Systems and methods for treatment of BPH

Information

  • Patent Grant
  • 8801702
  • Patent Number
    8,801,702
  • Date Filed
    Monday, February 11, 2013
    11 years ago
  • Date Issued
    Tuesday, August 12, 2014
    10 years ago
Abstract
A prostate therapy system is provided that may include any of a number of features. One feature of the prostate therapy system is that it can access a prostate lobe from the urethra. Another feature of the prostate therapy system is that it can deliver condensable vapor into the prostate to ablate the prostate tissue. Another feature of the prostate therapy system is that it can aspirate tissue from the prostate. Yet another feature of the prostate therapy system is that it can rotate during delivery of vapor and aspiration of tissue. Methods associated with use of the prostate therapy system are also covered.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD OF THE INVENTION

The present invention relates to an apparatus and a related method for the minimally invasive treatment of prostate tissue.


BACKGROUND OF THE INVENTION

Several systems and methods have been developed or proposed for the treatment of prostate tissue to alleviate BPH symptoms or to treat prostate tissue. For example, tissue ablation methods have been based on RF ablation, microwave ablation, high intensity focused ultrasound (HIFU), cryoablation, radiation, surgery, and brachytherapy. Surgical methods with and without robotic assistance have been developed for removal of diseased prostate tissue.


The apparatus, techniques and methods disclosed herein are adapted to for the treatment of prostate tissue in general and more particularly are focused on treatment of BPH (benign prostatic hyperplasia) and prostate cancer. BPH is a common problem experienced by men over about 50 years old that relates to urinary tract obstruction. Prostatic hyperplasia or enlargement of the prostate gland leads to compression and obstruction of the urethra which results in symptoms such as the need for frequent urination, a decrease in urinary flow, nocturia and discomfort.


Ablation of prostatic tissue with electromagnetic energy is well known and has the advantage of allowing a less invasive approach. For example, high-frequency current in an electrosurgical ablation or prostatic tissue causes cell disruption and cell death. Tissue resorption by the body's wound healing response then can result in a volumetric reduction of tissue that may be causing urinary tract obstruction. One disadvantage of high-frequency current or laser ablation is potential tissue carbonization that results in an increased inflammatory response and far longer healing time following the ablation.


SUMMARY OF THE INVENTION

A method of extracting tissue from a patient's prostate is provided, comprising, introducing a tissue extraction member into a urethra of the patient, rotating the tissue extraction member within the urethra, injecting condensable vapor from the tissue extraction member, and aspirating prostate tissue into the tissue extraction member.


In some embodiments, the method further comprises injecting high pressure liquid from the tissue extraction member into the urethra. The high pressure liquid can be injected in pulses between 1 pulse/second and 100 pulses/second. In some embodiments, the high pressure liquid is injected radially outward from a longitudinal axis of the tissue extraction member. In other embodiments, the high pressure liquid is injected at an angle of between 10 degrees and 90 degrees from a longitudinal axis of the tissue extraction member.


The method can further comprise expanding an occlusion member within the urethra distal to a tissue extraction member vapor exit port prior to the injecting step. The method can further comprise expanding an occlusion member within the urethra proximal to a tissue extraction member vapor exit port prior to the injecting step.


In some embodiments, the rotating step comprises rotating the tissue extraction member between 5 rpm and 10,000 rpm. The tissue extraction member can be manually rotated, or can be rotated with a powered rotating motor.


In some embodiments, the method further comprises heat sealing tissue margins around extracted tissue in the prostate.


In one embodiment, injecting condensable vapor comprises delivering between 100 W and 1000 W to the prostate. In another embodiment, injecting condensable vapor comprises delivering between 100 cal/gram and 600 cal/gram to the prostate.


In some embodiments of the method, the aspirating step comprises removing between 1 gram and 100 grams of prostate tissue from the prostate.


A prostate therapy system is provided comprising a condensable vapor source, and a tissue extraction member adapted to be inserted into a urethra of an adult male human subject and to rotate within the urethra, the tissue extraction member having a vapor delivery port communicating with the vapor source and adapted to deliver condensable vapor to the prostate lobe and an aspiration port adapted to aspirate prostate tissue proximally into the ablation probe.


The tissue extraction member can further comprise a liquid ejection port communicating with a source of high pressure liquid. In some embodiments, the liquid ejection port and high pressure liquid source are adapted and configured to eject high pressure liquid in pulses between 1 pulse/second and 100 pulses/second. The liquid ejection port is adapted and configured to eject high pressure liquid radially outward from a longitudinal axis of the tissue extraction member. In some embodiments, the liquid ejection port is adapted and configured to eject high pressure liquid at an angle of between 10 degrees and 90 degrees from a longitudinal axis of the tissue extraction member. In one embodiment, the liquid ejection port is concentric with the vapor delivery port.


The prostate therapy system can further comprise a distal occlusion member adapted to occlude the urethra distal to the vapor delivery port, and a proximal occlusion member adapted to occlude the urethra proximal to the vapor delivery port.


In some embodiments, the prostate therapy system further comprises a powered rotating motor configured to rotate the tissue extraction member between 5 rpm and 10,000 rpm.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a vapor energy delivery system and more particularly a cut-away view of a handle portion of an instrument with an inductive heating assembly for applying vaporization energy to a fluid flow together with a looped flow system for maintaining a circulating flow of high energy vapor which is releasable on demand to flow through an extension member to interact with tissue.



FIG. 2 is a schematic view of the inductive heating assembly of FIG. 1.



FIG. 3 is a schematic view of a patient prostate and a first step of introducing a tissue extraction member into a patient urethra, showing tissue volumes targeted for extraction.



FIG. 4 is a perspective view of an instrument working end.



FIG. 5 is a sectional view of the working end of FIG. 4 illustrating schematically how tissue is extracted and sealed.



FIG. 6 is a schematic view of another instrument working end.





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides for a vapor energy generation system that can be configured for introduction into a patient's urethra or prostate, or can be configured to access prostatic tissue trans-rectally or endoscopically. The system is configured to deliver a heated vapor, for example water vapor, to tissue as described in the following U.S. patent application Ser. No. 10/681,625, filed Oct. 7, 2003, now U.S. Pat. No. 7,674,259, titled “Medical Instruments and Techniques for Thermally-Mediated Therapies”; Ser. No. 11/158,930, filed Jun. 22, 2005, now U.S. Pat. No. 7,892,229, titled “Medical Instruments and Techniques for Treating Pulmonary Disorders”; Ser. No. 11/244,329, filed Oct. 5, 2005, now U.S. Pat. No. 8,016,823, titled “Medical Instrument and Method of Use”; and Ser. No. 11/329,381, filed Jan. 10, 2006, titled “Medical Instrument and Method of Use”.


The generation and delivery of a collapsible, high energy vapor for various therapeutic procedures is further disclosed in systems with “remote” vapor generation systems or sources in Provisional Patent Application Nos. 60/929,632, 61/066,396, 61/068,049, or with vapor generator in a handle or working end, or combination thereof, as described in Provisional Application Nos. 61/068,130, 61/123,384, 61/123,412, 61/126,651, 61/126,612, 61/126,636, 61/126,620.



FIG. 1 illustrates a vapor energy generation system 800 having a handle 802 comprising an inductive heating system similar to that described in Provisional Application Nos. 61/123,416, 61/123,417, and 61/126,647. In FIG. 1, the handle 802 is coupled by temperature resistant fitting 806 to a fluid source 810 that delivers liquid at a controlled flow rate and pressure. The liquid flow passes through a vapor generating inductive heater 805 coupled to an electrical source and controller 820. The system and handle is configured for a looped liquid/vapor flow to provide vapor to working end or exit channel 822 to deliver the vapor to a tissue site. The system has inflow channel indicated at 824 and outflow channel at 826 that can communicate with a collection reservoir 830 and/or a negative pressure source 835. A valve 836, for example, operated by a footswitch is provided in outflow channel 826 to re-direct vapor into the exit channel 822 and extension member 840.


A vapor energy generation system 800 as shown in FIG. 1 can be used for any surgical/medical application, with the extension member 840 comprising a needle, an elongate probe or flexible catheter and other similar elongate delivery devices. This system can be used for a catheter for delivering energy for endovascular applications, for treating respiratory tract disorders, for endometrial ablation treatments or for needle ablation treatments. In the embodiment of FIG. 1, an optional secondary heater 845 is shown with a concentric insulator 846. This secondary heater can add further vaporization energy to vapor that starts to flow through exit channel 822. The secondary heater can be an inductive heater or a resistive heater that uses a microporous material to provide a large surface area to apply energy to the vapor to remove any water droplets. This system can provide a vapor that is at least 90% water vapor. The secondary heater is operatively coupled to the electrical source and controller 820 by electrical leads (not shown).



FIG. 2 illustrates a vapor generating inductive heater 805 that in one embodiment comprises a ceramic cylinder 850 with a bore 852 therein. The ceramic cylinder 850 can be approximately 1.0″ to 1.5″ in length and 0.25″ in diameter with a 0.10″ bore 852, for example. The bore 852 is packed with a plurality of small diameter hypotubes 855 that are magnetic responsive, such as 316 stainless steel, for example. In one embodiment, the hypotubes 855 are 0.016 thin wall tubes. A winding 860 of one to ten layers having an axial length of about 1.0″ is provided about the ceramic cylinder 850 for inductive heating of the hypotubes 855 using very high frequency current from an electrical source. In one embodiment the winding 860 can be 26 Ga. Copper wire with a Teflon coating. It has been found that delivering at least 50 W, 100 W, 200 W, 300 W, or 400 W with suitable flow rates of water can produce very high quality vapor, for example 90% vapor and better.


In FIG. 2, it can be seen that an inductively heated hypotube 855′ also can be spiral cut to provide flexibility for such an inductive heater to be positioned in a catheter or probe working end. For example, such flexible heatable elements can be carried in the bore of a flexible high temperature resistant polymeric insulative member such to provide a flexible catheter that is configured for endovascular navigation. An insulation layer about an exterior of the inductive heater is not shown. In general, the vapor generating inductive heater 805 can configured to provide a high quality condensable vapor media with precise parameters in terms of vapor quality, exit vapor pressure from a working end, exit vapor temperature, and maintenance of the parameters within a tight range over a treatment interval. All these parameters can be controlled with a high level of precision to achieve controlled dosimetry, whether the particular treatment calls for very low pressures (e.g., 1-5 psi) or very high pressures (200 psi or greater) over a treatment interval, and whether the treatment interval is in the 1-10 second range or 2 to 5 minute range.


Now turning to FIG. 3, a sectional schematic view of a patient urethra 105 and prostate 106 is shown with an instrument shaft navigated to a predetermined location in a patient urethra with an imaging system (not shown) to identify anatomical landmarks. An imaging system can be provided in the form of a scope in a channel or a CCD. A system for volumetrically removing prostate tissue is shown with FIG. 3 having an elongate tissue-extraction member 405 with a working end 410 advanced in a transurethral manner into the interior of a patient prostate. The tissue regions indicated at 420A and 420B in the opposing lobes can be targeted for removal. The system also can contemporaneously thermally seal of the margins of the extracted tissue volumes. An irrigation system (not shown) can be provided to supply a fluid to the lumen.



FIG. 4 illustrates that the tissue extraction member 405 and working end 410 can be a rigid or slightly flexible assembly having a diameter ranging from about 2 mm to 10 mm. The tissue extraction member can include at least one vapor delivery port 444 communicating with a vapor source 100 and can be adapted to deliver condensable vapor to the prostate lobe. The tissue extraction member can also have at least one aspiration port 480 in communication with a negative pressure source 470 and adapted to aspirate prostate tissue proximally into the tissue extraction member. In one embodiment, the tissue extraction member is configured for jetting one of at least one fluid or vapor media from source of liquid media 450, for applying mechanical energy and thermal energy to interfacing tissue for ablation and volumetric removal of urethral tissue and adjacent tissue in a TURP-like procedure.


The working end can carry optional occlusion members 422a and 422b that are expanded by a fluid inflation source 425. The occlusion members can be positioned on the proximal and distal portions of the tissue extracting member. The distal occlusion member 422b is adapted to occlude the urethra distal to the vapor delivery port(s) 444, and the proximal occlusion member 422a is adapted to occlude the urethra proximal to the vapor delivery port(s).


A central portion 430 of the working end is configured to rotate in the body lumen. Rotation of the working end can be manual (e.g., physical rotation of the instrument by the physician) or, alternatively, a rotating mechanism 186 (e.g., a powered rotating motor) can be coupled to the working end 410 to automatically rotate the distal end of the device during ablation and aspiration. The rotating mechanism can be configured to rotate the ablation probe between 5 rpm and 10,000 rpm, for example. Further details of a method of rotating an ablation probe in tissue are described in U.S. patent application Ser. Nos. 12/389,808 and 61/123,416, which are incorporated herein by reference.



FIG. 5 shows a sectional view of the instrument working end 410, where it can be seen that a first fluid flow system or condensable vapor source 100 (for example, as shown in FIG. 1) is provided and is fluidly coupled to at least one vapor inflow channel 452 that extends to at least one vapor delivery port 444 in at least one recess 445 in the working end. In this embodiment, the axis of each vapor delivery port can be directed axially relative to the axis 448 of the instrument, or alternatively the axis can be directed radially outwardly from the device axis 448 at an angle of between about 10° to 90° relative to a longitudinal axis 448 of the tissue extraction member.


Still referring to FIG. 5, the instrument working end 410 includes a second fluid flow system comprising a high pressure liquid source 450 that is fluidly coupled to at least one vapor inflow channel 440 that extends to at least one liquid ejection port 460 in at least one recess 445 in the working end. In this embodiment, the axis of each liquid ejection port can be directed substantially axially relative to the axis 448 of the instrument, or alternatively the axis can be directed radially outwardly from the device axis at an angle of between about 10° to 90° relative to a longitudinal axis 448 of the tissue extraction member.


As can be seen in FIG. 5, the instrument working end 410 further includes a tissue extraction channel 465 coupled a negative pressure source 470 for extracting disintegrated tissue, water and condensed vapor media from the treatment site. A computer controller 475 is operatively coupled to the various systems and sources 100, 450 and 470 to allow operation in unison.


Referring to FIG. 5, the instrument working end 410 can actuate the aspiration or negative pressure source 470 and controller 475 to suction tissue into the working end recesses 445 and aspiration port 480, wherein in rotational operation, it can be understood that high pressure ejection of vapor from outlets 444 will cause thermal damage, weakening and denaturation of proteins and tissue constituents. At the same time, the high pressure ejection of liquid media from outlets 460 can disintegrate and disrupt the thermally damaged and weakened tissue to allow its extraction through ports 480. At the same time, the vapor flow and phase change energy release thereof contemporaneously seals or coagulates the tissue margins to prevent bleeding. Following the treatment, the body's wound healing response will heal the urethra as is common in TURP procedures.


It should be appreciated that the working end can have one or more structures for fluid ejection to extract tissue, and can be actuated rotationally and or axially. In one embodiment, the system can be configured to apply energy to tissue about only a selected radial angle of the tissue, for example 5°, 15°, 30°, 45°, 60°, 90° or 180° of the lumen. Similarly, the tissue ablation and extraction can have any axial orientation, for example to ablate and extract linear portions of tissue.


In another method, the working end as in FIGS. 4-5 can be provided without balloons and can be introduced interstitially to extract cores of prostatic tissue.


In another embodiment, a single fluid injection port can be utilized wherein the vapor quality is such that vapor and water droplets in the same flow can apply sufficient mechanical forces to disintegrate and volumetrically remove tissue at the vapor-tissue interface. Thus, in one aspect of the invention, the quality of the vapor, or combination of jetted vapor with jetted water droplets can cut the thermally weakened tissue. In another method, the fluid jet is pulsed at a rate of 1 to 100 pulses/second. In another embodiment, the fluid jetting is pulsed with intermittent pulses of water and vapor at a high repetition rate with the jetted water aliquot capable of disintegrating tissue and the vapor aliquot configured to weaken tissue and thermally seal tissue.



FIG. 6 illustrates another embodiment of working surface portion wherein a vapor delivery port 490 is concentric around a liquid ejection port 495 for interacting with and ablating tissue. The outlets can be configured is any type of surface structure for ablating tissue such as the recesses of the working end of FIGS. 4 and 5.


In general, a method for treating a prostate disorder comprises volumetrically removing urethra and surrounding prostatic tissue in a method performed with the ejection of jetted liquid and a heated condensable vapor from a device working end together with aspiration of the disintegrated tissue. In one aspect of the invention, the ejection of vapor media applies sufficient thermal energy to substantially modify tissue, wherein the modification consists of at least one of weakening covalent bonds, denaturing proteins and disrupting collagen structures. Further, the ejection of liquid media applies sufficient mechanical energy for tissue removal wherein removal consists of at least one of disintegrating, cutting, excising and ablating tissue. In another aspect of the invention, the ejection of vapor media applies sufficient thermal energy to heat seal or coagulate margins around the extracted tissue. Also, the methods of volumetrically removing tissue can be is performed contemporaneous with imaging, such as ultrasound imaging.


In general, a method for sealing the tissue extracted tissue margins is accomplished with the injecting condensable vapor media from a device working end and aspiration of the disintegrated tissue wherein the energy from the vapor comprises delivering at least 100 W, 250 W, 500 W, and 1000 W to the tissue. In another embodiment, injecting condensable vapor comprises delivering between 100 cal/gram and 600 cal/gram to the prostate.


In general, the method for treating a BPH can volumetrically remove prostatic tissue equaling at least 1 gram, 10 grams, at least 20 grams, at least 30 grams, at least 40 grams, at least 50 grams, and at least 100 grams of tissue.


One embodiment of a method of extracting tissue from a patient's prostate comprises introducing a tissue extraction member into a urethra of the patient, rotating the tissue extraction member within the urethra, injecting condensable vapor from the tissue extraction member, and aspirating prostate tissue into the tissue extraction member. The rotating step can comprise rotating the tissue extraction member between 5 rpm and 10,000 rpm, such as with a powered rotating motor, for example. In another embodiment, the tissue extraction member can be manually rotated.


The method can further comprise injecting high pressure liquid from the tissue extraction member into the urethra. Injection of the high pressure liquid can be injected in pulses between 1 pulse/second and 100 pulses/second. In some embodiments, the high pressure liquid can be injected radially outward from a longitudinal axis of the tissue extraction member. In other embodiments, the high pressure liquid can be injected at an angle between 10 degrees and 90 degrees from a longitudinal axis of the tissue extraction member.


In some embodiments of the method, an occlusion member is expanded within the urethra distal to a tissue extraction member vapor exit port. This step can be performed before injecting condensable vapor from the tissue extraction member, for example. In another embodiment, an occlusion member is expanded within the urethra proximal to a tissue extraction member vapor exit port. This step can be performed before injecting condensable vapor from the tissue extraction member, for example.


In another embodiment, a high speed rotational cutter can be used contemporaneous with a vapor ejection as described above to thermally coagulate the margins about the removed tissue.


A system of the invention comprises an elongated tissue extraction member with a working end configured for removing urethral tissue in a patient prostate, a vapor source in fluid communication with vapor delivery ports in the distal end, a liquid jetting source for ejecting high pressure liquid form the working end and a negative pressure source coupled to a channel in fluid communication with a tissue aspiration port in the working end proximate the vapor delivery ports. The port(s) can be oriented distally relative to an axis of the tissue extraction member, or at an angle relative to an axis of the tissue extraction member, or oriented at a side of tissue extraction member substantially parallel to the axis of the tissue extraction member.


In general, the methods of the invention include delivery of a condensable vapor that undergoes a phase change to provide applied energy of at least 100 cal/gm, 250 cal/gm, 300 cal/gm, 350 cal/gm, 400 cal/gm, 450 cal/gm, and 600 cal/gm of the vapor.


In another aspect of the invention, the treatment with vapor can be accomplished under any suitable type of imaging. In one method, the steps can be viewed by means of ultrasound or x-ray imaging. In one method, the introducer and energy delivery methods of the invention can be imaged by ultrasound utilizing a trans-rectal ultrasound system.


In another aspect of the invention, the system may contemporaneously be used to deliver fluids to targeted locations in the prostate for medical purposes, such as for general or localized drug delivery, chemotherapy, or injections of other agents that may be activated by vapor or heat.


Although particular embodiments of the present invention have been described above in detail, it will be understood that this description is merely for purposes of illustration and the above description of the invention is not exhaustive. Specific features of the invention are shown in some drawings and not in others, and this is for convenience only and any feature may be combined with another in accordance with the invention. A number of variations and alternatives will be apparent to one having ordinary skills in the art. Such alternatives and variations are intended to be included within the scope of the claims. Particular features that are presented in dependent claims can be combined and fall within the scope of the invention. The invention also encompasses embodiments as if dependent claims were alternatively written in a multiple dependent claim format with reference to other independent claims.

Claims
  • 1. A prostate therapy system comprising: a condensable vapor source; anda tissue extraction member adapted to be inserted into a urethra of an adult male human subject and to rotate within the urethra,the tissue extraction member having a vapor delivery port communicating with the vapor source and adapted to deliver condensable vapor to the prostate lobe, an aspiration port adapted to aspirate prostate tissue proximally into the ablation probe, and a liquid ejection port concentric with the vapor delivery port and communicating with a high pressure liquid source.
  • 2. The system of claim 1 wherein the liquid ejection port and high pressure liquid source are adapted and configured to eject high pressure liquid in pulses between 1 pulse/second and 100 pulses/second.
  • 3. The system of claim 1 wherein the liquid ejection port is adapted and configured to eject high pressure liquid radially outward from a longitudinal axis of the tissue extraction member.
  • 4. The system of claim 1 wherein the liquid ejection port is adapted and configured to eject high pressure liquid at an angle of between 10 degrees and 90 degrees from a longitudinal axis of the tissue extraction member.
  • 5. The system of claim 1 further comprising a distal occlusion member adapted to occlude the urethra distal to the vapor delivery port.
  • 6. The system of claim 1 further comprising a proximal occlusion member adapted to occlude the urethra proximal to the vapor delivery port.
  • 7. The system of claim 1 further comprising a powered rotating motor configured to rotate the tissue extraction member between 5 rpm and 10,000 rpm.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 12/614,226, filed Nov. 6, 2009, now U.S. Pat. No. 8,372,065; which application claims the benefit under 35 U.S.C. 119 of U.S. Provisional Patent Application No. 61/112,103, filed Nov. 6, 2008, titled “Systems and Methods for Treatment of BPH.” These applications are herein incorporated by reference in their entirety.

US Referenced Citations (182)
Number Name Date Kind
4672963 Barken Jun 1987 A
4920982 Goldstein May 1990 A
4950267 Ishihara et al. Aug 1990 A
5117482 Hauber May 1992 A
5222185 McCord, Jr. Jun 1993 A
5312399 Hakky et al. May 1994 A
5330518 Neilson et al. Jul 1994 A
5366490 Edwards et al. Nov 1994 A
5370609 Drasler et al. Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5385544 Edwards et al. Jan 1995 A
5409453 Lundquist et al. Apr 1995 A
5421819 Edwards et al. Jun 1995 A
5435805 Edwards et al. Jul 1995 A
5470308 Edwards et al. Nov 1995 A
5470309 Edwards et al. Nov 1995 A
5484400 Edwards et al. Jan 1996 A
5499998 Meade Mar 1996 A
5531676 Edwards et al. Jul 1996 A
5542915 Edwards et al. Aug 1996 A
5542916 Hirsch et al. Aug 1996 A
5545171 Sharkey et al. Aug 1996 A
5549644 Lundquist et al. Aug 1996 A
5554110 Edwards et al. Sep 1996 A
5556377 Rosen et al. Sep 1996 A
5558673 Edwards et al. Sep 1996 A
5588960 Edwards et al. Dec 1996 A
5591125 Edwards et al. Jan 1997 A
5599294 Edwards et al. Feb 1997 A
5601591 Edwards et al. Feb 1997 A
5630794 Lax et al. May 1997 A
5667488 Lundquist et al. Sep 1997 A
5672153 Lax et al. Sep 1997 A
5709680 Yates et al. Jan 1998 A
5720718 Rosen et al. Feb 1998 A
5720719 Edwards et al. Feb 1998 A
5797903 Swanson et al. Aug 1998 A
5800486 Thome et al. Sep 1998 A
5830179 Mikus et al. Nov 1998 A
5849011 Jones et al. Dec 1998 A
5871481 Kannenberg et al. Feb 1999 A
5873877 McGaffigan et al. Feb 1999 A
5897553 Mulier et al. Apr 1999 A
5944715 Goble et al. Aug 1999 A
5957922 Imran Sep 1999 A
5964752 Stone Oct 1999 A
5964756 McGaffigan et al. Oct 1999 A
5976123 Baumgardner et al. Nov 1999 A
5990465 Nakaoka et al. Nov 1999 A
6007571 Neilson et al. Dec 1999 A
6017358 Yoon et al. Jan 2000 A
6017361 Mikus et al. Jan 2000 A
6036713 Kieturakis Mar 2000 A
6063081 Mulier et al. May 2000 A
6077257 Edwards et al. Jun 2000 A
6113593 Tu et al. Sep 2000 A
6147336 Ushijima et al. Nov 2000 A
6179836 Eggers et al. Jan 2001 B1
6206847 Edwards et al. Mar 2001 B1
6231591 Desai May 2001 B1
6238389 Paddock et al. May 2001 B1
6238391 Olsen et al. May 2001 B1
6241702 Lundquist et al. Jun 2001 B1
6258087 Edwards et al. Jul 2001 B1
6287297 Woodruff et al. Sep 2001 B1
6423027 Gonon Jul 2002 B1
6440127 McGovern et al. Aug 2002 B2
6517534 McGovern et al. Feb 2003 B1
6524270 Bolmsjo et al. Feb 2003 B1
6544211 Andrew et al. Apr 2003 B1
6551300 McGaffigan Apr 2003 B1
6565561 Goble et al. May 2003 B1
6575968 Eggers et al. Jun 2003 B1
6607529 Jones et al. Aug 2003 B1
6638275 McGaffigan et al. Oct 2003 B1
6669694 Shadduck Dec 2003 B2
6716252 Lazarovitz et al. Apr 2004 B2
6719738 Mehier Apr 2004 B2
6726696 Houser et al. Apr 2004 B1
6730079 Lovewell May 2004 B2
6760616 Hoey et al. Jul 2004 B2
6780178 Palanker et al. Aug 2004 B2
6827718 Hutchins et al. Dec 2004 B2
6905475 Hauschild et al. Jun 2005 B2
6969376 Takagi et al. Nov 2005 B2
6974455 Garabedian et al. Dec 2005 B2
7014652 Cioanta et al. Mar 2006 B2
7041121 Williams et al. May 2006 B1
7066935 Swoyer et al. Jun 2006 B2
7089064 Manker et al. Aug 2006 B2
7130697 Chornenky et al. Oct 2006 B2
7261709 Swoyer et al. Aug 2007 B2
7261710 Elmouelhi et al. Aug 2007 B2
7335197 Sage et al. Feb 2008 B2
7429262 Woloszko et al. Sep 2008 B2
7470228 Connors et al. Dec 2008 B2
7674259 Shadduck Mar 2010 B2
7959577 Schmitz et al. Jun 2011 B2
8016823 Shadduck Sep 2011 B2
8216217 Sharkey et al. Jul 2012 B2
8221403 Sharkey et al. Jul 2012 B2
8244327 Fichtinger et al. Aug 2012 B2
8251985 Hoey et al. Aug 2012 B2
8272383 Hoey et al. Sep 2012 B2
8273079 Hoey et al. Sep 2012 B2
8313485 Shadduck Nov 2012 B2
8372065 Hoey et al. Feb 2013 B2
8388611 Shadduck et al. Mar 2013 B2
8409109 Tiesma et al. Apr 2013 B2
8419723 Shadduck et al. Apr 2013 B2
8550743 Bonde et al. Oct 2013 B2
20020078956 Sharpe et al. Jun 2002 A1
20020177846 Mulier et al. Nov 2002 A1
20030069575 Chin et al. Apr 2003 A1
20030097126 Woloszko et al. May 2003 A1
20030130575 Desai Jul 2003 A1
20030206730 Golan Nov 2003 A1
20040068306 Shadduck Apr 2004 A1
20040230316 Cioanta et al. Nov 2004 A1
20050096629 Gerber et al. May 2005 A1
20050124915 Eggers et al. Jun 2005 A1
20050149020 Jahng Jul 2005 A1
20050159676 Taylor et al. Jul 2005 A1
20060135955 Shadduck Jun 2006 A1
20060178670 Woloszko et al. Aug 2006 A1
20060224154 Shadduck et al. Oct 2006 A1
20060224169 Weisenburgh, II et al. Oct 2006 A1
20060253069 Li et al. Nov 2006 A1
20060276871 Lamson et al. Dec 2006 A1
20070032785 Diederich et al. Feb 2007 A1
20070142846 Catanese, III et al. Jun 2007 A1
20070179491 Kratoska et al. Aug 2007 A1
20080021484 Catanese, III et al. Jan 2008 A1
20080021485 Catanese, III et al. Jan 2008 A1
20080033232 Catanese, III et al. Feb 2008 A1
20080033458 McLean et al. Feb 2008 A1
20080033488 Catanese, III et al. Feb 2008 A1
20080039833 Catanese, III et al. Feb 2008 A1
20080039872 Catanese, III et al. Feb 2008 A1
20080039874 Catanese, III et al. Feb 2008 A1
20080039875 Catanese, III et al. Feb 2008 A1
20080039876 Catanese, III et al. Feb 2008 A1
20080039893 McLean et al. Feb 2008 A1
20080039894 Catanese, III et al. Feb 2008 A1
20080046045 Yon et al. Feb 2008 A1
20080132826 Shadduck et al. Jun 2008 A1
20080188811 Kim Aug 2008 A1
20080208187 Bhushan et al. Aug 2008 A1
20080249399 Appling et al. Oct 2008 A1
20080262491 Swoyer et al. Oct 2008 A1
20080269737 Elmouelhi et al. Oct 2008 A1
20080269862 Elmouelhi et al. Oct 2008 A1
20080275440 Kratoska et al. Nov 2008 A1
20080297287 Shachar et al. Dec 2008 A1
20080312497 Elmouelhi et al. Dec 2008 A1
20090018553 McLean et al. Jan 2009 A1
20090054871 Sharkey et al. Feb 2009 A1
20090138001 Barry et al. May 2009 A1
20090149846 Hoey et al. Jun 2009 A1
20090216220 Hoey et al. Aug 2009 A1
20090227998 Aljuri et al. Sep 2009 A1
20090306640 Glaze et al. Dec 2009 A1
20100016757 Greenburg et al. Jan 2010 A1
20100049031 Fruland et al. Feb 2010 A1
20100094270 Sharma Apr 2010 A1
20100114083 Sharma May 2010 A1
20100179416 Hoey et al. Jul 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100204688 Hoey et al. Aug 2010 A1
20100262137 Nye et al. Oct 2010 A1
20100286679 Hoey et al. Nov 2010 A1
20100292767 Hoey et al. Nov 2010 A1
20100298948 Hoey et al. Nov 2010 A1
20110060328 Skwarek et al. Mar 2011 A1
20110238144 Hoey et al. Sep 2011 A1
20110319759 Liu et al. Dec 2011 A1
20120259271 Shadduck et al. Oct 2012 A1
20120265276 Curley Oct 2012 A1
20120283717 Sharkey et al. Nov 2012 A1
20120323167 Hoey et al. Dec 2012 A1
20130006231 Sharma et al. Jan 2013 A1
20130074847 Hoey et al. Mar 2013 A1
Foreign Referenced Citations (8)
Number Date Country
2061443 Sep 1990 CN
101072544 Nov 2007 CN
2001-500763 Jan 2001 JP
WO 9210142 Jun 1992 WO
WO 0124715 Apr 2001 WO
WO 03088851 Oct 2003 WO
WO 2006004482 Jan 2006 WO
WO 2008083407 Jul 2008 WO
Non-Patent Literature Citations (3)
Entry
Hai; Photoselective Vaporization Prostatectomy: A Palliative Treatment Option for Men with Urinary Obstruction Secondary to Prostate Cancer; PCRI Prost.Cancer Rsrch.Inst. Reprint.from PCRI Insights Nov. 2005, vol. 8(4); Dwnld from http://www.prostate-cancer.org/pcricms/node/233 on May 10, 2012; 4 pages.
Shadduck et al.; U.S. Appl. No. 13/779,616 entitled “Systems and Methods for Treatment of Prostatic Tissue,” filed Feb. 27, 2013.
Shadduck et al.; U.S. Appl. No. 13/861,109 entitled “Systems and Methods for Treatment of Prostatic Tissue,” filed Apr. 11, 2013.
Related Publications (1)
Number Date Country
20130158534 A1 Jun 2013 US
Provisional Applications (1)
Number Date Country
61112103 Nov 2008 US
Divisions (1)
Number Date Country
Parent 12614226 Nov 2009 US
Child 13764645 US