The present disclosure generally relates to systems, devices, and methods for detecting cardiac arrhythmias and, more specifically to multiple device systems, methods, and devices for detecting and identifying cardiac arrhythmias.
Pacing instruments can be used to treat patients suffering from various heart conditions that may result in a reduced ability of the heart to deliver sufficient amounts of blood to a patient's body. These heart conditions may lead to rapid, irregular, and/or inefficient heart contractions. To help alleviate some of these conditions, various devices (e.g., pacemakers, defibrillators, etc.) can be implanted in a patient's body. Such devices may monitor and provide electrical stimulation to the heart to help the heart operate in a more normal, efficient and/or safe manner. In some cases, a patient may have multiple implanted devices.
The present disclosure relates generally to systems and methods for coordinating detection and/or treatment of abnormal heart activity using multiple implanted devices within a patient. It is contemplated that the multiple implanted devices may include, for example, pacemakers, defibrillators, diagnostic devices, and/or any other suitable implantable devices, as desired.
In one example, a method for delivering anti-tachycardia pacing therapy to a heart of a patient may include: in a first one of a plurality of implantable medical devices, determining to deliver anti-tachycardia pacing therapy to the heart of the patient, communicating a message from the first one of the plurality of implantable medical devices to a second one of the plurality of implantable medical devices, the message instructing the second one of the plurality of implantable medical devices to deliver anti-tachycardia pacing therapy to the heart, and in response to receiving the message, the second one of the plurality of implantable medical devices delivering anti-tachycardia pacing therapy to the heart of the patient.
In another example, an implantable medical device system for delivering anti-tachycardia pacing therapy to a heart of a patient may include a first implantable medical device and a second implantable medical device. At least one of the first implantable medical device and the second implantable medical device is configured to deliver anti-tachycardia pacing therapy to the heart of the patient. The first implantable medical device may determine that delivery of anti-tachycardia pacing therapy is desirable, and then may communicate a message to the second implantable medical device. The second implantable medical device may be configured to deliver anti-tachycardia pacing therapy to the heart in response to receiving the message.
In another example, a method of delivering electrical stimulation therapy to a heart of a patient may determine, by a first one of a plurality of implantable medical devices, a presence of an arrhythmia. In response to determining a presence of an arrhythmia, the first one of a plurality of implantable medical devices may then determine that delivery of anti-tachycardia pacing therapy to the heart of the patient is desirable. The first one of a plurality of implantable medical devices may then begin charging a capacitor of a shock channel of the first implantable medical device, and may communicate to a second one of the plurality of implantable medical devices a message to deliver anti-tachycardia pacing therapy. In response to receiving the message from the first one of a plurality of implantable medical devices, the second one of the plurality of implantable medical devices may deliver anti-tachycardia pacing therapy to the heart of the patient during the charging of the capacitor of the first implantable medical device. In some cases, the first one of a plurality of implantable medical devices may be a subcutaneous implantable cardioverter-defibrillator (SICD), and the second one of the plurality of implantable medical devices may be a leadless pacemaker.
The above summary is not intended to describe each embodiment or every implementation of the present disclosure. Advantages and attainments, together with a more complete understanding of the disclosure, will become apparent and appreciated by referring to the following description and claims taken in conjunction with the accompanying drawings.
The disclosure may be more completely understood in consideration of the following description of various illustrative embodiments in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular illustrative embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
The following description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.
A normal, healthy heart induces contraction by conducting intrinsically generated electrical signals throughout the heart. These intrinsic signals cause the muscle cells or tissue of the heart to contract. This contraction forces blood out of and into the heart, providing circulation of the blood throughout the rest of the body. However, many patients suffer from cardiac conditions that affect this contractility of their hearts. For example, some hearts may develop diseased tissues that no longer generate or conduct intrinsic electrical signals. In some examples, diseased cardiac tissues conduct electrical signals at differing rates, thereby causing an unsynchronized and inefficient contraction of the heart. In other examples, a heart may generate intrinsic signals at such a low rate that the heart rate becomes dangerously low. In still other examples, a heart may generate electrical signals at an unusually high rate. In some cases such an abnormality can develop into a fibrillation state, where the contraction of the patient's heart is almost completely de-synchronized and the heart pumps very little to no blood.
Many medical device systems have been developed to assist patients who experience such abnormalities. For example, systems have been developed to sense intrinsic cardiac electrical signals and, based on the sensed electrical signals, determine whether the patient is suffering from one or more arrhythmias. Such systems may also include the ability to deliver electrical stimulation to the heart of the patient in order to treat the detected arrhythmias. In one example, some medical device systems include the ability to identify when the heart is beating at too low of a rate, termed bradycardia. Such systems may deliver electrical stimulation therapy, or “pacing pulses”, that cause the heart to contract at a higher, safer rate. Some medical device systems are able to determine when a heart is beating at too fast of a rate, termed tachycardia. Such systems may further include one or more anti-tachycardia pacing (ATP) therapies. One such ATP therapy includes delivering electrical stimulation pulses to the heart at a rate faster than the intrinsically generated signals. Although this may temporarily cause the heart to beat faster, such a stimulation protocol may cause the heart to contract in response to the delivered pacing pulses as opposed to the intrinsically generated signals. The ATP therapy may then slow down the rate of the delivered pacing pulses, thereby reducing the heart rate to a lower, safer level.
Other medical device systems may be able to detect fibrillation states and asynchronous contractions. For example, based on the sensed signals, some systems may be able to determine when the heart is in a fibrillation state. Such systems may further be configured to treat such fibrillation states with electrical stimulation therapy. One such therapy includes deliver of a relatively large amount of electrical energy to the heart (a “defibrillation pulse”) with the goal of overpowering any intrinsically generated signals. Such a therapy may “reset” the heart, from an electrical standpoint, which may allow for normal electrical processes to take over. Other medical systems may be able to sense that intrinsically generated signals are generated at differing times or that the heart conducts such signals at differing rates. These abnormalities may result in an unsynchronized, inefficient cardiac contraction. The system may further include the ability to administer one or more cardiac resynchronization therapies (CRTs). One such CRT may include delivering electrical stimulation to the heart at differing locations on and/or within the heart. Such methods may help the disparate parts of the heart to contract near simultaneously, or in a synchronized manner if the system delivers the electrical stimulation to the disparate locations at differing times.
The present disclosure relates generally to systems and methods for coordinating detection and/or treatment of abnormal heart activity using multiple implanted devices within a patient. In some instances, a medical device system may include a plurality of devices for detecting cardiac arrhythmias and delivering electrical stimulation therapy. For example, illustrative systems may include devices such as subcutaneous cardioverter-defibrillators (S-ICD), external cardioverter-defibrillators, implantable cardiac pacemakers (ICP), leadless cardiac pacemakers (LCPs), and/or diagnostic only devices (devices that may sense cardiac electrical signals and/or determine arrhythmias but do not deliver electrical stimulation therapies).
Leads 112 may be connected to and extend away from housing 120 of MD 100. In some examples, leads 112 are implanted on or within the heart of the patient. Leads 112 may contain one or more electrodes 114 positioned at various locations on leads 112 and distances from housing 120. Some leads 112 may only include a single electrode 114 while other leads 112 may include multiple electrodes 114. Generally, electrodes 114 are positioned on leads 112 such that when leads 112 are implanted within the patient, one or more electrodes 114 are in contact with the patient's cardiac tissue. Accordingly, electrodes 114 may conduct intrinsically generated electrical signals to leads 112. Leads 112 may, in turn, conduct the received electrical signals to one or more modules 102, 104, 106, and 108 of MD 100. In a similar manner, MD 100 may generate electrical stimulation, and leads 112 may conduct the generated electrical stimulation to electrodes 114. Electrodes 114 may then conduct the electrical signals to the cardiac tissue of the patient. When discussing sensing intrinsic signals and delivering electrical stimulation, this disclosure may consider such conduction implicit in those processes.
Sensing module 102 may be configured to sense the cardiac electrical activity of the heart. For example, sensing module 102 may be connected to leads 112 and electrodes 114 through leads 112 and sensing module 102 may be configured to receive cardiac electrical signals conducted through electrodes 114 and leads 112. In some examples, leads 112 may include various sensors, such as accelerometers, blood pressure sensors, heart sound sensors, blood-oxygen sensors, and other sensors which measure physiological parameters of the heart and/or patient. In other examples, such sensors may be connected directly to sensing module 102 rather than to leads 112. In any case, sensing module 102 may be configured to receive such signals produced by any sensors connected to sensing module 102, either directly or through leads 112. Sensing modules 102 may additionally be connected to processing module 106 and may be configured to communicate such received signals to processing module 106.
Pulse generator module 104 may be connected to electrodes 114. In some examples, pulse generator module 104 may be configured to generate an electrical stimulation signals to provide electrical stimulation therapy to the heart. For example, pulse generator module 104 may generate such a signal by using energy stored in battery 110 within MD 100. Pulse generator module 104 may be configured to generate electrical stimulation signals in order to provide one or multiple of a number of different therapies. For example, pulse generator module 104 may be configured to generate electrical stimulation signals to provide bradycardia therapy, ATP therapy, cardiac resynchronization therapy, fibrillation therapy, and other electrical stimulation therapies. Bradycardia therapy may include generating and delivering pacing pulses at a rate faster than the intrinsically generated electrical signals in order to try to increase the heart rate. Tachycardia therapy may include ATP therapy as described herein. Cardiac resynchronization therapy may include CRT therapy also described herein. Fibrillation therapy may include delivering a fibrillation pulse to try to override the heart and stop the fibrillation state. In other examples, pulse generator 104 may be configured to generate electrical stimulation signals to provide electrical stimulation therapies different than those described herein to treat one or more detected arrhythmias.
Processing module 106 can be configured to control the operation of MD 100. For example, processing module 106 may be configured to receive electrical signals from sensing module 102. Based on the received signals, processing module 106 may be able to determine occurrences of arrhythmias. Based on any determined arrhythmias, processing module 106 may be configured to control pulse generator module 104 to generate electrical stimulation in accordance with one or more therapies to treat the determined one or more arrhythmias. Processing module 106 may further receive information from telemetry module 108. In some examples, processing module 106 may use such received information in determining whether an arrhythmia is occurring or to take particular action in response to the information. Processing module 106 may additionally control telemetry module 108 to send information to other devices.
In some examples, processing module 106 may include a pre-programmed chip, such as a very-large-scale integration (VLSI) chip or an application specific integrated circuit (ASIC). In such embodiments, the chip may be pre-programmed with control logic in order to control the operation of MD 100. By using a pre-programmed chip, processing module 106 may use less power than other programmable circuits while able to maintain basic functionality, thereby increasing the battery life of MD 100. In other examples, processing module 106 may include a programmable microprocessor. Such a programmable microprocessor may allow a user to adjust the control logic of MD 100, thereby allowing for greater flexibility of MD 100 than when using a pre-programmed chip. In some examples, processing module 106 may further include a memory circuit and processing module 106 may store information on and read information from the memory circuit. In other examples, MD 100 may include a separate memory circuit (not shown) that is in communication with processing module 106, such that processing module 106 may read and write information to and from the separate memory circuit.
Telemetry module 108 may be configured to communicate with devices such as sensors, other medical devices, or the like, that are located externally to MD 100. Such devices may be located either external or internal to the patient's body. Irrespective of the location, external devices (i.e. external to the MD 100 but not necessarily external to the patient's body) can communicate with MD 100 via telemetry module 108 to accomplish one or more desired functions. For example, MD 100 may communicate sensed electrical signals to an external medical device through telemetry module 108. The external medical device may use the communicated electrical signals in determining occurrences of arrhythmias. MD 100 may additionally receive sensed electrical signals from the external medical device through telemetry module 108, and MD 100 may use the received sensed electrical signals in determining occurrences of arrhythmias. In other examples, the various devices of the system may communicate instructions to coordinate delivering of electrical stimulation therapy. Telemetry module 108 may be configured to use one or more methods for communicating with external devices. For example, telemetry module 108 may communicate via radiofrequency (RF) signals, inductive coupling, optical signals, acoustic signals, conducted communication signals, or any other signals suitable for communication. Communication techniques between MD 100 and external devices will be discussed in further detail with reference to
Battery 110 may provide a power source to MD 100 for its operations. In one example, battery 110 may be a non-rechargeable lithium-based battery. In other examples, the non-rechargeable battery may be made from other suitable materials known in the art. Because, in examples where MD 100 is an implantable device, access to MD 100 may be limited, it is necessary to have sufficient capacity of the battery to deliver sufficient therapy over a period of treatment such as days, weeks, months, or years. In other examples, battery 110 may a rechargeable lithium-based battery in order to facilitate increasing the useable lifespan of MD 100.
In general, MD 100 may be similar to one of a number of existing medical devices. For example, MD 100 may be similar to various implantable medical devices. In such examples, housing 120 of MD 100 may be implanted in a transthoracic region of the patient. Housing 120 may generally include any of a number of known materials that are safe for implantation in a human body and may, when implanted, hermetically seal the various components of MD 100 from fluids and tissues of the patient's body.
In some examples, MD 100 may be an implantable cardiac pacemaker (ICP). In such an example, MD 100 may have one or more leads, for example leads 112, which are implanted on or within the patient's heart. The one or more leads 112 may include one or more electrodes 114 that are in contact with cardiac tissue and/or blood of the patient's heart. MD 100 may also be configured to sense intrinsically generated cardiac electrical signals and determine, for example, one or more cardiac arrhythmias based on analysis of the sensed signals. MD 100 may further be configured to deliver CRT, ATP therapy, bradycardia therapy, defibrillation therapy and/or other therapy types via leads 112 implanted within the heart.
In some instances, MD 100 may be a subcutaneous cardioverter-defibrillator (S-ICD). In such examples, one of leads 112 may include a subcutaneously implanted lead. In some cases, MD 100 may be configured to sense intrinsically generated cardiac electrical signals and determine one or more cardiac arrhythmias based on analysis of the sensed signals. MD 100 may further be configured to deliver one or more defibrillation pulses in response to determining an arrhythmia.
In still other examples, MD 100 may be a leadless cardiac pacemaker (LCP—described more specifically with respect to
In some instances, MD 100 may be a diagnostic-only device. In some cases, MD 100 may be configured to sense, or receive, cardiac electrical signals and/or physical parameters such as mechanical contraction, heart sounds, blood pressure, blood-oxygen levels, etc. MD 100 may further be configured to determine occurrences of arrhythmias based on the sensed or received cardiac electrical signals and/or physical parameters. In one example, MD 100 may do away with pulse generation module 104, as MD 100 may not be configured to deliver electrical stimulation in response to determining an occurrence of an arrhythmia. Rather, in order to respond to detected cardiac arrhythmias, MD 100 may be part of a system of medical devices. In such a system, MD 100 may communicate information to other devices within the system and one or more of the other devices may take action, for example delivering electrical stimulation therapy, in response to the receive information from MD 100. Additionally, the term pulse generator, for example when describing a device, may be used to describe any such device that is capable of delivering electrical stimulation therapy to the heart, such as an ICD, ICP, LCP, or the like.
In some examples, MD 100 may not be an implantable medical device. Rather, MD 100 may be a device external to the patient's body, and may include skin-electrodes that are placed on a patient's body. In such examples, MD 100 may be able to sense surface cardiac electrical signals (e.g. electrical signals that are generated by the heart or device implanted within a patient's body and conducted through the body to the skin). In such examples, MD 100 may still be configured to deliver various types of electrical stimulation therapy. In other examples, however, MD 100 may be a diagnostic-only device.
In some examples, LCP 200 may include electrical sensing module 206 and mechanical sensing module 208. Electrical sensing module 206 may be similar to sensing module 102 of MD 100. For example, electrical sensing module 206 may be configured to receive electrical signals generated intrinsically by the heart. Electrical sensing module 206 may be in electrical connection with electrodes 214, which may conduct the intrinsically generated electrical signals to electrical sensing module 206. Mechanical sensing module 208 may be configured to receive one or more signals representative of one or more physiological parameters of the heart. For example, mechanical sensing module 208 may include, or be in electrical communication with one or more sensors, such as accelerometers, blood pressure sensors, heart sound sensors, blood-oxygen sensors, and other sensors which measure physiological parameters of the patient. Although described with respect to
In at least one example, each of modules 202, 204, 206, 208, and 210 illustrated in
As depicted in
To implant LCP 200 inside patient's body, an operator (e.g., a physician, clinician, etc.), may need to fix LCP 200 to the cardiac tissue of the patient's heart. To facilitate fixation, LCP 200 may include one or more anchors 216. Anchor 216 may be any one of a number of fixation or anchoring mechanisms. For example, anchor 216 may include one or more pins, staples, threads, screws, helix, tines, and/or the like. In some examples, although not shown, anchor 216 may include threads on its external surface that may run along at least a partial length of anchor 216. The threads may provide friction between the cardiac tissue and the anchor to help fix anchor 216 within the cardiac tissue. In other examples, anchor 216 may include other structures such as barbs, spikes, or the like to facilitate engagement with the surrounding cardiac tissue.
The design and dimensions of MD 100 and LCP 200, as shown in
Various devices of system 300 may communicate via communication pathway 308. For example, LCPs 302 and/or 304 may sense intrinsic cardiac electrical signals and may communicate such signals to one or more other devices 302/304, 306, and 310 of system 300 via communication pathway 308. In one example, external device 306 may receive such signals and, based on the received signals, determine an occurrence of an arrhythmia. In some cases, external device 306 may communicate such determinations to one or more other devices 302/304, 306, and 310 of system 300. Additionally, one or more other devices 302/304, 306, and 310 of system 300 may take action based on the communicated determination of an arrhythmia, such as by delivering a suitable electrical stimulation. This description is just one of many reasons for communication between the various devices of system 300.
Communication pathway 308 may represent one or more of various communication methods. For example, the devices of system 300 may communicate with each other via RF signals, inductive coupling, optical signals, acoustic signals, or any other signals suitable for communication and communication pathway 308 may represent such signals.
In at least one example, communicated pathway 308 may represent conducted communication signals. Accordingly, devices of system 300 may have components that allow for conducted communication. In examples where communication pathway 308 includes conducted communication signals, devices of system 300 may communicate with each other by sensing electrical communication pulses delivered into the patient's body by another device. The patient's body may conduct these electrical communication pulses to the other devices of system 300. In such examples, the delivered electrical communication pulses may differ from the electrical stimulation pulses of any of the above described electrical stimulation therapies. For example, the devices of system 300 may deliver such electrical communication pulses at a voltage level that is sub-threshold. That is, the voltage amplitude of the delivered electrical communication pulses may be low enough as to not capture the heart (e.g. not cause a contraction). Although, in some circumstances, one or more delivered electrical communication pulses may capture the heart. Additionally, in other circumstances, delivered electrical stimulation pulses may not capture the heart, yet are not electrical communication pulses. In some cases, the delivered electrical communication pulses may be modulated (e.g. pulse width modulated), or the timing of the delivery of the communication pulses may be modulates, to encode the communicated information. These are just some examples.
As mentioned above, some example systems may employ multiple devices for determining occurrences of arrhythmias, and/or for delivering electrical stimulation therapy in response to determining one or more arrhythmias.
As shown, LCP 402 may be implanted within heart 410. Although LCP 402 is depicted as being implanted within the left ventricle (LV) of heart 410, in other examples, LCP 402 may be implanted within a different chamber of the heart 410. For example, LCP 402 may be implanted within the left atrium (LA) of heart 410 or the right atrium (RA) of heart 410. In other examples, LCP 402 may be implanted within the right ventricle (RV) of heart 410.
In any event, LCP 402 and pulse generator 406 may operate together to determine occurrences of cardiac arrhythmias of heart 410. In some instances, devices 402 and 406 may operate independently to sense cardiac activity of heart 410. As described above, cardiac activity may include sensed cardiac electrical signals and/or sensed physiological parameters. In such examples, each of LCP 402 and pulse generator 406 may operate to determine occurrences of arrhythmias independently of one another based on the independently sensed cardiac activity. When a first of LCP 402 or pulse generator 406 makes a first determination of an arrhythmia, that first device may communicate the first determination to the second device. If the second device of system 400 also makes a determination of an arrhythmia, e.g. a second determination of an arrhythmia, based on its own sensed cardiac activity, the arrhythmia may be confirmed and the system 400 may begin to deliver appropriate electrical stimulation therapy to heart 410. In this manner, both devices 402 and 406 of system 400 may be used to determine an occurrence of an arrhythmia. In some examples, when only one of devices 402 or 406 determines an occurrence of an arrhythmia, and the other does not, system 400 may still begin to deliver appropriate electrical stimulation therapy to heart 410.
In other examples, only one of devices 402 and 406 actively senses cardiac activity and determines occurrences of arrhythmias. For example, when the actively sensing device (e.g. LCP 402) determines an occurrence of an arrhythmia, the actively sensing device may communicate the determination to the other device (e.g. Pulse Generator 406) of system 400. System 400 may then begin to deliver appropriate electrical stimulation therapy to heart 410. In another example, the device which actively senses cardiac activity may communicate the sensed cardiac activity to the other device. Then, based on the received cardiac activity, the other device may determine an occurrence of an arrhythmia. System 400 may then begin to deliver appropriate electrical stimulation therapy to heart 410. In some of these examples, the other device may additionally communicate the determination of an arrhythmia to the actively sensing device.
In still other examples, only a first of devices 402 or 406 continuously senses cardiac actively. The first device (e.g. Pulse Generator 406) may continually determine, based on the sensed cardiac activity, occurrences of arrhythmias. In such examples, when the first device determines an occurrence of an arrhythmia, the first device may communicate the determination to the second device (e.g. LCP 402). Upon receiving a determination of an occurrence of an arrhythmia, the second device may begin to sense cardiac activity. Based on its sensed cardiac activity, the second device may also determine an occurrence of an arrhythmia. In such examples, only after the second device also determines an occurrence of an arrhythmia, system 400 may begin to deliver appropriate electrical stimulation therapy to heart 410.
In some examples, determining an occurrence of an arrhythmia may include determining a beginning of an arrhythmia, and system 400 may be configured to determine when to begin to deliver electrical stimulation therapy. In some examples, determining an occurrence of an arrhythmia may include determining an end of an arrhythmia. In such examples, system 400 may be configured to also determine when to cease to deliver electrical stimulation therapy.
In examples where system 400 operates to deliver appropriate electrical stimulation therapy to heart 410, if the determined arrhythmia is a fibrillation, pulse generator 406 may operate to deliver a defibrillation pulse to heart 410. In examples where the determined arrhythmia is a tachycardia, LCP 402 may deliver ATP therapy to heart 410. In examples where the determined arrhythmia is a bradycardia, LCP 402 may deliver bradycardia therapy to heart 410. In examples where the determined arrhythmia is un-synchronized contractions, LCP 402 may deliver CRT to heart 410. In some examples, pulse generator 406 and LCP 402 may coordinate to deliver electrical stimulation therapy to heart 410 in accordance with one or more of the techniques described below with respect to
LCP 502 may be implanted within heart 510. Although LCP 502 is depicted implanted within the left ventricle (LV) of the heart 510, in some instances, LCP 502 may be implanted within a different chamber of the heart 510. For example, LCP 502 may be implanted within the left atrium (LA) of heart 510 or the right atrium (RA) of heart 510. In other examples, LCP 502 may be implanted within the right ventricle (RV) of heart 510.
In any event, LCP 502 and pulse generator 506 may operate together to determine occurrences of cardiac arrhythmias of heart 510. In some instances, devices 502 and 506 may operate independently to sense cardiac activity of heart 510. As described above, cardiac activity may include sensed cardiac electrical signals and/or sensed physiological parameters. In some cases, each of LCP 502 and pulse generator 506 may operate to determine occurrences of arrhythmias independently based on the independently sensed cardiac activity. When a first of LCP 502 or pulse generator 506 makes a first determination of an arrhythmia, that first device may communicate the first determination to the second device. If the second device of system 500 also makes a determination of an arrhythmia, e.g. a second determination of an arrhythmia, based on its own sensed cardiac activity, system 500 may confirm the arrhythmia and may begin to deliver appropriate electrical stimulation therapy to heart 510. In this manner, both devices 502 and 506 of system 500 may be used to determine an occurrence of an arrhythmia. In some instances, when only a single one of devices 502 or 506 determines an occurrence of an arrhythmia, system 500 may also begin to deliver appropriate electrical stimulation therapy to heart 510.
In some examples, only one of devices 502 and 506 may actively sense cardiac activity and determine occurrences of arrhythmias. For example, when the actively sensing device (e.g. pulse generator 506) determines an occurrence of an arrhythmia, the actively sensing device may communicate the determination to the other device (e.g. LCP 502) of system 500. System 500 may then begin to deliver appropriate electrical stimulation therapy to heart 510. In some examples, the device which actively senses cardiac activity may communicate the sensed cardiac activity to the other device. Then, based on the received cardiac activity, the other device may sense for and determine an occurrence of an arrhythmia. System 500 may then begin to deliver appropriate electrical stimulation therapy to heart 510. In some instances, the other device may additionally communicate the determination of an arrhythmia to the actively sensing device.
In still other examples, only a first of devices 502 or 506 may continuously sense cardiac actively. The first device may additionally continually determine, based on the sensed cardiac activity, occurrences of arrhythmias. In some examples, when the first device determines an occurrence of an arrhythmia, the first device may communicate the determination to the second device. Upon receiving a determination of an occurrence of an arrhythmia, the second device may begin to sense cardiac activity. Based on its sensed cardiac activity, the second device may also determine an occurrence of an arrhythmia. In such examples, only after the second device also determines an occurrence of an arrhythmia, system 500 may begin to deliver appropriate electrical stimulation therapy to heart 510.
In some examples, determining an occurrence of an arrhythmia may include determining a beginning of an arrhythmia, and system 500 may be configured to determine when to begin to deliver electrical stimulation therapy. In some examples, determining an occurrence of an arrhythmia may include determining an end of an arrhythmia. In such examples, system 500 may be configured to determine when to cease to deliver electrical stimulation therapy. In examples where system 500 does not begin to deliver appropriate electrical stimulation therapy to heart 510 until multiple devices determine an occurrence of a cardiac arrhythmia, each of the determinations that do not trigger delivery of electrical stimulation therapy may be termed provisional determinations.
In examples where system 500 operates to deliver appropriate electrical stimulation therapy to heart 510, if the determined arrhythmia is a tachycardia, either pulse generator 506, LCP 502, or both may deliver ATP therapy to heart 510. In examples where the determined arrhythmia is a bradycardia, either pulse generator 506, LCP 502, or both may deliver bradycardia therapy to heart 510. In examples where the determined arrhythmia is un-synchronized contractions, either pulse generator 506, LCP 502, or both may deliver CRT to heart 510. In some examples, pulse generator 506 and LCP 502 may coordinate to deliver electrical stimulation therapy to heart 510 in accordance with one or more of the techniques described below with respect to
In any event, and in some examples, LCP 602 and LCP 606 may operate together to determine occurrences of cardiac arrhythmias of heart 610. For example, devices 602 and 606 may operate independently to sense cardiac activity of heart 610. As described above, cardiac activity may include sensed cardiac electrical signals and/or sensed physiological parameters. In such examples, each of LCP 602 and LCP 606 may operate to determine occurrences of arrhythmias independently based on the independently sensed cardiac activity. When a first of LCP 602 or LCP 606 makes a first determination of an arrhythmia, that first device may communicate the first determination to the second device. If the second device of system 600 also makes a determination of an arrhythmia, e.g. a second determination of an arrhythmia, based on its own sensed cardiac activity, system 600 may confirm the arrhythmia and may begin to deliver appropriate electrical stimulation therapy to heart 610. In this manner, both devices 602 and 606 of system 600 may be used to determine an occurrence of an arrhythmia. In some examples, when only a single one of devices 602 or 606 determines an occurrence of an arrhythmia, system 600 may begin to deliver appropriate electrical stimulation therapy to heart 610.
In other examples, only one of devices 602 and 606 may actively sense cardiac activity and determine occurrences of arrhythmias. In some of these examples, when the actively sensing device (e.g. LCP 606) determines an occurrence of an arrhythmia, the actively sensing device may communicate the determination to the other device (e.g. LCP 602) of system 600. System 600 may then begin to deliver appropriate electrical stimulation therapy to heart 610. In some cases, the device which actively senses cardiac activity may communicate the sensed cardiac activity to the other device. Then, based on the received cardiac activity, the other device may determine an occurrence of an arrhythmia. System 600 may then begin to deliver appropriate electrical stimulation therapy to heart 610. In some of these examples, the other device may additionally communicate the determination of an arrhythmia to the actively sensing device and/or to another device.
In some examples, only a first of devices 602 or 606 may continuously sense cardiac actively. The first device may continually determine, based on the sensed cardiac activity, occurrences of arrhythmias. In such examples, when the first device determines an occurrence of an arrhythmia, the first device may communicate the determination to the second device. Upon receiving a determination of an occurrence of an arrhythmia, the second device may begin to sense cardiac activity. Based on its sensed cardiac activity, the second device may also determine an occurrence of an arrhythmia. In such examples, only after the second device also determines an occurrence of an arrhythmia does system 600 begin to deliver appropriate electrical stimulation therapy to heart 610.
In some examples, determining an occurrence of an arrhythmia may include determining a beginning of an arrhythmia, and system 600 may be configured to determine when to begin to deliver electrical stimulation therapy. In some examples, determining an occurrence of an arrhythmia may include determining an end of an arrhythmia. In such examples, system 600 may be configured to also determine when to cease to deliver electrical stimulation therapy. In examples where system 600 does not begin to deliver appropriate electrical stimulation therapy to heart 610 until multiple devices determine an occurrence of a cardiac arrhythmia, each of the determinations that do not trigger delivery of electrical stimulation therapy may be termed provisional determinations.
In examples where system 600 operates to deliver appropriate electrical stimulation therapy to heart 610, if the determined arrhythmia is a tachycardia, either LCP 602, LCP 606, or both may deliver ATP therapy to heart 610. In examples where the determined arrhythmia is a bradycardia, either LCP 602, LCP 606, or both may deliver bradycardia therapy to heart 610. In examples where the determined arrhythmia is un-synchronized contractions, either pulse LCP 602, LCP 606, or both may deliver CRT to heart 610. In some examples, pulse generator 606 and LCP 602 may coordinate to deliver electrical stimulation therapy to heart 610 in accordance with one or more of the techniques described below with respect to
Although not necessarily described in
In practice, such a system 700 may operate in accordance with any of the techniques described above with respect to
Alternatively, and in some instances, only a single LCP may need to determine an occurrence of an arrhythmia before system 700 may begin to deliver appropriate electrical stimulation therapy to heart 710. In yet other examples, all three of the LCP's 702, 704, and 706 may need to determine an occurrence of an arrhythmia before system 700 delivers appropriate electrical stimulation therapy to the heart 710.
In some cases, only one LCP 702, 704, and 706 may actively sense cardiac activity and determine an occurrence of an arrhythmia. After determining an occurrence of an arrhythmia, the actively sensing device may communicate the determination to one or both of the other devices. In some cases, one or both of the other devices may then begin sensing for and determining occurrences of arrhythmias. In some instances, when a first one of the other devices determines an occurrence of an arrhythmia, system 700 may begin to deliver appropriate electrical stimulation therapy to heart 710. In other instances, when both of the other devices determine an occurrence of an arrhythmia, system 700 may begin to deliver appropriate electrical stimulation therapy to heart 710.
In some instances, LCPs 702, 704, and 706 may be set up in a daisy-chain configuration. For example, an actively sensing device may send a determination of an arrhythmia to only one of the other two devices (alternatively, only one of the two receiving devices may act upon the received determination from the actively sensing device). The receiving device may then begin actively sensing for and determining occurrences of arrhythmias. Upon determining an occurrence of an arrhythmia, the receiving device may communicate the determination to the last device. The last device may then begin sensing for and determining occurrences of arrhythmias. In some instances, only when the last device determines an occurrence of an arrhythmia does the system 700 begin to deliver appropriate electrical stimulation therapy to heart 710.
Also in accord with the description of systems 400, 500, and 700, in some examples, determining an occurrence of an arrhythmia may include determining a beginning of an arrhythmia, and system 700 may be configured to determine when to begin to deliver electrical stimulation therapy. In some examples, determining an occurrence of an arrhythmia may include determining an end of an arrhythmia. In such examples, system 700 may be configured to determine when to cease delivery of electrical stimulation therapy. In examples where system 700 does not begin to deliver appropriate electrical stimulation therapy to heart 710 until multiple LCP devices determine an occurrence of an arrhythmia, each of the determinations that do not trigger delivery of electrical stimulation therapy may be termed provisional determinations.
In examples where system 700 operates to deliver appropriate electrical stimulation therapy to heart 710, if the determined arrhythmia is a tachycardia, one or more of LCPs 702, 704, and 706 may deliver ATP therapy to heart 710. In examples where the determined arrhythmia is a bradycardia, one or more of LCPs 702, 704, and 706 may deliver bradycardia therapy to heart 710. In examples where the determined arrhythmia is un-synchronized contractions, one or more of LCPs 702, 704, and 706 may deliver CRT to heart 710. It is contemplated that less than all of LCPs 702, 704, and 706 may deliver electrical stimulation therapy in response to the detection of an arrhythmia. For example, only a single of LCPs 702, 704, and 706 may deliver electrical stimulation therapy. In other examples, two of LCPs 702, 704, and 706 may deliver electrical stimulation therapy. In some examples, LCPs 702, 704, and 706 may coordinate to deliver electrical stimulation therapy to heart 710 in accordance with one or more of the techniques described below with respect to
In accordance with the above described description, one can see how such techniques may be extended to systems that have even more than three LCP devices. For example, in a four LCP device system, any of one, two, three, or four devices may be used to determine an occurrence of an arrhythmia before the system begins to deliver appropriate electrical stimulation therapy. In some such examples, all, some, or one of the LCP devices may initially actively sense and determine the occurrences of arrhythmias. In examples where less than all are initially actively sensing, once one of the actively sensing devices determines an occurrence of an arrhythmia, and communicates that determination to other devices of the system, at least one of the other devices of the system may begin to actively sense cardiac activity and determine occurrences of arrhythmias. Again, the techniques described above may be extended to systems that include any number of LCP devices or other devices, such as five, six, seven, or any other number that is practically feasible for implantation within a patient's body.
Additionally, although described above with respect to three or more LCP devices, the same techniques may be applied to any of the systems described with respect to
A multiple device system may, in some cases, be capable of delivering more effective electrical stimulation therapy than a single device system. For example, before beginning to deliver electrical stimulation therapy, example systems may determine which of the devices of the system first senses a depolarization wave of the heart. In such examples, such systems may direct the device which senses the depolarization wave first to deliver the electrical stimulation therapy. This may allow such systems to deliver electrical stimulation therapy at a site closer to the origin of an arrhythmia, which may increase the effectiveness of the electrical stimulation therapy.
In the example of system 700, one of the devices of system 700 may determine an occurrence of a tachyarrhythmia, either individually or in addition to provisional determinations by other devices of system 700 in accordance with any of the techniques described above. One of the devices of system 700 (e.g. a master device) may determine to deliver ATP therapy to heart 710 or to determine to direct another device of system 700 to deliver ATP therapy. Before either delivering, or directing another device to deliver ATP therapy, one of the devices of system 700 may determine which device of system 700 first senses an intrinsic cardiac depolarization wave of heart 710. The device that senses such a depolarization wave first may then begin delivery of ATP therapy.
The above description is just one example of how a system may operate to deliver electrical stimulation therapy by the device that senses the intrinsic cardiac depolarization wave of a heart first. In other examples, the type of arrhythmia and therapy may be different. Additionally, as such a feature is not tied to any particular configuration or number of devices, any of the systems described herein may further include such a feature. The only limitation in any system may be whether the devices of the system are capable of delivering the appropriate electrical stimulation therapy.
A multiple device system may be used to help provide discrimination between atrial arrhythmias and ventricular arrhythmias. For instance, example systems described herein may operate differently depending on whether an arrhythmia is an atrial arrhythmia or a ventricular arrhythmia in order to more effectively treat such arrhythmias.
As one illustrative example, one of the devices of system 700 may determine an occurrence of a tachyarrhythmia, either individually or in addition to provisional determinations by other devices of system 700 in accordance with any of the techniques described above. Additionally, a device of system 700 may determine whether the tachycardia is an atrial tachycardia or a ventricular tachycardia. If the tachycardia is an atrial tachycardia, one or more of the devices of system 700 may determine to not deliver electrical stimulation therapy. If the tachycardia is a ventricular tachycardia, one or more of the devices of system 700 may additionally determine whether the rate of the tachycardia is above a threshold and whether the cardiac electrical signal is a polymorphic signal. If the tachycardia rate is below the threshold and the cardiac electrical signal is not a polymorphic signal, one or more of the devices of system 700 may deliver, or direct a different device of system 700 to deliver, ATP therapy to the heart 710. If the tachycardia rate is above the threshold or the cardiac electrical signal is a polymorphic signal, one or more of the devices of system 700 may deliver, or direct a different device of system 700 to deliver, a defibrillation pulse to heart 710. Discriminating between such atrial and ventricular arrhythmias, and responding differently to the different types of arrhythmias, may increase the effectiveness of delivered electrical stimulation therapy and decrease negative outcomes of any delivered electrical stimulation therapy. The above description is just one example of how the disclosed systems may operate to discriminate between various arrhythmias and deliver electrical stimulation therapy in response to the different determined arrhythmias.
Medical device system 900 of
As noted above, in some embodiments, one device in a medical system may act a master device and the other devices may act as slave devices.
In one example, the master device 1002 may be an ICD device, for example, an ICD or an S-ICD, and may be configured to receive cardiac information from one or more slave devices 1004, 1006, and 1008. In some cases, the slave devices may be LCP's. The communicated cardiac information may include, for example, cardiac electrical signals sensed by the slave devices 1004, 1006, and 1008, preliminary determinations made by the slave devices 1004, 1006, and 1008, or other information sensed or determined by the slave devices 1004, 1006, and 1008. In some examples, master device 1002 may also sense cardiac activity. In such examples, master device 1002 may determine occurrences of arrhythmias based on either its own sensed cardiac activity and/or the received cardiac activity from the slave devices 1004, 1006 and 1008. In some instances, master device 1002 may determine that the cardiac activity from one or multiple devices of system 1000 indicates an occurrence of an arrhythmia. In some cases, although multiple devices of system 1000 may each be sensing cardiac activity, only a single device, such as master device 1002, may make the determination that a cardiac arrhythmia is occurring and that an appropriate electrical stimulation therapy is desired.
In response to determining an occurrence of an arrhythmia, master device 1002 may determine to deliver electrical stimulation therapy. In one example, master device 1002 may determine an appropriate electrical stimulation therapy based on the type of arrhythmia. Additionally, master device 1002 may determine which device or devices should deliver the electrical stimulation therapy. Master device 1002 may direct one or more of the devices, which might include the master device itself, to actually deliver the desired electrical stimulation therapy. Master device 1002 may operate according to any of the previously disclosed techniques. For example, master device 1002 may determine one or more provisional determinations of occurrences of arrhythmias before determining an actual occurrence of an arrhythmia. Master device 1002 may additionally distinguish between atrial and ventricular arrhythmias and determine appropriate electrical stimulation therapy to deliver based on the determined type of arrhythmia. In some examples, master device 1002 may determine which device or devices need to deliver electrical stimulation therapy based on which device or devices sensed the cardiac depolarization wave first of a cardiac cycle.
In some instances, multiple devices of system 1000 may determine occurrences of arrhythmias. For example, slave devices 1004, 1006, and 1008 may each determine occurrences of arrhythmias and may communicate such determinations to master device 1002. In some examples, such determinations may be considered actual or provisional determinations. Based on such received determinations, master device 1002 may determine an occurrence of an arrhythmia, in accordance with any of the previously disclosed techniques. Based on an determination of an arrhythmia, master device 1002 may deliver, and/or direct one or more of slave devices 1004, 1006, and 1008 to deliver, appropriate electrical stimulation therapy.
In some cases, not all of master device 1002 and slave devices 1004, 1006, and 1008 may be actively sensing for an arrhythmia. For instance, as described previously, in some examples only a single, or less than all of master device 1002 and slave devices 1004, 1006, and 1008 may be actively sensing for an arrhythmia. In at least one example, the actively sensing device may be sending cardiac activity to master device 1002. Based on the received cardiac activity, master device 1002 may determine an occurrence of an arrhythmia. After determining an occurrence of an arrhythmia, master device 1002 may direct a second device of system 1000 to begin actively sensing cardiac activity. This second device may additionally communicate sensed cardiac activity to master device 1002. Again, master device 1002 may determine an occurrence of an arrhythmia based on the received cardiac activity from the second device. After making one or more determinations of an occurrence of an arrhythmia, master device 1002 may deliver, or direct one or more of slave devices 1004, 1006, and 1008 to deliver, appropriate electrical stimulation therapy. In other examples, instead of sending sensed cardiac data, the devices may send determinations of occurrences of an arrhythmia to master device 1002. In some cases, master device 1002 may not sense cardiac activity. Rather, master device 1002 may make determinations of occurrences of cardiac arrhythmias based on received cardiac activity and/or determinations from those slave devices that are sensing cardiac activity.
In some cases, master device 1002 may be an LCP device, an external cardioverter-defibrillator, ICP, or diagnostic-only device. In some examples, master device 1002 and the slave devices 1004, 1006, and 1008 may have similar hardware configuration; however, they may have different software installed. In some examples, the slave devices 1004, 1006, and 1008 may be set to a “slave mode” while master device 1002 may be set to a “master mode”, even though all devices share the same hardware and software features. Additionally, in some examples, the devices of system 1000 may switch between being configured as a master device and a slave device. For example, an external programmer may connect to any of the devices of such systems and alter the programming of any of the devices of the system, as desired.
In some examples, first medical device 1102 may communicate one or more parameters for the pacing pulses 1108 that are to be delivered to the heart by the second medical device 1104. For example, first medical device 1102 may send one or more signals to second medical device 1104 that indicate, for example, a voltage amplitude, a pulse width, a coupling interval (interval from intrinsic heart signal to pacing pulse), and/or other suitable parameter(s) for the corresponding pacing pulse 1108. In some instances, one or more signals may be encoded in the trigger signal 1106, or may be provided in a separate signal. In some cases, each trigger signal 1106, in addition to causing second medical device 1104 to deliver a corresponding pacing pulse 1108, may be encoded with information such as a voltage amplitude and/or pulse width of the corresponding pacing pulse 1108. In some instances, one trigger signal 1106 may be encoded with a voltage amplitude, a pulse width and/or other any other suitable pacing parameters. Thereafter, the second medical device 1104 may deliver subsequent pacing pulses 1108 according to such communicated pacing parameters until the second medical device 1104 receives different parameters from the first medical device 1102.
In some example, such parameters may be communicated to second medical device 1104 prior to the system determining an occurrence of any arrhythmia. For instance, first medical device 1102, or another device, may communicate such parameters to second medical device 1104 at implantation or during or after a programming session. In still other examples, such parameters may be pre-programmed into second medical device 1104, such as at the factory. In these instances, the parameters may be communicated to second medical device 1104 separately from the trigger signals 1106. Although described above with respect to two devices, the technique of
In some instances, a first device may send trigger signals to only one of the other multiple devices. For example, a first device may send trigger signals to the particular device that sensed a depolarization wave of the heart last relative to the other devices of the multiple device system. In still other examples, multiple devices may send trigger signals to multiple other devices, if desired. In some instances, the first device may be a subcutaneous cardioverter-defibrillators (S-ICD), and the other devices may be leadless cardiac pacemakers (LCPs), but this is just one example.
In some examples, first medical device 1202 may communicate one or more parameters for pacing pulses 1208 that are to be delivered by second medical device 1204 to the heart. For example, first medical device 1202 may send one or more signals to second medical device 1204 indicating a voltage amplitude, a pulse width, and/or any other suitable parameters for pacing pulses 1208. Alternatively, or in addition, first medical device 1202 may communicate a pulse train length parameter, a pulse frequency (interval between pacing pulses), a coupling interval and/or other pulse information to the second medical device 1204. The pulse train length parameter may indicate a desired number of pacing pulses 1208 that the second medical device 1204 should deliver in response to receiving a single trigger signal 1206.
In some examples, the one or more signals may be encoded in or on the trigger signal 1206. For example, trigger signal 1206, in addition to causing second medical device 1204 to deliver a train of pacing pulses 1208, may be encoded with information such as voltage amplitude, pulse width, train length, pulse frequency, and/or any other suitable parameters of pacing pulses 1208. In some examples, first medical device 1202 may communicate a delay parameter, which may indicate how quickly second medical device 1204 should begin delivering pacing pulses 1208 after receiving the trigger signal 1206 from the first medical device 1202.
In some examples, such parameters may be communicated to second medical device 1204 prior to the system determining an occurrence of any arrhythmia. For instance, first medical device 1202, or another device, may communicate such parameters to second medical device 1204 at implantation or during or after a programming session. In still other examples, such parameters may be pre-programmed into second medical device 1204, such as at the factory.
In some instances, the first medical device 1202 may communicate a start trigger signal 1206 and a stop trigger signal 1206a. For example, a start trigger signal 1206 may cause second medical device 1204 to begin delivering pacing pulses 1208 according to one or more parameters, such as a voltage amplitude parameter, a pulse width parameter, and/or other parameters. First medical device 1202 may subsequently deliver a stop trigger 1206a (shown in dashed lines). Such a stop trigger 1206a may cause second medical device 1204 to cease delivering pacing pulses 1208. In some examples, after first medical device 1202 delivers a stop trigger 1206a, one or more devices of the system may determine whether an arrhythmia is still occurring. In examples where one of the devices of the system does determine that an arrhythmia is still occurring, the first medical device 1302 may communicate another start trigger signal 1206 to second medical device 1204.
Although described above with respect to two devices, the techniques of
In some instances, a first device may send trigger signals to only one of the other multiple devices. For example, a first device may send trigger signals to the particular device that sensed a depolarization wave of the heart last relative to the other devices of the multiple device system. In still other examples, multiple devices may send trigger signals to multiple other devices, if desired. In some instances, the first device may be a subcutaneous cardioverter-defibrillators (S-ICD), and the other devices may be leadless cardiac pacemakers (LCPs), but this is just one example.
In some examples, first medical device 1302 (or another medical device) may communicate one or more therapy protocols to the second medical device 1304.
In some instances, a therapy protocol may include parameters for the pacing pulses 1308, such as voltage amplitude, pulse width, pulse train length, and/or parameters. In some cases, such parameters may not be a part of the therapy protocol, but rather may be communicated separately from the therapy protocol. As described above with respect to
Although described above with respect to two devices, the illustrative technique of
In some instances, a first device may send trigger signals to only one of the other multiple devices. For example, a first device may send trigger signals to the particular device that sensed a depolarization wave of the heart last relative to the other devices of the multiple device system. In still other examples, multiple devices may send trigger signals to multiple other devices, if desired. In some instances, the first device may be a subcutaneous cardioverter-defibrillators (S-ICD), and the other devices may be leadless cardiac pacemakers (LCPs), but this is just one example.
In some examples, a system may be capable of operating using some or all of the above described techniques in any combination. In such examples, each of the devices of the system may receive a communication signal indicating by which mode of operation the devices should operate. In some cases, each of the devices may have an address, and the communication between devices may be directed to particular devices by referencing the appropriate address(es). In some cases, the communication is simply broadcast to all devices, as desired.
In the example shown in
Heart signals 1414 can be used to identify the cardiac cycles of the heart. In the example shown, the heart signals 1414 include QRS waves 1410, which in some cases can be sensed by the second medical device 1404. Generally, a heart is not able to contract in response to electrical stimulation just after a contraction of the heart (i.e. during a refectory period). After a certain time passes after a contraction, the cells of the heart may again be contracted in response to electrical stimulation. Accordingly, in order to deliver electrical stimulation therapy with a higher chance of causing a contraction of the heart or a high chance of terminating an arrhythmia, second medical device 1404 may wait to deliver pacing pulses until after the refractory period expires.
In the example shown in
In some examples, the second medical device, which delivers the electrical stimulation therapy to the heart, may synchronize delivering of the therapy with one or more defibrillation pulses. As one example, a medical system may include an LCP that is configured to deliver ATP therapy. The system may further include an SICD that is configured to deliver defibrillation pulses. After the system determines an occurrence of an arrhythmia, in accordance with any of the techniques described herein, the SICD may send a trigger signal to the LCP to deliver pacing pulses in accordance with an ATP therapy protocol, such as in accordance with any of the illustrative techniques described herein with respect to
In some instances, the LCP device may be the trigger sending device, where the trigger to the SICD causes the SICD to begin charging for a defibrillation pulse. Another communication from the LCP may either cause the SICD to deliver the defibrillation pulse or abort delivering the defibrillation pulse, depending on whether an arrhythmia is still detected.
In some instances, the SICD determines whether an arrhythmia is occurring. The SICD may determine whether an arrhythmia is occurring by itself, or in conjunction with inputs received from one or more LCP or other devices. The SICD may then send a trigger signal to begin ATP therapy. After receiving the trigger signal, an LCP may verify a presence of an arrhythmia based on its own logic, before beginning to deliver ATP therapy. For example, the LCP may sense, or receive sensed cardiac electrical data, and from that data determine whether an arrhythmia is occurring.
In some cases, an LCP may operate in a normal state with an inactive communication link to an SICD. In such examples, the LCP may not receive or may block signals sent from the SICD, such as trigger signals. In such examples, the LCP may only activate the communication link after the LCP has itself determined an occurrence of an arrhythmia. In other examples the LCP may only activate the communication link after the LCP has itself determined the likelihood of an arrhythmia is high or the likelihood of an arrhythmia occurring in the near future (e.g. 1 to 60 minutes) is high. In such examples, keeping the communication link inactive may increase the battery life of the LCP.
Although some of the above examples have been described with respect to an LCP and an SICD, the disclosed method and techniques are applicable to any suitable system including the system disclosed herein, for example systems that include different types of devices and/or system that include different numbers of devices.
Those skilled in the art will recognize that the present disclosure may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. As one example, as described herein, various examples include one or more modules described as performing various functions. However, other examples may include additional modules that split the described functions up over more modules than that described herein. Additionally, other examples may consolidate the described functions into fewer modules. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present disclosure.
In a first example, a method for delivering anti-tachycardia pacing therapy to a heart of a patient comprises, in a first one of a plurality of implantable medical devices, determining to deliver anti-tachycardia pacing therapy to the heart of the patient, communicating a message from the first one of the plurality of implantable medical devices to a second one of the plurality of implantable medical devices, the message instructing the second one of the plurality of implantable medical devices to deliver anti-tachycardia pacing therapy to the heart, and in response to receiving the message, the second one of the plurality of implantable medical devices delivering anti-tachycardia pacing therapy to the heart of the patient.
Alternatively, or in addition, and in a second example, the message of the first example may be a trigger.
Alternatively, or in addition, and in a third example, the first one of the plurality of implantable medical devices of any of the first or second examples may comprise a subcutaneous implantable cardioverter-defibrillator (SICD), and the second one of the plurality of implantable medical devices comprises a leadless pacemaker (LCP).
Alternatively, or in addition, and in a fourth example, delivering anti-tachycardia pacing therapy by the second one of the plurality of implantable medical devices of any of the first through third examples may comprise delivering a single electrical stimulation pulse by the second one of the plurality of implantable medical devices in response to the received message to deliver anti-tachycardia pacing therapy.
Alternatively, or in addition, and in a fifth example, delivering anti-tachycardia pacing therapy by the second one of the plurality of implantable medical devices of any of the first through fourth examples may comprise delivering multiple electrical stimulation pulses by the second one of the plurality of implantable medical devices in response to the received message to deliver anti-tachycardia pacing therapy.
Alternatively, or in addition, and in a sixth example, delivering anti-tachycardia pacing therapy by the second one of the plurality of implantable medical devices of any of the first through fifth examples may comprise delivering anti-tachycardia pacing therapy in accordance with an anti-tachycardia pacing therapy protocol.
Alternatively, or in addition, and in a seventh example, any of the first through sixth examples may further comprise communicating one or more anti-tachycardia pacing therapy parameters from the first one of a plurality of implantable medical devices to the second one of a plurality of implantable medical devices prior to the delivering step.
Alternatively, or in addition, and in an eighth example, the one or more anti-tachycardia pacing therapy parameters of the seventh example may include one or more of: a number of electrical stimulation pulses to deliver during delivery of anti-tachycardia pacing therapy; a width of electrical stimulation pulses to deliver during delivery of anti-tachycardia pacing therapy; an amplitude of electrical stimulation pulses to deliver during delivery of anti-tachycardia pacing therapy; a time period between electrical stimulation pulses to deliver during delivery of anti-tachycardia pacing therapy; a shape of electrical stimulation pulses to deliver during delivery of anti-tachycardia pacing therapy; a coupling interval; and a specific anti-tachycardia pacing therapy protocol.
Alternatively, or in addition, and in a ninth example, delivering anti-tachycardia pacing therapy by the second one of the plurality of implantable medical devices of any of the first through eighth examples may comprise beginning to deliver anti-tachycardia pacing therapy during a non-refractory period of the heart.
Alternatively, or in addition, and in a tenth example, delivering anti-tachycardia pacing therapy by the second one of the plurality of implantable medical devices of any of the first through ninth examples may comprise beginning to deliver anti-tachycardia pacing therapy after a predefined amount of time following a first QRS wave that is detected after receiving the message to deliver anti-tachycardia pacing therapy.
Alternatively, or in addition, and in an eleventh example, any of the first through tenth examples may comprise determining, by the second one of the plurality of implantable medical devices, a presence of an arrhythmia before delivering anti-tachycardia pacing therapy to the heart of the patient.
Alternatively, or in addition, and in a twelfth example, the second one of the plurality of implantable medical devices of any of the first through eleventh examples may deliver tachycardia pacing therapy to the heart of the patient in synchrony with the rhythm of the heart of the patient.
Alternatively, or in addition, and in a thirteenth example, a communication link of the second one of the plurality of implantable medical devices of any of the first through twelfth examples may be inactive until the second one of the plurality of implantable medical devices determines a presence of an arrhythmia or a predetermined heart rate.
Alternatively, or in addition, and in a fourteenth example, the communication by the first one of the plurality of implantable medical devices to the second one of the plurality of implantable medical devices of any of the first through thirteenth examples may be via conducted communication signals.
In a fifteenth example, an implantable medical device system for delivering anti-tachycardia pacing therapy to a heart of a patient comprises a first implantable medical device, a second implantable medical device, wherein the first implantable medical device and the second implantable medical device are communicatively coupled, wherein at least one of the first implantable medical device and the second implantable medical device is configured to deliver anti-tachycardia pacing therapy to the heart of the patient, wherein the first implantable medical device is configured to determine to deliver anti-tachycardia pacing therapy to the heart of the patient, wherein the first implantable medical device is configured to communicate a message to the second implantable medical device to deliver anti-tachycardia pacing therapy to the heart of the patient, and the second implantable medical device is configured to deliver anti-tachycardia pacing therapy to the heart in response to receiving the message.
Alternatively, or in addition, and in a sixteenth example, the message of the fifteenth example received by the second implantable medical device to deliver anti-tachycardia pacing therapy to the heart of the patient may cause the second implantable medical device to deliver one anti-tachycardia pacing pulse, and wherein the first implantable medical device is configured to communicate multiple messages to the second implantable medical device wherein each message causes the second implantable medical device to deliver a corresponding anti-tachycardia pacing pulse.
Alternatively, or in addition, and in a seventeenth example, the first implantable medical device of any of the fifteenth or sixteenth examples may be further configured to communicate one or more parameters of the anti-tachycardia pacing therapy to the second implantable medical device.
Alternatively, or in addition, and in an eighteenth example, the first implantable medical device of any of the fifteenth-seventeenth examples may comprise a subcutaneous implantable cardioverter-defibrillator (SICD), and the second implantable medical device comprises a leadless pacemaker (LCP).
In a nineteenth example, a method of delivering electrical stimulation therapy to a heart of a patient comprises determining, by a first one of a plurality of implantable medical devices, a presence of an arrhythmia, the first one of a plurality of implantable medical devices includes a subcutaneous implantable cardioverter-defibrillator (SICD), determining, by the first one of the plurality of implantable medical devices, to deliver anti-tachycardia pacing therapy to the heart of the patient in response to determining a presence of an arrhythmia, charging, by the first one of the plurality of implantable medical devices, a capacitor of a shock channel of the first one of the plurality of implantable medical device, communicating, by the first one of the plurality of implantable medical devices to a second one of the plurality of implantable medical devices, a message to deliver anti-tachycardia pacing therapy, wherein the second one of the plurality of implantable medical devices includes a leadless pacemaker, and delivering anti-tachycardia pacing therapy to the heart of the patient by the second one of the plurality of implantable medical devices during the charging of the capacitor of the first one of the plurality of implantable medical devices.
Alternatively, or in addition, and in a twentieth example, the first one of the plurality of implantable medical devices of the nineteenth example may be configured to determine a presence of an arrhythmia or a predetermined heart rate after the second one of the plurality of implantable medical devices begins to deliver anti-tachycardia pacing therapy to the heart of the patient, and if the first one of the plurality of implantable medical devices determines a presence of an arrhythmia or a predetermined heart rate, the first one of the plurality of implantable medical devices is configured to deliver a defibrillation pulse to the heart of the patient via the shock channel.
This application claims the benefit of U.S. Provisional Application No. 61/926,068, filed Jan. 10, 2014, the complete disclosure of which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4333470 | Barthel | Jun 1982 | A |
4531527 | Reinhold, Jr. et al. | Jul 1985 | A |
4539999 | Mans | Sep 1985 | A |
4562841 | Brockway et al. | Jan 1986 | A |
4585004 | Brownlee | Apr 1986 | A |
4589420 | Adams et al. | May 1986 | A |
RE32378 | Barthel | Mar 1987 | E |
4787389 | Tarjan | Nov 1988 | A |
4884345 | Long | Dec 1989 | A |
4924875 | Chamoun | May 1990 | A |
5000189 | Throne et al. | Mar 1991 | A |
5002052 | Haluska | Mar 1991 | A |
5014698 | Cohen | May 1991 | A |
5107850 | Olive | Apr 1992 | A |
5113869 | Nappholz et al. | May 1992 | A |
5117824 | Keimel et al. | Jun 1992 | A |
5127401 | Grevoius et al. | Jul 1992 | A |
5139028 | Steinhaus et al. | Aug 1992 | A |
5156148 | Cohen | Oct 1992 | A |
5161527 | Nappholz et al. | Nov 1992 | A |
5193550 | Duffin | Mar 1993 | A |
5205283 | Olson | Apr 1993 | A |
5215098 | Steinhaus et al. | Jun 1993 | A |
5217021 | Steinhaus et al. | Jun 1993 | A |
5255186 | Steinhaus et al. | Oct 1993 | A |
5265602 | Anderson et al. | Nov 1993 | A |
5271411 | Ripley et al. | Dec 1993 | A |
5273049 | Steinhaus et al. | Dec 1993 | A |
5275621 | Mehra | Jan 1994 | A |
5292348 | Saumarez et al. | Mar 1994 | A |
5312445 | Nappholz et al. | May 1994 | A |
5313953 | Yomtov et al. | May 1994 | A |
5324310 | Greeninger et al. | Jun 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5360436 | Alt et al. | Nov 1994 | A |
5366487 | Adams et al. | Nov 1994 | A |
5378775 | Shimizu et al. | Jan 1995 | A |
5379775 | Kruse | Jan 1995 | A |
5379776 | Murphy et al. | Jan 1995 | A |
5388578 | Yomtov et al. | Feb 1995 | A |
5400795 | Murphy et al. | Mar 1995 | A |
5411031 | Yomtov | May 1995 | A |
5447524 | Alt | Sep 1995 | A |
5448997 | Kruse et al. | Sep 1995 | A |
5456261 | Luczyk | Oct 1995 | A |
5458623 | Lu et al. | Oct 1995 | A |
5503160 | Pering et al. | Apr 1996 | A |
5509927 | Epstein et al. | Apr 1996 | A |
5520191 | Karlsson et al. | May 1996 | A |
5531767 | Fain | Jul 1996 | A |
5545186 | Olson et al. | Aug 1996 | A |
5620471 | Duncan | Apr 1997 | A |
5630425 | Panescu et al. | May 1997 | A |
5634468 | Platt et al. | Jun 1997 | A |
5645070 | Turcott | Jul 1997 | A |
5682900 | Arand et al. | Nov 1997 | A |
5683425 | Hauptmann | Nov 1997 | A |
5712801 | Turcott | Jan 1998 | A |
5713367 | Arnold et al. | Feb 1998 | A |
5738105 | Kroll | Apr 1998 | A |
5741312 | Vonk et al. | Apr 1998 | A |
5755736 | Gillberg et al. | May 1998 | A |
5766225 | Kramm | Jun 1998 | A |
5772692 | Armstrong | Jun 1998 | A |
5776168 | Gunderson | Jul 1998 | A |
5779645 | Olson et al. | Jul 1998 | A |
5792065 | Xue et al. | Aug 1998 | A |
5795303 | Swanson et al. | Aug 1998 | A |
5817133 | Houben | Oct 1998 | A |
5819741 | Karlsson et al. | Oct 1998 | A |
5827197 | Bocek et al. | Oct 1998 | A |
5843133 | Routh et al. | Dec 1998 | A |
5848972 | Triedman et al. | Dec 1998 | A |
5857977 | Caswell et al. | Jan 1999 | A |
5873897 | Armstrong et al. | Feb 1999 | A |
5891170 | Nitzsche et al. | Apr 1999 | A |
5935081 | Kadhiresan | Aug 1999 | A |
5954662 | Swanson et al. | Sep 1999 | A |
5978707 | Krig et al. | Nov 1999 | A |
6108578 | Bardy et al. | Aug 2000 | A |
6151524 | Krig et al. | Nov 2000 | A |
6169918 | Haefner et al. | Jan 2001 | B1 |
6178350 | Olson et al. | Jan 2001 | B1 |
6179865 | Hsu et al. | Jan 2001 | B1 |
6212428 | Hsu et al. | Apr 2001 | B1 |
6223078 | Marcovecchio | Apr 2001 | B1 |
6230055 | Sun et al. | May 2001 | B1 |
6230059 | Duffin | May 2001 | B1 |
6266554 | Hsu et al. | Jul 2001 | B1 |
6275732 | Hsu et al. | Aug 2001 | B1 |
6308095 | Hsu et al. | Oct 2001 | B1 |
6312388 | Marcovecchio et al. | Nov 2001 | B1 |
6317632 | Krig et al. | Nov 2001 | B1 |
6405083 | Rockwell et al. | Jun 2002 | B1 |
6421563 | Sullivan et al. | Jul 2002 | B1 |
6430435 | Hsu et al. | Aug 2002 | B1 |
6434417 | Lovett | Aug 2002 | B1 |
6449503 | Hsu | Sep 2002 | B1 |
6456871 | Hsu et al. | Sep 2002 | B1 |
6477404 | Yonce et al. | Nov 2002 | B1 |
6480733 | Turcott | Nov 2002 | B1 |
6484055 | Marcovecchio | Nov 2002 | B1 |
6493579 | Gilkerson et al. | Dec 2002 | B1 |
6505067 | Lee et al. | Jan 2003 | B1 |
6512940 | Brabec et al. | Jan 2003 | B1 |
6522915 | Ceballos et al. | Feb 2003 | B1 |
6522917 | Hsu et al. | Feb 2003 | B1 |
6522925 | Gilkerson et al. | Feb 2003 | B1 |
6526313 | Sweeney et al. | Feb 2003 | B2 |
6618619 | Florio et al. | Sep 2003 | B1 |
6622046 | Fraley et al. | Sep 2003 | B2 |
6658283 | Bomzin et al. | Dec 2003 | B1 |
6658286 | Seim | Dec 2003 | B2 |
6671548 | Mouchawar et al. | Dec 2003 | B1 |
6687540 | Marcovecchio | Feb 2004 | B2 |
6708058 | Kim et al. | Mar 2004 | B2 |
6728572 | Hsu et al. | Apr 2004 | B2 |
6745068 | Koyrakh et al. | Jun 2004 | B2 |
6760615 | Ferek-Petric | Jul 2004 | B2 |
6766190 | Ferek-Petric | Jul 2004 | B2 |
6889081 | Hsu | May 2005 | B2 |
6892094 | Ousdigian et al. | May 2005 | B2 |
6959212 | Hsu et al. | Oct 2005 | B2 |
6978177 | Chen et al. | Dec 2005 | B1 |
7031764 | Schwartz et al. | Apr 2006 | B2 |
7039463 | Marcovecchio | May 2006 | B2 |
7162298 | Ideker et al. | Jan 2007 | B2 |
7203535 | Hsu et al. | Apr 2007 | B1 |
7228176 | Smith et al. | Jun 2007 | B2 |
7515956 | Thompson | Apr 2009 | B2 |
7558631 | Cowan et al. | Jul 2009 | B2 |
7565195 | Kroll et al. | Jul 2009 | B1 |
7634313 | Kroll et al. | Dec 2009 | B1 |
7647109 | Hastings et al. | Jan 2010 | B2 |
7751890 | McCabe et al. | Jul 2010 | B2 |
7761150 | Ghanem et al. | Jul 2010 | B2 |
7937135 | Ghanem et al. | May 2011 | B2 |
7991471 | Ghanem et al. | Aug 2011 | B2 |
7996087 | Cowan et al. | Aug 2011 | B2 |
8457742 | Jacobson | Jun 2013 | B2 |
8571678 | Wang | Oct 2013 | B2 |
8744572 | Greenhut et al. | Jun 2014 | B1 |
8923963 | Bonner et al. | Dec 2014 | B2 |
9072914 | Greenhut et al. | Jul 2015 | B2 |
20020002389 | Bradley et al. | Jan 2002 | A1 |
20020032469 | Marcovecchio | Mar 2002 | A1 |
20020035335 | Schauerte | Mar 2002 | A1 |
20020049474 | Marcovecchio et al. | Apr 2002 | A1 |
20020072778 | Guck et al. | Jun 2002 | A1 |
20020087091 | Koyrakh et al. | Jul 2002 | A1 |
20020091333 | Hsu et al. | Jul 2002 | A1 |
20020107552 | Krig et al. | Aug 2002 | A1 |
20020123768 | Gilkerson et al. | Sep 2002 | A1 |
20020123769 | Panken et al. | Sep 2002 | A1 |
20020143370 | Kim | Oct 2002 | A1 |
20020147407 | Seim | Oct 2002 | A1 |
20020147474 | Seim et al. | Oct 2002 | A1 |
20020183637 | Kim et al. | Dec 2002 | A1 |
20020183639 | Sweeney et al. | Dec 2002 | A1 |
20020198461 | Hsu et al. | Dec 2002 | A1 |
20030004552 | Plombon et al. | Jan 2003 | A1 |
20030050563 | Suribhotla et al. | Mar 2003 | A1 |
20030060849 | Hsu | Mar 2003 | A1 |
20030069609 | Thompson | Apr 2003 | A1 |
20030083586 | Ferek-Petric | May 2003 | A1 |
20030083587 | Ferek-Petric | May 2003 | A1 |
20030083703 | Zhu et al. | May 2003 | A1 |
20030100923 | Bjorling et al. | May 2003 | A1 |
20030105491 | Gilkerson et al. | Jun 2003 | A1 |
20030109792 | Hsu et al. | Jun 2003 | A1 |
20030114889 | Huvelle et al. | Jun 2003 | A1 |
20030120316 | Spinelli et al. | Jun 2003 | A1 |
20030181818 | Kim et al. | Sep 2003 | A1 |
20030208238 | Weinberg et al. | Nov 2003 | A1 |
20040015090 | Sweeney et al. | Jan 2004 | A1 |
20040093035 | Schwartz et al. | May 2004 | A1 |
20040116820 | Daum et al. | Jun 2004 | A1 |
20040116972 | Marcovecchio | Jun 2004 | A1 |
20040127806 | Sweeney et al. | Jul 2004 | A1 |
20040176694 | Kim et al. | Sep 2004 | A1 |
20050010257 | Lincoln et al. | Jan 2005 | A1 |
20050149134 | McCabe et al. | Jul 2005 | A1 |
20050149135 | Krig et al. | Jul 2005 | A1 |
20050159781 | Hsu | Jul 2005 | A1 |
20050197674 | McCabe et al. | Sep 2005 | A1 |
20050256544 | Thompson | Nov 2005 | A1 |
20060015148 | McCabe et al. | Jan 2006 | A1 |
20060074330 | Smith et al. | Apr 2006 | A1 |
20060122527 | Marcovecchio | Jun 2006 | A1 |
20060135999 | Bodner | Jun 2006 | A1 |
20060241701 | Markowitz et al. | Oct 2006 | A1 |
20060265018 | Smith | Nov 2006 | A1 |
20060281998 | Li | Dec 2006 | A1 |
20070088394 | Jacobson | Apr 2007 | A1 |
20070088397 | Jacobson | Apr 2007 | A1 |
20080045850 | Phillips | Feb 2008 | A1 |
20100069986 | Stahl et al. | Mar 2010 | A1 |
20100118798 | Chun et al. | May 2010 | A1 |
20100228308 | Cowan et al. | Sep 2010 | A1 |
20110071586 | Jacobson | Mar 2011 | A1 |
20110190835 | Brockway et al. | Aug 2011 | A1 |
20120109235 | Jacobson | May 2012 | A1 |
20120109236 | Jacobsen et al. | May 2012 | A1 |
20120316613 | Keefe et al. | Dec 2012 | A1 |
20130066169 | Rys et al. | Mar 2013 | A1 |
20130231710 | Jacobson | Sep 2013 | A1 |
20140121719 | Bonner et al. | May 2014 | A1 |
20140121720 | Bonner et al. | May 2014 | A1 |
20140214104 | Greenhut et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
0253505 | Jan 1988 | EP |
0308536 | Mar 1989 | EP |
0360412 | Mar 1990 | EP |
0401962 | Dec 1990 | EP |
0469817 | Feb 1992 | EP |
0506230 | Sep 1992 | EP |
0554208 | Aug 1993 | EP |
0597459 | May 1994 | EP |
0617980 | Oct 1994 | EP |
0711531 | May 1996 | EP |
0744190 | Nov 1996 | EP |
0748638 | Dec 1996 | EP |
0784996 | Jul 1997 | EP |
0848965 | Jun 1998 | EP |
0879621 | Nov 1998 | EP |
0919256 | Jun 1999 | EP |
0993842 | Apr 2000 | EP |
1112756 | Jul 2001 | EP |
2009518115 | May 2009 | JP |
9302746 | Feb 1993 | WO |
9401173 | Jan 1994 | WO |
9739681 | Oct 1997 | WO |
9739799 | Oct 1997 | WO |
9825669 | Jun 1998 | WO |
9840010 | Sep 1998 | WO |
9848891 | Nov 1998 | WO |
9853879 | Dec 1998 | WO |
9915232 | Apr 1999 | WO |
0053089 | Sep 2000 | WO |
0059573 | Oct 2000 | WO |
0113993 | Mar 2001 | WO |
0126733 | Apr 2001 | WO |
03047690 | Jun 2003 | WO |
2005089643 | Sep 2005 | WO |
2006020198 | Feb 2006 | WO |
2006020198 | May 2006 | WO |
2006049767 | May 2006 | WO |
2006124833 | Nov 2006 | WO |
2014120769 | Aug 2014 | WO |
Entry |
---|
Duru et al., “The Potential for Inappropriate Ventricular Tachycardia Confirmation Using the Intracardiac Electrogram (EGM) Width Criterion”, Pacing and Clinical Electrophysiology [PACE], 22(7): 1039-1046, Jul. 1999. |
Hughes et al., “The Effects of Electrode Position on the Detection of the Transvenous Cardiac Electrogram”, PACE, 3(6): 651-655, Nov. 1980. |
International Search Report and Written Opinion for Application No. PCT/US2005/035057, 17 pages, dated Feb. 1, 2006. |
Kinoshita et al., “Letter to the Editor”, Journal of Electrocardiology, 29(3): 255-256, Jul. 1996. |
Leitch et al., “Feasibility of an Implantable Arrhythmia Monitor”, PACE, 15(12): 2232-2235, Dec. 1992. |
Mazur et al., “Functional Similarity Between Electrograms Recorded from an Implantable Cardioverter Defibrillator Emulator and the Surface Electrocardiogram”, PACE, 24(1): 34-40, Jan. 2001. |
Medtronic, “Marquis™ DR 7274 Dual Chamber Implantable Cardioverter Defibrillator”, Reference Manual, 426 pgs., Feb. 2002. |
Morris et al., “Detection of Atrial Arrhythmia for Cardiac Rhythm Management by Implantable Devices”, Journal of Electrocardiology, vol. 33, Supplement 1, pp. 133-139, 2000. |
Theres et al., “Electrogram Signals Recorded from Acute and Chronic Pacemaker Implantation Sites in Pacemaker Patients”, PACE, 21(1): 11-17, Jan. 1998. |
Kruse, et al., “Detecting and Distinguishing Cardiac Pacing Artifacts,” Analog Dialogue 46-11, Nov. 2012, 6 pages. |
Notice of Acceptance for Patent Application No. 2015279939, 3 pages, dated Mar. 28, 2018. |
Number | Date | Country | |
---|---|---|---|
20150196756 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61926068 | Jan 2014 | US |