Systems and methods for tunable out-of-band interference mitigation

Information

  • Patent Grant
  • 11764825
  • Patent Number
    11,764,825
  • Date Filed
    Monday, October 24, 2022
    a year ago
  • Date Issued
    Tuesday, September 19, 2023
    8 months ago
Abstract
A system for interference mitigation includes: a first transmit coupler; a receive-band noise cancellation system; a first transmit-band filter; a second transmit coupler; a first receive coupler; a transmit-band noise cancellation system; a first receive-band filter; and a second receive coupler.
Description
TECHNICAL FIELD

This invention relates generally to the wireless communications field, and more specifically to new and useful systems and methods for tunable out-of-band interference mitigation.


BACKGROUND

Traditional wireless communication systems are half-duplex; that is, they are not capable of transmitting and receiving signals simultaneously on a single wireless communications channel. One way that this issue is addressed is through the use of frequency division multiplexing (FDM), in which transmission and reception occur on different frequency channels. Unfortunately, the performance of FDM-based communication is limited by the issue of adjacent-channel interference (ACI), which occurs when a transmission on a first frequency channel contains non-negligible strength in another frequency channel used by a receiver. ACI may be addressed by increasing channel separation, but this in turn limits the bandwidth available for use in a given area. ACI may also be addressed by filtering, but to achieve high isolation, high-quality fixed frequency filters are typically used. For applications in which multiple operation frequencies are desired, traditional implementations require multiple such fixed filters, in turn increasing system cost and size. Thus, there is a need in the wireless communications field to create new and useful systems and methods for tunable out-of-band interference mitigation. This invention provides such new and useful systems and methods.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is prior art representation of out-of-band interference mitigation;



FIG. 2 is a diagram representation of a system of an invention embodiment;



FIG. 3 is a diagram representation of a system of an invention embodiment;



FIG. 4 is a diagram representation of a system of an invention embodiment;



FIG. 5 is a diagram representation of a system of an invention embodiment;



FIG. 6A is a diagram representation of a system of an invention embodiment;



FIG. 6B is a diagram representation of a system of an invention embodiment;



FIG. 7A is a diagram representation of a system of an invention embodiment;



FIG. 7B is a diagram representation of a system of an invention embodiment;



FIG. 8A is a diagram representation of a system of an invention embodiment;



FIG. 8B is a diagram representation of a system of an invention embodiment;



FIG. 9 is a diagram representation of a digital interference canceller of a system of an invention embodiment;



FIG. 10 is a diagram representation of an analog interference canceller of a system of an invention embodiment;



FIG. 11A is an example representation of noise cancellation of a system of an invention embodiment;



FIG. 11B is an example representation of noise cancellation of a system of an invention embodiment;



FIG. 12A is a diagram representation of an analog interference canceller of a system of an invention embodiment; and



FIG. 12B is a diagram representation of an analog interference canceller of a system of an invention embodiment.





DESCRIPTION OF THE INVENTION EMBODIMENTS

The following description of the invention embodiments of the invention is not intended to limit the invention to these invention embodiments, but rather to enable any person skilled in the art to make and use this invention.


1. System for Tunable Out-of-Band Interference Mitigation


A system 1000 for tunable out-of-band interference mitigation includes at least one of a transmit band interference cancellation system (TxICS) 1100, a transmit band noise cancellation system (TxNCS) 1200, a receive band interference cancellation system (RxICS) 1300, and a receive band noise cancellation system (RxNCS) 1400. The system 1000 may additionally include any number of additional elements to enable interference cancellation and/or filtering, including signal couplers 1010, amplifiers 1020, frequency upconverters 1030, frequency downconverters 1040, analog-to-digital converters (ADC) 1050, digital-to-analog converters (DAC) 1060, time delays 1070, filters 1080, and any other circuit components (e.g., phase shifters, attenuators, transformers, etc.).


The system 1000 is preferably implemented using digital and/or analog circuitry. Digital circuitry is preferably implemented using a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) and/or any suitable processor(s) or circuit(s). Analog circuitry is preferably implemented using analog integrated circuits (ICs) but may additionally or alternatively be implemented using discrete components (e.g., capacitors, resistors, transistors), wires, transmission lines, waveguides, digital components, mixed-signal components, or any other suitable components. The system 1000 preferably includes memory to store configuration data, but may additionally or alternatively be configured using externally stored configuration data or in any suitable manner.


The system 1000 functions to reduce interference present in a communications receiver resulting from transmission of a nearby transmitter on an adjacent communications channel (e.g., adjacent-channel interference). Adjacent-channel interference may result from either or both of a receiver receiving transmissions outside of a desired receive channel and a transmitter transmitting (either intentionally or via leakage) on the desired receive channel.


Traditionally, adjacent-channel interference has been mitigated using tunable or selectable filter-based architectures; for example, as shown in FIG. 1. On the transmit side, the tunable radio frequency (RF) filter is used to suppress the transmit signal in the receive band (e.g., a bandpass filter that only lets the transmit band pass). On the receive side, the tunable RF filter is generally used to suppress interference due to the transmitted signal in the transmit band (e.g., a bandpass filter that only lets the receive band pass). In some cases, this filter may also be used to selectively filter signal in the receive band as well.


This purely filter-based approach is limited primarily by its ability to remove interference in the receive band. Filtering in the receive band primarily occurs at the transmit side. Since, frequently, out-of-channel signal results from non-linear processes such as amplification, this filtering must generally occur at RF and after power amplification, which means that the transmit filter must both be able to reject a large amount of signal out-of-band without a large insertion loss. In other words, in these cases the filter must generally have a high quality factor (Q factor, Q), high insertion loss, or low interference rejection ability.


Likewise, the RF filter on the receive side must also be able to reject a large amount of signal out-of-band (since the transmit side filter does not filter the transmit band signal), and so it must also have high Q, high insertion loss, or low interference rejection ability. Note that these limitations are especially apparent in cases where the transmit and receive antennas are nearby (i.e., antenna isolation is low), because the amount of power that must be rejected by the RF filters increases; or when channel separation is small (and therefore filter Q must be higher).


Some systems, such as the out-of-band interference mitigation system of U.S. patent application Ser. No. 15/378,180, have improved interference mitigation by performing interference cancellation either as a substitute for or in addition to interference filtering. Such systems may use a receive band interference cancellation system to remove interference in the receive band, as well as either or both of the transmit band interference cancellation system and transmit band interference filtering system to remove interference in the transmit band.


While interference cancellation has numerous advantages, it also has some disadvantages; most notably, for MIMO systems, interference cancellation complexity scales with N×N (in other words, a 3×3 MIMO system may require 9 cancellation modules).


The system 1000 preferably includes noise cancellation systems (e.g., TxNCS 1200/RxNCS 1400) that may provide substantial improvement over traditional filtering architectures without incurring all costs of interference cancellation (e.g., MIMO scalability issues). Note, though, that some implementations of the system 1000 utilize interference cancellation in addition to or in the alternative to noise cancellation (these implementations may make use of advanced filtering techniques to provide improvement over previous interference cancellation architectures).


The system 1000 may be arranged in various architectures including these elements, enabling flexibility for a number of applications. In some embodiments, the system 1000 may be attached or coupled to existing transceivers; additionally or alternatively, the system 1000 may be integrated into transceivers. Examples of architectures of the system 1000 are as shown in FIGS. 2-8B.


As shown in FIG. 2, the system 1000 may mitigate interference using the RxNCS 1400 to perform noise cancellation in the receive band on the transmit signal and the TxNCS 1200 to perform noise cancellation in the transmit band on the receive signal. In the example as shown in FIG. 2, the use of transmit and receive bandpass filters 1080 at each coupler 1010 enables the use of simple couplers 1010 (e.g., t-junctions).


If more complex couplers 1010 are to be used (e.g., short section directional transmission line coupler), the number of filters 1080 used may be reduced, as shown in FIGS. 3 and 4. In the example as shown in FIG. 3, there are no transmit band filters 1080 on the transmit side and no receive band filters 1080 on the receive side (though such filtering may be performed, for example, by a duplexer or the transmitter), further, the remaining filters 1080 may be optionally included. Time delays 1070 may also be optionally included (to account for delay induced by filtering and the RxNCS 1400/RxNCS 1200). In the example as shown in FIG. 4, additional (as compared to FIG. 3) filters 1080 are used (potentially, in part, to reduce difference in time/phase delay between branches of the transmit line and branches of the receive line).


Couplers 1010 may additionally or alternatively incorporate additional circuitry to perform matching between connections (e.g., impedance matching, delay matching, etc.). Such circuitry may include gain circuitry, attenuation circuitry, time delay circuitry, phase delay circuitry, and/or any circuitry capable of port matching or otherwise enhancing coupling.


Note that a combination of filters 1080, couplers 1010, and/or matching circuitry may function as or function to replace a duplexer.


While the examples as shown in FIG. 2-4 are mirrored on the transmit and receive side, it is understood that the system 1000 may use any combination of such architectures; for example, as shown in FIG. 5.


As shown in FIGS. 6A and 6B, the system 1000 may include a combination of interference cancellation systems and noise cancellation systems. For example, as shown in FIG. 6A, the RxNCS 1400 may reduce the amount of interference in the receive band seen both at the receiver (as a consequence of that interference being removed prior to antenna transmission) and at the TxICS 1100 (which may result in a higher-quality self-interference cancellation signal or easier operation of the TxICS 1100). While these two FIGUREs exemplify some filtering and coupling schemes, it is understood that the system 1000 may utilize any configuration of filters 1080 and couplers 1010.


As shown in FIGS. 7A and 7B, the system 1000 may include a combination of TxICS 1100 and RxICS 1300 cancellation without including either of the TxNCS 1200 and RxNCS 1400. As shown in FIGS. 7A and 7B, the TxICS 1100 and RxICS 1300 may benefit from filtering at or after couplers 1010. Effects of such filtering may include reducing the overall power seen at an ICS and reducing insertion loss for a frequency band of interest. While these two FIGUREs exemplify some filtering and coupling schemes, it is understood that the system 1000 may utilize any configuration of filters 1080 and couplers 1010.


While previous example of the system 1000 show a duplexer linking transmit and receive paths to a single antenna, the system 1000 may couple to one or multiple antennas in any manner. For example, as shown in FIG. 8A, a set of bandpass filters and a coupler to a single antenna may replace the duplexer. As shown in FIG. 8B, transmit and receive paths may be coupled to separate antennas. This architecture may also be extended to MIMO, in which case multiple antennas may be connected to transmit and receive paths in any manner.


The system 1000 is preferably coupled to or integrated with a receiver that functions to receive analog receive signals transmitted over a communications link (e.g., a wireless channel, a coaxial cable). The receiver preferably converts analog receive signals into digital receive signals for processing by a communications system, but may additionally or alternatively not convert analog receive signals (passing them through directly without conversion).


The receiver is preferably coupled to the communications link by a duplexer-coupled RF antenna, but may additionally or alternatively be coupled to the communications link in any suitable manner. Some examples of alternative couplings include coupling via one or more dedicated receive antennas. In another alternative coupling, the receiver may be coupled to the communications link by a circulator-coupled RF antenna.


The receiver preferably includes an ADC 1050 (described in following sections) and converts baseband analog signals to digital signals. The receiver may additionally or alternatively include an integrated amplifier 1020 and/or a frequency downconverter 1040 (enabling the receiver to convert RF or other analog signals to digital).


The system 1000 is preferably coupled to or integrated with a transmitter that functions to transmit signals of the communications system over a communications link to a second communications system. The transmitter preferably converts digital transmit signals into analog transmit signals.


The transmitter is preferably coupled to the communications link by a duplexer-coupled RF antenna, but may additionally or alternatively be coupled to the communications link in any suitable manner. Some examples of alternative couplings include coupling via one or more dedicated transmit antennas, dual-purpose transmit and/or receive antennas, or any other suitable antennas. In other alternative couplings, the transmitter may be coupled to the communications link by direct wired coupling (e.g., through one or more RF coaxial cables, transmission line couplers, etc.).


The transmitter preferably includes a DAC 1060 (described in following sections) and converts digital signals to baseband analog signals. The transmitter may additionally or alternatively include an integrated amplifier 1020 and/or a frequency upconverter 1030 (enabling the transmitter to convert digital signals to RF signals and/or intermediate frequency (IF) signals).


The transmitter and receiver may be coupled to the same communicating device or different communicating devices. In some variations, there may be multiple transmitters and/or receivers, which may be coupled to the same or different communication devices in any suitable combination.


Signal couplers 1010 function to allow analog signals to be split and/or combined. While not necessarily shown in the figures, signal couplers are preferably used at each junction (e.g., splitting, combining) of two or more analog signals; alternatively, analog signals may be coupled, joined, or split in any manner. In particular, signal couplers 1010 may be used to provide samples of transmit signals, as well as to combine interference cancellation signals with other signals (e.g., transmit or receive signals). Alternatively, signal couplers 1010 may be used for any purpose. Signal couplers 1010 may couple and/or split signals using varying amounts of power; for example, a signal coupler 1010 intended to sample a signal may have an input port, an output port, and a sample port, and the coupler 1010 may route the majority of power from the input port to the output port with a small amount going to the sample port (e.g., a 99.9%/0.1% power split between the output and sample port, or any other suitable split).


The signal coupler 1010 is preferably a short section directional transmission line coupler, but may additionally or alternatively be any power divider, power combiner, directional coupler, or other type of signal splitter. The signal coupler 130 is preferably a passive coupler, but may additionally or alternatively be an active coupler (for instance, including power amplifiers). For example, the signal coupler 1010 may comprise a coupled transmission line coupler, a branch-line coupler, a Lange coupler, a Wilkinson power divider, a hybrid coupler, a hybrid ring coupler, a multiple output divider, a waveguide directional coupler, a waveguide power coupler, a hybrid transformer coupler, a cross-connected transformer coupler, a resistive tee, and/or a resistive bridge hybrid coupler. The output ports of the signal coupler 1010 are preferably phase-shifted by ninety degrees, but may additionally or alternatively be in phase or phase shifted by a different amount.


Amplifiers 1020 function to amplify signals of the system 1000. Amplifiers may include any analog or digital amplifiers. Some examples of amplifiers 1020 include low-noise amplifiers (LNA) typically used to amplify receive signals and power amplifiers (PA) typically used to amplify transmit signals prior to transmission.


Frequency upconverters 1030 function to upconvert a carrier frequency of an analog signal (typically from baseband to RF, but alternatively from any frequency to any other higher frequency). Upconverters 1030 preferably accomplish signal upconversion using heterodyning methods, but may additionally or alternatively use any suitable upconversion methods.


The upconverter 1030 preferably includes a local oscillator (LO), a mixer, and a bandpass filter. The local oscillator functions to provide a frequency shift signal to the mixer; the mixer combines the frequency shift signal and the input signal to create (usually two, but alternatively any number) frequency shifted signals, one of which is the desired output signal, and the bandpass filter rejects signals other than the desired output signal.


The local oscillator is preferably a digital crystal variable-frequency oscillator (VFO) but may additionally or alternatively be an analog VFO or any other suitable type of oscillator. The local oscillator preferably has a tunable oscillation frequency but may additionally or alternatively have a static oscillation frequency.


The mixer is preferably an active mixer, but may additionally or alternatively be a passive mixer. The mixer may comprise discrete components, analog integrated circuits (ICs), digital ICs, and/or any other suitable components. The mixer preferably functions to combine two or more electrical input signals into one or more composite outputs, where each output includes some characteristics of at least two input signals.


The bandpass filter (of the upconverter) is preferably a tunable bandpass filter centered around an adjustable radio frequency. Additionally, or alternatively, the bandpass filter may be a bandpass filter centered around a set radio frequency, or any other suitable type of filter. The bandpass filter is preferably a passive filter, but may additionally or alternatively be an active filter. The bandpass filter is preferably implemented with analog circuit components, but may additionally or alternatively be digitally implemented.


In variations in which the bandpass filter is tunable, the center frequency of each tunable filter is preferably controlled by a control circuit or tuning circuit, but may additionally or alternatively be controlled by any suitable system (including manually controlled, e.g. as in a mechanically tuned capacitor). Each tunable bandpass filter preferably has a set quality (Q) factor, but may additionally or alternatively have a variable Q factor. The tunable bandpass filters may have different Q factors; for example, some of the tunable filters may be high-Q, some may be low-Q, and some may be no-Q (flat response).


Frequency downconverters 1040 function to downconvert the carrier frequency of an analog signal (typically to baseband, but alternatively to any frequency lower than the carrier frequency). The downconverter 1040 preferably accomplishes signal downconversion using heterodyning methods, but may additionally or alternatively use any suitable downconversion methods.


The downconverter 1040 preferably includes a local oscillator (LO), a mixer, and a baseband filter. The local oscillator functions to provide a frequency shift signal to the mixer; the mixer combines the frequency shift signal and the input signal to create (usually two) frequency shifted signals, one of which is the desired signal, and the baseband filter rejects signals other than the desired signal.


The local oscillator is preferably a digital crystal variable-frequency oscillator (VFO) but may additionally or alternatively be an analog VFO or any other suitable type of oscillator. The local oscillator preferably has a tunable oscillation frequency but may additionally or alternatively have a static oscillation frequency.


The mixer is preferably an active mixer, but may additionally or alternatively be a passive mixer. The mixer may comprise discrete components, analog ICs, digital ICs, and/or any other suitable components. The mixer preferably functions to combine two or more electrical input signals into one or more composite outputs, where each output includes some characteristics of at least two input signals.


The baseband filter is preferably a lowpass filter with a tunable low-pass frequency. Additionally or alternatively, the baseband filter may be a lowpass filter with a set low-pass frequency, a bandpass filter, or any other suitable type of filter. The baseband filter is preferably a passive filter, but may additionally or alternatively be an active filter. The baseband filter is preferably implemented with analog circuit components, but may additionally or alternatively be digitally implemented.


Note that the bandpass filter of the frequency upconverter 1030 and the baseband filter of the frequency downconverter 1040 are specific examples of a filter 1080.


Analog-to-digital converters (ADCs) 1050 function to convert analog signals (typically at baseband, but additionally or alternatively at any frequency) to digital signals. ADCs 1050 may be any suitable analog-to-digital converter; e.g., a direct-conversion ADC, a flash ADC, a successive-approximation ADC, a ramp-compare ADC, a Wilkinson ADC, an integrating ADC, a delta-encoded ADC, a time-interleaved ADC, or any other suitable type of ADC.


Digital-to-analog converters (DACs) 1060 function to convert digital signals to analog signals (typically at baseband, but additionally or alternatively at any frequency). The DAC 1060 may be any suitable digital-to-analog converter; e.g., a pulse-width modulator, an oversampling DAC, a binary-weighted DAC, an R-2R ladder DAC, a cyclic DAC, a thermometer-coded DAC, or a hybrid DAC.


Time delays 1070 function to delay signal components. Delays 1070 may be implemented in analog (e.g., as a time delay circuit) or in digital (e.g., as a time delay function). Delays 1070 may be fixed, but may additionally or alternatively introduce variable delays. The delay 1070 is preferably implemented as an analog delay circuit (e.g., a bucket-brigade device, a long transmission line, a series of RC networks) but may additionally or alternatively be implemented in any other suitable manner. If the delay 1070 is a variable delay, the delay introduced may be set by a tuning circuit or other controller of the system 1000. Although not necessarily explicitly shown in figures, delays 1070 may be coupled to the system 1000 in a variety of ways to delay one signal relative to another. For example, delays 1070 may be used to delay a receive or transmit signal to account for time taken to generate an interference cancellation signal (so that the two signals may be combined with the same relative timing). Delays 1070 may potentially be implemented as part of or between any two components of the system 1000.


Filters 1080 function to remove or reduce the presence of undesired frequency components within a signal. Each filter 1080 functions to transform signal components according to the response of the filter, which may introduce a change in signal magnitude, signal phase, and/or signal delay. Two specific previously mentioned examples of filters 1080 are discussed in the sections regarding the upconverter 1030 and the downconverter 1040.


Filters 1080 are preferably bandpass filters, but may be any type of filter (e.g., notch filter, bandstop filter, low-pass filter, high-pass filter). Filters 1080 are preferably analog resonant element filters, but may additionally or alternatively be any type of filter (including digital filters). Resonant elements of the filters 1080 are preferably formed by lumped elements, but may additionally or alternatively be distributed element resonators, ceramic resonators, SAW resonators, crystal resonators, cavity resonators, or any suitable resonators.


The filters 1080 are preferably tunable such that one or more peaks of the filter 1080 may be shifted. In one implementation of a preferred embodiment, one or more resonant elements of the filter 1080 may include a variable shunt capacitance (e.g., a varactor or a digitally tunable capacitor) that enables filter peaks to be shifted. Additionally or alternatively, filters 1080 may be tunable by quality factor (i.e., Q may be modified by altering circuit control values), or filters 1080 may be not tunable.


Filters 1080 may include, in addition to resonant elements, delayers, phase shifters, and/or scaling elements.


The filters 1080 are preferably passive filters, but may additionally or alternatively be active filters. The filters 1080 are preferably implemented with analog circuit components, but may additionally or alternatively be digitally implemented. The center frequency of any tunable peak of a filter 1080 is preferably controlled by a tuning circuit, but may additionally or alternatively be controlled by any suitable system (including manually controlled, e.g. as in a mechanically tuned capacitor).


In particular, filters 1080 may be useful to reduce insertion loss within a frequency range of interest. For example, as shown in FIG. 2, the insertion loss for the transmit path prior to the duplexer (at the transmit frequency) may be less than if the RxNCS 1400 were directly coupled to the transmit line in the absence of the four shown filters 1080.


Filters 1080 may also be useful to reduce the power seen by noise and/or interference cancellation systems. For example, as shown in FIG. 2, the RxNCS 1400 sees a lower total overall power than if the RxNCS 1400 were directly coupled to the transmit line in the absence of the four shown filters 1080.


Note that used to enhance interference and/or noise cancellation, as opposed to independently suppressing noise (as a filter may be used for in a system without interference and/or noise cancellation), a less-expensive, smaller, lower-quality factor (Q), and/or lower-rejection-capability filter may be used.


The TxICS 1100 functions to mitigate interference present in the transmit band of a signal using self-interference cancellation techniques; that is, generating a self-interference cancellation signal by transforming signal samples of a first signal (typically a transmit signal) into a representation of self-interference present in another signal (e.g., a receive signal, a transmit signal after amplification, etc.), due to transmission of the first signal and then subtracting that interference cancellation signal from the other signal.


The TxICS 1100 is preferably used to cancel interference present in the transmit band of a receive signal; i.e., the TxICS 1100 generates an interference cancellation signal from samples of a transmit signal using a circuit that models the representation of the transmit signal, in the transmit band, as received by a receiver, and subtracts that cancellation signal from the receive signal.


The TxICS 1100 may additionally be used to cancel interference present in the transmit band (TxB) of a transmit signal sample; i.e., the TxICS 1100 generates an interference cancellation signal from samples of a transmit signal using a circuit that models the representation of the transmit signal, in the transmit band, as generated by a transmitter (generally, but not necessarily, before transmission at an antenna), and subtracts that cancellation signal from the transmit signal sample. This type of interference cancellation is generally used to ‘clean’ a transmit signal sample; that is, to remove transmit band signal of a transmit sample, so that the sample contains primarily information in the receive band (allowing the sample to be used to perform receive-band interference cancellation, typically using the RxICS 1300).


The TxICS 1100 comprises at least one of a digital TX interference canceller (TxDC) 1110 and an analog TX interference canceller (TxAC) 1120. In the case that the TxICS 1100 performs both receive signal cancellation and transmit sample cancellation, the TxICS 1100 may include separate cancellers to perform these tasks; additionally or alternatively, the TxICS 1100 may include any number of cancellers for any purpose (e.g., one canceller performs both tasks, many cancellers perform a single task, etc.).


The TxDC 1110 functions to produce a digital interference cancellation signal from a digital input signal according to a digital transform configuration. The TxDC 1110 may be used to cancel interference in any signal, using any input, but the TxDC 1110 is preferably used to cancel transmit band interference in an analog receive signal (by converting a digital interference cancellation signal to analog using a DAC 1060 and combining it with the analog receive signal). The TxDC 1110 may also be used to cancel transmit band signal components in a transmit signal (to perform transmit signal cleaning as previously described).


Using upconverters 1030, downconverters 1040, ADCs 1050, and DACs 1060, the TxDC 1110 may convert analog signals of any frequency to digital input signals, and may additionally convert interference cancellation signals from digital to analog signals of any frequency.


The digital transform configuration of the TxDC 1110 includes settings that dictate how the TxDC 1110 transforms a digital transmit signal to a digital interference signal (e.g. coefficients of a generalized memory polynomial used to transform a transmit signal to an interference cancellation signal). The transform configuration for a TxDC 1110 is preferably set adaptively by a transform adaptor, but may additionally or alternatively be set by any component of the system 1000 (e.g., a tuning circuit) or fixed in a set transform configuration.


The TxDC 1110 is preferably substantially similar to the digital self-interference canceller of U.S. Provisional Application No. 62/268,388, the entirety of which is incorporated by this reference, except in that the TxDC 1110 is not necessarily applied solely to cancellation of interference in a receive signal resulting from transmission of another signal (as previously described).


In one implementation of a preferred embodiment, the TxDC 1110 includes a component generation system, a multi-rate filter, and a transform adaptor, as shown in FIG. 9.


The component generation system functions to generate a set of signal components from the sampled input signal (or signals) that may be used by the multi-rate filter to generate an interference cancellation signal. The component generation system preferably generates a set of signal components intended to be used with a specific mathematical model (e.g., generalized memory polynomial (GMP) models, Volterra models, and Wiener-Hammerstein models); additionally or alternatively, the component generation system may generate a set of signal components usable with multiple mathematical models.


In some cases, the component generator may simply pass a copy of a sampled transmit signal unmodified; this may be considered functionally equivalent to a component generator not being explicitly included for that particular path.


The multi-rate adaptive filter functions to generate an interference cancellation signal from the signal components produced by the component generation system. In some implementations, the multi-rate adaptive filter may additionally function to perform sampling rate conversions (similarly to an upconverter 1030 or downconverter 1040, but applied to digital signals). The multi-rate adaptive filter preferably generates an interference cancellation signal by combining a weighted sum of signal components according to mathematical models adapted to model interference contributions of the transmitter, receiver, channel and/or other sources. Examples of mathematical models that may be used by the multi-rate adaptive filter include generalized memory polynomial (GMP) models, Volterra models, and Wiener-Hammerstein models; the multi-rate adaptive filter may additionally or alternatively use any combination or set of models.


The transform adaptor functions to set the transform configuration of the multi-rate adaptive filter and/or the component generation system. The transform configuration preferably includes the type of model or models used by the multi-rate adaptive filter as well as configuration details pertaining to the models (each individual model is a model type paired with a particular set of configuration details). For example, one transform configuration might set the multi-rate adaptive filter to use a GMP model with a particular set of coefficients. If the model type is static, the transform configuration may simply include model configuration details; for example, if the model is always a GMP model, the transform configuration may include only coefficients for the model, and not data designating the model type.


The transform configuration may additionally or alternatively include other configuration details related to the signal component generation system and/or the multi-rate adaptive filter. For example, if the signal component generation system includes multiple transform paths, the transform adaptor may set the number of these transform paths, which model order their respective component generators correspond to, the type of filtering used, and/or any other suitable details. In general, the transform configuration may include any details relating to the computation or structure of the signal component generation system and/or the multi-rate adaptive filter.


The transform adaptor preferably sets the transform configuration based on a feedback signal sampled from a signal post-interference-cancellation (i.e., a residue signal). For example, the transform adaptor may set the transform configuration iteratively to reduce interference present in a residue signal. The transform adaptor may adapt transform configurations and/or transform-configuration-generating algorithms using analytical methods, online gradient-descent methods (e.g., LMS, RLMS), and/or any other suitable methods. Adapting transform configurations preferably includes changing transform configurations based on learning. In the case of a neural-network model, this might include altering the structure and/or weights of a neural network based on test inputs. In the case of a GMP polynomial model, this might include optimizing GMP polynomial coefficients according to a gradient-descent method.


Note that TxDCs 1110 may share transform adaptors and/or other components (although each TxDC 1110 is preferably associated with its own transform configuration).


The TxAC 1120 functions to produce an analog interference cancellation signal from an analog input signal. The TxAC 1120 may be used to cancel interference in any signal, using any input, but the TxAC 1120 is preferably used to cancel transmit band interference in an analog receive signal. The TxAC 1120 may also be used to cancel transmit band signal components in a transmit signal sample (to perform transmit signal cleaning as previously described).


Using upconverters 1030, downconverters 1040, ADCs 1050, and DACs 1060, the TxAC 1120 may convert digital signals to analog input signals, and may additionally convert interference cancellation signals from analog to digital (or to another analog signal of different frequency).


The TxAC 1120 is preferably designed to operate at a single frequency band, but may additionally or alternatively be designed to operate at multiple frequency bands. The TxAC 1120 is preferably substantially similar to the circuits related to analog self-interference cancellation of U.S. patent application Ser. No. 14/569,354 (the entirety of which is incorporated by this reference); e.g., the RF self-interference canceller, the IF self-interference canceller, associated up/downconverters, and/or tuning circuits, except that the TxAC 1120 is not necessarily applied solely to cancellation of interference in a receive signal resulting from transmission of another signal (as previously described).


The TxAC 1120 is preferably implemented as an analog circuit that transforms an analog input signal into an analog interference cancellation signal by combining a set of filtered, scaled, and/or delayed versions of the analog input signal, but may additionally or alternatively be implemented as any suitable circuit. For instance, the TxAC 1120 may perform a transformation involving only a single version, copy, or sampled form of the analog input signal. The transformed signal (the analog interference cancellation signal) preferably represents at least a part of an interference component in another signal.


The TxAC 1120 is preferably adaptable to changing self-interference parameters in addition to changes in the input signal; for example, transceiver temperature, ambient temperature, antenna configuration, humidity, and transmitter power. Adaptation of the TxAC 1120 is preferably performed by a tuning circuit, but may additionally or alternatively be performed by a control circuit or other control mechanism included in the canceller or any other suitable controller (e.g., by the transform adaptor of the TxDC 1110).


In one implementation of a preferred embodiment, the TxAC 1120 includes a set of scalers (which may perform gain, attenuation, or phase adjustment), a set of delays, a signal combiner, a signal divider, and a tuning circuit, as shown in FIG. 10. In this implementation the TxAC 1120 may optionally include tunable filters (e.g., bandpass filters including an adjustable center frequency, lowpass filters including an adjustable cutoff frequency, etc.).


The tuning circuit preferably adapts the TxAC 1120 configuration (e.g., parameters of the filters, scalers, delayers, signal divider, and/or signal combiner, etc.) based on a feedback signal sampled from a signal after interference cancellation is performed (i.e., a residue signal). For example, the tuning circuit may set the TxAC 1120 configuration iteratively to reduce interference present in a residue signal. The tuning circuit preferably adapts configuration parameters using online gradient-descent methods (e.g., LMS, RLMS), but configuration parameters may additionally or alternatively be adapted using any suitable algorithm. Adapting configuration parameters may additionally or alternatively include alternating between a set of configurations. Note that TxACs may share tuning circuits and/or other components (although each TxAC 1120 is preferably associated with a unique configuration or architecture). The tuning circuit may be implemented digitally and/or as an analog circuit.


The TxNCS 1200 functions to mitigate interference present in the transmit band of a signal by performing noise cancellation in the transmit band. The TxNCS 1200 is preferably used to cancel noise present in the transmit band of a receive signal. The TxNCS 1200 may additionally or alternatively be used to cancel noise present in the transmit band of a transmit signal sample; e.g., to generate a transmit signal sample that includes primarily signal components in the receive band (as a way to estimate interference generated in the receive band of the receive signal by the transmit signal). Transmit samples cleaned in this way may be used to perform receive-band interference cancellation, typically using the RxICS 1300.


The TxNCS 1200 preferably generates a noise cancellation signal from the transmit band of a signal that is combined with the signal to reduce noise. For example, the TxNCS 1200 may sample the receive signal (e.g., post filtering by a transmit bandpass filter 1080) and generate a noise cancellation signal then combined with the receive signal to reduce signal power of the receive signal in the transmit band. Note that this approach may produce a greater reduction of undesired signal components than simple filtering. Note also that noise present in signals or added to signals may be referred to as noise components.


As previously noted, the TxNCS 1200 may be utilized with filters 1080 to enhance performance of the TxNCS 1200. For example, as shown in FIG. 11A (using the architecture as shown in FIG. 2) the receive signal is split by the first coupler 1010 and following Rx band and Tx band filters 1080 into a (primarily) receive band path and a (primarily) transmit band path. Note that the receive band path may still contain some transmit band power and vice versa. The TxNCS 1200 may then be used to generate a noise cancellation signal (from the transmit band path signal) and combine that signal with the transmit band path signal. In some cases, this noise cancellation may simply reduce power in the transmit band in the transmit band path signal. In other cases, (recognizing that not all of the transmit band power was removed from the receive band path) the noise cancellation may alternatively result in a signal with transmit band power 180 degrees out of phase with the original signal; this signal, when recombined with the receive path signal, may actually reduce overall signal power in the transmit band more than would be possible from filtering alone. Alternatively, the TxNCS 1200 (when simply reducing transmit band power) may act similarly to a filter (e.g., a notch filter) while still performing cancellation. Note that while not shown in FIG. 11A, a second filtering step may be performed before recombining the signals, as shown in FIG. 11B. This may be useful to reduce undesired contribution of TxNCS 1200 to power in the receive band. The recombined signal may be referred to as a “processed” signal.


Note also that the filters 1080 and the TxNCS 1200 each introduce delays to signals. It may be desirable for the filters 1080 and TxNCS 1200 to be configured or tuned such that the delay for signals on each path are equal (e.g., for the architecture as shown in FIG. 2, the delay on the receive side introduced by the two Rx bandpass filters may be equal to the delay introduced by the two Tx bandpass filters plus the delay introduced by the TxNCS 1200). Alternatively, filters or signal paths may insert any amount of time or phase delay. For example, as applied to the architecture as shown in FIG. 4, the delay on the receive side introduced by the one Rx bandpass filter may be equal to the delay introduced by the two Tx bandpass filters plus the delay introduced by the TxNCS 1200. As it may be not possible for the delays to be exactly equal, they may be substantially equal (e.g., the delay introduced by one may be within ten percent of the other).


The RxICS 1300 functions to mitigate interference present in the receive band of a signal using self-interference cancellation techniques; that is, generating a self-interference cancellation signal by transforming signal samples of a first signal (typically a transmit signal) into a representation of self-interference present in another signal, due to transmission of the first signal (e.g., a receive signal, a transmit signal after amplification, etc.) and then subtracting that interference cancellation signal from the other signal.


The RxICS 1300 is preferably used to cancel interference present in the receive band of a receive signal; i.e., the RxICs 1300 generates an interference cancellation signal from samples of receive band components of a transmit signal using a circuit that models the representation of the transmit signal, in the receive band, as received by a receiver, and subtracts that cancellation signal from the receive signal.


The RxICS 1300 comprises at least one of a digital RX interference canceller (RxDC) 1310 and an analog RX interference canceller (RxAC) 1320.


The RxDC 1310 is preferably substantially similar to the TxDC 1110, but may additionally or alternatively be any suitable digital interference canceller.


The RxAC 1320 is preferably substantially similar to the TxAC 1120, but may additionally or alternatively be any suitable analog interference canceller.


The RxNCS 1400 functions to mitigate interference present in the receive band of a signal by performing noise cancellation in the receive band. The RxNCS 1400 is preferably used to cancel noise present in the receive band of a transmit signal. Additionally or alternatively, the RxNCS 1400 may be used to pre-cancel noise present in the receive band of a transmit signal (e.g., pre-distorting a signal pre-amplification or filtering to account for later noise introduced by amplification and/or filtering).


The RxNCS 1400 preferably generates a noise cancellation signal from the receive band of a signal that is combined with the signal to reduce noise. For example, the RxNCS 1400 may sample the transmit signal (e.g., post filtering by a transmit bandpass filter 1080) and generate a noise cancellation signal thereafter combined with the transmit signal to reduce signal power of the transmit signal in the receive band. Note that this approach may produce a greater reduction of undesired signal components than simple filtering.


Similarly to the TxNCS 1200, the RxNCS 1400 may be utilized with filters 1080 to enhance performance of the RxNCS 1400.


Both the TxNCS 1200 and RxNCS 1400 may generate noise cancellation signals (or otherwise perform noise cancellation) in any manner (e.g., using techniques or architectures described for use by the TxICS 1100 and/or the RxICS 1300).


As a first example, the RxNCS 1400 may perform noise cancellation based on a static transformation (i.e., the noise cancellation signal is generated using a static transformation operating on the sampled signal; this may be useful if transmit circuit behavior is predictable). As a second example, the RxNCS 1400 may perform noise cancellation based on a dynamic transformation (e.g., like that of a tunable analog or digital ICS).


2. Tunable Out-of-Band Interference Mitigation System for Relays and Co-Located Transceivers


A tunable out-of-band interference mitigation system 2000 for relays and co-located transceivers includes at least one of an interference cancellation system (ICS) 2100 and a noise cancellation system (NCS) 2200. The system 2000 may additionally include any number of additional elements to enable interference cancellation and/or filtering, including signal couplers 2010, amplifiers 2020, frequency upconverters 2030, frequency downconverters 2040, analog-to-digital converters (ADC) 2050, digital-to-analog converters (DAC) 2060, time delays 2070, filters 2080, and any other circuit components (e.g., phase shifters, attenuators, transformers, etc.).


The system 2000 is preferably substantially similar to the system 1000 except that the addition of switches 2090 enable the use of interference cancellation in two directions (direction controlled and varied in time by positions of the switches 2090), as shown in FIG. 12A. Accordingly, interference and noise cancellation systems may be used for multiple bands (therefore, the ICS 2100 may perform the roles of either the TxICS 1100 or RxICS 1300, for example). Likewise, filters may correspond to multiple frequency bands (e.g., F1, F2) not inherently linked to receiving or transmitting.


In first switch positions, the first transceiver (on the left in FIG. 12A) transmits at F1 and the second transceiver (on the right) receives at F2. The F2-filtered branch of the leftmost transceiver is coupled, via the left switch 2090, to an input of the ICS 2100, which generates an interference cancellation signal that passes via the right switch 2090 to the right most transceiver, where it may then be combined with the signal received at the second transceiver to reduce noise in the F1 and F2 bands, augmenting the filters (in this case, the transmit band). In second switch positions, the first transceiver receives at F1 and the second transceiver transmits at F2; the F1-filtered branch of the rightmost transceiver is coupled, via the right switch 2090 and the left switch 2090, to the input of the ICS 2100, which generates an interference cancellation signal that passes via the switches 2090 to the left most transceiver, where it may then be combined with the signal received at the first transceiver to reduce noise in the F1 and F2 bands, augmenting the filters.


This implementation may also be used for relays or co-located transceivers that operate on the same frequencies, but use time-division multiplexing. Here, the couplers 2010 and filters 2080 may no longer be necessary, as shown in FIG. 12B.


Note that as the length and electrical properties of the paths from transceivers to the ICS 2100 differ (e.g., they are longer in one switch position than another), signal paths of the system 2000 may include gain and/or phase compensation to equalize performance across signal paths.


As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.


As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.

Claims
  • 1. A system for interference mitigation, the system associated with a first signal and a second signal, the system comprising: a receive bandpass filter configured to suppress signals outside a receive band;a transmit bandpass filter configured to suppress signals outside a transmit band;a transmit band interference cancellation system (TxICS) communicatively coupled between the receive bandpass filter and the transmit bandpass filter;a receive band interference cancellation system (RxICS) communicatively coupled between the receive bandpass filter and the transmit bandpass filter in parallel with the TxICS;a duplexer communicatively coupled to an antenna of a communication system;a first signal coupler communicatively coupled between the duplexer, the receive bandpass filter, and a transmitter of the communication system, wherein: the duplexer is communicatively coupled between the first signal coupler and the antenna;the receive bandpass filter is communicatively coupled between the first signal coupler and the TxICS; andthe receive bandpass filter is communicatively coupled between the first signal coupler and the RxICS; anda second signal coupler communicatively coupled between the duplexer, the transmit bandpass filter, and a receiver of the communication system, wherein: the duplexer is communicatively coupled between the second signal coupler and the antenna;the transmit bandpass filter is communicatively coupled between the second signal coupler and the TxICS; andthe transmit bandpass filter is communicatively coupled between the second signal coupler and the RxICS.
  • 2. The system of claim 1, wherein the TxICS is configured to: generate TxICS signal samples by sampling the first signal;generate a TxICS interference cancellation signal by transforming the TxICS signal samples into a TxICS representation of self-interference present in the second signal; andsubtract the TxICS interference cancellation signal from the second signal.
  • 3. The system of claim 2, wherein: the first signal is a transmit signal of the transmitter; andthe second signal is a receive signal of the receiver.
  • 4. The system of claim 3, wherein the TxICS representation of self-interference present in the receive signal comprises a representation of the transmit signal, in the transmit band, as received by a receiver.
  • 5. The system of claim 4, wherein the TxICS is further configured to: generate a second interference cancellation signal by modelling a representation of the transmit signal, in the transmit band, as generated by a transmitter; andsubtract the second interference cancellation signal from the signal samples.
  • 6. The system of claim 3, wherein the TxICS is further configured to: generate a second interference cancellation signal by modelling a representation of the transmit signal, in the transmit band, as generated by a transmitter; andsubtract the second interference cancellation signal from the signal samples.
  • 7. The system of claim 6, wherein the TxICS comprises a digital transmit band interference canceller (TxDC) comprising: a TxDC component generator configured to generate a set of signal components from the TxICS signal samples;a TxDC multi-rate adaptive filter configured to generate an interference cancellation TxDC component by combining a weighted sum of the signal components of the set of signal components, wherein the TxICS interference cancellation signal comprises the interference cancellation TxDC component; anda TxDC transform adaptor configured to set a TxDC transform configuration of at least one of: the component generator or the multi-rate adaptive filter.
  • 8. The system of claim 2, wherein the TxICS comprises a digital transmit band interference canceller (TxDC) comprising: a TxDC component generator configured to generate a set of signal components from the TxICS signal samples;a TxDC multi-rate adaptive filter configured to generate an interference cancellation TxDC component by combining a weighted sum of the signal components of the set of signal components, wherein the TxICS interference cancellation signal comprises the interference cancellation TxDC component; anda TxDC transform adaptor configured to set a TxDC transform configuration of at least one of: the component generator or the multi-rate adaptive filter.
  • 9. The system of claim 8, wherein: the TxDC multi-rate adaptive filter is configured to combine the weighted sum according to a mathematical model selected from the group consisting of: a generalized memory polynomial model, a Volterra model, and a Wiener-Hammerstein model; andthe TxDC transform adaptor is configured to set the TxDC transform configuration of the multi-rate adaptive filter based on the mathematical model.
  • 10. The system of claim 8, wherein the TxDC transform adaptor is configured to set the TxDC transform configuration based on a residue signal sampled downstream of subtracting the TxICS interference cancellation signal from the second signal.
  • 11. The system of claim 8, wherein the TxICS further comprises an analog transmit band interference canceller configured to transform the first signal into an interference cancellation TxAC component by combining a set of modified versions of the first signal, wherein: each modified version of the set of modified versions of the first signal is modified from the first signal by at least one of: filtering, scaling, or delaying; andthe TxICS interference cancellation signal comprises the interference cancellation TxC component.
  • 12. The system of claim 2, wherein the TxICS comprises an analog transmit band interference canceller configured to transform the first signal into an interference cancellation TxAC component by combining a set of modified versions of the first signal, wherein: each modified version of the set of modified versions of the first signal is modified from the first signal by at least one of: filtering, scaling, or delaying; andthe TxICS interference cancellation signal comprises the interference cancellation TxC component.
  • 13. The system of claim 2, wherein the RxICS is configured to: generate RxICS signal samples by sampling the first signal;generate a RxICS interference cancellation signal by transforming the RxICS signal samples into a RxICS representation of self-interference present in the second signal; andsubtract the RxICS interference cancellation signal from the second signal.
  • 14. The system of claim 1, wherein the RxICS is configured to: generate RxICS signal samples by sampling the first signal;generate a RxICS interference cancellation signal by transforming the RxICS signal samples into a RxICS representation of self-interference present in the second signal; andsubtract the RxICS interference cancellation signal from the second signal.
  • 15. The system of claim 14, wherein the RxICS representation of self-interference present in the receive signal comprises a representation of the transmit signal, in the receive band, as received by a receiver.
  • 16. The system of claim 14, wherein the RxICS comprises a digital receive band interference canceller (RxDC) comprising: a RxDC component generator configured to generate a set of signal components from the RxICS signal samples;a RxDC multi-rate adaptive filter configured to generate an interference cancellation RxDC component by combining a weighted sum of the signal components of the set of signal components, wherein the RxICS interference cancellation signal comprises the interference cancellation RxDC component; anda RxDC transform adaptor configured to set a RxDC transform configuration of at least one of: the RxDC component generator or the RxDC multi-rate adaptive filter.
  • 17. The system of claim 1, wherein the second signal coupler comprises a match circuit.
  • 18. The system of claim 17, wherein the match circuit is configured to perform impedance matching between the receiver and at least one of the TxICS or the RxICS.
  • 19. The system of claim 17, wherein the match circuit is configured to perform delay matching between the receiver and at least one of the TxICS or the RxICS.
  • 20. The system of claim 19, wherein the match circuit is further configured to perform impedance matching between the receiver and at least one of the TxICS or the RxICS.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/088,438, filed 3 Nov. 2020, which is a continuation of U.S. patent application Ser. No. 16/808,624, filed 4 Mar. 2020, which is a continuation of U.S. patent application Ser. No. 16/248,679, filed 15 Jan. 2019, now issued as U.S. Pat. No. 10,623,047, which is a continuation of U.S. patent application Ser. No. 15/937,237, Filed 27 Mar. 2018, now issued as U.S. Pat. No. 10,236,922, which claims the benefit of U.S. Provisional Application Ser. No. 62/477,341, filed on 27 Mar. 2017, of U.S. Provisional Application Ser. No. 62/490,932, filed on 27 Apr. 2017, and of U.S. Provisional Application Ser. No. 62/571,595, filed on 12 Oct. 2017, all of which are incorporated in their entireties by this reference.

US Referenced Citations (339)
Number Name Date Kind
3922617 Denniston et al. Nov 1975 A
4321624 Gibson et al. Mar 1982 A
4952193 Talwar Aug 1990 A
5212827 Meszko et al. May 1993 A
5691978 Kenworthy Nov 1997 A
5729829 Talwar et al. Mar 1998 A
5734967 Kotzin et al. Mar 1998 A
5790658 Yip et al. Aug 1998 A
5818385 Bartholomew Oct 1998 A
5930301 Chester et al. Jul 1999 A
6215812 Young et al. Apr 2001 B1
6240150 Darveau et al. May 2001 B1
6411250 Oswald et al. Jun 2002 B1
6539204 Marsh et al. Mar 2003 B1
6567649 Souissi May 2003 B2
6580771 Kenney Jun 2003 B2
6639551 Li et al. Oct 2003 B2
6657950 Jones et al. Dec 2003 B1
6686879 Shattil Feb 2004 B2
6725017 Blount et al. Apr 2004 B2
6907093 Blount et al. Jun 2005 B2
6915112 Sutton et al. Jul 2005 B1
6965657 Rezvani et al. Nov 2005 B1
6985705 Shohara Jan 2006 B2
7057472 Fukamachi et al. Jun 2006 B2
7110381 OSullivan et al. Sep 2006 B1
7139543 Shah Nov 2006 B2
7177341 McCorkle Feb 2007 B2
7228104 Collins et al. Jun 2007 B2
7266358 Hillstrom Sep 2007 B2
7302024 Arambepola Nov 2007 B2
7336128 Suzuki et al. Feb 2008 B2
7336940 Smithson Feb 2008 B2
7348844 Jaenecke Mar 2008 B2
7349505 Blount et al. Mar 2008 B2
7362257 Bruzzone et al. Apr 2008 B2
7372420 Osterhues et al. May 2008 B1
7397843 Grant et al. Jul 2008 B2
7426242 Thesling Sep 2008 B2
7508898 Cyr et al. Mar 2009 B2
7509100 Toncich Mar 2009 B2
7706755 Muhammad et al. Apr 2010 B2
7733813 Shin et al. Jun 2010 B2
7773759 Alves et al. Aug 2010 B2
7773950 Wang et al. Aug 2010 B2
7778611 Asai et al. Aug 2010 B2
7869527 Vetter et al. Jan 2011 B2
7948878 Briscoe et al. May 2011 B2
7962170 Axness et al. Jun 2011 B2
7987363 Chauncey et al. Jul 2011 B2
3005235 Reban et al. Aug 2011 A1
7999715 Yamaki et al. Aug 2011 B2
8023438 Kangasmaa et al. Sep 2011 B2
8027642 Proctor et al. Sep 2011 B2
8031744 Radunovic et al. Oct 2011 B2
8032183 Rudrapatna Oct 2011 B2
8036606 Kenington Oct 2011 B2
8055235 Gupta et al. Nov 2011 B1
8060803 Kim Nov 2011 B2
8081695 Chrabieh et al. Dec 2011 B2
8085831 Teague Dec 2011 B2
8086191 Fukuda et al. Dec 2011 B2
8090320 Dent et al. Jan 2012 B2
8155046 Jung et al. Apr 2012 B2
8155595 Sahin et al. Apr 2012 B2
8160176 Dent et al. Apr 2012 B2
8175535 Mu May 2012 B2
8179990 Orlik et al. May 2012 B2
8218697 Guess et al. Jul 2012 B2
8270456 Leach et al. Sep 2012 B2
8274342 Tsutsumi et al. Sep 2012 B2
8306480 Muhammad et al. Nov 2012 B2
8331477 Huang et al. Dec 2012 B2
8349933 Bhandari et al. Jan 2013 B2
8351533 Shrivastava et al. Jan 2013 B2
8385855 Lorg et al. Feb 2013 B2
8385871 Wyville Feb 2013 B2
8391878 Tenny Mar 2013 B2
8417750 Yan et al. Apr 2013 B2
8422412 Hahn Apr 2013 B2
8422540 Negus et al. Apr 2013 B1
8428542 Bornazyan Apr 2013 B2
8446892 Ji et al. May 2013 B2
8457549 Weng et al. Jun 2013 B2
8462697 Park et al. Jun 2013 B2
8467757 Ahn Jun 2013 B2
8472573 Solum Jun 2013 B2
8498585 Vandenameele Jul 2013 B2
8502924 Liou et al. Aug 2013 B2
8509129 Deb et al. Aug 2013 B2
8521090 Kim et al. Aug 2013 B2
8576752 Sarca Nov 2013 B2
8611401 Lakkis Dec 2013 B2
8619916 Jong Dec 2013 B2
8625686 Li et al. Jan 2014 B2
8626090 Dalipi Jan 2014 B2
8649417 Baldemair et al. Feb 2014 B2
8711943 Rossato et al. Apr 2014 B2
8743674 Parnaby et al. Jun 2014 B2
8744377 Rimini et al. Jun 2014 B2
8750786 Larsson et al. Jun 2014 B2
8755756 Zhang et al. Jun 2014 B1
8767869 Rimini et al. Jul 2014 B2
8787907 Jain et al. Jul 2014 B2
8798177 Park et al. Aug 2014 B2
8804975 Harris et al. Aug 2014 B2
8837332 Khojastepour et al. Sep 2014 B2
8842584 Jana et al. Sep 2014 B2
8879433 Khojastepour et al. Nov 2014 B2
8879811 Liu Nov 2014 B2
8913528 Cheng et al. Dec 2014 B2
8923877 Youtz et al. Dec 2014 B2
8929550 Shattil et al. Jan 2015 B2
8937874 Gainey et al. Jan 2015 B2
8942314 Aparin Jan 2015 B2
8995410 Balan et al. Mar 2015 B2
8995932 Wyville Mar 2015 B2
9014069 Patil et al. Apr 2015 B2
9019849 Hui et al. Apr 2015 B2
9031567 Haub May 2015 B2
9042838 Braithwaite May 2015 B2
9054795 Choi et al. Jun 2015 B2
9065519 Cyzs et al. Jun 2015 B2
9077421 Mehlman et al. Jul 2015 B1
9112476 Basaran et al. Aug 2015 B2
9124475 Li et al. Sep 2015 B2
9130747 Zinser et al. Sep 2015 B2
9136883 Moher et al. Sep 2015 B1
9160430 Maltsev et al. Oct 2015 B2
9184902 Khojastepour et al. Nov 2015 B2
9185711 Lin et al. Nov 2015 B2
9231647 Polydoros et al. Jan 2016 B2
9231712 Hahn et al. Jan 2016 B2
9236996 Khandani Jan 2016 B2
9264024 Shin et al. Feb 2016 B2
9312895 Gupta et al. Apr 2016 B1
9325432 Hong et al. Apr 2016 B2
9331737 Hong et al. May 2016 B2
9413500 Chincholi et al. Aug 2016 B2
9413516 Khandani Aug 2016 B2
9425838 Gupta et al. Aug 2016 B1
9455756 Choi et al. Sep 2016 B2
9461698 Moffatt et al. Oct 2016 B2
9479198 Moher et al. Oct 2016 B2
9490918 Negus et al. Nov 2016 B2
9490963 Choi et al. Nov 2016 B2
9537543 Choi Jan 2017 B2
9559734 Hwang et al. Jan 2017 B2
9621221 Hua et al. Apr 2017 B2
9742593 Moorti et al. Aug 2017 B2
9800275 Choi et al. Oct 2017 B2
10230410 Choi et al. Mar 2019 B2
10236922 Choi et al. Mar 2019 B2
10404297 Choi et al. Sep 2019 B2
20020034191 Shattil Mar 2002 A1
20020064245 McCorkle May 2002 A1
20020072344 Souissi Jun 2002 A1
20020109631 Li et al. Aug 2002 A1
20020154717 Shima et al. Oct 2002 A1
20020172265 Kenney Nov 2002 A1
20030031279 Blount et al. Feb 2003 A1
20030099287 Arambepola May 2003 A1
20030104787 Blount et al. Jun 2003 A1
20030148748 Shah Aug 2003 A1
20040106381 Tiller Jun 2004 A1
20040266378 Fukamachi et al. Dec 2004 A1
20050030888 Thesling Feb 2005 A1
20050078743 Shohara Apr 2005 A1
20050101267 Smithson May 2005 A1
20050129152 Hillstrom Jun 2005 A1
20050159128 Collins et al. Jul 2005 A1
20050190870 Blount et al. Sep 2005 A1
20050250466 Varma et al. Nov 2005 A1
20050254555 Teague Nov 2005 A1
20050282500 Wang et al. Dec 2005 A1
20060029124 Grant et al. Feb 2006 A1
20060030277 Cyr et al. Feb 2006 A1
20060058022 Webster et al. Mar 2006 A1
20060083297 Yan et al. Apr 2006 A1
20060209754 Ji et al. Sep 2006 A1
20060240769 Proctor et al. Oct 2006 A1
20060273853 Suzuki et al. Dec 2006 A1
20070018722 Jaenecke Jan 2007 A1
20070105509 Muhammad et al. May 2007 A1
20070207747 Johnson et al. Sep 2007 A1
20070207748 Toncich Sep 2007 A1
20070249314 Sanders et al. Oct 2007 A1
20070274372 Asai et al. Nov 2007 A1
20070283220 Kim Dec 2007 A1
20070296625 Bruzzone et al. Dec 2007 A1
20080037801 Alves et al. Feb 2008 A1
20080089397 Vetter Apr 2008 A1
20080107046 Kangasmaa et al. May 2008 A1
20080111754 Osterhues et al. May 2008 A1
20080131133 Blunt et al. Jun 2008 A1
20080144852 Reban et al. Jun 2008 A1
20080192636 Briscoe et al. Aug 2008 A1
20080219339 Chrabieh et al. Sep 2008 A1
20080219377 Nisbet Sep 2008 A1
20080279122 Fukuda et al. Nov 2008 A1
20090022089 Rudrapatna Jan 2009 A1
20090034437 Shin et al. Feb 2009 A1
20090047914 Axness et al. Feb 2009 A1
20090115912 Liou et al. May 2009 A1
20090180404 Jung et al. Jul 2009 A1
20090186582 Muhammad et al. Jul 2009 A1
20090213770 Mu Aug 2009 A1
20090221231 Murch et al. Sep 2009 A1
20090262852 Orlik et al. Oct 2009 A1
20090303908 Deb et al. Dec 2009 A1
20090323856 McCallister Dec 2009 A1
20100014600 Li et al. Jan 2010 A1
20100014614 Leach et al. Jan 2010 A1
20100022201 Vandenameele Jan 2010 A1
20100031036 Chauncey et al. Feb 2010 A1
20100056166 Tenny Mar 2010 A1
20100103900 Ahn et al. Apr 2010 A1
20100117693 Buer et al. May 2010 A1
20100136900 Seki Jun 2010 A1
20100150032 Zinser et al. Jun 2010 A1
20100150033 Zinser et al. Jun 2010 A1
20100150070 Chae et al. Jun 2010 A1
20100159858 Dent et al. Jun 2010 A1
20100197231 Kenington Aug 2010 A1
20100208854 Guess et al. Aug 2010 A1
20100215124 Zeong et al. Aug 2010 A1
20100226356 Sahin et al. Sep 2010 A1
20100226416 Dent et al. Sep 2010 A1
20100226448 Dent Sep 2010 A1
20100232324 Radunovic et al. Sep 2010 A1
20100266057 Shrivastava et al. Oct 2010 A1
20100277289 Brauner et al. Nov 2010 A1
20100278085 Hahn Nov 2010 A1
20100279602 Larsson et al. Nov 2010 A1
20100284447 Gore et al. Nov 2010 A1
20100295716 Yamaki et al. Nov 2010 A1
20110013684 Semenov et al. Jan 2011 A1
20110013735 Huang et al. Jan 2011 A1
20110026509 Tanaka Feb 2011 A1
20110081880 Ahn Apr 2011 A1
20110149714 Rimini et al. Jun 2011 A1
20110171922 Kim et al. Jul 2011 A1
20110216813 Baldemair et al. Sep 2011 A1
20110222631 Jong Sep 2011 A1
20110227664 Wyville Sep 2011 A1
20110243202 Lakkis Oct 2011 A1
20110250858 Jain et al. Oct 2011 A1
20110254639 Tsutsumi et al. Oct 2011 A1
20110256857 Chen et al. Oct 2011 A1
20110268232 Park et al. Nov 2011 A1
20110311067 Harris et al. Dec 2011 A1
20110319044 Bornazyan Dec 2011 A1
20120021153 Bhandari et al. Jan 2012 A1
20120052892 Braithwaite Mar 2012 A1
20120063369 Lin et al. Mar 2012 A1
20120063373 Chincholi et al. Mar 2012 A1
20120094617 Tone et al. Apr 2012 A1
20120140685 Lederer et al. Jun 2012 A1
20120140860 Rimini et al. Jun 2012 A1
20120147790 Khojastepour et al. Jun 2012 A1
20120154249 Khojastepour et al. Jun 2012 A1
20120155335 Khojastepour et al. Jun 2012 A1
20120155336 Khojastepour et al. Jun 2012 A1
20120163245 Tone et al. Jun 2012 A1
20120164965 Solum Jun 2012 A1
20120201153 Bharadia et al. Aug 2012 A1
20120201173 Jain et al. Aug 2012 A1
20120224497 Lindoff et al. Sep 2012 A1
20130005284 Dalipi Jan 2013 A1
20130044791 Rimini et al. Feb 2013 A1
20130077502 Gainey et al. Mar 2013 A1
20130089009 Li et al. Apr 2013 A1
20130102254 Cyzs et al. Apr 2013 A1
20130114468 Hui et al. May 2013 A1
20130120190 McCune May 2013 A1
20130142030 Parnaby et al. Jun 2013 A1
20130155913 Sarca Jun 2013 A1
20130166259 Weber et al. Jun 2013 A1
20130194984 Cheng et al. Aug 2013 A1
20130215805 Hong et al. Aug 2013 A1
20130225101 Basaran et al. Aug 2013 A1
20130242809 Hikino et al. Sep 2013 A1
20130253917 Schildbach Sep 2013 A1
20130259343 Liu Oct 2013 A1
20130286903 Khojastepour et al. Oct 2013 A1
20130294523 Rossato et al. Nov 2013 A1
20130301487 Khandani Nov 2013 A1
20130301488 Hong et al. Nov 2013 A1
20130308717 Maltsev et al. Nov 2013 A1
20130315211 Balan et al. Nov 2013 A1
20140011461 Bakalski et al. Jan 2014 A1
20140016515 Jana et al. Jan 2014 A1
20140036736 Wyville Feb 2014 A1
20140072072 Ismail et al. Mar 2014 A1
20140126437 Patil et al. May 2014 A1
20140169236 Choi et al. Jun 2014 A1
20140185533 Haub Jul 2014 A1
20140194073 Wyville et al. Jul 2014 A1
20140204808 Choi Jul 2014 A1
20140206300 Hahn et al. Jul 2014 A1
20140219139 Choi et al. Aug 2014 A1
20140219449 Shattil et al. Aug 2014 A1
20140269991 Aparin Sep 2014 A1
20140313946 Azadet Oct 2014 A1
20140348018 Bharadia et al. Nov 2014 A1
20140348032 Hua et al. Nov 2014 A1
20140349595 Cox Nov 2014 A1
20140376416 Choi Dec 2014 A1
20150043323 Choi Feb 2015 A1
20150043685 Choi et al. Feb 2015 A1
20150049834 Choi et al. Feb 2015 A1
20150094008 Maxim et al. Apr 2015 A1
20150103745 Negus et al. Apr 2015 A1
20150139122 Rimini et al. May 2015 A1
20150146765 Moffatt et al. May 2015 A1
20150156003 Khandani Jun 2015 A1
20150156004 Khandani Jun 2015 A1
20150171903 Mehlman et al. Jun 2015 A1
20150180522 Wyville Jun 2015 A1
20150188646 Bharadia et al. Jul 2015 A1
20150215937 Khandani Jul 2015 A1
20150249444 Shin et al. Sep 2015 A1
20150270865 Polydoros et al. Sep 2015 A1
20150303984 Braithwaite Oct 2015 A1
20160043759 Choi et al. Feb 2016 A1
20160056846 Moher et al. Feb 2016 A1
20160105213 Hua et al. Apr 2016 A1
20160119019 Pratt Apr 2016 A1
20160119020 Charlon Apr 2016 A1
20160182097 Jiang et al. Jun 2016 A1
20160218769 Chang et al. Jul 2016 A1
20160266245 Bharadia et al. Sep 2016 A1
20160269061 Hwang et al. Sep 2016 A1
20160285486 Qin et al. Sep 2016 A1
20160294425 Hwang et al. Oct 2016 A1
20160344432 Hwang et al. Nov 2016 A1
20160380706 Tanzi et al. Dec 2016 A1
20170041095 Hwang et al. Feb 2017 A1
20170187513 Bharadia et al. Jun 2017 A9
Foreign Referenced Citations (10)
Number Date Country
0755141 Oct 1998 EP
1959625 Feb 2009 EP
2237434 Oct 2010 EP
2316166 May 2011 EP
2012089995 May 2012 JP
2256985 Jul 2005 RU
2013173250 Nov 2013 WO
2013185106 Dec 2013 WO
2014093916 Jun 2014 WO
2015179874 Nov 2015 WO
Non-Patent Literature Citations (8)
Entry
Bharadia et al., “Full Duplex Radios” SIGOMM, Aug. 12-16, 2013, Hong Kong, China, Copyright 2013 ACM 978-1-4503-2056-6/6/13/08, 12 pages.
International Search Report and Written Opinion for International Application No. PCT/US18/24577, dated Jul. 6, 2018.
McMichael et al., “Optimal Tuning of Analog Self-Interference Cancellers for Full-Duple Wireless Communication”, Oct. 1-5, 2012, Fiftieth Annual Allerton Conference, Illinois, USA, pp. 246-251.
Office Action for Korean Application No. 10-2019-7028432 dated Jul. 5, 2020.
“Bharadia et al., “Full Duplex Radios” SIGOMM, Aug. 12-16, 2013, Hong Kong, China, Copyright 2013 ACM 978-1-4503-2056-6/6/13/08, 12 pages.”, Jun. 1, 2017 00:00:00.0.
“Bharadia et al., “Full Duplex Radios” SIGOMM, Aug. 12-16, 2013, Hong Kong, China, Copyright 2013 ACM 978-1-4503-2056-6/6/13/08, 12 pages.”, Nov. 9, 2017 00:00:00.0.
“McMichael et al., “Optimal Tuning of Analog Self-Interference Cancellers for Full-Duple Wireless Communication”, Oct. 1-5, 2012, Fiftieth Annual Allerton Conference, Illinois, USA, pp. 246-251.”, Jun. 1, 2017 00:00:00.0.
“McMichael et al., “Optimal Tuning of Analog Self-Interference Cancellers for Full-Duple Wireless Communication”, Oct. 1-5, 2012, Fiftieth Annual Allerton Conference, Illinois, USA, pp. 246-251.”, Nov. 9, 2017 00:00:00.0.
Related Publications (1)
Number Date Country
20230051798 A1 Feb 2023 US
Provisional Applications (3)
Number Date Country
62571595 Oct 2017 US
62490932 Apr 2017 US
62477341 Mar 2017 US
Continuations (4)
Number Date Country
Parent 17088438 Nov 2020 US
Child 17972414 US
Parent 16808624 Mar 2020 US
Child 17088438 US
Parent 16248679 Jan 2019 US
Child 16808624 US
Parent 15937237 Mar 2018 US
Child 16248679 US