The present disclosure generally relates to systems and methods for treating viscous media.
According to the subject matter of the present disclosure, systems and methods for treating a viscous medium are provided where a helical mixing element is mechanically coupled to rotate with a rotational fluidic transfer assembly to facilitate treatment of the viscous media.
In accordance with one embodiment of the present disclosure, a system for treating a viscous medium comprises a primary source of pressurized treatment fluid, a rotational fluidic transfer assembly, and a helical mixing element. The rotational fluidic transfer assembly comprises an anchored portion, a rotational portion, a fluidic transfer chamber, a fluid outlet, and a sealed bearing assembly collectively configured to permit rotation of the rotational portion about a rotational axis relative to the anchored portion while maintaining a minimum fluidic injection pressure within the fluidic transfer chamber. The primary source of pressurized treatment fluid is in fluidic communication with the fluid outlet of the rotational fluidic transfer assembly via the fluidic transfer chamber. The helical mixing element comprises an interior treatment fluid passage, external injection ports, and external mixing paddles. The fluid outlet of the rotational fluidic transfer assembly is in fluidic communication with the external injection ports of the helical mixing element via the interior treatment fluid passage of the helical mixing element. The helical mixing element is mechanically coupled to rotate with the rotational portion of the rotational fluidic transfer assembly
In accordance with another embodiment of the present disclosure, the primary source of pressurized treatment fluid, the rotational fluidic transfer assembly, and the helical mixing element cooperate to permit the injection of pressurized treatment fluid from the primary source of pressurized treatment fluid through the external injection ports of the helical mixing element, into a target viscous medium in which the helical mixing element is positioned and to rotate the helical mixing element in the target viscous medium simultaneously with the injection of the pressurized treatment fluid into the target viscous medium. The viscous medium comprises bauxite tailings, the pressurized treatment fluid comprises carbon dioxide, and the pressurized treatment fluid is injected into the viscous medium at a volumetric flow rate sufficient to decrease the pH of the viscous medium by at least 3.
In accordance with another embodiment of the present disclosure, a system for treating a viscous medium comprises a primary source of pressurized treatment fluid, a fluidic transfer assembly, and a helical mixing element. The fluidic transfer assembly comprises a fluidic transfer chamber and a fluid outlet. The primary source of pressurized treatment fluid is in fluidic communication with the fluid outlet of the fluidic transfer assembly via the fluidic transfer chamber. The helical mixing element comprises an interior treatment fluid passage and external injection ports. The fluid outlet of the fluidic transfer assembly is in fluidic communication with the external injection ports of the helical mixing element via the interior treatment fluid passage of the helical mixing element.
In accordance with another embodiment of the present disclosure, a method for treating a viscous medium is illustrated comprising submerging a system comprising a primary source of pressurized treatment fluid, a rotational fluidic transfer assembly, and a helical mixing element into the viscous medium and introducing pressurized treatment fluid to the system. The rotational fluidic transfer assembly comprises an anchored portion, a rotational portion, a fluidic transfer chamber, a fluid outlet, and a sealed bearing assembly collectively configured to permit rotation of the rotational portion about a rotational axis relative to the anchored portion while maintaining a minimum fluidic injection pressure within the fluidic transfer chamber. The primary source of pressurized treatment fluid is in fluidic communication with the fluid outlet of the rotational fluidic transfer assembly via the fluidic transfer chamber. The helical mixing element comprises an interior treatment fluid passage, external injection ports, and external mixing paddles. The fluid outlet of the rotational fluidic transfer assembly is in fluidic communication with the external injection ports of the helical mixing element via the interior treatment fluid passage of the helical mixing element. The helical mixing element is mechanically coupled to rotate with the rotational portion of the rotational fluidic transfer assembly. The pressurized treatment fluid comprises carbon dioxide. The target viscous medium comprises bauxite tailings and has a pH between approximately 10 and approximately 13 before it is treated with the pressurized treatment fluid.
The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
Referring initially to
The rotational fluidic transfer assembly 20 comprises an anchored portion 22, a rotational portion 24, a fluidic transfer chamber 26, a fluid outlet 28, and an internal sealed bearing assembly 25 that are collectively configured to permit rotation of the rotational portion 24 about a rotational axis Z relative to the anchored portion 22 while maintaining a minimum fluidic injection pressure Pmin within the fluidic transfer chamber 26. For the purposes of defining and describing the subject matter of the present disclosure, it is noted that the sealed bearing assembly of the rotational fluidic transfer assembly 20 may be any type of conventional or yet to be developed bearing assembly that permits rotation of the rotational portion 24 about a rotational axis Z relative to the anchored portion 22 while maintaining a minimum fluidic injection pressure within the fluidic transfer chamber 26. For example, and not by way of limitation, it is contemplated that the suitable minimum fluidic injection pressure Pmin will be at least approximately two bar. As the size of the system 100 increases, the minimum fluidic injection pressure Pmin may be accordingly increased to compensate for the larger volume of the pressurized treatment fluid 40 needed to rotate the rotational fluidic transfer assembly 20. Therefore, in embodiments, the minimum fluidic injection pressure Pmin may range from two bar to hundreds of bar.
The primary source of pressurized treatment fluid 10 is in fluidic communication with the fluid outlet 28 of the rotational fluidic transfer assembly 20 via the fluidic transfer chamber 26. The helical mixing element 30 comprises an interior treatment fluid passage 32, external injection ports 34, and external mixing paddles 36. The fluid outlet 28 of the rotational fluidic transfer assembly 20 is in fluidic communication with the external injection ports 34 of the helical mixing element 30 via the interior treatment fluid passage 32 of the helical mixing element 30. The helical mixing element 30 is mechanically coupled to rotate with the rotational portion 24 of the rotational fluidic transfer assembly 20.
Referring initially to
Referring to
Referring collectively to
In embodiments, the helical mixing element 30 is constructed primarily of an anti-corrosive material under exposure to the target viscous medium 50. It is contemplated, for example, that stainless steel compositions and a variety of plastics may be configured to be anti-corrosive under exposure to the target viscous medium 50. The anti-corrosive material used to construct the helical mixing element 30 may be the same as, or different from, the material used to construct the rotational fluidic transfer assembly 20.
The external mixing paddles 36 of the helical mixing element 30 may be arranged along an outside diameter of the helical mixing element 30, as is illustrated in
The rotational fluidic transfer assembly 20 may be constructed primarily of an anti-corrosive material under exposure to the target viscous medium 50. For the purposes of defining and describing the subject matter of the present disclosure, it is noted that an anti-corrosive material is any material that maintains its structural integrity for an extended period of time, e.g., on the order of weeks or months, in a target viscous medium 50 having a pH of above approximately 10 or below approximately 4. It is contemplated, for example, that stainless steel compositions and a variety of plastics may be configured to be anti-corrosive under exposure to the composition of the target viscous medium 50.
It is contemplated that the pressurized treatment fluid 40 may be selected to increase or decrease the pH of the target viscous medium 50. In embodiments where the objective is pH reduction, it may be preferable to reduce the pH of the target viscous medium 50 by at least 3. In such embodiments, the target viscous medium 50 may have a pH between approximately 10 and approximately 13 before it is treated with the pressurized treatment fluid 40. When the objective is pH reduction, although a variety of treatment fluids will be appropriate, it is noted that suitable pressurized treatment fluids 40 may comprise carbon dioxide, hydrogen sulfide, sulfur oxides, hydrochloric acid, hydrofluoric acid, nitric acid, acetic acid, lactic acid, formic acid, citric acid, oxalic acid, uric acid, or combinations thereof.
In embodiments where the objective is pH elevation, it may be preferable to increase the pH of the target viscous medium 50 by at least 3. In such embodiments, the target viscous medium 50 may have a pH between approximately 1 and approximately 4 before it is treated with the pressurized treatment fluid 40. When the objective is pH elevation, although a variety of treatment fluids will be appropriate, it is noted that suitable pressurized treatment fluids 40 may comprise ammonia, potassium hydroxide, calcium hydroxide, sodium hypochlorite, or combinations thereof.
Regardless of the pH of the target viscous medium 50, the pressurized treatment fluid 40 may be injected into the target viscous medium 50 at a volumetric flow rate sufficient to increase or decrease the pH of the target viscous medium 50 to a significant extent, for example, by at least 3. Although a variety of volumetric flow rates will yield satisfactory results, it is contemplated that, in some embodiments, the volumetric flow rate of the pressurized treatment fluid 40 provided by the system 100 for treating the target viscous medium 50 will be at least approximately 16 cubic meters per second (m3/s).
In one class of embodiments, the target viscous medium 50 comprises bauxite tailings and the primary source of pressurized treatment fluid 10 comprises carbon dioxide gas or another fluid that will reduce the pH of the bauxite tailings. As used in this disclosure, “bauxite tailings” are understood to comprise highly alkaline waste products that are generated in the industrial production of alumina. Typically, bauxite tailings comprise a mixture of solid oxides and metallic oxides, including iron oxides, aluminum oxide, titanium oxide, calcium oxide, silicon dioxide, and sodium oxide. In other embodiments, the target viscous medium 50 comprises slag, fly ash, crusher fines, ammonia-soda process waste, chromite ore processing residue, or combinations thereof.
The system 100 for treating a viscous medium may further comprise a secondary source of pressurized treatment fluid in fluidic communication with the fluid outlet 28 of the rotational fluidic transfer assembly 20 via the fluidic transfer chamber 26. The secondary source of pressurized treatment fluid may be configured to increase fluidic injection pressure by introducing a secondary pressurized treatment fluid to the fluidic transfer chamber 26. The secondary source of pressurized treatment fluid may be introduced in line with the primary source of treatment fluid 10 through flow-directing pressurized fluid inlet 27, or independently of the primary source of treatment fluid 10 through a separate flow-directing fluid inlet. In embodiments where a secondary source of pressurized treatment fluid is provided, the pressure-driven impeller 60 and one or both of the primary and secondary sources of pressurized treatment fluid may be collectively configured to drive rotation of the helical mixing element 30 in response to the introduction of pressurized treatment fluid into the rotational fluidic transfer assembly 20.
In embodiments, the pressurized treatment fluid 40 introduced by the primary source of pressurized treatment fluid 10 is characterized by a viscosity that is different from the secondary pressurized treatment fluid introduced by the secondary source of pressurized treatment fluid. More specifically, in some cases, the pressurized treatment fluid 40 may have a relatively high viscosity that is not optimized for treatment of the target viscous medium 50, so a secondary pressurized treatment fluid of relatively low viscosity may be selected to counteract the relatively high viscosity of the pressurized treatment fluid 40 and present a composite treatment fluid that is more readily mixed into the target viscous medium 50. For example, and not by way of limitation, relatively high viscosity treatment fluids may comprise oil residue, concrete mixture, honey, chocolate, or combinations thereof, while relatively low viscosity treatment fluids may comprise methane, ethane, propane, butane, pentane, hexane, water, or combinations thereof.
According to a first aspect of the present disclosure, a system for treating a viscous medium comprises a primary source of pressurized treatment fluid, a rotational fluidic transfer assembly, and a helical mixing element, wherein the rotational fluidic transfer assembly comprises an anchored portion, a rotational portion, a fluidic transfer chamber, a fluid outlet, and a sealed bearing assembly collectively configured to permit rotation of the rotational portion about a rotational axis relative to the anchored portion while maintaining a minimum fluidic injection pressure within the fluidic transfer chamber; the primary source of pressurized treatment fluid is in fluidic communication with the fluid outlet of the rotational fluidic transfer assembly via the fluidic transfer chamber; the helical mixing element comprises an interior treatment fluid passage, external injection ports, and external mixing paddles; the fluid outlet of the rotational fluidic transfer assembly is in fluidic communication with the external injection ports of the helical mixing element via the interior treatment fluid passage of the helical mixing element; and the helical mixing element is mechanically coupled to rotate with the rotational portion of the rotational fluidic transfer assembly.
A second aspect of the present disclosure may include the first aspect, wherein the primary source of pressurized treatment fluid, the rotational fluidic transfer assembly, and the helical mixing element cooperate to permit the injection of the pressurized treatment fluid from the primary source of pressurized treatment fluid through the external injection ports of the helical mixing element, into a target viscous medium in which the helical mixing element is positioned.
A third aspect of the present disclosure may include the first aspect or the second aspect, wherein the primary source of pressurized treatment fluid, the rotational fluidic transfer assembly, and the helical mixing element cooperate to rotate the helical mixing element in a target viscous medium in which the helical mixing element is positioned.
A fourth aspect of the present disclosure may include any of the first through third aspects, wherein the primary source of pressurized treatment fluid, the rotational fluidic transfer assembly, and the helical mixing element cooperate to permit the injection of the pressurized treatment fluid from the primary source of pressurized treatment fluid through the external injection ports of the helical mixing element, into a target viscous medium in which the helical mixing element is positioned and rotate the helical mixing element in the target viscous medium simultaneously with the injection of the pressurized treatment fluid into the target viscous medium.
A fifth aspect of the present disclosure may include any of the first through fourth aspects, wherein the external injection ports are configured to drive rotation of the helical mixing element in the target viscous medium when the pressurized treatment fluid is injected into the target viscous medium.
A sixth aspect of the present disclosure may include any of the first through fifth aspects, wherein the external injection ports comprise fluidic nozzles that are configured to direct the pressurized treatment fluid tangentially from a surface of the helical mixing element.
A seventh aspect of the present disclosure may include any of the first through sixth aspects, wherein the rotational portion of the rotational fluidic transfer assembly comprises a pressure-driven impeller.
An eighth aspect of the present disclosure may include the seventh aspect, wherein the primary source of pressurized treatment fluid and the pressure-driven impeller are collectively configured to drive rotation of the helical mixing element in response to the introduction of the primary pressurized treatment fluid into the rotational fluidic transfer assembly.
A ninth aspect of the present disclosure may include the seventh aspect or eighth aspect, wherein the system further comprises a secondary source of pressurized treatment fluid in fluidic communication with the fluid outlet of the rotational fluidic transfer assembly via the fluidic transfer chamber and the pressure driven impeller and one or both of the primary and secondary sources of pressurized treatment fluid are collectively configured to drive rotation of the helical mixing element in response to the introduction of a secondary pressurized treatment fluid into the rotational fluidic transfer assembly.
A tenth aspect of the present disclosure may include any of the seventh through ninth aspects, wherein the rotational fluidic transfer assembly comprises a flow-directing pressurized fluid inlet that is configured to direct flow of fluid from one or both of the primary and secondary sources of pressurized treatment fluid towards a rotary surface of the pressure-driven impeller to drive rotation of the helical mixing element.
An eleventh aspect of the present disclosure may include any of the first through tenth aspects, wherein the external injection ports are configured to drive rotation of the helical mixing element in the target viscous medium when the pressurized treatment fluid is injected into the target viscous medium; the rotational portion of the rotational fluidic transfer assembly comprises a pressure-driven impeller; and the primary source of pressurized treatment fluid and the pressure-driven impeller are collectively configured to drive rotation of the helical mixing element in response to the introduction of the pressurized treatment fluid into the rotational fluidic transfer assembly.
A twelfth aspect of the present disclosure may include any of the first through eleventh aspects, wherein the pressurized treatment fluid is injected into the target viscous medium at a volumetric flow rate sufficient to decrease the pH of the target viscous medium by at least 3.
A thirteenth aspect of the present disclosure may include any of the first through twelfth aspects, wherein the target viscous medium comprises bauxite tailings and the pressurized treatment fluid comprises carbon dioxide.
A fourteenth aspect of the present disclosure may include any of the first through eleventh aspects, wherein the pressurized treatment fluid is injected into the target viscous medium at a volumetric flow rate sufficient to increase the pH of the target viscous medium by at least 3.
A fifteenth aspect of the present disclosure may include any of the first through fourteenth aspects, wherein the system further comprises a secondary source of pressurized treatment fluid in fluidic communication with the fluid outlet of the rotational fluidic transfer assembly via the fluidic transfer chamber.
A sixteenth aspect of the present disclosure may include the fifteenth aspect, wherein the secondary source of pressurized treatment fluid is configured to increase fluidic injection pressure within the fluidic transfer chamber.
A seventeenth aspect of the present disclosure may include the fifteenth aspect or the sixteenth aspect, wherein the respective viscosities of the pressurized treatment fluid introduced by the primary source of pressurized treatment fluid and the pressurized treatment fluid introduced by the secondary source of pressurized treatment fluid are different.
According to an eighteenth aspect of the present disclosure, a system for treating a viscous medium comprises a primary source of pressurized treatment fluid, a rotational fluidic transfer assembly, and a helical mixing element, wherein the rotational fluidic transfer assembly comprises an anchored portion, a rotational portion, a fluidic transfer chamber, a fluid outlet, and a sealed bearing assembly collectively configured to permit rotation of the rotational portion about a rotational axis relative to the anchored portion while maintaining a minimum fluidic injection pressure within the fluidic transfer chamber; the primary source of pressurized treatment fluid is in fluidic communication with the fluid outlet of the rotational fluidic transfer assembly via the fluidic transfer chamber; the helical mixing element comprises an interior treatment fluid passage, external injection ports, and external mixing paddles; the fluid outlet of the rotational fluidic transfer assembly is in fluidic communication with the external injection ports of the helical mixing element via the interior treatment fluid passage of the helical mixing element; the helical mixing element is mechanically coupled to rotate with the rotational portion of the rotational fluidic transfer assembly; the primary source of pressurized treatment fluid, the rotational fluidic transfer assembly, and the helical mixing element cooperate to permit the injection of pressurized treatment fluid from the primary source of pressurized treatment fluid through the external injection ports of the helical mixing element, into a target viscous medium in which the helical mixing element is positioned and to rotate the helical mixing element in the target viscous medium simultaneously with the injection of the pressurized treatment fluid into the target viscous medium; the viscous medium comprises bauxite tailings; the pressurized treatment fluid comprises carbon dioxide; and the pressurized treatment fluid is injected into the viscous medium at a volumetric flow rate sufficient to decrease the pH of the viscous medium by at least 3.
According to a nineteenth aspect of the present disclosure, a system for treating a viscous medium comprises a primary source of pressurized treatment fluid, a fluidic transfer assembly, and a helical mixing element, wherein the fluidic transfer assembly comprises a fluidic transfer chamber and a fluid outlet the primary source of pressurized treatment fluid is in fluidic communication with the fluid outlet of the fluidic transfer assembly via the fluidic transfer chamber the helical mixing element comprises an interior treatment fluid passage and external injection ports; and the fluid outlet of the fluidic transfer assembly is in fluidic communication with the external injection ports of the helical mixing element via the interior treatment fluid passage of the helical mixing element.
According to a twentieth aspect of the present disclosure, a method for treating a viscous medium comprises submerging a system comprising a primary source of pressurized treatment fluid, a rotational fluidic transfer assembly, and a helical mixing element into the viscous medium, and introducing pressurized treatment fluid to the system, wherein the rotational fluidic transfer assembly comprises an anchored portion, a rotational portion, a fluidic transfer chamber, a fluid outlet, and a sealed bearing assembly collectively configured to permit rotation of the rotational portion about a rotational axis relative to the anchored portion while maintaining a minimum fluidic injection pressure within the fluidic transfer chamber; the primary source of pressurized treatment fluid is in fluidic communication with the fluid outlet of the rotational fluidic transfer assembly via the fluidic transfer chamber; the helical mixing element comprises an interior treatment fluid passage, external injection ports, and external mixing paddles; the fluid outlet of the rotational fluidic transfer assembly is in fluidic communication with the external injection ports of the helical mixing element via the interior treatment fluid passage of the helical mixing element; the helical mixing element is mechanically coupled to rotate with the rotational portion of the rotational fluidic transfer assembly; the pressurized treatment fluid comprises carbon dioxide; and the target viscous medium comprises bauxite tailings and has a pH between approximately 10 and approximately 13 before it is treated with the pressurized treatment fluid.
It is noted that terms like “typically,” when utilized herein, are not utilized to limit the scope of the claimed invention or to imply that certain features are critical, essential, or even important to the structure or function of the claimed invention. Rather, these terms are merely intended to identify particular aspects of an embodiment of the present disclosure or to emphasize alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.
For the purposes of describing and defining the present invention it is noted that the term “approximately” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “approximately” is also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
Having described the subject matter of the present disclosure in detail and by reference to specific embodiments thereof, it is noted that the various details disclosed herein should not be taken to imply that these details relate to elements that are essential components of the various embodiments described herein, even in cases where a particular element is illustrated in each of the drawings that accompany the present description. Further, it will be apparent that modifications and variations are possible without departing from the scope of the present disclosure, including, but not limited to, embodiments defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these aspects.
It is noted that one or more of the following claims utilize the term “wherein” as a transitional phrase. For the purposes of defining the present invention, it is noted that this term is introduced in the claims as an open-ended transitional phrase that is used to introduce a recitation of a series of characteristics of the structure and should be interpreted in like manner as the more commonly used open-ended preamble term “comprising.”
Number | Name | Date | Kind |
---|---|---|---|
2592904 | Jackson | Apr 1952 | A |
6041944 | Meier | Mar 2000 | A |
6293121 | Labrador | Sep 2001 | B1 |
6488402 | King | Dec 2002 | B1 |
6694867 | Roth | Feb 2004 | B1 |
8785808 | Foret | Jul 2014 | B2 |
9023301 | Boudreault et al. | May 2015 | B2 |
20040244382 | Hagen | Dec 2004 | A1 |
20050056313 | Hagen | Mar 2005 | A1 |
20060032486 | Prasad | Feb 2006 | A1 |
20100276819 | Teng | Nov 2010 | A1 |
20110247816 | Carter, Jr. | Oct 2011 | A1 |
20140356262 | Ruth et al. | Dec 2014 | A1 |
20170120193 | Zhang | May 2017 | A1 |
20170369762 | Martinez et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
279508 | Mar 1970 | AT |
108067120 | May 2018 | CN |
108607426 | Oct 2018 | CN |
109663536 | Apr 2019 | CN |
2805144 | Jun 1979 | DE |
1602671 | Dec 2005 | EP |
941828 | Jan 1949 | FR |
569143 | May 1945 | GB |
9711034 | Mar 1997 | WO |
Entry |
---|
International Aluminium Institute (IAI), “Bauxite Residue Management: Best Practice”, Jul. 2015, World Aluminum, 31 pgs. |
Shi et al., “Carbon Dioxide Sequestation via pH Reduction of Red Mud Using Liquid CO2”, Chemical and Petroleum Engineering, 5 pgs. |
Venancio et al., “Pilot Test of Bauxite Residue Carbonation With Flue Gas.”, TMS (The Minerals, Metals & Materials Society), 2013, 2 pgs. |
Stanford, “Red mud—addressing the problem”, Aluminium Insider, Nov. 2016, 4 pgs. |
Goodarznia et al., “Treatment of Oil-Contaminated Drill Cuttings of South Pars Gas Field in Iran Using Supercritical Carbon Dioxide”, Iranian Journal of Science & Technology, 2006, 5 pgs. |
International Search Report and Written Opinion pertaining to Application No. PCT/US2019/051006 dated Feb. 6, 2020. |
Number | Date | Country | |
---|---|---|---|
20200360877 A1 | Nov 2020 | US |