 | B2 |
8423149 | Hennig | Apr 2013 | B2 |
8428722 | Verhoef et al. | Apr 2013 | B2 |
8433402 | Ruben et al. | Apr 2013 | B2 |
8433409 | Johnson et al. | Apr 2013 | B2 |
8433420 | Bange et al. | Apr 2013 | B2 |
8447412 | Dal Molin et al. | May 2013 | B2 |
8452413 | Young et al. | May 2013 | B2 |
8457740 | Osche | Jun 2013 | B2 |
8457742 | Jacobson | Jun 2013 | B2 |
8457761 | Wariar | Jun 2013 | B2 |
8478407 | Demmer et al. | Jul 2013 | B2 |
8478408 | Hastings et al. | Jul 2013 | B2 |
8478431 | Griswold et al. | Jul 2013 | B2 |
8504156 | Bonner et al. | Aug 2013 | B2 |
8509910 | Sowder et al. | Aug 2013 | B2 |
8515559 | Roberts et al. | Aug 2013 | B2 |
8527068 | Ostroff | Sep 2013 | B2 |
8532790 | Griswold | Sep 2013 | B2 |
8541131 | Lund et al. | Sep 2013 | B2 |
8543205 | Ostroff | Sep 2013 | B2 |
8547248 | Zdeblick et al. | Oct 2013 | B2 |
8548605 | Ollivier | Oct 2013 | B2 |
8554333 | Wu et al. | Oct 2013 | B2 |
8565882 | Mates | Oct 2013 | B2 |
8565897 | Regnier et al. | Oct 2013 | B2 |
8571678 | Wang et al. | Oct 2013 | B2 |
8577327 | Makdissi et al. | Nov 2013 | B2 |
8588926 | Moore et al. | Nov 2013 | B2 |
8612002 | Faltys et al. | Dec 2013 | B2 |
8615310 | Khairkhahan et al. | Dec 2013 | B2 |
8626294 | Sheldon et al. | Jan 2014 | B2 |
8634908 | Cowan | Jan 2014 | B2 |
8634912 | Bornzin et al. | Jan 2014 | B2 |
8634919 | Hou et al. | Jan 2014 | B1 |
8639335 | Peichel et al. | Jan 2014 | B2 |
8644934 | Hastings et al. | Feb 2014 | B2 |
8649859 | Smith et al. | Feb 2014 | B2 |
8670842 | Bornzin et al. | Mar 2014 | B1 |
8676319 | Knoll | Mar 2014 | B2 |
8676335 | Katoozi et al. | Mar 2014 | B2 |
8700173 | Edlund | Apr 2014 | B2 |
8700181 | Bornzin et al. | Apr 2014 | B2 |
8705599 | dal Molin et al. | Apr 2014 | B2 |
8718773 | Willis et al. | May 2014 | B2 |
8738147 | Hastings et al. | May 2014 | B2 |
8744572 | Greenut et al. | Jun 2014 | B1 |
8747314 | Stahmann et al. | Jun 2014 | B2 |
8755884 | Demmer et al. | Jun 2014 | B2 |
8758365 | Bonner et al. | Jun 2014 | B2 |
8774572 | Hamamoto | Jul 2014 | B2 |
8781605 | Bornzin et al. | Jul 2014 | B2 |
8788035 | Jacobson | Jul 2014 | B2 |
8788053 | Jacobson | Jul 2014 | B2 |
8798740 | Samade et al. | Aug 2014 | B2 |
8798745 | Jacobson | Aug 2014 | B2 |
8798762 | Fain et al. | Aug 2014 | B2 |
8798770 | Reddy | Aug 2014 | B2 |
8805505 | Roberts | Aug 2014 | B1 |
8805528 | Corndorf | Aug 2014 | B2 |
8812109 | Blomqvist et al. | Aug 2014 | B2 |
8818504 | Bodner et al. | Aug 2014 | B2 |
8831747 | Min et al. | Sep 2014 | B1 |
8855789 | Jacobson | Oct 2014 | B2 |
8868186 | Kroll | Oct 2014 | B2 |
8886339 | Faltys et al. | Nov 2014 | B2 |
8903500 | Smith et al. | Dec 2014 | B2 |
8903513 | Ollivier | Dec 2014 | B2 |
8914131 | Bornzin et al. | Dec 2014 | B2 |
8923795 | Makdissi et al. | Dec 2014 | B2 |
8923963 | Bonner et al. | Dec 2014 | B2 |
8938300 | Rosero | Jan 2015 | B2 |
8942806 | Sheldon et al. | Jan 2015 | B2 |
8958892 | Khairkhahan et al. | Feb 2015 | B2 |
8977358 | Ewert et al. | Mar 2015 | B2 |
8989873 | Locsin | Mar 2015 | B2 |
8996109 | Karst et al. | Mar 2015 | B2 |
9002467 | Smith et al. | Apr 2015 | B2 |
9008776 | Cowan et al. | Apr 2015 | B2 |
9008777 | Dianaty et al. | Apr 2015 | B2 |
9014818 | Deterre et al. | Apr 2015 | B2 |
9017341 | Bornzin et al. | Apr 2015 | B2 |
9020611 | Khairkhahan et al. | Apr 2015 | B2 |
9037262 | Regnier et al. | May 2015 | B2 |
9042984 | Demmer et al. | May 2015 | B2 |
9072911 | Hastings et al. | Jul 2015 | B2 |
9072913 | Jacobson | Jul 2015 | B2 |
9155882 | Grubac et al. | Oct 2015 | B2 |
9168372 | Fain | Oct 2015 | B2 |
9168380 | Greenhut et al. | Oct 2015 | B1 |
9168383 | Jacobson et al. | Oct 2015 | B2 |
9180285 | Moore et al. | Nov 2015 | B2 |
9192774 | Jacobson | Nov 2015 | B2 |
9205225 | Khairkhahan et al. | Dec 2015 | B2 |
9216285 | Boling et al. | Dec 2015 | B1 |
9216293 | Berthiaume et al. | Dec 2015 | B2 |
9216298 | Jacobson | Dec 2015 | B2 |
9227077 | Jacobson | Jan 2016 | B2 |
9238145 | Wenzel et al. | Jan 2016 | B2 |
9242102 | Khairkhahan et al. | Jan 2016 | B2 |
9242113 | Smith et al. | Jan 2016 | B2 |
9248300 | Rys et al. | Feb 2016 | B2 |
9265436 | Min et al. | Feb 2016 | B2 |
9265962 | Dianaty et al. | Feb 2016 | B2 |
9278218 | Karst et al. | Mar 2016 | B2 |
9278229 | Reinke et al. | Mar 2016 | B1 |
9283381 | Grubac et al. | Mar 2016 | B2 |
9283382 | Berthiaume et al. | Mar 2016 | B2 |
9289612 | Sambelashvili et al. | Mar 2016 | B1 |
9302115 | Molin et al. | Apr 2016 | B2 |
9333364 | Echt et al. | May 2016 | B2 |
9669230 | Koop | Jun 2017 | B2 |
10238882 | Koop | Mar 2019 | B2 |
20020002389 | Bradley et al. | Jan 2002 | A1 |
20020032469 | Marcovecchio | Mar 2002 | A1 |
20020032470 | Linberg | Mar 2002 | A1 |
20020035335 | Schauerte | Mar 2002 | A1 |
20020035376 | Bardy et al. | Mar 2002 | A1 |
20020035377 | Bardy et al. | Mar 2002 | A1 |
20020035378 | Bardy et al. | Mar 2002 | A1 |
20020035380 | Rissmann et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042629 | Bardy et al. | Apr 2002 | A1 |
20020042630 | Bardy et al. | Apr 2002 | A1 |
20020042634 | Bardy et al. | Apr 2002 | A1 |
20020049474 | Marcovecchio et al. | Apr 2002 | A1 |
20020049475 | Bardy et al. | Apr 2002 | A1 |
20020052636 | Bardy et al. | May 2002 | A1 |
20020068958 | Bardy et al. | Jun 2002 | A1 |
20020072773 | Bardy et al. | Jun 2002 | A1 |
20020072778 | Guck et al. | Jun 2002 | A1 |
20020082665 | Haller et al. | Jun 2002 | A1 |
20020087091 | Koyrakh et al. | Jul 2002 | A1 |
20020091333 | Hsu et al. | Jul 2002 | A1 |
20020091414 | Bardy et al. | Jul 2002 | A1 |
20020095196 | Linberg | Jul 2002 | A1 |
20020099423 | Berg et al. | Jul 2002 | A1 |
20020103510 | Bardy et al. | Aug 2002 | A1 |
20020107545 | Rissmann et al. | Aug 2002 | A1 |
20020107546 | Ostroff et al. | Aug 2002 | A1 |
20020107547 | Erlinger et al. | Aug 2002 | A1 |
20020107548 | Bardy et al. | Aug 2002 | A1 |
20020107549 | Bardy et al. | Aug 2002 | A1 |
20020107552 | Krig et al. | Aug 2002 | A1 |
20020107559 | Sanders et al. | Aug 2002 | A1 |
20020120299 | OStroff et al. | Aug 2002 | A1 |
20020123768 | Gilkerson et al. | Sep 2002 | A1 |
20020123769 | Panken et al. | Sep 2002 | A1 |
20020123770 | Combs et al. | Sep 2002 | A1 |
20020143370 | Kim | Oct 2002 | A1 |
20020147407 | Seim | Oct 2002 | A1 |
20020147474 | Seim et al. | Oct 2002 | A1 |
20020173830 | Starkweather et al. | Nov 2002 | A1 |
20020183637 | Kim et al. | Dec 2002 | A1 |
20020183639 | Sweeney et al. | Dec 2002 | A1 |
20020193846 | Pool et al. | Dec 2002 | A1 |
20020198461 | Hsu et al. | Dec 2002 | A1 |
20030004552 | Plombon et al. | Jan 2003 | A1 |
20030009203 | Lebel et al. | Jan 2003 | A1 |
20030028082 | Thompson | Feb 2003 | A1 |
20030041866 | Linberg et al. | Mar 2003 | A1 |
20030050563 | Suribhotla et al. | Mar 2003 | A1 |
20030060849 | Hsu | Mar 2003 | A1 |
20030069609 | Thompson | Apr 2003 | A1 |
20030083586 | Ferek-Petric | May 2003 | A1 |
20030083587 | Ferek-Petric | May 2003 | A1 |
20030088278 | Bardy et al. | May 2003 | A1 |
20030097153 | Bardy et al. | May 2003 | A1 |
20030100923 | Bjorling et al. | May 2003 | A1 |
20030105491 | Gilkerson et al. | Jun 2003 | A1 |
20030109792 | Hsu et al. | Jun 2003 | A1 |
20030114889 | Huvelle et al. | Jun 2003 | A1 |
20030114908 | Flach | Jun 2003 | A1 |
20030120316 | Spinelli et al. | Jun 2003 | A1 |
20030144701 | Mehra et al. | Jul 2003 | A1 |
20030181818 | Kim et al. | Sep 2003 | A1 |
20030187460 | Chin et al. | Oct 2003 | A1 |
20030187461 | Chin | Oct 2003 | A1 |
20030208238 | Weinberg et al. | Nov 2003 | A1 |
20040015090 | Sweeney et al. | Jan 2004 | A1 |
20040024435 | Leckrone et al. | Feb 2004 | A1 |
20040077995 | Ferek-Petric et al. | Apr 2004 | A1 |
20040087938 | Leckrone et al. | May 2004 | A1 |
20040088035 | Guenst et al. | May 2004 | A1 |
20040093035 | Schwartz et al. | May 2004 | A1 |
20040102830 | Williams | May 2004 | A1 |
20040116820 | Daum et al. | Jun 2004 | A1 |
20040116972 | Marcovecchio | Jun 2004 | A1 |
20040127806 | Sweeney et al. | Jul 2004 | A1 |
20040127959 | Amundson et al. | Jul 2004 | A1 |
20040147969 | Mann et al. | Jul 2004 | A1 |
20040147973 | Hauser | Jul 2004 | A1 |
20040167558 | Igo et al. | Aug 2004 | A1 |
20040167587 | Thompson | Aug 2004 | A1 |
20040172071 | Bardy et al. | Sep 2004 | A1 |
20040172077 | Chinchoy | Sep 2004 | A1 |
20040172104 | Berg et al. | Sep 2004 | A1 |
20040176694 | Kim et al. | Sep 2004 | A1 |
20040176817 | Wahlstrand et al. | Sep 2004 | A1 |
20040176818 | Wahlstrand et al. | Sep 2004 | A1 |
20040176830 | Fang | Sep 2004 | A1 |
20040186529 | Bardy et al. | Sep 2004 | A1 |
20040204673 | Flaherty | Oct 2004 | A1 |
20040210292 | Bardy et al. | Oct 2004 | A1 |
20040210293 | Bardy et al. | Oct 2004 | A1 |
20040210294 | Bardy et al. | Oct 2004 | A1 |
20040215308 | Bardy et al. | Oct 2004 | A1 |
20040220624 | Ritscher et al. | Nov 2004 | A1 |
20040220626 | Wagner | Nov 2004 | A1 |
20040220639 | Muligan et al. | Nov 2004 | A1 |
20040249431 | Ransbury et al. | Dec 2004 | A1 |
20040267303 | Guenst | Dec 2004 | A1 |
20050010257 | Lincoln et al. | Jan 2005 | A1 |
20050061320 | Lee et al. | Mar 2005 | A1 |
20050070962 | Echt et al. | Mar 2005 | A1 |
20050102003 | Grabek et al. | May 2005 | A1 |
20050149134 | McCabe et al. | Jul 2005 | A1 |
20050149135 | Krig et al. | Jul 2005 | A1 |
20050149138 | Min et al. | Jul 2005 | A1 |
20050159781 | Hsu | Jul 2005 | A1 |
20050165466 | Morris et al. | Jul 2005 | A1 |
20050182465 | Ness | Aug 2005 | A1 |
20050197674 | McCabe et al. | Sep 2005 | A1 |
20050203410 | Jenkins | Sep 2005 | A1 |
20050256544 | Thompson | Nov 2005 | A1 |
20050283208 | Von Arx et al. | Dec 2005 | A1 |
20060009831 | Lau et al. | Jan 2006 | A1 |
20060015148 | McCabe et al. | Jan 2006 | A1 |
20060025822 | Zhang | Feb 2006 | A1 |
20060052829 | Sun et al. | Mar 2006 | A1 |
20060052830 | Spinelli et al. | Mar 2006 | A1 |
20060064135 | Brockway | Mar 2006 | A1 |
20060064149 | Belacazar et al. | Mar 2006 | A1 |
20060074330 | Smith et al. | Apr 2006 | A1 |
20060085039 | Hastings et al. | Apr 2006 | A1 |
20060085041 | Hastings et al. | Apr 2006 | A1 |
20060085042 | Hastings et al. | Apr 2006 | A1 |
20060095078 | Tronnes | May 2006 | A1 |
20060106442 | Richardson et al. | May 2006 | A1 |
20060116746 | Chin | Jun 2006 | A1 |
20060122527 | Marcovecchio | Jun 2006 | A1 |
20060135999 | Bodner et al. | Jun 2006 | A1 |
20060136004 | Cowan et al. | Jun 2006 | A1 |
20060161061 | Echt et al. | Jul 2006 | A1 |
20060173498 | Banville et al. | Aug 2006 | A1 |
20060200002 | Guenst | Sep 2006 | A1 |
20060206151 | Lu | Sep 2006 | A1 |
20060212079 | Routh et al. | Sep 2006 | A1 |
20060241701 | Markowitz et al. | Oct 2006 | A1 |
20060241705 | Neumann et al. | Oct 2006 | A1 |
20060247672 | Vidlund et al. | Nov 2006 | A1 |
20060259088 | Pastore et al. | Nov 2006 | A1 |
20060265018 | Smith et al. | Nov 2006 | A1 |
20060281998 | Li | Dec 2006 | A1 |
20070004979 | Wojciechowicz et al. | Jan 2007 | A1 |
20070027508 | Cowan | Feb 2007 | A1 |
20070078490 | Cowan et al. | Apr 2007 | A1 |
20070088394 | Jacobson | Apr 2007 | A1 |
20070088396 | Jacobson | Apr 2007 | A1 |
20070088397 | Jacobson | Apr 2007 | A1 |
20070088398 | Jacobson | Apr 2007 | A1 |
20070088405 | Jacobson | Apr 2007 | A1 |
20070135882 | Drasler et al. | Jun 2007 | A1 |
20070135883 | Drasler et al. | Jun 2007 | A1 |
20070150037 | Hastings et al. | Jun 2007 | A1 |
20070150038 | Hastings et al. | Jun 2007 | A1 |
20070156190 | Cinbis | Jul 2007 | A1 |
20070219525 | Gelfand et al. | Sep 2007 | A1 |
20070219590 | Hastings et al. | Sep 2007 | A1 |
20070225545 | Ferrari | Sep 2007 | A1 |
20070233206 | Frikart et al. | Oct 2007 | A1 |
20070239244 | Morgan et al. | Oct 2007 | A1 |
20070255376 | Michels et al. | Nov 2007 | A1 |
20070276444 | Gelbart et al. | Nov 2007 | A1 |
20070293900 | Sheldon et al. | Dec 2007 | A1 |
20070293904 | Gelbart et al. | Dec 2007 | A1 |
20080004663 | Jorgenson | Jan 2008 | A1 |
20080021505 | Hastings et al. | Jan 2008 | A1 |
20080021519 | De Geest et al. | Jan 2008 | A1 |
20080021532 | Kveen et al. | Jan 2008 | A1 |
20080065183 | Whitehurst et al. | Mar 2008 | A1 |
20080065185 | Worley | Mar 2008 | A1 |
20080071318 | Brooke et al. | Mar 2008 | A1 |
20080109054 | Hastings et al. | May 2008 | A1 |
20080119911 | Rosero | May 2008 | A1 |
20080130670 | Kim et al. | Jun 2008 | A1 |
20080154322 | Jackson et al. | Jun 2008 | A1 |
20080228234 | Stancer | Sep 2008 | A1 |
20080234771 | Chinchoy et al. | Sep 2008 | A1 |
20080243217 | Wildon | Oct 2008 | A1 |
20080269814 | Rosero | Oct 2008 | A1 |
20080269825 | Chinchoy et al. | Oct 2008 | A1 |
20080275518 | Ghanem et al. | Nov 2008 | A1 |
20080275519 | Ghanem et al. | Nov 2008 | A1 |
20080288039 | Reddy | Nov 2008 | A1 |
20080294208 | Willis et al. | Nov 2008 | A1 |
20080294210 | Rosero | Nov 2008 | A1 |
20080306359 | Zdeblick et al. | Dec 2008 | A1 |
20090018599 | Hastings et al. | Jan 2009 | A1 |
20090024180 | Kisker et al. | Jan 2009 | A1 |
20090036941 | Corbucci | Feb 2009 | A1 |
20090048646 | Katoozi et al. | Feb 2009 | A1 |
20090062895 | Stahmann et al. | Mar 2009 | A1 |
20090082827 | Kveen et al. | Mar 2009 | A1 |
20090082828 | Ostroff | Mar 2009 | A1 |
20090088813 | Brockway et al. | Apr 2009 | A1 |
20090131907 | Chin et al. | May 2009 | A1 |
20090135886 | Robertson et al. | May 2009 | A1 |
20090143835 | Pastore et al. | Jun 2009 | A1 |
20090171408 | Solem | Jul 2009 | A1 |
20090171414 | Kelly et al. | Jul 2009 | A1 |
20090204170 | Hastings et al. | Aug 2009 | A1 |
20090210024 | Brooke | Aug 2009 | A1 |
20090216292 | Pless et al. | Aug 2009 | A1 |
20090234407 | Hastings et al. | Sep 2009 | A1 |
20090234411 | Sambelashvili et al. | Sep 2009 | A1 |
20090275998 | Burnes et al. | Nov 2009 | A1 |
20090275999 | Burnes et al. | Nov 2009 | A1 |
20090299447 | Jensen et al. | Dec 2009 | A1 |
20100013668 | Kantervik | Jan 2010 | A1 |
20100016911 | Willis et al. | Jan 2010 | A1 |
20100023085 | Wu et al. | Jan 2010 | A1 |
20100030061 | Canfield et al. | Feb 2010 | A1 |
20100030327 | Chatel | Feb 2010 | A1 |
20100042108 | Hibino | Feb 2010 | A1 |
20100056871 | Govari et al. | Mar 2010 | A1 |
20100063375 | Kassab et al. | Mar 2010 | A1 |
20100063562 | Cowan et al. | Mar 2010 | A1 |
20100094367 | Sen | Apr 2010 | A1 |
20100114209 | Krause et al. | May 2010 | A1 |
20100125281 | Jacobson et al. | May 2010 | A1 |
20100168761 | Kassab et al. | Jul 2010 | A1 |
20100168819 | Freeberg | Jul 2010 | A1 |
20100198288 | Ostroff | Aug 2010 | A1 |
20100198304 | Wang | Aug 2010 | A1 |
20100217367 | Belson | Aug 2010 | A1 |
20100228308 | Cowan et al. | Sep 2010 | A1 |
20100234924 | Willis | Sep 2010 | A1 |
20100241185 | Mahapatra et al. | Sep 2010 | A1 |
20100249729 | Morris et al. | Sep 2010 | A1 |
20100286744 | Echt et al. | Nov 2010 | A1 |
20100312309 | Harding | Dec 2010 | A1 |
20110022113 | Zdeblick et al. | Jan 2011 | A1 |
20110071586 | Jacobson | Mar 2011 | A1 |
20110077708 | Ostroff | Mar 2011 | A1 |
20110112600 | Cowan et al. | May 2011 | A1 |
20110118588 | Komblau et al. | May 2011 | A1 |
20110118810 | Cowan et al. | May 2011 | A1 |
20110137187 | Yang et al. | Jun 2011 | A1 |
20110144720 | Cowan et al. | Jun 2011 | A1 |
20110152970 | Jollota et al. | Jun 2011 | A1 |
20110160565 | Stubbs et al. | Jun 2011 | A1 |
20110160801 | Markowitz et al. | Jun 2011 | A1 |
20110160806 | Lyden et al. | Jun 2011 | A1 |
20110166620 | Cowan et al. | Jul 2011 | A1 |
20110166621 | Cowan et al. | Jul 2011 | A1 |
20110184491 | Kivi | Jul 2011 | A1 |
20110190835 | Brockway et al. | Aug 2011 | A1 |
20110208260 | Jacobson | Aug 2011 | A1 |
20110218587 | Jacobson | Sep 2011 | A1 |
20110230734 | Fain et al. | Sep 2011 | A1 |
20110237967 | Moore et al. | Sep 2011 | A1 |
20110245890 | Brisben et al. | Oct 2011 | A1 |
20110251660 | Griswold | Oct 2011 | A1 |
20110251662 | Griswold et al. | Oct 2011 | A1 |
20110270099 | Ruben et al. | Nov 2011 | A1 |
20110270339 | Murray, III et al. | Nov 2011 | A1 |
20110270340 | Pellegrini et al. | Nov 2011 | A1 |
20110276102 | Cohen | Nov 2011 | A1 |
20110282423 | Jacobson | Nov 2011 | A1 |
20120004527 | Thompson et al. | Jan 2012 | A1 |
20120029323 | Zhao | Feb 2012 | A1 |
20120041508 | Rousso et al. | Feb 2012 | A1 |
20120059433 | Cowan et al. | Mar 2012 | A1 |
20120059436 | Fontaine et al. | Mar 2012 | A1 |
20120078322 | Del Molin et al. | Mar 2012 | A1 |
20120089198 | Ostroff | Apr 2012 | A1 |
20120093245 | Makdissi et al. | Apr 2012 | A1 |
20120095521 | Hintz | Apr 2012 | A1 |
20120095539 | Khairkhahan et al. | Apr 2012 | A1 |
20120101540 | O'Brien et al. | Apr 2012 | A1 |
20120101553 | Reddy | Apr 2012 | A1 |
20120109148 | Bonner et al. | May 2012 | A1 |
20120109149 | Bonner et al. | May 2012 | A1 |
20120109236 | Jacobson | May 2012 | A1 |
20120109259 | Bond et al. | May 2012 | A1 |
20120116489 | Khairkhahan et al. | May 2012 | A1 |
20120150251 | Giftakis et al. | Jun 2012 | A1 |
20120158111 | Khairkhahan et al. | Jun 2012 | A1 |
20120165827 | Khairkhahan et al. | Jun 2012 | A1 |
20120172690 | Anderson et al. | Jul 2012 | A1 |
20120172891 | Lee | Jul 2012 | A1 |
20120172892 | Grubac et al. | Jul 2012 | A1 |
20120172941 | Rys | Jul 2012 | A1 |
20120172942 | Berg | Jul 2012 | A1 |
20120197350 | Roberts et al. | Aug 2012 | A1 |
20120197373 | Khairkhahan et al. | Aug 2012 | A1 |
20120215285 | Tahmasian et al. | Aug 2012 | A1 |
20120232565 | Kveen et al. | Sep 2012 | A1 |
20120277600 | Greenhut | Nov 2012 | A1 |
20120277606 | Ellingson et al. | Nov 2012 | A1 |
20120283795 | Stancer et al. | Nov 2012 | A1 |
20120283807 | Deterre et al. | Nov 2012 | A1 |
20120290025 | Keimel | Nov 2012 | A1 |
20120296381 | Matos | Nov 2012 | A1 |
20120303082 | Dong et al. | Nov 2012 | A1 |
20120316613 | Keefe et al. | Dec 2012 | A1 |
20130012151 | Hankins | Jan 2013 | A1 |
20130023975 | Locsin | Jan 2013 | A1 |
20130030487 | Keel et al. | Jan 2013 | A1 |
20130035748 | Bonner et al. | Feb 2013 | A1 |
20130041422 | Jacobson | Feb 2013 | A1 |
20130053908 | Smith et al. | Feb 2013 | A1 |
20130053915 | Holmstrom et al. | Feb 2013 | A1 |
20130053921 | Bonner et al. | Feb 2013 | A1 |
20130066169 | Rys et al. | Mar 2013 | A1 |
20130072770 | Rao et al. | Mar 2013 | A1 |
20130079798 | Tran et al. | Mar 2013 | A1 |
20130079861 | Reinert et al. | Mar 2013 | A1 |
20130085350 | Schugt et al. | Apr 2013 | A1 |
20130085403 | Gunderson et al. | Apr 2013 | A1 |
20130085550 | Polefko et al. | Apr 2013 | A1 |
20130096649 | Martin et al. | Apr 2013 | A1 |
20130103047 | Steingisser et al. | Apr 2013 | A1 |
20130103109 | Jacobson | Apr 2013 | A1 |
20130110008 | Bourget et al. | May 2013 | A1 |
20130110127 | Bornzin et al. | May 2013 | A1 |
20130110192 | Tran et al. | May 2013 | A1 |
20130110219 | Bornzin et al. | May 2013 | A1 |
20130116529 | Min et al. | May 2013 | A1 |
20130116738 | Samade et al. | May 2013 | A1 |
20130116740 | Bornzin et al. | May 2013 | A1 |
20130116741 | Bornzin et al. | May 2013 | A1 |
20130123872 | Bornzin et al. | May 2013 | A1 |
20130123875 | Varady et al. | May 2013 | A1 |
20130131591 | Berthiaume et al. | May 2013 | A1 |
20130131693 | Berthiaume et al. | May 2013 | A1 |
20130138006 | Bornzin et al. | May 2013 | A1 |
20130150695 | Biela et al. | Jun 2013 | A1 |
20130196703 | Masoud et al. | Aug 2013 | A1 |
20130197609 | Moore et al. | Aug 2013 | A1 |
20130231710 | Jacobson | Sep 2013 | A1 |
20130238072 | Deterre et al. | Sep 2013 | A1 |
20130238073 | Makdissi et al. | Sep 2013 | A1 |
20130253342 | Griswold et al. | Sep 2013 | A1 |
20130253343 | Waldhauser et al. | Sep 2013 | A1 |
20130253344 | Griswold et al. | Sep 2013 | A1 |
20130253345 | Griswold et al. | Sep 2013 | A1 |
20130253346 | Griswold et al. | Sep 2013 | A1 |
20130253347 | Griswold et al. | Sep 2013 | A1 |
20130261497 | Pertijs et al. | Oct 2013 | A1 |
20130265144 | Banna et al. | Oct 2013 | A1 |
20130267826 | Sison | Oct 2013 | A1 |
20130268042 | Hastings et al. | Oct 2013 | A1 |
20130274828 | Willis | Oct 2013 | A1 |
20130274847 | Ostroff | Oct 2013 | A1 |
20130282070 | Cowan et al. | Oct 2013 | A1 |
20130282073 | Cowan et al. | Oct 2013 | A1 |
20130303872 | Taff et al. | Nov 2013 | A1 |
20130324825 | Ostroff et al. | Dec 2013 | A1 |
20130325081 | Karst et al. | Dec 2013 | A1 |
20130345770 | Dianaty et al. | Dec 2013 | A1 |
20140012344 | Hastings et al. | Jan 2014 | A1 |
20140018876 | Ostroff | Jan 2014 | A1 |
20140018877 | Demmer et al. | Jan 2014 | A1 |
20140031836 | Ollivier | Jan 2014 | A1 |
20140039570 | Carroll et al. | Feb 2014 | A1 |
20140039591 | Drasler et al. | Feb 2014 | A1 |
20140043146 | Makdissi et al. | Feb 2014 | A1 |
20140046395 | Regnier et al. | Feb 2014 | A1 |
20140046420 | Moore et al. | Feb 2014 | A1 |
20140058240 | Mothilal et al. | Feb 2014 | A1 |
20140058494 | Ostroff et al. | Feb 2014 | A1 |
20140074114 | Khairkhahan et al. | Mar 2014 | A1 |
20140074186 | Faltys et al. | Mar 2014 | A1 |
20140094891 | Pare et al. | Apr 2014 | A1 |
20140100627 | Min | Apr 2014 | A1 |
20140107723 | Hou et al. | Apr 2014 | A1 |
20140121719 | Bonner et al. | May 2014 | A1 |
20140121720 | Bonner et al. | May 2014 | A1 |
20140121722 | Sheldon et al. | May 2014 | A1 |
20140128935 | Kumar et al. | May 2014 | A1 |
20140135865 | Hastings et al. | May 2014 | A1 |
20140142648 | Smith et al. | May 2014 | A1 |
20140148675 | Nordstrom et al. | May 2014 | A1 |
20140148815 | Wenzel et al. | May 2014 | A1 |
20140155950 | Hastings et al. | Jun 2014 | A1 |
20140169162 | Romano et al. | Jun 2014 | A1 |
20140172060 | Bornzin et al. | Jun 2014 | A1 |
20140180306 | Grubac et al. | Jun 2014 | A1 |
20140180366 | Edlund | Jun 2014 | A1 |
20140207149 | Hastings et al. | Jul 2014 | A1 |
20140207210 | Willis et al. | Jul 2014 | A1 |
20140214104 | Greenhut et al. | Jul 2014 | A1 |
20140222098 | Baru et al. | Aug 2014 | A1 |
20140222109 | Moulder | Aug 2014 | A1 |
20140228913 | Molin et al. | Aug 2014 | A1 |
20140236172 | Hastings et al. | Aug 2014 | A1 |
20140243848 | Auricchio et al. | Aug 2014 | A1 |
20140257324 | Fain | Sep 2014 | A1 |
20140276929 | Foster et al. | Sep 2014 | A1 |
20140303704 | Suwito et al. | Oct 2014 | A1 |
20140309706 | Jacobson | Oct 2014 | A1 |
20140330326 | Thompson-Nauman | Nov 2014 | A1 |
20140379041 | Foster | Dec 2014 | A1 |
20150025612 | Haasl et al. | Jan 2015 | A1 |
20150039041 | Smith et al. | Feb 2015 | A1 |
20150051609 | Schmidt et al. | Feb 2015 | A1 |
20150051610 | Schmidt et al. | Feb 2015 | A1 |
20150051611 | Schmidt et al. | Feb 2015 | A1 |
20150051612 | Schmidt et al. | Feb 2015 | A1 |
20150051613 | Schmidt et al. | Feb 2015 | A1 |
20150051614 | Schmidt et al. | Feb 2015 | A1 |
20150051615 | Schmidt et al. | Feb 2015 | A1 |
20150051616 | Haasl et al. | Feb 2015 | A1 |
20150051682 | Schmidt et al. | Feb 2015 | A1 |
20150057520 | Foster et al. | Feb 2015 | A1 |
20150057558 | Stahmann et al. | Feb 2015 | A1 |
20150057721 | Stahmann et al. | Feb 2015 | A1 |
20150088155 | Stahmann et al. | Mar 2015 | A1 |
20150105836 | Bonner et al. | Apr 2015 | A1 |
20150173655 | Demmer et al. | Jun 2015 | A1 |
20150190638 | Smith et al. | Jul 2015 | A1 |
20150196756 | Stahmann et al. | Jul 2015 | A1 |
20150196757 | Stahmann et al. | Jul 2015 | A1 |
20150196758 | Stahmann et al. | Jul 2015 | A1 |
20150196769 | Stahmann | Jul 2015 | A1 |
20150217119 | Nikolski et al. | Aug 2015 | A1 |
20150221898 | Chi et al. | Aug 2015 | A1 |
20150224315 | Stahmann | Aug 2015 | A1 |
20150224320 | Stahmann | Aug 2015 | A1 |
20150258345 | Smith et al. | Sep 2015 | A1 |
20150290468 | Zhang | Oct 2015 | A1 |
20150297905 | Greenhut et al. | Oct 2015 | A1 |
20150297907 | Zhang | Oct 2015 | A1 |
20150305637 | Greenhut et al. | Oct 2015 | A1 |
20150305638 | Zhang | Oct 2015 | A1 |
20150305639 | Greenhut et al. | Oct 2015 | A1 |
20150305640 | Reinke et al. | Oct 2015 | A1 |
20150305641 | Stadler et al. | Oct 2015 | A1 |
20150305642 | Reinke et al. | Oct 2015 | A1 |
20150306374 | Seifert et al. | Oct 2015 | A1 |
20150306375 | Marshall et al. | Oct 2015 | A1 |
20150306406 | Crutchfield et al. | Oct 2015 | A1 |
20150306407 | Crutchfield et al. | Oct 2015 | A1 |
20150306408 | Greenhut et al. | Oct 2015 | A1 |
20150321016 | O'Brien et al. | Nov 2015 | A1 |
20150328459 | Chin et al. | Nov 2015 | A1 |
20160015322 | Anderson et al. | Jan 2016 | A1 |
20160023000 | Cho et al. | Jan 2016 | A1 |
20160030757 | Jacobson | Feb 2016 | A1 |
20160038747 | Maile | Feb 2016 | A1 |
20160121127 | Klimovitch et al. | May 2016 | A1 |
20160121128 | Fishler et al. | May 2016 | A1 |
20160121129 | Persson | May 2016 | A1 |
20160228701 | Huelskamp et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
2008279789 | Oct 2011 | AU |
2008329620 | May 2014 | AU |
2014203793 | Jul 2014 | AU |
1003904 | Jan 1977 | CA |
202933393 | May 2013 | CN |
0253505 | Jan 1988 | EP |
0308536 | Mar 1989 | EP |
0360412 | Mar 1990 | EP |
0362611 | Apr 1990 | EP |
0401962 | Dec 1990 | EP |
0469817 | Feb 1992 | EP |
503823 | Sep 1992 | EP |
0506230 | Sep 1992 | EP |
0554208 | Aug 1993 | EP |
0597459 | May 1994 | EP |
0617980 | Oct 1994 | EP |
0711531 | May 1996 | EP |
0744190 | Nov 1996 | EP |
0748638 | Dec 1996 | EP |
0784996 | Jul 1997 | EP |
0848965 | Jun 1998 | EP |
0879621 | Nov 1998 | EP |
0919256 | Jun 1999 | EP |
1112756 | Jul 2001 | EP |
0993842 | Apr 2004 | EP |
1702648 | Sep 2006 | EP |
1904166 | Jun 2011 | EP |
2433675 | Jan 2013 | EP |
2441491 | Jan 2013 | EP |
2452721 | Nov 2013 | EP |
1948296 | Jan 2014 | EP |
2662113 | Jan 2014 | EP |
2471452 | Dec 2014 | EP |
2000051373 | Feb 2000 | JP |
2002502640 | Jan 2002 | JP |
2004512105 | Apr 2004 | JP |
2005508208 | Mar 2005 | JP |
2005245215 | Sep 2005 | JP |
2008508074 | Mar 2008 | JP |
2008528103 | Jul 2008 | JP |
2008540040 | Nov 2008 | JP |
2009511214 | Mar 2009 | JP |
5199867 | Feb 2013 | JP |
9302746 | Feb 1993 | WO |
9401173 | Jan 1994 | WO |
9500202 | Jan 1995 | WO |
9636134 | Nov 1996 | WO |
9739681 | Oct 1997 | WO |
9739799 | Oct 1997 | WO |
9825669 | Jun 1998 | WO |
9826840 | Jun 1998 | WO |
9840010 | Sep 1998 | WO |
9848891 | Nov 1998 | WO |
9853879 | Dec 1998 | WO |
9915232 | Apr 1999 | WO |
9939767 | Aug 1999 | WO |
0053089 | Sep 2000 | WO |
0059573 | Oct 2000 | WO |
0113993 | Mar 2001 | WO |
0126733 | Apr 2001 | WO |
2011063848 | Jun 2001 | WO |
0234330 | Jan 2003 | WO |
02098282 | May 2003 | WO |
03047690 | Jun 2003 | WO |
2005000206 | Apr 2005 | WO |
2005042089 | May 2005 | WO |
2005089643 | Sep 2005 | WO |
2006020198 | Feb 2006 | WO |
2006020198 | May 2006 | WO |
2006049767 | May 2006 | WO |
2006081027 | Aug 2006 | WO |
2006086435 | Aug 2006 | WO |
2006113659 | Oct 2006 | WO |
2006124833 | Nov 2006 | WO |
2007033226 | Mar 2007 | WO |
2007047681 | Apr 2007 | WO |
2006124833 | May 2007 | WO |
2007075974 | Jul 2007 | WO |
2009006531 | Jan 2009 | WO |
2012054102 | Apr 2012 | WO |
2013080038 | Jun 2013 | WO |
2013098644 | Aug 2013 | WO |
2013184787 | Dec 2013 | WO |
2014120769 | Aug 2014 | WO |
Entry |
---|
“Instructions for Use System 1, Leadless Cardiac Pacemaker (LCP) and Delivery Catheter,” Nanostim Leadless Pacemakers, pp. 1-28, 2013. |
Duru et al., “The Potential for Inappropriate Ventricular Tachycardia Confirmation Using the Intracardiac Electrogram (EGM) Width Criterion”, Pacing and Clinical Electrophysiology [PACE], 22(7): 1039-1046, Jul. 1999. |
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003. |
Hughes et al., “The Effects of Electrode Position on the Detection of the Transvenous Cardiac Electrogram”, PACE, 3(6): 651-655, Nov. 1980. |
International Search Report and Written Opinion for Application No. PCT/US2005/035057, 17 pages, dated Feb. 1, 2006. |
Kinoshita et al., “Letter to the Editor”, Journal of Electrocardiology, 29(3): 255-256, Jul. 1996. |
Leitch et al., “Feasibility of an Implantable Arrhythmia Monitor”, PACE, 15(12): 2232-2235, Dec. 1992. |
Mazur et al., “Functional Similarity Between Electrograms Recorded from an Implantable Cardioverter Defibrillator Emulator and the Surface Electrocardiogram”, PACE, 24(1): 34-40, Jan. 2001. |
Medtronic, “Marquis™ DR 7274 Dual Chamber Implantable Cardioverter Defibrillator”, Reference Manual, 426 pgs., Feb. 2002. |
Morris et al., “Detection of Atrial Arrhythmia for Cardiac Rhythm Management by Implantable Devices”, Journal of Electrocardiology, vol. 33, Supplement 1, pp. 133-139, 2000. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Feb. 24, 2016, 10 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Jan. 29, 2016, 15 pages. |
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineenng,vol. 60(8): 2067-2079, 2013. |
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970. |
Theres et al., “Electrogram Signals Recorded from Acute and Chronic Pacemaker Implantation Sites in Pacemaker Patients”, PACE, 21(1): 11-17, Jan. 1998. |
Wegmüller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for Application No. PCT/US2016/015991, 2016, 10 pages, dated May 2, 2016. |
U.S. Pat. No. 8,886,318, Nov. 2014, Jacobson et al. (withdrawn). |
Office Action Application No. 2017-540731 6 pages, dated Jun. 12, 2018. |
Number | Date | Country | |
---|---|---|---|
20190175927 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
62113173 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15587033 | May 2017 | US |
Child | 16279311 | US | |
Parent | 15012443 | Feb 2016 | US |
Child | 15587033 | US |