1. Field of the Invention
Embodiments of the invention described herein pertain to the field of shipboard transportation of liquefied natural gas (“LNG”). More particularly, but not by way of limitation, one or more embodiments of the invention describe systems and methods of gas-up and cool down of LNG cargo tanks located in a waterway location.
2. Description of the Related Art
Natural gas is often carried onboard special cryogenic tanker ships from the location of its origin to the location of consumption. In this way, natural gas may be transported to areas with a higher demand for natural gas. Since LNG occupies only about 1/600th of the volume that the same amount of natural gas does in its gaseous state, liquefying the natural gas for transport facilitates the transportation process and improves the economics of the system. LNG is produced in onshore liquefaction plants by cooling natural gas below its boiling point (−259° F. (−162° C.) at ambient pressures). The LNG may be stored in cryogenic cargo tanks located on special cryogenic tanker ships, either at or slightly above atmospheric pressure. Typically, the LNG will be regasified prior to its distribution to end users.
In a conventional cryogenic cargo cycle, tanks on a cryogenic tanker ship are full of fresh air which allows maintenance on the tank and pumps. For example, the tanks are full of fresh air when the cryogenic tanker ship comes out of the yard, after dry docking or repairs, if the ship has been sitting idle, or has burned off all of the remaining natural gas in the take (for example, burning off a heel). The cryogenic cargo cannot be loaded directly into the tanks until the fresh air (for example, oxygen) is replaced with an inert gas to inhibit explosions within the tanks. The tanks may be filled with inert gas (for example, carbon dioxide) until the atmosphere in the tanks contains less than 4% oxygen. Carbon dioxide, however, freezes at temperatures used to store liquefied natural gas, thus the carbon dioxide must be removed prior to filling the tanks with liquefied natural gas. To remove the carbon dioxide from the tanks and the tanks conditioned to receive a cold fluid, the tanks under go a gas-up and cool down procedure.
The cryogenic tank ship is docked at a port and connected to a gas-up and cool down system that includes cryogenic loading arms (hard arms) and/or rigid pipe suitable for handling cryogenic fluids. During gas-up, the inert gas atmosphere in the cargo tanks and piping systems of the cryogenic tanker ship is displaced with natural gas. Next, the cargo tanks are cooled down by slowly reducing the temperature of the cargo tank atmosphere and surrounding containment to temperatures of about −140° C. Once the cargo tanks are cooled, LNG may be loaded into the cargo tanks without subjecting the tanks to cold shock. The gas-up and cool down operation takes approximately 34 to 72 hours before the LNG cargo may be loaded onto the cryogenic tank ship.
During the gas-up and cool down operation, the portion of the dock involved in the operation is not available for shipping operation (for example, unloading and loading LNG, and/or the use of liquefaction trains) and/or terminal access is limited. Thus, there is a need for more efficient systems and methods for treating of LNG cargo tanks.
One or more embodiments of the invention describe systems and methods for gas-up and cool down of LNG cargo tanks while positioned in a waterway location. In some embodiments, a method for treating of LNG cargo tanks includes connecting a supply vessel and a receiving vessel using a manifold conduit, wherein the supply vessel is in a waterway location and wherein the receiving vessel is in the waterway location; gassing-up a cargo tank onboard the receiving vessel using natural gas from the supply vessel; cooling down the cargo tank onboard the receiving vessel using LNG from the supply vessel; transferring LNG from the supply vessel to the receiving vessel using ship-to-ship transfer; and disconnecting the supply vessel and the receiving vessel.
In certain embodiments, a method for treating one or more liquefied natural gas (LNG) cargo tanks, includes coupling a supply vessel to one or more LNG cargo tanks onboard a receiving vessel using a manifold system, wherein the supply vessel and the receiving vessel are in a waterway location; providing natural gas from the supply vessel to at least one of the LNG cargo tanks such that inert gas is substantially displaced from at least one of the LNG cargo tanks; providing cooled natural gas from the supply vessel to at least one of the LNG cargo tanks containing natural gas to cool the LNG cargo tank to an average temperature of than about −100° C.; and transferring LNG from the supply vessel through the manifold conduit to the cooled LNG cargo tank on the receiving vessel.
In some embodiments, the waterway location is in open water. In certain embodiments, the supply vessel and/or the receiving vessel are at anchor. In further embodiments, the waterway location is alongside a jetty. In some embodiments, the waterway location is offshore.
In some embodiments, a system for treatment of one or more LNG cargo tanks includes a manifold conduit, wherein the manifold conduit mechanically couples a supply vessel to a receiving vessel, wherein the receiving vessel is located in a waterway location, wherein the supply vessel is located in a waterway location and the supply vessel transfers natural gas to the receiving vessel using the manifold conduit such that inert gas in one or more LNG cargo tanks on the receiving vessel is substantially displaced and the LNG cargo tank is cooled, and wherein the supply vessel transfers additional LNG to the receiving vessel using the manifold conduit.
In further embodiments, features from specific embodiments may be combined with features from other embodiments. For example, features from one embodiment may be combined with features from any of the other embodiments. In further embodiments, additional features may be added to the specific embodiments described herein.
The above and other aspects, features and advantages of the invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and may herein be described in detail. The drawings may not be to scale. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
Systems and methods for gas-up and cool down of LNG cargo tanks floating in a waterway location are described herein. The LNG cargo tanks may be onboard a ship located in the waterway location. In other instances, specific features, quantities, or measurements well known to those of ordinary skill in the art have not been described in detail so as not to obscure the invention.
“Coupled” refers to either a direct connection or an indirect connection (for example, at least one intervening connections) between one or more objects or components.
“Gas-up” refers to the displacement of an inert gas atmosphere in a cargo tank and piping systems with natural gas.
“Cool down” refers to reducing the temperature of the cargo tank atmosphere and surrounding containment after gas-up and prior to loading LNG.
“Waterway location” refers to any location in a navigable body of water, including but not limited to, offshore, alongside a jetty, at anchor or in open water.
“Jetty” refers to a structure extending into a sea, lake, river or other navigable body of water.
Using the systems and methods described herein, gas-up and cool down of LNG cargo tanks may be performed without the need for the LNG vessel to dock at port and/or a conventional LNG terminal. Gas-up and cool down of LNG cargo tanks in a waterway location makes ports and/or conventional LNG terminals available for shipping and transporting operations as compared to conventional a gas-up and cool down operation which occupies dock space. Thus, the economics of port operations and availability of ports are enhanced.
In some embodiments, gassing-up and cooling down of the LNG cargo tanks may take place in open water, at anchor, alongside a jetty, at a fixed floating facility or at any other waterway location. In certain embodiments, gassing-up and cooling down of the LNG cargo tanks takes place immediately prior to ship-to-ship transfer of LNG. In some embodiments, any vessel or platform capable of transporting or storing LNG, such as a regasification vessel, LNG carrier, LNG barge, coaster or floating platform may be used as either a supply vessel or receiving vessel. The supply and/or receiving vessel may be capable of onboard regasification of LNG. Examples of suitable systems for regasification of LNG are described in U.S. Pat. No. 7,484,371 to Nierenberg; U.S. Pat. No. 7,293,600 to Nierenberg; U.S. Pat. No. 7,219,502 to Nierenberg; U.S. Pat. No. 6,688,114 to Nierenberg; and U.S. Pat. No. 6,598,408 to Nierenberg.
In location establishment step 13, a suitable site location may be established. The suitable site location may be a waterway location, such as offshore, in open water, at anchor, alongside a jetty or at a fixed floating facility. For example, a suitable site may be a waterway inland of a port. Supply vessel location, receiving vessel location, vessel size, LNG delivery and pickup locations, water depth and/or any required permissions or permits may be taken into consideration in determining a suitable site location.
In fendering step 15, fenders are positioned between the vessels to inhibit the vessels from damaging each other.
In mooring step 17, the supply vessel and receiving vessel may be moored. In some embodiments, the vessels are moored at anchor, at open water, alongside a jetty, or at a fixed facility. In certain embodiments, supply vessel and receiving vessel are moored together. Supply vessel and/or receiving vessel may be fastened using ropes, mooring lines, hawsers, fenders, anchors, and/or buoys. Additional safety features may also be included in the mooring systems. For example, the mooring system may include mooring line hooks with load sensors, automated mooring strain gauge systems with alarms, remote release capabilities and/or quick release capabilities. In addition, provisions for tug boat assistance during mooring and timely access to tugs during periods of bad weather may be incorporated and improve the safety of the mooring system. Recommendations from Hazard Operability Studies (HAZOP) and Hazard Identification (HAZID) risk assessments may also be included in the mooring systems.
At connection step 19, a manifold system may be rigged and connected, linking supply vessel and receiving vessel. The manifold system may include cryogenic manifold conduits and saddles. Various arrangements of manifold conduits such as piping, hard arms, hoses, rigid connections and/or flexible connections may be used. The manifold conduits may be liquid or vapor flexible or rigid hoses or piping suitable for transferring LNG or gaseous natural gas, as appropriate. The number of liquid and vapor manifold may depend upon the amount of LNG to be transferred. In certain embodiments, one vapor and two liquid hoses may be used.
Emergency shut down tests may be made in testing step 21. The manifold system linking the supply vessel and receiving vessel may include one or more systems for quick release of the manifold conduit(s) between the two vessels, which may be tested at testing step 21. Systems for quick release of the connection are described herein (for example,
At initial measuring step 23, the LNG on the supply vessel may be measured prior to any transfer taking place, using a custody transfer measuring system well known to those of skill in the art.
Gas-up of the cargo tanks on the receiving vessel may be performed at gas-up step 25. At gas-up step 25, natural gas from the supply vessel, in either a gaseous phase or liquid phase, may be used to displace the inert gas atmosphere (for example, carbon dioxide) in the cargo tanks and piping systems of the receiving vessel. The natural gas from the supply vessel, may be stored as gaseous natural gas on the supply vessel, may be stored as LNG and regasified onboard the supply vessel prior to transfer, or may be regasified onboard the receiving vessel prior to transfer. Pumps or a pressure differential may be used to transfer the gaseous natural gas between vessels. The inert gas may be captured and treated, stored, and/or sequestered.
Cool down of the cargo tanks after the inert gas is displaced may occur at cool down step 27. During cool down step 27, the temperature of cargo tank containment systems onboard the receiving vessel may be reduced to less than about −100° C., less than about −140° C., or lower using LNG or cooled natural gas from the supply vessel, which has been transferred to the receiving vessel using a manifold system, such as the manifold system 20 and/or equipment described in connection step 19.
Ship-to-ship transfer of LNG may take place at ship-to-ship transfer step 29. LNG transfer may be completed using the manifold system of connection step 19 and/or manifold system 20 and/or pumps.
Nitrogen purging may occur at purging step 31. The final measuring of LNG onboard the supply and/or receiving vessel may take place at final measuring step 33 using a custody transfer measuring system well known to those of skill in the art. This final measurement of LNG may be used along with the initial measurement obtained in initial measuring step 23 to determine the volume of LNG transferred from the supply ship to the receiving ship. The ships may then be disconnected and unmoored at disconnecting step 35 and unmooring step 37.
Liquid hoses 24 may contain stainless steel end fittings, be epoxy filled and swaged, and type approved by class for ship-to-ship transfer of LNG. Liquid hoses 24 may also contain layers of synthetic (for example, polyethylene) films and fabrics and be configured to withstand cryogenic cycles and to leak before failure. In some embodiments, liquid hoses 24 may be composite hoses of a nominal 8 inches (about 20.32 cm) in diameter, 15 meters in length, and have a 0.65 meter to 0.9 meter bend radius. Liquid hoses 24 may be supported by hose support saddles 32 on each of vessels 10 and 12.
Liquid hoses 24 and vapor hoses 28 may be positioned in hose support saddles 32. Saddles 32 may provide protection and support for liquid hoses 24 and vapor hoses 28 and maintain the minimum bend radius of the hoses. In addition, saddles 32 may transfer static and dynamic loads from liquid hoses 24 and vapor hoses 28 to the manifold deck structure on vessels 10 and 12 and provide chafe protection for the hoses.
Liquid hoses 24 may connect to liquid conduits 22, 22′ using spool pieces 34, 34′. In addition, vapor hoses 28 may connect to vapor conduits 30, 30′ using spool pieces 34, 34′. Spool pieces 34, 34′ may reduce the diameter of the pipe to match the diameter of the hose connections as compared connections made using conventional pipe and hose connectors. For example, using spool pieces 34 liquid hoses 24 may be connected to liquid conduits 22, 22′ and/or vapor hoses 28 may be connected to vapor conduits 30, 30′ at angles less than 45 degrees. Using spool pieces 34, 34′ may allow an increased number of hoses and/or conduits to be used in manifold system 20 as compared to conventional LNG manifold systems.
Release couplings 36 may be positioned between liquid hoses 24 and spool pieces 34′ and/or between vapor hoses 28 and spool pieces 34′. Release couplings 36 may allow for liquid hoses 24 and/or vapor hoses 28 to quickly disconnect in emergency situations. Release couplings 36 may be operated remotely and/or automatically and provide for a ‘dry break’ designed to minimize a LNG leak or release upon actuation of the release coupling. Release couplings 36 may be actuated by a dry break actuator 50, shown in
Manifold system 20 may include water bath systems 78, 78′. Water bath system 78 may protect trunk decks and cargo tanks of vessels 10 and 12 from cryogenic damage to steel works caused by accidental release of LNG. Water bath systems 78, 78′ may include a water bath on the main deck of the vessels under the manifold area and an additional water curtain under each manifold to protect the slopes of the proximal cargo tanks.
As shown in
In some embodiments, emergency release couplings on receiving vessel 10 and/or supply vessel 12 may be used alone or in conjunction with emergency shutdown and quick release connections on the manifold conduit (for example, release coupling 36). In some embodiments, a physical or hydraulic system may be used on the deck of receiving vessel 10 or supply vessel 12 for this purpose. In certain embodiments, radio communication and pneumatic or stored pressure actuation systems may be used on emergency shut down and dry break actuator 50, which may be release coupling 36.
As shown in
Further modifications and alternative embodiments of various aspects of the invention may be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims. In addition, it is to be understood that features described herein independently may, in certain embodiments, be combined.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/037228 | 5/19/2011 | WO | 00 | 1/30/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/146763 | 11/24/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2795937 | Sattler et al. | Jun 1957 | A |
2938359 | Cobb, Jr. et al. | May 1960 | A |
2940268 | Morrison | Jun 1960 | A |
2975607 | Bodle | Mar 1961 | A |
3034309 | Muck | May 1962 | A |
3068659 | Marshall, Jr. | Dec 1962 | A |
3177936 | Walker | Apr 1965 | A |
3197972 | King | Aug 1965 | A |
3350876 | Johnson | Nov 1967 | A |
3362898 | Van Kleef | Jan 1968 | A |
3438216 | Smith | Apr 1969 | A |
3535885 | Frijlink et al. | Oct 1970 | A |
3561524 | Satterwaite et al. | Feb 1971 | A |
3724229 | Seliber | Apr 1973 | A |
3755142 | Whipple, Jr. | Aug 1973 | A |
3834174 | Stumbos | Sep 1974 | A |
3850001 | Locke | Nov 1974 | A |
3864918 | Lorenz | Feb 1975 | A |
3886887 | Cunningham et al. | Jun 1975 | A |
3897754 | Jerde | Aug 1975 | A |
3974794 | Kakitani et al. | Aug 1976 | A |
3975167 | Nierman | Aug 1976 | A |
3978663 | Mandrin et al. | Sep 1976 | A |
3986340 | Bivins, Jr. | Oct 1976 | A |
4033135 | Mandrin | Jul 1977 | A |
4036028 | Mandrin | Jul 1977 | A |
4040476 | Telle et al. | Aug 1977 | A |
4041721 | Kniel | Aug 1977 | A |
4043289 | Walter | Aug 1977 | A |
4106424 | Schuler et al. | Aug 1978 | A |
4170115 | Ooka et al. | Oct 1979 | A |
4202648 | Kvamsdal | May 1980 | A |
4219725 | Groninger | Aug 1980 | A |
4224802 | Ooka | Sep 1980 | A |
4231226 | Griepentrog | Nov 1980 | A |
4255646 | Dragoy et al. | Mar 1981 | A |
4292062 | Dinulescu et al. | Sep 1981 | A |
4315407 | Creed et al. | Feb 1982 | A |
4329842 | Hoskinson | May 1982 | A |
4331129 | Hong et al. | May 1982 | A |
4338993 | Fernstrum | Jul 1982 | A |
4402350 | Ehret et al. | Sep 1983 | A |
4408943 | McTamaney et al. | Oct 1983 | A |
4417878 | Koren | Nov 1983 | A |
4429536 | Nozawa | Feb 1984 | A |
4464904 | Steigman | Aug 1984 | A |
4519213 | Brigham et al. | May 1985 | A |
4557319 | Arnold | Dec 1985 | A |
4622997 | Paddington | Nov 1986 | A |
4632622 | Robinson | Dec 1986 | A |
4716737 | Mandrin | Jan 1988 | A |
4718459 | Adorjan | Jan 1988 | A |
4819454 | Brigham et al. | Apr 1989 | A |
4867211 | Dodge et al. | Sep 1989 | A |
4881495 | Tornare et al. | Nov 1989 | A |
4924822 | Asai et al. | May 1990 | A |
4998560 | Le Devehat | Mar 1991 | A |
5154561 | Lee | Oct 1992 | A |
5375580 | Stolz et al. | Dec 1994 | A |
5400588 | Yamane et al. | Mar 1995 | A |
5457951 | Johnson et al. | Oct 1995 | A |
5564957 | Breivik et al. | Oct 1996 | A |
5762119 | Platz et al. | Jun 1998 | A |
5990272 | Yamamoto et al. | Nov 1999 | A |
6003603 | Breivik et al. | Dec 1999 | A |
6079222 | Fetescu et al. | Jun 2000 | A |
6089022 | Zednik et al. | Jul 2000 | A |
6089028 | Bowen et al. | Jul 2000 | A |
6116031 | Minta et al. | Sep 2000 | A |
6164247 | Iwasaki et al. | Dec 2000 | A |
6250244 | Dubar et al. | Jun 2001 | B1 |
6298671 | Kennelley et al. | Oct 2001 | B1 |
6336316 | Fujii et al. | Jan 2002 | B1 |
6367258 | Wen et al. | Apr 2002 | B1 |
6367429 | Iwasaki et al. | Apr 2002 | B2 |
6374591 | Johnson et al. | Apr 2002 | B1 |
6434948 | Eide et al. | Aug 2002 | B1 |
6435124 | Williams | Aug 2002 | B1 |
6460350 | Johnson et al. | Oct 2002 | B2 |
6519944 | Smith | Feb 2003 | B2 |
6546739 | Frimm et al. | Apr 2003 | B2 |
6578366 | Christiansen et al. | Jun 2003 | B1 |
6598408 | Nierenberg | Jul 2003 | B1 |
6637479 | Eide et al. | Oct 2003 | B1 |
6644041 | Eyermann | Nov 2003 | B1 |
6659703 | Kirkley | Dec 2003 | B1 |
6688114 | Nierenberg | Feb 2004 | B2 |
6805598 | Goldbach | Oct 2004 | B2 |
6816669 | Zimmer et al. | Nov 2004 | B2 |
6829901 | Harley et al. | Dec 2004 | B2 |
6832875 | Bliault et al. | Dec 2004 | B2 |
6851994 | Boatman et al. | Feb 2005 | B2 |
6886611 | Dupont et al. | May 2005 | B2 |
6910435 | Hadcroft et al. | Jun 2005 | B2 |
6973948 | Pollack et al. | Dec 2005 | B2 |
6976443 | Oma et al. | Dec 2005 | B2 |
6979147 | Wille et al. | Dec 2005 | B1 |
7073457 | Boatman | Jul 2006 | B2 |
7080673 | Pollack et al. | Jul 2006 | B2 |
7107925 | Wille et al. | Sep 2006 | B2 |
7219502 | Nierenberg | May 2007 | B2 |
7293519 | Montgomery et al. | Nov 2007 | B2 |
7293600 | Nierenberg | Nov 2007 | B2 |
7299760 | Boatman et al. | Nov 2007 | B2 |
7308863 | de Baan | Dec 2007 | B2 |
7318319 | Hubbard et al. | Jan 2008 | B2 |
7478975 | Hubbard et al. | Jan 2009 | B2 |
7484371 | Nierenberg | Feb 2009 | B2 |
7484404 | Thompson et al. | Feb 2009 | B2 |
7543613 | Adkins et al. | Jun 2009 | B2 |
7644676 | Jung et al. | Jan 2010 | B2 |
7681511 | Breivik et al. | Mar 2010 | B2 |
7726358 | Hartono et al. | Jun 2010 | B2 |
7726359 | Hartono et al. | Jun 2010 | B2 |
7793605 | Poldervaart et al. | Sep 2010 | B2 |
8141645 | Poldervaart et al. | Mar 2012 | B2 |
8181662 | Pollack et al. | May 2012 | B2 |
8186170 | Boatman et al. | May 2012 | B2 |
8448673 | Danaczko et al. | May 2013 | B2 |
20020073619 | Perkins et al. | Jun 2002 | A1 |
20020134455 | Emblem et al. | Sep 2002 | A1 |
20040261681 | Jordanger | Dec 2004 | A1 |
20050115248 | Koehler et al. | Jun 2005 | A1 |
20050254901 | Lovie | Nov 2005 | A1 |
20060048850 | Espinasse | Mar 2006 | A1 |
20060053806 | Tassel | Mar 2006 | A1 |
20060081166 | Montgomery et al. | Apr 2006 | A1 |
20060156744 | Cusiter | Jul 2006 | A1 |
20070144184 | Wijingaarden et al. | Jun 2007 | A1 |
20070175377 | Olsen | Aug 2007 | A1 |
20070214804 | Hannan et al. | Sep 2007 | A1 |
20070267061 | Ravndal | Nov 2007 | A1 |
20070277534 | Nierenberg | Dec 2007 | A1 |
20080110091 | Perkins et al. | May 2008 | A1 |
20080148740 | Hartono et al. | Jun 2008 | A1 |
20080153369 | Hartono et al. | Jun 2008 | A1 |
20080156244 | Montgomery et al. | Jul 2008 | A1 |
20080190117 | Lee et al. | Aug 2008 | A1 |
20080236703 | Adkins et al. | Oct 2008 | A1 |
20090272126 | Matthews et al. | Jun 2009 | A1 |
20090193780 | Faka | Aug 2009 | A1 |
20100000252 | Morris et al. | Jan 2010 | A1 |
20100012009 | Montgomery et al. | Jan 2010 | A1 |
20100074692 | Ehrhardt et al. | Mar 2010 | A1 |
20100229573 | Ehrstrom | Mar 2010 | A1 |
20100263389 | Bryngelson et al. | Apr 2010 | A1 |
20110066290 | Le Devehat et al. | Mar 2011 | A1 |
20110232767 | Liem et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
2012209046 | Sep 2013 | AU |
2451873 | Oct 2001 | CN |
2515185 | Oct 2002 | CN |
2717135 | Oct 1978 | DE |
3225299 | Jan 1984 | DE |
0048316 | Mar 1982 | EP |
1120596 | Aug 2001 | EP |
2007832 | May 1979 | GB |
2216972 | Oct 1989 | GB |
2367049 | Mar 2002 | GB |
2406887 | Apr 2005 | GB |
52010910 | Jan 1977 | JP |
52010911 | Jan 1977 | JP |
53115666 | Oct 1978 | JP |
53126003 | Nov 1978 | JP |
54022404 | Feb 1979 | JP |
54136413 | Oct 1979 | JP |
54136414 | Oct 1979 | JP |
55020321 | Feb 1980 | JP |
55025659 | Feb 1980 | JP |
56015801 | Feb 1981 | JP |
56074190 | Jun 1981 | JP |
58005598 | Jan 1983 | JP |
59166799 | Sep 1984 | JP |
60-149599 | Oct 1985 | JP |
61-024697 | Feb 1986 | JP |
61038300 | Feb 1986 | JP |
62141398 | Jun 1987 | JP |
6376700 | May 1988 | JP |
1069898 | Mar 1989 | JP |
5332499 | Dec 1993 | JP |
06-173710 | Jun 1994 | JP |
11125397 | May 1995 | JP |
9014869 | Jan 1997 | JP |
11-117766 | Apr 1999 | JP |
11148599 | Jun 1999 | JP |
11-208574 | Aug 1999 | JP |
2000-062665 | Feb 2000 | JP |
2001-206282 | Jul 2001 | JP |
2001263592 | Sep 2001 | JP |
2002-501861 | Jan 2002 | JP |
2005-104200 | Apr 2005 | JP |
2007-534556 | Nov 2007 | JP |
2008-519221 | Jun 2008 | JP |
20060130825 | Dec 2006 | KR |
100676615 | Jan 2007 | KR |
10-0730701 | Jun 2007 | KR |
9938762 | Aug 1999 | WO |
9947869 | Sep 1999 | WO |
01103793 | Jan 2001 | WO |
0134460 | May 2001 | WO |
030604245 | Aug 2003 | WO |
2005032942 | Apr 2005 | WO |
2006020107 | Feb 2006 | WO |
2009073383 | Apr 2009 | WO |
2009071591 | Jun 2009 | WO |
2009087237 | Jul 2009 | WO |
2010069910 | Jun 2010 | WO |
Entry |
---|
International Search Report. |
JP 2008-519221 Translation. |
Zednik, “Shipboard Regasification Terminal,” Hydrocarbon Engineering, Oct. 1998, 3 pages. |
Bottomley, Leslie, FLNG Key to Global Energy Supply, Offshore, vol. 62, issue 10, Oct. 1, 2002, 3 pages. |
Van Wijngaarden, Wim et al., Loading and Offloading of LNG in Open Seas, Overview, Gastech Doha, 2002, 1 page. |
Lane, Mark K., Ship-to-Ship LNG Transfer, Sep. 28, 2009, Information Sheet, Recepient and Location Unknown, 11 pages. |
Janssens, Patrick, Energy Bridge: The World's First LNG Offshore Solution, Paper for Presentation at Gastech, 2005, 19 pages. |
Baldwin, John, Excelerate Energy—Offshore LNG Teesside GasPort and Beyond, Presentation at Safety & Loss Prevention and Oil & Natural Gas Subject Group (SONG), England, Jun. 2008, 18 pages. |
Bryngelson, Robert, Gulf Gateway Energy Bridge: The World's First Offshore LNG Receiving Terminal, Presentation, Arendal, Norway, APL Technology Conference, Jul. 29, 2005, 22 pages. |
Bryngelson, Robert, Lessons Learned from Permitting, Building, and Operating The Gulf Gateway Energy Bridge Deepwater Port, Presentation at Oil & Gas IQ Conference, Costa Mesa, CA Sep. 14, 2005, 25 pages. |
Bryngelson, Robert, North American Terminal Progress Reports, North American Projects: Overview, issues Encountered, and Lessons Learned, Presentation at Houston, TX, May 18, 2006, 22 pages. |
Bryngelson, Robert, Market Access and Flexibility Afforded by Excelerate Energy's Technology Infrastructure, Presentation at 12th International Gas Summit, Location Unknown, Oct. 18, 2007, 8 pages. |
Bryngelson, Robert, Northeast Gateway Deepwater Port and Other Developments at Excelerate, Presentation at Platts 6th Annual Liquefied Natural Gas Conference, Houston, TX, May 22, 2007, 16 pages. |
Bryngelson, Robert, LNG Global Market Dynamics: Entry Points, Flexibility, and Optionality, Presentation, 22nd Annual European Autumn Gas Conference, Oct. 2007, 6 pages. |
Bryngelson, Robert, Speed to Market: Expansion of Excelerate's Network and Asset Base and Direction for the Next Decade, Presentation, Atlantic Basin LNG: The Next Decade, Palm Beach, Florida, Nov. 8, 2007, 14 pages. |
Byngelson, Robert, Presentation to the Federal Energy Regulatory Commission, Dec. 1, 2007, 30 pages. |
Bryngelson, Robert, New Developments and Advances in the LNG Industry: Excelerate Energy's Perspective, Presentation at Houston Producers Forum, Jan. 15, 2008, 19 pages. |
Bryngelson, Robert, Floating Liquefaction: Excelerate Energy's Advantage, Presentation, Location Unknown, Feb. 2008, 17 pages. |
Bryngelson, Robert, Creating a Flexible LNG Trading Model from the Ground (or Sea) Up, Presentation at Gastech 2008, Bangkok, Mar. 11, 2008, 15 pages. |
Bryngelson, Robert, Changing Patterns of the LNG Trade, Presentation at 13th International Gas Summit, Le Meridien Etoile Hotel, Oct. 22, 2008, 9 pages. |
Bryngelson, Robert, Flexible Offshore and Dockside Facilities, Presentation at Platt's 8th Annual Liquefied Natural Gas Conference, Feb. 27, 2009, 12 pages. |
Bryngelson, Robert, Excelerate Energy Corporate Overview, Presentation to Congressman Kevin Brady 8th District of Texas, Apr. 24, 2009, 19 pages. |
Bryngelson, Robert, Excelerate Energy Booth Receiption, Presentation at Gastech 2009, Abu Dhabi, U.A.E., May 26, 2009, 15 pages. |
Bryngelson, Robert, Excelerate Energy Corporate Overview, Presentation at World Gas Conference, Buenos Aires, Argentina, Oct. 2009, 31 pages. |
Cook, Jonathan, et al., Presentation to U.S. Department of Commerce, SABIT Group Program Liquefied Natural Gas Storage and Transport for Russia, Aug. 31, 2006, 72 pages. |
Eisbrenner, Kathleen, on Board Regasification Implications for Security of Supply, Presentation at CERA LNG Summit, Houston, TX, Feb. 12, 2007, 32 pages. |
Eisbrenner, Kathleen, Preparing for Short and Long Term Arbitrage Opportunities: Bringing Continents of Energy Together Energy Bridge, Presentation at CWC Sixth Annual World Lng Summit, Rome, Italy, 2005, 18 pages. |
Ewans, Kevin, et al., Oceanographic and Motion Response Statistics for the Operation of a Weathervaning LNG FPSO, Proceedings of OMAE '03: 22nd International Conference on Offshore Mechanics and Artic Engineering, Cancun, Mexico, Jun. 8-13, 2003, 7 pages. |
Excelerate Energy Limited Partnership, Excelerate Energy Northeast Gateway and Gulf Gateway Deepwater Port Update, Presentation at Northeast Energy and Commerce Assocation 11th Annual Conference on Natural Gas Issues, Boston, MA, Sep. 19, 2005, 13 pages. |
Excelerate Energy Limited Partnership, LNG Ship-To-Ship Transfer, Presentation at SIGTTO, Location Unknown, Nov. 18, 2005, 21 pages. |
Excelerate Energy Limited Partnership, Breaking the Traditional Model: Bringing Continents of Energy Together Energy Bridge, Presentation at CWC Sixth Annual World LNG Summit, Rome, Italy, 2005, 12 pages. |
Han, Hans Y.S. et al., Design Development of FSRU from LNG Carrier and FSPO Construction Experiences, Offshore Technology Conference, Houston, Texas May 6-9, 2002, 8 pages. |
Lakey, Robert, The Teesside GasPort Project, Presentation, Unknown Location, Jan. 23, 2007, 54 pages. |
Lane, Mark, LNG Ship-To-Ship Transfer, Presentation to Orkney Harbour Authority, Scapa Flow, Scotland, Dec. 4, 2006, 50 pages. |
Lane, Mark, Ship-To-Ship Transfer: LNGC Excalibur—EBRV Excelsior, Presentation at Scapa Flow, Scotland, Feb. 8-10, 2007, 13 pages. |
Lane, Mark, LNG Ship-To-Ship Transfer, Presentation at KNPC, Kuwait, Sep. 2, 2007, 97 pages. |
Lane, Mark, LNG Ship-To-Ship Transfer, Presentation at SIGTTO 9th Pan American Regional Forum, Nov. 7, 2007, 65 pages. |
Lane, Mark, LNG Ship-To-Ship Transfer, Presentation to Fendercare, Abu Dhabi, UAE, Nov. 14, 2008, 69 pages. |
Lane, Mark, LNG Ship-To-Ship Transfer, Presentations at Scapa Flow, Kirkwall and Orkney Islands, Scottland, Jan. 29, 2009, 69 pages. |
Lane, Mark K., Ship-to-Ship Transfer: Bahia Blanca Gasport, Presentation to KNPC, Kuwait, Nov. 12, 2007 & Feb. 5, 2008, 97 pages. |
Lane, Mark K., LNG Ship-To-Ship Transfer, Presentation at Stasco, Antwerp, Mar. 25, 2008, 70 pages. |
Lane, Mark K., Ship-to-Ship Transfer: K-Line LNG Shipping, Presentation, London, Dec. 18, 2008, 83 pages. |
McDonald, David, et al., Comprehensive Evaluations of LNG Transfer Technology for Offshore LNG Development, LNG 14 Conference, Doha, Qata, Mar. 19-24, 2004, 24 pages. |
Scott, Edward, et al., Offshore Value Chain Optimization, Offshore Technology Conference, Houston, Texas, May 4-7, 2009, 17 pages. |
Scott, Edward, et al., Offshore LNG Value Chain Optimization, Presentation at Offshore Technology Conference, Houston, Texas, May 7, 2009, 29 pages. |
Young, Paul C., et al., LNG STS—A Reality, Presentation at Global LNG Shipping Symposium, Sep. 19, 2006, 63 pages. |
Excelerate Energy, LLC, Excelerate Energy Announces Successful Delivery of First LNG Cargo to South America's First-Ever LNG Import Facility, Jun. 9, 2008, Press Release, The Woodlands, TX and Buenos Aires, Argentina, 2 pages. |
Shell, Dubai to Build LNG Regasification Terminal and Appoints Shell As Advisor and Main LNG Supplier, Press Release, Apr. 20, 2008, 1 page. |
Standy Import Terminals: Right Technology, Right Time, Mar. 25, 2009, Zeus Liquefied Natural Gas Report, Zeus Virtual Energy Library, 1 page. |
Floating LNG Plants can be Built, Marine Talk Website, Mar. 15, 2001, 2 pages. |
Boylston, Concept Proposal for the Transportation and Regasification of Liquid Natural Gas, 1996, 13 pages. |
California Coastal Commission, Offshore LNG Terminal Study, Sep. 15, 1978. |
Northeast Gateway Energy Bridge, L.L.C., Application to the U.S. Maritime Administration and the U.S. Guard for the Construction of the Northeast Gateway Deepwater Port, Jun. 13, 2005, 148 pages. |
SUEZ LNG NA, Neptune, Date Unknown, 3 pages. |
EMCO WHEATON, “Quick release system for bottom loading arms (Pneumatic)”. Taken from http://www.emcowheaton.com/en-en/products/safety_release_systems/pneumatic/ as uploaded Nov. 17, 2008. |
Translation by Samuel James Henderson “English Translation of Korean Patent No. 10-0676616”, translation dated Jan. 23, 2014, 13 pages. |
Translator Unknown, Partial English Translation of Japanese Patent No. 6376700, translation dated Mar. 5, 2014, 1 page. |
Intellectual Property Office of Singapore, “Invitation to Respond to Written Opinion” for Singapore Patent Application No. 201207871-3, dated Jan. 29, 2014, 9 pages. |
IP Australia, “Patent Examination Report No. 1” for Australia Patent Application No. 2011255490, dated Sep. 1, 2014, 3 pages. |
IP Australia, “Notice of Acceptance” for Australia Patent Application No. 2011255490, dated Jul. 10, 2015, 2 pages. |
Hungarian Intellectual Property Office, “Written Opinion” for Singapore Patent Application No. 201207871-3, dated Jan. 16, 2014, 7 pages. |
Intellectual Property Office of Singapore, “Examination Report” for Singapore Patent Application No. 201207871-3, dated Sep. 25, 2014, 12 pages. |
International Preliminary Report on Patentability for PCT Application No. PCT/US2011/037228, dated Sep. 5, 2012, 5 pages. |
Kanon Loading Equipment, “Kanon Marine Loading Systems”. Taken from http://www.brasten.com/media/productBrochure/KANON_Loading_Arms1.pdf, Google cached date of Mar. 16, 2007, 7 pages. |
Japanese Patent Office, Japan Platform for Patent Information, Machine Translation of Japanese Patent Application Publication 2002-501861 A, 47 pages. |
Patent Office of the Cooperation Council for the Arab States of the Gulf, “(1st) Examination Report” for GC 2011-18446, dated Jan. 28, 2016, 4 pages. |
Patent Office of the Cooperation Council for the Arab States of the Gulf, “(2nd) Examination Report” for GC 2011-18446, dated Jun. 23, 2016, 4 pages. |
EMCO WHEATON, “Marine Loading Arms”, taken from http://www.emcowheaton.com/marine-loading-arms/, Date unknown, 12 pages. |
European Patent Office, “Supplementary European Search Report” for EP Application No. 11784269.0 dated May 23, 2017, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20130118185 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61346683 | May 2010 | US |