Field of Invention
The present invention relates generally to data networks and devices, and relates more particularly to a two layer three dimensional topology in a data center.
Description of the Related Art
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
As information handling systems provide increasingly more central and critical operations in modern society, it is important that the networks are reliable. One method used to improve reliability is to provide a data center. Datacenters are used to store large amounts of data on a plurality of racks within the data center.
While leaf-spine architectures have been in existence for about a decade in datacenter deployments, they are not the most efficient design in terms of overall cross sectional bandwidth and short diameter. However, they can be implemented easily in datacenter environments.
One of the primary issues with existing datacenter design its inherent limitation for scalability. Existing data center network designs like leaf-spine architecture have a number of issues. For example scaling to 1 million nodes requires a very deep spine of 16 layers. This spine becomes difficult to manage and requires a great deal of complexity.
Accordingly, what is needed is to solve this issue, by achieving a more efficient topology in a datacenter so that the datacenter can be scaled.
Reference will be made to embodiments of the invention, examples of which may be illustrated in the accompanying figures, in which like parts may be referred to by like or similar numerals. These figures are intended to be illustrative, not limiting. Although the invention is generally described in the context of these embodiments, it should be understood that it is not intended to limit the spirit and scope of the invention to these particular embodiments. These drawings shall in no way limit any changes in form and detail that may be made to the invention by one skilled in the art without departing from the spirit and scope of the invention.
In the following description, for purposes of explanation, specific details are set forth in order to provide an understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these details. Furthermore, one skilled in the art will recognize that embodiments of the present invention, described below, may be implemented in a variety of ways, such as a process, an apparatus, a system, a device, or a method on a tangible computer-readable medium.
Components, or modules, shown in diagrams are illustrative of exemplary embodiments of the invention and are meant to avoid obscuring the invention. It shall also be understood that throughout this discussion that components may be described as separate functional units, which may comprise sub-units, but those skilled in the art will recognize that various components, or portions thereof, may be divided into separate components or may be integrated together, including integrated within a single system or component. It should be noted that functions or operations discussed herein may be implemented as components. Components may be implemented in software, hardware, or a combination thereof.
Furthermore, connections between components or systems within the figures are not intended to be limited to direct connections. Rather, data between these components may be modified, re-formatted, or otherwise changed by intermediary components. Also, additional or fewer connections may be used. It shall also be noted that the terms “coupled,” “connected,” or “communicatively coupled” shall be understood to include direct connections, indirect connections through one or more intermediary devices, and wireless connections.
Reference in the specification to “one embodiment,” “preferred embodiment,” “an embodiment,” or “embodiments” means that a particular feature, structure, characteristic, or function described in connection with the embodiment is included in at least one embodiment of the invention and may be in more than one embodiment. Also, the appearances of the above-noted phrases in various places in the specification are not necessarily all referring to the same embodiment or embodiments.
The use of certain terms in various places in the specification is for illustration and should not be construed as limiting. A service, function, or resource is not limited to a single service, function, or resource; usage of these terms may refer to a grouping of related services, functions, or resources, which may be distributed or aggregated. Furthermore, the use of memory, database, information base, data store, tables, hardware, and the like may be used herein to refer to system component or components into which information may be entered or otherwise recorded.
The terms “packet,” “datagram,” “segment,” or “frame” shall be understood to mean a group of bits that can be transported across a network. These terms shall not be interpreted as limiting embodiments of the present invention to particular layers (e.g., Layer 2 networks, Layer 3 networks, etc.); and, these terms along with similar terms such as “data,” “data traffic,” “information,” “cell,” etc. may be replaced by other terminologies referring to a group of bits, and may be used interchangeably.
Furthermore, it shall be noted that: (1) certain steps may optionally be performed; (2) steps may not be limited to the specific order set forth herein; (3) certain steps may be performed in different orders; and (4) certain steps may be done concurrently.
The present invention relates in various embodiments to devices, systems, methods, and instructions stored on one or more non-transitory computer-readable media involving the communication of data over networks. Such devices, systems, methods, and instructions stored on one or more non-transitory computer-readable media can result in, among other advantages, the ability to use a three dimensional torus topology in a datacenter environment.
It shall also be noted that although embodiments described herein may be within the context of a three dimensional torus topology, the invention elements of the current patent document are not so limited. Accordingly, the invention elements may be applied or adapted for use in other contexts.
In a three dimensional torus topology a three dimensional grid of rows and columns can be formed.
Each column represents a datacenter rack. For example, column 205, 235, 240, and 245 can be in one datacenter rack. The example depicted uses four switches per datacenter rack. However, one of ordinary skill in the art will understand that the number four was used for illustration only and the invention is not so limited. For example, two switches per datacenter rack can be used and connected in a three dimensional torus topology. Alternatively, three, four, or more switches can be implemented in various embodiments of the present invention.
In the example shown in
In embodiments of the present invention a scalable two layer three dimensional hyperbus datacenter design can be used. In
In embodiments of the present invention each node 355 can connect to each of its neighbor nodes using connections 305, 310, 315, 320, 325, and 330. In embodiments, each switch can connect to at least six neighbors. Also, connections 365 can be used to connect the node to a spine switch via a dual-homed connection. The spine switch layer can also have its own three dimensional torus topology.
In
The spine switch pairs 615 and 635, 620 and 640, 625 and 645, and the other spine switch pairs shown and not numbered, can be connected in a three dimensional torus topology as shown. Each of the spine switches 615, 620, 625, 630, 635, 640, and 645 can also be connected to each switch shown in
In the example shown in
There are significant advantages to using a three dimensional torus topology. One advantage is a three dimensional torus topology design provides the maximum bisectional bandwidth compared to prior art data-center leaf-spine designs.
Another advantage is that has the smallest diameter as the maximum number of hops between two nodes is smaller that of a leaf-spine design (by at least 50% in the best case).
Yet another advantage is that this design achieves datacenter scalability, higher cross section bandwidth, and lower hop-counts.
Yet another advantage is that this design also uses spine-pairs (two spines connected to each other to create a single node) nodes to yield 6 adjacent links on the same switch. This design allows us to maximize redundancy while still keeping with the existing dual-homing design.
Unlike leaf-spine architecture, at very high scalability, spine-switches may never connect to other leaf-switches. However in case of three dimensional torus architecture, spine-pairs always maintain 2 hop connectivity to a compute node.
One of ordinary skill in the art will appreciate that various benefits are available as a result of the present invention.
A number of controllers and peripheral devices may also be provided, as shown in
In the illustrated system, all major system components may connect to a bus 816, which may represent more than one physical bus. However, various system components may or may not be in physical proximity to one another. For example, input data and/or output data may be remotely transmitted from one physical location to another. In addition, programs that implement various aspects of this invention may be accessed from a remote location (e.g., a server) over a network. Such data and/or programs may be conveyed through any of a variety of machine-readable medium including, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media; and hardware devices that are specially configured to store or to store and execute program code, such as application specific integrated circuits (ASICs), programmable logic devices (PLDs), flash memory devices, and ROM and RAM devices.
Embodiments of the present invention may be encoded upon one or more non-transitory computer-readable media with instructions for one or more processors or processing units to cause steps to be performed. It shall be noted that the one or more non-transitory computer-readable media shall include volatile and non-volatile memory. It shall be noted that alternative implementations are possible, including a hardware implementation or a software/hardware implementation. Hardware-implemented functions may be realized using ASIC(s), programmable arrays, digital signal processing circuitry, or the like. Accordingly, the “means” terms in any claims are intended to cover both software and hardware implementations. Similarly, the term “computer-readable medium or media” as used herein includes software and/or hardware having a program of instructions embodied thereon, or a combination thereof. With these implementation alternatives in mind, it is to be understood that the figures and accompanying description provide the functional information one skilled in the art would require to write program code (i.e., software) and/or to fabricate circuits (i.e., hardware) to perform the processing required.
It shall be noted that embodiments of the present invention may further relate to computer products with a non-transitory, tangible computer-readable medium that have computer code thereon for performing various computer-implemented operations. The media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind known or available to those having skill in the relevant arts. Examples of tangible computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media; and hardware devices that are specially configured to store or to store and execute program code, such as application specific integrated circuits (ASICs), programmable logic devices (PLDs), flash memory devices, and ROM and RAM devices. Examples of computer code include machine code, such as produced by a compiler, and files containing higher level code that are executed by a computer using an interpreter. Embodiments of the present invention may be implemented in whole or in part as machine-executable instructions that may be in program modules that are executed by a processing device. Examples of program modules include libraries, programs, routines, objects, components, and data structures. In distributed computing environments, program modules may be physically located in settings that are local, remote, or both.
One skilled in the art will recognize no computing system or programming language is critical to the practice of the present invention. One skilled in the art will also recognize that a number of the elements described above may be physically and/or functionally separated into sub-modules or combined together.
It will be appreciated to those skilled in the art that the preceding examples and embodiment are exemplary and not limiting to the scope of the present invention. It is intended that all permutations, enhancements, equivalents, combinations, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of the present invention.