Computer security has become an increasingly urgent concern at all levels of society, from individuals to businesses to government institutions. For example, in 2015, security researchers identified a zero-day vulnerability that would have allowed an attacker to hack into a Jeep Cherokee's on-board computer system via the Internet and take control of the vehicle's dashboard functions, steering, brakes, and transmission. In 2017, the WannaCry ransomware attack was estimated to have affected more than 200,000 computers worldwide, causing at least hundreds of millions of dollars in economic losses. Notably, the attack crippled operations at several National Health Service hospitals in the UK. In the same year, a data breach at Equifax, a US consumer credit reporting agency, exposed person data such as full names, social security numbers, birth dates, addresses, driver's license numbers, credit card numbers, etc. That attack is reported to have affected over 140 million consumers.
Security professionals are constantly playing catch-up with attackers. As soon as a vulnerability is reported, security professionals rush to patch the vulnerability. Individuals and organizations that fail to patch vulnerabilities in a timely manner (e.g., due to poor governance and/or lack of resources) become easy targets for attackers.
Some security software monitors activities on a computer and/or within a network, and looks for patterns that may be indicative of an attack. Such an approach does not prevent malicious code from being executed in the first place. Often, the damage has been done by the time any suspicious pattern emerges.
In accordance with some embodiments, a method for updating metadata is provided, comprising acts of: in response to detecting an instruction executed by a host processor, identifying a storage location read by the instruction; determining, based at least in part on first metadata associated with the instruction, whether the instruction is allowed; and in response to determining that the instruction is allowed, causing the storage location to be associated with second metadata, the second metadata being different from first metadata.
In accordance with some embodiments, a method for updating metadata is provided, comprising acts of: in response to detecting an instruction executed by a hardware system, identifying a source location of the instruction; determining, based at least in part on first metadata associated with the instruction whether the instruction is allowed, wherein: determining whether the instruction is allowed comprises identifying a rule that matches one or more inputs, the one or more inputs comprising the first metadata associated with the instruction; and the rule maps the one or more inputs to one or more outputs, the one or more outputs comprising second metadata to be associated with the source location of the instruction; and in response to determining that the instruction is allowed, causing the source location of the instruction to be associated with the second metadata.
In accordance with some embodiments, a system is provided, comprising circuitry and/or one or more processors programmed by executable instructions, wherein the circuitry and/or the one or more programmed processors are configured to perform any of the methods described herein.
In accordance with some embodiments, at least one computer-readable medium is provided, having stored thereon at least one netlist for any of the circuitries described herein.
In accordance with some embodiments, at least one computer-readable medium is provided, having stored thereon at least one hardware description that, when synthesized, produces any of the netlists described herein.
In accordance with some embodiments, at least one computer-readable medium is provided, having stored thereon any of the executable instructions described herein.
Many vulnerabilities exploited by attackers trace back to a computer architectural design where data and executable instructions are intermingled in a same memory. This intermingling allows an attacker to inject malicious code into a remote computer by disguising the malicious code as data. For instance, a program may allocate a buffer in a computer's memory to store data received via a network. If the program receives more data than the buffer can hold, but does not check the size of the received data prior to writing the data into the buffer, part of the received data would be written beyond the buffer's boundary, into adjacent memory. An attacker may exploit this behavior to inject malicious code into the adjacent memory. If the adjacent memory is allocated for executable code, the malicious code may eventually be executed by the computer.
Techniques have been proposed to make computer hardware more security aware. For instance, memory locations may be associated with metadata for use in enforcing security policies, and instructions may be checked for compliance with the security policies. For example, given an instruction to be executed, metadata associated with the instruction and/or metadata associated with one or more operands of the instruction may be checked to determine if the instruction should be allowed. Additionally, or alternatively, appropriate metadata may be associated with an output of the instruction.
In some embodiments, data that is manipulated (e.g., modified, consumed, and/or produced) by the host processor 110 may be stored in the application memory 120. Such data is referred to herein as “application data,” as distinguished from metadata used for enforcing policies. The latter may be stored in the metadata memory 125. It should be appreciated that application data may include data manipulated by an operating system (OS), instructions of the OS, data manipulated by one or more user applications, and/or instructions of the one or more user applications.
In some embodiments, the application memory 120 and the metadata memory 125 may be physically separate, and the host processor 110 may have no access to the metadata memory 125. In this manner, even if an attacker succeeds in injecting malicious code into the application memory 120 and causing the host processor 110 to execute the malicious code, the metadata memory 125 may not be affected. However, it should be appreciated that aspects of the present disclosure are not limited to storing application data and metadata on physically separate memories. Additionally, or alternatively, metadata may be stored in a same memory as application data, and a memory management component may be used that implements an appropriate protection scheme to prevent instructions executing on the host processor 110 from modifying the metadata. Additionally, or alternatively, metadata may be intermingled with application data in a same memory, and one or more policies may be used to protect the metadata.
In some embodiments, tag processing hardware 140 may be provided to ensure that instructions being executed by the host processor 110 comply with one or more policies. The tag processing hardware 140 may include any suitable circuit component or combination of circuit components. For instance, the tag processing hardware 140 may include a tag map table 142 that maps addresses in the application memory 120 to addresses in the metadata memory 125. For example, the tag map table 142 may map an address X in the application memory 120 to an address Y in the metadata memory 125. A value stored at the address Y is sometimes referred to herein as a “metadata tag.”
In some embodiments, a value stored at the address Y may in turn be an address Z. Such indirection may be repeated any suitable number of times, and may eventually lead to a data structure in the metadata memory 125 for storing metadata. Such metadata, as well as any intermediate address (e.g., the address Z), are also referred to herein as “metadata tags.”
It should be appreciated that aspects of the present disclosure are not limited to a tag map table that stores addresses in a metadata memory. In some embodiments, a tag map table entry itself may store metadata, so that the tag processing hardware 140 may be able to access the metadata without performing a memory operation. In some embodiments, a tag map table entry may store a selected bit pattern, where a first portion of the bit pattern may encode metadata, and a second portion of the bit pattern may encode an address in a metadata memory where further metadata may be stored. This may provide a desired balance between speed and expressivity. For instance, the tag processing hardware 140 may be able to check certain policies quickly, using only the metadata stored in the tag map table entry itself. For other policies with more complex rules, the tag processing hardware 140 may access the further metadata stored in the metadata memory 125.
Referring again to
In some embodiments, a metadata memory address Z may be stored at the metadata memory address Y. Metadata to be associated with the application data stored at the application memory address X may be stored at the metadata memory address Z, instead of (or in addition to) the metadata memory address Y. For instance, a binary representation of a metadata label RED may be stored at the metadata memory address Z. By storing the metadata memory address Z in the metadata memory address Y, the application data stored at the application memory address X may be tagged RED.
In this manner, the binary representation of the metadata label RED may be stored only once in the metadata memory 125. For instance, if application data stored at another application memory address X′ is also to be tagged RED, the tag map table 142 may map the application memory address X′ to a metadata memory address Y′ where the metadata memory address Z is also stored.
Moreover, in this manner, tag update may be simplified. For instance, if the application data stored at the application memory address X is to be tagged BLUE at a subsequent time, a metadata memory address Z′ may be written at the metadata memory address Y, to replace the metadata memory address Z, and a binary representation of the metadata label BLUE may be stored at the metadata memory address Z′.
Thus, the inventors have recognized and appreciated that a chain of metadata memory addresses of any suitable length N may be used for tagging, including N=0 (e.g., where a binary representation of a metadata label is stored at the metadata memory address Y itself).
The association between application data and metadata (also referred to herein as “tagging”) may be done at any suitable level of granularity, and/or variable granularity. For instance, tagging may be done on a word-by-word basis. Additionally, or alternatively, a region in memory may be mapped to a single metadata tag, so that all words in that region are associated with the same metadata. This may advantageously reduce a size of the tag map table 142 and/or the metadata memory 125. For example, a single metadata tag may be maintained for an entire address range, as opposed to maintaining multiple metadata tags corresponding, respectively, to different addresses in the address range.
In some embodiments, the tag processing hardware 140 may be configured to apply one or more rules to metadata associated with an instruction and/or metadata associated with one or more operands of the instruction to determine if the instruction should be allowed. For instance, the host processor 110 may fetch and execute an instruction, and may queue a result of executing the instruction into the write interlock 112. Before the result is written back into the application memory 120, the host processor 110 may send, to the tag processing hardware 140, an instruction type (e.g., opcode), an address where the instruction is stored, one or more memory addresses referenced by the instruction, and/or one or more register identifiers. Such a register identifier may identify a register used by the host processor 110 in executing the instruction, such as a register for storing an operand or a result of the instruction.
In some embodiments, destructive read instructions may be queued in addition to, or instead of, write instructions. For instance, subsequent instructions attempting to access a target address of a destructive read instruction may be queued in a memory region that is not cached. If and when it is determined that the destructive read instruction should be allowed, the queued instructions may be loaded for execution.
In some embodiments, a destructive read instruction may be allowed to proceed, and data read from a target address may be captured in a buffer. If and when it is determined that the destructive read instruction should be allowed, the data captured in the buffer may be discarded. If and when it is determined that the destructive read instruction should not be allowed, the data captured in the buffer may be restored to the target address. Additionally, or alternatively, a subsequent read may be serviced by the buffered data.
It should be appreciated that aspects of the present disclosure are not limited to performing metadata processing on instructions that have been executed by a host processor, such as instructions that have been retired by the host processor's execution pipeline. In some embodiments, metadata processing may be performed on instructions before, during, and/or after the host processor's execution pipeline.
In some embodiments, given an address received from the host processor 110 (e.g., an address where an instruction is stored, or an address referenced by an instruction), the tag processing hardware 140 may use the tag map table 142 to identify a corresponding metadata tag. Additionally, or alternatively, for a register identifier received from the host processor 110, the tag processing hardware 140 may access a metadata tag from a tag register file 146 within the tag processing hardware 140.
In some embodiments, if an application memory address does not have a corresponding entry in the tag map table 142, the tag processing hardware 140 may send a query to a policy processor 150. The query may include the application memory address in question, and the policy processor 150 may return a metadata tag for that application memory address. Additionally, or alternatively, the policy processor 150 may create a new tag map entry for an address range including the application memory address. In this manner, the appropriate metadata tag may be made available, for future reference, in the tag map table 142 in association with the application memory address in question.
In some embodiments, the tag processing hardware 140 may send a query to the policy processor 150 to check if an instruction executed by the host processor 110 should be allowed. The query may include one or more inputs, such as an instruction type (e.g., opcode) of the instruction, a metadata tag for a program counter, a metadata tag for an application memory address from which the instruction is fetched (e.g., a word in memory to which the program counter points), a metadata tag for a register in which an operand of the instruction is stored, and/or a metadata tag for an application memory address referenced by the instruction. In one example, the instruction may be a load instruction, and an operand of the instruction may be an application memory address from which application data is to be loaded. The query may include, among other things, a metadata tag for a register in which the application memory address is stored, as well as a metadata tag for the application memory address itself. In another example, the instruction may be an arithmetic instruction, and there may be two operands. The query may include, among other things, a first metadata tag for a first register in which a first operand is stored, and a second metadata tag for a second register in which a second operand is stored.
It should also be appreciated that aspects of the present disclosure are not limited to performing metadata processing on a single instruction at a time. In some embodiments, multiple instructions in a host processor's ISA may be checked together as a bundle, for example, via a single query to the policy processor 150. Such a query may include more inputs to allow the policy processor 150 to check all of the instructions in the bundle. Similarly, a CISC instruction, which may correspond semantically to multiple operations, may be checked via a single query to the policy processor 150, where the query may include sufficient inputs to allow the policy processor 150 to check all of the constituent operations within the CISC instruction.
In some embodiments, the policy processor 150 may include a configurable processing unit, such as a microprocessor, a field-programmable gate array (FPGA), and/or any other suitable circuitry. The policy processor 150 may have loaded therein one or more policies that describe allowed operations of the host processor 110. In response to a query from the tag processing hardware 140, the policy processor 150 may evaluate one or more of the policies to determine if an instruction in question should be allowed. For instance, the tag processing hardware 140 may send an interrupt signal to the policy processor 150, along with one or more inputs relating to the instruction in question (e.g., as described above). The policy processor 150 may store the inputs of the query in a working memory (e.g., in one or more queues) for immediate or deferred processing. For example, the policy processor 150 may prioritize processing of queries in some suitable manner (e.g., based on a priority flag associated with each query).
In some embodiments, the policy processor 150 may evaluate one or more policies on one or more inputs (e.g., one or more input metadata tags) to determine if an instruction in question should be allowed. If the instruction is not to be allowed, the policy processor 150 may so notify the tag processing hardware 140. If the instruction is to be allowed, the policy processor 150 may compute one or more outputs (e.g., one or more output metadata tags) to be returned to the tag processing hardware 140. As one example, the instruction may be a store instruction, and the policy processor 150 may compute an output metadata tag for an application memory address to which application data is to be stored. As another example, the instruction may be an arithmetic instruction, and the policy processor 150 may compute an output metadata tag for a register for storing a result of executing the arithmetic instruction.
In some embodiments, the policy processor 150 may be programmed to perform one or more tasks in addition to, or instead of, those relating to evaluation of policies. For instance, the policy processor 150 may perform tasks relating to tag initialization, boot loading, application loading, memory management (e.g., garbage collection) for the metadata memory 125, logging, debugging support, and/or interrupt processing. One or more of these tasks may be performed in the background (e.g., between servicing queries from the tag processing hardware 140).
In some embodiments, the tag processing hardware 140 may include a rule cache 144 for mapping one or more inputs to a decision and/or one or more outputs. For instance, a query into the rule cache 144 may be similarly constructed as a query to the policy processor 150 to check if an instruction executed by the host processor 110 should be allowed. If there is a cache hit, the rule cache 144 may output a decision as to whether to the instruction should be allowed, and/or one or more output metadata tags (e.g., as described above in connection with the policy processor 150). Such a mapping in the rule cache 144 may be created using a query response from the policy processor 150. However, that is not required, as in some embodiments, one or more mappings may be installed into the rule cache 144 ahead of time.
In some embodiments, the rule cache 144 may be used to provide a performance enhancement. For instance, before querying the policy processor 150 with one or more input metadata tags, the tag processing hardware 140 may first query the rule cache 144 with the one or more input metadata tags. In case of a cache hit, the tag processing hardware 140 may proceed with a decision and/or one or more output metadata tags from the rule cache 144, without querying the policy processor 150. This may provide a significant speedup. In case of a cache miss, the tag processing hardware 140 may query the policy processor 150, and may install a response from the policy processor 150 into the rule cache 144 for potential future use.
In some embodiments, the tag processing hardware 140 may form a hash key based on one or more input metadata tags, and may present the hash key to the rule cache 144. In case of a cache miss, the tag processing hardware 140 may send an interrupt signal to the policy processor 150. In response to the interrupt signal, the policy processor 150 may fetch metadata from one or more input registers (e.g., where the one or more input metadata tags are stored), process the fetched metadata, and write one or more results to one or more output registers. The policy processor 150 may then signal to the tag processing hardware 140 that the one or more results are available.
In some embodiments, if the tag processing hardware 140 determines that an instruction in question should be allowed (e.g., based on a hit in the rule cache 144, or a miss in the rule cache 144, followed by a response from the policy processor 150 indicating no policy violation has been found), the tag processing hardware 140 may indicate to the write interlock 112 that a result of executing the instruction may be written back to memory. Additionally, or alternatively, the tag processing hardware 140 may update the metadata memory 125, the tag map table 142, and/or the tag register file 146 with one or more output metadata tags (e.g., as received from the rule cache 144 or the policy processor 150). As one example, for a store instruction, the metadata memory 125 may be updated based on an address translation by the tag map table 142. For instance, an application memory address referenced by the store instruction may be used to look up a metadata memory address from the tag map table 142, and metadata received from the rule cache 144 or the policy processor 150 may be stored to the metadata memory 125 at the metadata memory address. As another example, where metadata to be updated is stored in an entry in the tag map table 142 (as opposed to being stored in the metadata memory 125), that entry in the tag map table 142 may be updated. As another example, for an arithmetic instruction, an entry in the tag register file 146 corresponding to a register used by the host processor 110 for storing a result of executing the arithmetic instruction may be updated with an appropriate metadata tag.
In some embodiments, if the tag processing hardware 140 determines that the instruction in question represents a policy violation (e.g., based on a miss in the rule cache 144, followed by a response from the policy processor 150 indicating a policy violation has been found), the tag processing hardware 140 may indicate to the write interlock 112 that a result of executing the instruction should be discarded, instead of being written back to memory. Additionally, or alternatively, the tag processing hardware 140 may send an interrupt to the host processor 110. In response to receiving the interrupt, the host processor 110 may switch to any suitable violation processing code. For example, the host processor 100 may halt, reset, log the violation and continue, perform an integrity check on application code and/or application data, notify an operator, etc.
In some embodiments, the rule cache 144 may be implemented with a hash function and a designated portion of a memory (e.g., the metadata memory 125). For instance, a hash function may be applied to one or more inputs to the rule cache 144 to generate an address in the metadata memory 125. A rule cache entry corresponding to the one or more inputs may be stored to, and/or retrieved from, that address in the metadata memory 125. Such an entry may include the one or more inputs and/or one or more corresponding outputs, which may be computed from the one or more inputs at run time, load time, link time, or compile time.
In some embodiments, the tag processing hardware 140 may include one or more configuration registers. Such a register may be accessible (e.g., by the policy processor 150) via a configuration interface of the tag processing hardware 140. In some embodiments, the tag register file 146 may be implemented as configuration registers. Additionally, or alternatively, there may be one or more application configuration registers and/or one or more metadata configuration registers.
Although details of implementation are shown in
In the example shown in
In some embodiments, the compiler 205 may be programmed to generate information for use in enforcing policies. For instance, as the compiler 205 translates source code into executable code, the compiler 205 may generate information regarding data types, program semantics and/or memory layout. As one example, the compiler 205 may be programmed to mark a boundary between one or more instructions of a function and one or more instructions that implement calling convention operations (e.g., passing one or more parameters from a caller function to a callee function, returning one or more values from the callee function to the caller function, storing a return address to indicate where execution is to resume in the caller function's code when the callee function returns control back to the caller function, etc.). Such boundaries may be used, for instance, during initialization to tag certain instructions as function prologue or function epilogue. At run time, a stack policy may be enforced so that, as function prologue instructions execute, certain locations in a call stack (e.g., where a return address is stored) may be tagged as FRAME locations, and as function epilogue instructions execute, the FRAME metadata tags may be removed. The stack policy may indicate that instructions implementing a body of the function (as opposed to function prologue and function epilogue) only have read access to FRAME locations. This may prevent an attacker from overwriting a return address and thereby gaining control.
As another example, the compiler 205 may be programmed to perform control flow analysis, for instance, to identify one or more control transfer points and respective destinations. Such information may be used in enforcing a control flow policy. As yet another example, the compiler 205 may be programmed to perform type analysis, for example, by applying type labels such as Pointer, Integer, Floating-Point Number, etc. Such information may be used to enforce a policy that prevents misuse (e.g., using a floating-point number as a pointer).
Although not shown in
In the example of
It should be appreciated that aspects of the present disclosure are not limited to resolving metadata labels at load time. In some embodiments, one or more metadata labels may be resolved statically (e.g., at compile time or link time). For example, the policy compiler 220 may process one or more applicable policies, and resolve one or more metadata labels defined by the one or more policies into a statically-determined binary representation. Additionally, or alternatively, the policy linker 225 may resolve one or more metadata labels into a statically-determined binary representation, or a pointer to a data structure storing a statically-determined binary representation. The inventors have recognized and appreciated that resolving metadata labels statically may advantageously reduce load time processing. However, aspects of the present disclosure are not limited to resolving metadata labels in any particular manner.
In some embodiments, the policy linker 225 may be programmed to process object code (e.g., as output by the linker 210), policy code (e.g., as output by the policy compiler 220), and/or a target description, to output an initialization specification. The initialization specification may be used by the loader 215 to securely initialize a target system having one or more hardware components (e.g., the illustrative hardware system 100 in the example of
In some embodiments, the target description may include descriptions of a plurality of named entities. A named entity may represent a component of a target system. As one example, a named entity may represent a hardware component, such as a configuration register, a program counter, a register file, a timer, a status flag, a memory transfer unit, an input/output device, etc. As another example, a named entity may represent a software component, such as a function, a module, a driver, a service routine, etc.
In some embodiments, the policy linker 225 may be programmed to search the target description to identify one or more entities to which a policy pertains. For instance, the policy may map certain entity names to corresponding metadata labels, and the policy linker 225 may search the target description to identify entities having those entity names. The policy linker 225 may identify descriptions of those entities from the target description, and use the descriptions to annotate, with appropriate metadata labels, the object code output by the linker 210. For instance, the policy linker 225 may apply a Read label to a .rodata section of an Executable and Linkable Format (ELF) file, a Read label and a Write label to a .data section of the ELF file, and an Execute label to a .text section of the ELF file. Such information may be used to enforce a policy for memory access control and/or executable code protection (e.g., by checking read, write, and/or execute privileges).
It should be appreciated that aspects of the present disclosure are not limited to providing a target description to the policy linker 225. In some embodiments, a target description may be provided to the policy compiler 220, in addition to, or instead of, the policy linker 225. The policy compiler 220 may check the target description for errors. For instance, if an entity referenced in a policy does not exist in the target description, an error may be flagged by the policy compiler 220. Additionally, or alternatively, the policy compiler 220 may search the target description for entities that are relevant for one or more policies to be enforced, and may produce a filtered target description that includes entities descriptions for the relevant entities only. For instance, the policy compiler 220 may match an entity name in an “init” statement of a policy to be enforced to an entity description in the target description, and may remove from the target description (or simply ignore) entity descriptions with no corresponding “init” statement.
In some embodiments, the loader 215 may initialize a target system based on an initialization specification produced by the policy linker 225. For instance, referring to the example of
In some embodiments, the policy linker 225 and/or the loader 215 may maintain a mapping of binary representations of metadata back to human readable versions of metadata labels. Such a mapping may be used, for example, by a debugger 230. For instance, in some embodiments, the debugger 230 may be provided to display a human readable version of an initialization specification, which may list one or more entities and, for each entity, a set of one or more metadata symbols associated with the entity. Additionally, or alternatively, the debugger 230 may be programmed to display assembly code annotated with metadata labels, such as assembly code generated by disassembling object code annotated with metadata labels. During debugging, the debugger 230 may halt a program during execution, and allow inspection of entities and/or metadata tags associated with the entities, in human readable form. For instance, the debugger 230 may allow inspection of entities involved in a policy violation and/or metadata tags that caused the policy violation. The debugger 230 may do so using the mapping of binary representations of metadata back to metadata labels.
In some embodiments, a conventional debugging tool may be extended to allow review of issues related to policy enforcement, for example, as described above. Additionally, or alternatively, a stand-alone policy debugging tool may be provided.
In some embodiments, the loader 215 may load the binary representations of the metadata labels into the metadata memory 125, and may record the mapping between application memory addresses and metadata memory addresses in the tag map table 142. For instance, the loader 215 may create an entry in the tag map table 142 that maps an application memory address where an instruction is stored in the application memory 120, to a metadata memory address where metadata associated with the instruction is stored in the metadata memory 125. Additionally, or alternatively, the loader 215 may store metadata in the tag map table 142 itself (as opposed to the metadata memory 125), to allow access without performing any memory operation.
In some embodiments, the loader 215 may initialize the tag register file 146 in addition to, or instead of, the tag map table 142. For instance, the tag register file 146 may include a plurality of registers corresponding, respectively, to a plurality of entities. The loader 215 may identify, from the initialization specification, metadata associated with the entities, and store the metadata in the respective registers in the tag register file 146.
Referring again to the example of
In some embodiments, a metadata label may be based on multiple metadata symbols. For instance, an entity may be subject to multiple policies, and may therefore be associated with different metadata symbols corresponding, respectively, to the different policies. The inventors have recognized and appreciated that it may be desirable that a same set of metadata symbols be resolved by the loader 215 to a same binary representation (which is sometimes referred to herein as a “canonical” representation). For instance, a metadata label {A, B, C} and a metadata label {B, A, C} may be resolved by the loader 215 to a same binary representation. In this manner, metadata labels that are syntactically different but semantically equivalent may have the same binary representation.
The inventors have further recognized and appreciated it may be desirable to ensure that a binary representation of metadata is not duplicated in metadata storage. For instance, as discussed above, the illustrative rule cache 144 in the example of
Moreover, the inventors have recognized and appreciated that having a one-to-one correspondence between binary representations of metadata and their storage locations may facilitate metadata comparison. For instance, equality between two pieces of metadata may be determined simply by comparing metadata memory addresses, as opposed to comparing binary representations of metadata. This may result in significant performance improvement, especially where the binary representations are large (e.g., many metadata symbols packed into a single metadata label).
Accordingly, in some embodiments, the loader 215 may, prior to storing a binary representation of metadata (e.g., into the illustrative metadata memory 125 in the example of
Additionally, or alternatively, a similar check may be performed when a binary representation of metadata is created as a result of evaluating one or more policies (e.g., by the illustrative policy processor 150 in the example of
In some embodiments, the loader 215 may create a hash table mapping hash values to storage locations. Before storing a binary representation of metadata, the loader 215 may use a hash function to reduce the binary representation of metadata into a hash value, and check if the hash table already contains an entry associated with the hash value. If so, the loader 215 may determine that the binary representation of metadata has already been stored, and may retrieve, from the entry, information relating to the binary representation of metadata (e.g., a pointer to the binary representation of metadata, or a pointer to that pointer). If the hash table does not already contain an entry associated with the hash value, the loader 215 may store the binary representation of metadata (e.g., to a register or a location in a metadata memory), create a new entry in the hash table in association with the hash value, and store appropriate information in the new entry (e.g., a register identifier, a pointer to the binary representation of metadata in the metadata memory, a pointer to that pointer, etc.). However, it should be appreciated that aspects of the present disclosure are not limited to the use of a hash table for keeping track of binary representations of metadata that have already been stored. Additionally, or alternatively, other data structures may be used, such as a graph data structure, an ordered list, an unordered list, etc. Any suitable data structure or combination of data structures may be selected based on any suitable criterion or combination of criteria, such as access time, memory usage, etc.
It should be appreciated that the techniques introduced above and/or discussed in greater detail below may be implemented in any of numerous ways, as these techniques are not limited to any particular manner of implementation. Examples of implementation details are provided herein solely for purposes of illustration. Furthermore, the techniques disclosed herein may be used individually or in any suitable combination, as aspects of the present disclosure are not limited to any particular technique or combination of techniques.
For instance, while examples are discussed herein that include a compiler (e.g., the illustrative compiler 205 and/or the illustrative policy compiler 220 in the example of
As discussed in connection with
In some embodiments, a privacy policy may be enforced by the tag processing hardware 140. Each of the registers R0 and R1 may have a corresponding entry in the illustrative tag register 146 in the example of
In some embodiments, the privacy policy may include a rule that indicates a result of combining a public value with a private value should be considered private. Accordingly, if the tag processing hardware 140 determines that the arithmetic instruction should be allowed, the tag processing hardware 140 may update an entry in the tag register file 146 corresponding to the result register R2. For instance, the entry may be updated with a metadata tag encoding the metadata symbol PRIVATE.
It should be appreciated that the privacy policy described above is provided solely for purposes of illustration, as aspects of the present disclosure are not limited to any particular privacy policy, or any privacy policy at all. For instance, in some embodiments, one or more other metadata symbols (e.g., TOP SECRET, SECRET, CONFIDENTIAL, etc.) may be used in addition to, or instead of, PUBLIC and PRIVATE.
In some embodiments, an access control policy may be enforced by the tag processing hardware 140. The register R0 may have a corresponding entry in the tag register 146 indicating one or more access privileges associated with the pointer stored in the register R0. For instance, in the example of
Additionally, or alternatively, a location in the application memory 120 referenced by the pointer stored in the register R0 may have a corresponding location in the illustrative metadata memory 125 in the example of
It should be appreciated that the access control policy described above is provided solely for purposes of illustration, as aspects of the present disclosure are not limited to using any particular access control policy, or any access control policy at all. For instance, in some embodiments, the metadata memory location corresponding to the application memory location referenced by the pointer stored in the register R0 may store a metadata tag encoding a set of metadata symbols (e.g., CEL RED, CEL BLUE, CEL GREEN, . . . ), indicating that a pointer associated with any of these access privileges may be allowed to access the application memory location.
In some embodiments, an information flow policy may be enforced by the tag processing hardware 140, in addition to, or instead of, an access control policy. For instance, in the example of
It should be appreciated that the information flow policy described above is provided solely for purposes of illustration, as aspects of the present disclosure are not limited to any particular information flow policy, or any information flow policy at all.
In the example of
Moreover, in the example of
The inventors have recognized and appreciated that, in each of the examples of
Similarly, in the example of
The inventors have recognized and appreciated that, in some instances, it may be desirable to provide metadata update for a source location, in addition to, or instead of, metadata update for a target location. For example, a source register of an arithmetic instruction may store a value that is supposed to be read only a limited number of times (e.g., once). Similarly, a source memory location of a load instruction, or a source register of a store instruction, may store a value that is supposed to be read only a limited number of times (e.g., once). As another example, an address register of a load or store instruction may store a pointer that is supposed to be used only a limited number of times (e.g., once). Therefore, in these examples, it may be desirable to update metadata associated with a source location to indicate how many times the source location has already been accessed.
The inventors have further recognized and appreciated that an ability to update metadata for a source location may be useful for metadata removal. For instance, when a location (e.g., register or memory location) is allocated for a selected purpose, appropriate metadata may be associated with the location to indicate how the location may be accessed. Once the location has been accessed according to the selected purpose, it may be desirable to remove the associated metadata, so that the location may be allocated for another purpose. The inventors have recognized and appreciated that it may be advantageous to perform such metadata removal immediately upon accessing the location for the selected purpose.
In the example of
In some embodiments, the callee function may have a function prologue, which may include instructions for setting up the callee function's stack frame. An example is shown below.
In this example, the stack pointer is moved down 128 bytes to make room for the callee function's stack frame. A content of a link register (RA) may be stored at a location that is 124 bytes up from the new stack pointer (and hence 4 bytes down from the old stack pointer). This content may include a return address, which may indicate a location in the caller function's code to which control should be returned when the callee function finishes executing.
In some embodiments, the callee function may use one or more registers of the host processor 110 in the example of
In some embodiments, an instruction in the callee function's prologue, such as the store instruction sw ra,124(sp), may be associated with metadata that indicates the instruction belongs to a function prologue (e.g., PRO). When the store instruction sw ra,124(sp) is executed by the host processor 110 in the example of
In some embodiments, the tag processing hardware 140 may perform this metadata update by looking up 124(sp) in the illustrative tag map table 142 in the example of
In some embodiments, the callee function's epilogue may include instructions for tearing down the callee function's stack frame. An example is shown below.
In this example, the stack pointer is moved up 128 bytes back to the caller function's stack frame. The return address stored at the application memory location 124(sp) may be loaded into the link register (RA), and the values saved at the application memory locations 120(sp) and 116(sp) may be restored to the registers S0 and S1, respectively.
The inventors have recognized and appreciated that, because the application memory location 124(sp) is a source location of the load instruction lw ra,124(sp), there may be no metadata update for the application memory location 124(sp). Thus, after the load instruction lw ra,124(sp), a metadata tag encoding the metadata symbol FRAME may remain in the metadata memory location corresponding to the application memory location 124(sp). This may prevent, for example, a prologue of another function from writing to the application memory location 124(sp), which may be undesirable.
One approach to removing such metadata may be to insert one or more store instructions. An example is shown below.
In this example, a store instruction sw ra, 124(sp) is inserted after the load instruction lw ra,124(sp). The inserted instruction sw ra, 124(sp) may be associated with metadata that indicates the instruction belongs to a function epilogue (e.g., EPI). When the inserted instruction sw ra,124(sp) is executed by the host processor 110, this metadata may cause the tag processing hardware 140 to update metadata associated with the application memory location 124(sp). For instance, a rule may be installed in the rule cache 144 that indicates, if an application memory location (e.g., 124(sp)) is written to by a function's epilogue (e.g., a store instruction tagged EPI), then metadata associated with that application memory location may be removed. Because the inserted instruction sw ra,124(sp) is associated with metadata that indicates the instruction belongs to a function epilogue (e.g., EPI), execution of the inserted instruction sw ra,124(sp) may trigger the above-described rule, and the tag processing hardware 140 may remove the metadata associated with the application memory location 124(sp) (e.g., by writing NULL, or some other default value, over the existing metadata).
The inventors have recognized and appreciated possible disadvantages of the above approach for removing metadata. For instance, inserting an additional store instruction for each load instruction in a function epilogue may cause the host processor 110 to perform additional work, which may be inefficient. Moreover, in some instances, it may not be possible or practical to modify a compiler to perform such insertions.
Accordingly, in some embodiments, techniques are provided for triggering metadata update for a source location of an instruction. For instance, such metadata update may be triggered by execution of the instruction itself. In this manner, insertion of an additional instruction may not be needed.
As discussed in connection with the example of
In some embodiments, the one or more outputs computed by the policy processor 150 may include an output metadata tag for a source location of the instruction, in addition to, or instead of, an output metadata tag for a target location of the instruction. As one example, the instruction may be a load instruction, and the policy processor 150 may compute an output metadata tag for an application memory address from which data is loaded, in addition to, or instead of, an output metadata tag for a register holding the data loaded from memory. As another example, the instruction may be a store instruction, and the policy processor 150 may compute an output metadata tag for a register holding data to be stored to memory, in addition to, or instead of, an output metadata tag for an application memory address to which the data is to be stored. As another example, the instruction may be an arithmetic instruction, and the policy processor 150 may compute an output metadata tag for a register holding an input to the arithmetic instruction, in addition to, or instead of, an output metadata tag for a register for storing a result of executing the arithmetic instruction.
In some embodiments, the illustrative rule cache 144 in the example of
However, it should be appreciated that aspects of the present disclosure are not limited to populating the rule cache 144 based on a response from the policy processor 150. In some embodiments, a mapping may be installed into the rule cache 144 ahead of time, and may include an output metadata tag for a source location of an instruction, in addition to, or instead of, an output metadata tag for a target location of the instruction.
In some embodiments, the load instruction lw ra,124(sp) may be associated with metadata that indicates the instruction belongs to a function epilogue (e.g., EPI). When the load instruction lw ra,124(sp) is executed by the host processor 110, this metadata may cause the tag processing hardware 140 to update metadata associated with the application memory location 124(sp).
For instance, a rule may be installed in the rule cache 144 that indicates, if an application memory location (e.g., 124(sp)) is associated with metadata (e.g., FRAME) that indicates no application code except epilogue code may access the application memory location, and the application memory location is being read by a function's epilogue (e.g., a load instruction tagged EPI), then the instruction may be allowed, and the metadata associated with that application memory location may be removed. In the example of
Although details of implementation are shown in
Referring again to the example of
In some embodiments, execution of the store instruction sw ra,124(sp) of the illustrative function prologue described above may trigger a rule in the rule cache 144 that causes the tag processing hardware 140 to propagate the metadata symbol RETURN from the entry in the illustrative tag register file 146 in the example of
Additionally, or alternatively, the rule triggered by the store instruction sw ra,124(sp) may cause the tag processing hardware 140 to remove the metadata associated with the link register RA (e.g., by writing NULL, or some other default value, over the existing metadata). In some embodiments, no rule may be installed in the rule cache 144 that allows user code to write to a location associated with the metadata symbol RETURN. Thus, replacing RETURN with NULL at the tag register file entry corresponding to the link register RA may allow the link register RA to be written again (e.g., with another return address).
Although details of implementation are shown in
In some embodiments, the source register R0 may store a value that is of high importance. For instance, the host process 110 may be part of a controller for a critical piece of equipment, and may be programmed to activate the equipment by writing a designated code into a memory-mapped register of the controller. Therefore, it may be desirable to ensure that only one instance of the code exists at any point in time.
Accordingly, in some embodiments, the source register R0 may be associated with metadata (e.g., UNI) that indicates the value stored in the source register R0 may not be duplicated. When the move instruction mv r1 r0 is executed by the host processor 110, this metadata may cause the tag processing hardware 140 to update metadata associated with the source register R0.
For instance, a rule may be installed in the rule cache 144 that indicates one or more access control conditions for a source register (e.g., R0). If the source register is being accessed by a move instruction satisfying the one or more conditions, the move instruction may be allowed. Additionally, or alternatively, the rule may indicate that, if the source register is associated with metadata (e.g., UNI) indicating that a value stored in the source register may not be duplicated, then, upon execution of the move instruction, such metadata may be disassociated from the source register, and may instead be associated with a target register of the move instruction.
Returning to the example of
The inventors have recognized and appreciated that it may be beneficial to associate the metadata symbol UNI with the target register R1, and to disassociate the same from the source register R0, in a single metadata operation. If the metadata symbol UNI is instead disassociated from the source register R0 by inserting a dummy move instruction (e.g., mv r0 r1), there may be a point in time (e.g., after the move instruction mv r1 r0 has been checked but before the dummy move instruction mv r0 r1 is checked) when both the source register R0 and the target register R1 are associated with the metadata symbol UNI. This may be undesirable, because an attacker may be able to cause an interrupt at that point in time, and the value stored in the source register R0 may be copied elsewhere with the metadata symbol UNI, resulting in multiple copies of that value. However, it should be appreciated that aspects of the present disclosure are not limited to disassociating metadata in any particular manner, or at all.
Although a move instruction is described above in connection with the example of
The inventors have recognized and appreciated that it may be desirable to provide tag processing hardware in a manner that is independent of host processor design. Accordingly, in some embodiments, a hardware interface may be provided to coordinate interactions between a host processor (e.g., the illustrative host processor 110 in the example of
However, it should be appreciated that aspects of the present disclosure are not limited to any particular component, or any particular arrangement of components. In some embodiments, the write interlock 112 may be part of the tag processing hardware 140, or may not be included at all.
In some embodiments, the host processor 110 may, via a host processor trace interface, inform the hardware interface 800 that an instruction has been executed by the host processor 110. The hardware interface 800 may in turn inform the tag processing hardware 140 via a tag processing trace interface. In this manner, the hardware interface 800 may transform instruction information received from the host processor 110 into instruction information expected by the tag processing hardware 140.
For instance, the hardware interface 800 may transform one or more instructions in an ISA of the host processor 110 into one or more instructions in an ISA of the tag processing hardware 140. Illustrative techniques for transforming instructions are described in International Patent Application No. PCT/US2019/016276, filed on Feb. 1, 2019, entitled “SYSTEMS AND METHODS FOR TRANSFORMING INSTRUCTIONS FOR METADATA PROCESSING,” which is incorporated herein by reference in its entirety. However, it should be appreciated that aspects of the present disclosure are not limited to any particular technique for instruction transformation, or to any instruction transformation at all.
Although illustrative fields are shown in
In some embodiments, the encoding 900 may be in an ISA used by the host processor 110, and may be received by the hardware interface 800 via the host processor trace interface. The hardware interface 800 may decode the encoding 900, and may output relevant information to the tag processing hardware 140 via the tag processing trace interface. For instance, the hardware interface 800 may output the opcode, the register identifier, the base address, and the offset. The width may not be relevant for metadata processing, and therefore may be omitted. However, it should be appreciated that aspects of the present disclosure are not limited to omitting any particular field, or any field at all.
It should be appreciated that aspects of the present disclosure are not limited to performing decoding. In some embodiments, the host processor 110 may provide, via the host processor trace interface, one or more decoded fields of an instruction (e.g., opcode, register identifier, width, base address, offset, etc.), in addition to, or instead of an encoding of the instruction. Additionally, or alternatively, the host processor 110 may provide a program counter via the host processor trace interface. The program counter may point to an application memory address from which the encoding 900 was fetched. The hardware interface 800 may forward the one or more decoded fields and/or the program counter to the tag processing hardware 140, without performing any decoding.
In some embodiments, the tag processing hardware 140 may use instruction information received from the hardware interface 800 to construct a query to the illustrative rule cache 144 or the illustrative policy processor 150 in the example of
The inventors have recognized and appreciated that it may be advantageous to provide different metadata storage locations corresponding, respectively, to different offsets. For instance, referring to the example shown in
As an example, a buffer in a stack frame may be associated with a first color, whereas a location adjacent to the buffer may be associated with a second color different from the first color. This may advantageously provide more fine-grained access control within the stack frame. For instance, malicious code performing a buffer overflow attack may attempt to use a pointer associated with the first color to access (e.g., write to, or read from) the adjacent location, which may trigger a policy violation because the first color does not match the second color. However, it should be appreciated that aspects of the present disclosure are not limited to providing different metadata storage locations for different offsets, or providing a metadata storage location for any offset at all.
The inventors have further recognized and appreciated that, in some instances, the host processor 110 may not make a base address or an offset available via the host processor trace interface. Instead, the host processor may only make available an address obtained by adding the offset to the base address. Thus, to facilitate more fine-grained access control, it may be desirable to have the hardware interface 800 decode an encoding of an instruction to obtain a base address and an offset. However, as noted above, aspects of the present disclosure are not limited to performing decoding.
In some embodiments, the rule cache entry 950 may be an entry in the rule cache 144, which may be configured to compare metadata from a query against metadata stored in one or more slots in the rule cache entry 950 to determine if there is a match. Such a slot may be designated as an input slot. For instance, in the example of
In some embodiments, if it is determined that a query matches the rule cache entry 950, the rule cache 144 may output metadata based on metadata stored in one or more slots in the rule cache entry 950. Such a slot may be designated as an output slot. For instance, in the example of
Referring again to the example of
In some embodiments, the query <LOAD, T0, T1, T2> may be used to look up the rule cache 144. In response, the rule cache 144 may match the metadata tags T0, T1, and T2 against metadata stored, respectively, in slot 0, slot 1, and slot 2 of one or more entries associated with the opcode LOAD. If a matching entry is found, the rule cache 144 may output metadata tags T3 and T4 based on metadata stored, respectively, in slot 3 and slot 4 of the matching entry.
In some embodiments, the tag processing hardware 140 may use the output metadata tag T3 to update the metadata storage location corresponding to the register identifier received from the hardware interface 800. Additionally, or alternatively, the tag processing hardware 140 may use the output metadata tag T4 to update the metadata storage location corresponding to the application memory address received from the hardware interface 800. In this manner, the tag processing hardware 140 may effectuate a metadata update for a source location of a load instruction (e.g., as discussed in connection with the example of
Although a load instruction is described above in connection with the examples of
It should also be appreciated that aspects of the present disclosure are not limited to querying the rule cache 144. Additionally, or alternatively, the policy processor 150 may be queried in a similar manner, and may return similar output metadata tags.
Although an illustrative configuration of a rule cache entry is shown in
Additionally, or alternatively, a rule cache may include entries with no input slot, which may advantageously reduce an amount of circuit area used to implement the rule cache. The inventors have recognized and appreciated that, despite having not input slot, such entries may be useful in enforcing rules relating to information flow. Additionally, or alternatively, a rule cache may include entries with no output slot, which may advantageously reduce an amount of circuit area used to implement the rule cache. The inventors have recognized and appreciated that, despite having not output slot, such entries may be useful in enforcing rules relating to access control. Illustrative techniques for enforcing information flow rules and access control rules are described in International Patent Application No. PCT/US2020/013678, filed on Jan. 15, 2020, entitled “SYSTEMS AND METHODS FOR METADATA CLASSIFICATION,” which is incorporated herein by reference in its entirety. However, it should be appreciated that aspects of the present disclosure are not limited to any particular type of rules.
Illustrative configurations of various aspects of the present disclosure are provided below.
The computer 1000 may have one or more input devices and/or output devices, such as devices 1006 and 1007 illustrated in
In the example of
Having thus described several aspects of at least one embodiment, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be within the spirit and scope of the present disclosure. Accordingly, the foregoing descriptions and drawings are by way of example only.
The above-described embodiments of the present disclosure can be implemented in any of numerous ways. For example, the embodiments may be implemented using hardware, software, or a combination thereof. When implemented in software, the software code may be executed on any suitable processor or collection of processors, whether provided in a single computer, or distributed among multiple computers.
Also, the various methods or processes outlined herein may be coded as software that is executable on one or more processors running any one of a variety of operating systems or platforms. Such software may be written using any of a number of suitable programming languages and/or programming tools, including scripting languages and/or scripting tools. In some instances, such software may be compiled as executable machine language code or intermediate code that is executed on a framework or virtual machine. Additionally, or alternatively, such software may be interpreted.
The techniques disclosed herein may be embodied as a non-transitory computer-readable medium (or multiple computer-readable media) (e.g., a computer memory, one or more floppy discs, compact discs, optical discs, magnetic tapes, flash memories, circuit configurations in Field Programmable Gate Arrays or other semiconductor devices, or other non-transitory, tangible computer storage medium) encoded with one or more programs that, when executed on one or more processors, perform methods that implement the various embodiments of the present disclosure discussed above. The computer-readable medium or media may be transportable, such that the program or programs stored thereon may be loaded onto one or more different computers or other processors to implement various aspects of the present disclosure as discussed above.
The terms “program” or “software” are used herein to refer to any type of computer code or set of computer-executable instructions that may be employed to program one or more processors to implement various aspects of the present disclosure as discussed above. Moreover, it should be appreciated that according to one aspect of this embodiment, one or more computer programs that, when executed, perform methods of the present disclosure need not reside on a single computer or processor, but may be distributed in a modular fashion amongst a number of different computers or processors to implement various aspects of the present disclosure.
Computer-executable instructions may be in many forms, such as program modules, executed by one or more computers or other devices. Program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Functionalities of the program modules may be combined or distributed as desired in various embodiments.
Also, data structures may be stored in computer-readable media in any suitable form. For simplicity of illustration, data structures may be shown to have fields that are related through location in the data structure. Such relationships may likewise be achieved by assigning storage for the fields to locations in a computer-readable medium that convey how the fields are related. However, any suitable mechanism may be used to relate information in fields of a data structure, including through the use of pointers, tags, or other mechanisms that how the data elements are related.
Various features and aspects of the present disclosure may be used alone, in any combination of two or more, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing, and are therefore not limited to the details and arrangement of components set forth in the foregoing description or illustrated in the drawings. For example, aspects described in one embodiment may be combined in any manner with aspects described in other embodiments.
Also, the techniques disclosed herein may be embodied as methods, of which examples have been provided. The acts performed as part of a method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different from illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” “involving,” “based on,” “according to,” “encoding,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
This application is a national stage filing under 35 U.S.C. § 371 of International Patent Application Serial No. PCT/US2020/055952, filed Oct. 16, 2020, entitled “SYSTEMS AND METHODS FOR UPDATING METADATA”, which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/916,902, filed on Oct. 18, 2019, titled “SYSTEMS AND METHODS FOR UPDATING METADATA,”. The contents of these applications are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/055952 | 10/16/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/076871 | 4/22/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5201056 | Daniel et al. | Apr 1993 | A |
5377336 | Eickemeyer et al. | Dec 1994 | A |
5488730 | Brown, III et al. | Jan 1996 | A |
5521910 | Matthews | May 1996 | A |
5559952 | Fujimoto | Sep 1996 | A |
5655100 | Ebrahim et al. | Aug 1997 | A |
5664197 | Kardach et al. | Sep 1997 | A |
5664223 | Bender et al. | Sep 1997 | A |
5684977 | Van Loo et al. | Nov 1997 | A |
5764946 | Tran et al. | Jun 1998 | A |
5778423 | Sites et al. | Jul 1998 | A |
5848433 | Tran et al. | Dec 1998 | A |
5890008 | Panwar et al. | Mar 1999 | A |
5941981 | Tran | Aug 1999 | A |
6014734 | Tran et al. | Jan 2000 | A |
6035374 | Panwar et al. | Mar 2000 | A |
6058466 | Panwar et al. | May 2000 | A |
6240502 | Panwar et al. | May 2001 | B1 |
6269436 | Tran et al. | Jul 2001 | B1 |
6298432 | Goto | Oct 2001 | B1 |
6321297 | Shamanna et al. | Nov 2001 | B1 |
6324599 | Zhou et al. | Nov 2001 | B1 |
6351784 | Neal et al. | Feb 2002 | B1 |
6438673 | Jourdan et al. | Aug 2002 | B1 |
6449714 | Sinharoy | Sep 2002 | B1 |
6549903 | Babaian et al. | Apr 2003 | B1 |
6549959 | Yates et al. | Apr 2003 | B1 |
6622182 | Miller et al. | Sep 2003 | B1 |
6625146 | Merchant et al. | Sep 2003 | B1 |
6636523 | Lau et al. | Oct 2003 | B1 |
6748589 | Johnson et al. | Jun 2004 | B1 |
6922740 | Kondratiev et al. | Jul 2005 | B2 |
6976147 | Isaac et al. | Dec 2005 | B1 |
7047394 | Van Dyke et al. | May 2006 | B1 |
7058918 | Abramovici et al. | Jun 2006 | B2 |
7095783 | Sotheran et al. | Aug 2006 | B1 |
7137086 | Abramovici | Nov 2006 | B2 |
7146548 | Abramovici | Dec 2006 | B1 |
7213247 | Wilner et al. | May 2007 | B1 |
7263572 | Hiji | Aug 2007 | B2 |
7296201 | Abramovici | Nov 2007 | B2 |
7301541 | Hansen et al. | Nov 2007 | B2 |
7305635 | Abramovici et al. | Dec 2007 | B1 |
7313820 | Kilroy | Dec 2007 | B2 |
7340469 | Alghathbar et al. | Mar 2008 | B1 |
7348796 | Crouch et al. | Mar 2008 | B2 |
7426705 | Kolaric | Sep 2008 | B1 |
7430650 | Ross | Sep 2008 | B1 |
7434002 | Zedlewski et al. | Oct 2008 | B1 |
7467414 | Schlesinger | Dec 2008 | B2 |
7487264 | Pandya | Feb 2009 | B2 |
7493247 | Memmi | Feb 2009 | B2 |
7493434 | Abramovici | Feb 2009 | B1 |
7574536 | Johnsen et al. | Aug 2009 | B2 |
7580914 | Wang et al. | Aug 2009 | B2 |
7581064 | Zedlewski et al. | Aug 2009 | B1 |
7631107 | Pandya | Dec 2009 | B2 |
7688838 | Aloni et al. | Mar 2010 | B1 |
7698402 | Santos et al. | Apr 2010 | B2 |
7813342 | Gadelrab | Oct 2010 | B2 |
7886148 | Kiriansky et al. | Feb 2011 | B2 |
8074052 | Iadonato et al. | Dec 2011 | B2 |
8121828 | Yates, Jr. et al. | Feb 2012 | B2 |
8127121 | Yates, Jr. et al. | Feb 2012 | B2 |
8131663 | Taylor | Mar 2012 | B1 |
8131762 | Smetters et al. | Mar 2012 | B2 |
8166404 | Grinstein | Apr 2012 | B2 |
8181219 | Golan et al. | May 2012 | B2 |
8271447 | Natanzon et al. | Sep 2012 | B1 |
8326774 | Candelore | Dec 2012 | B2 |
8335754 | Dawson et al. | Dec 2012 | B2 |
8346760 | Wang et al. | Jan 2013 | B2 |
8364910 | Wilkerson et al. | Jan 2013 | B2 |
8380933 | Uchiyama | Feb 2013 | B2 |
8423720 | Döring | Apr 2013 | B2 |
8516193 | Clinton et al. | Aug 2013 | B1 |
8543606 | Pulfer et al. | Sep 2013 | B2 |
8572410 | Tkacik et al. | Oct 2013 | B1 |
8677457 | Fullerton | Mar 2014 | B2 |
8701200 | Naldurg et al. | Apr 2014 | B2 |
8738860 | Griffin et al. | May 2014 | B1 |
8756185 | Dawson et al. | Jun 2014 | B2 |
8788792 | Yates, Jr. et al. | Jul 2014 | B2 |
8826391 | Tkacik et al. | Sep 2014 | B2 |
8843734 | Lim | Sep 2014 | B2 |
8904477 | Barton et al. | Sep 2014 | B2 |
8874850 | Goodson et al. | Oct 2014 | B1 |
8875170 | Daniel | Oct 2014 | B1 |
8887230 | Barton et al. | Nov 2014 | B2 |
8938783 | Becker et al. | Jan 2015 | B2 |
9026733 | Clinton et al. | May 2015 | B1 |
9047178 | Talagala et al. | Jun 2015 | B2 |
9087200 | McKeen et al. | Jul 2015 | B2 |
9165078 | Bester et al. | Oct 2015 | B2 |
9208082 | Cheriton et al. | Dec 2015 | B1 |
9219752 | Balinksy et al. | Dec 2015 | B2 |
9251052 | Talagala et al. | Feb 2016 | B2 |
9311093 | Gschwind et al. | Apr 2016 | B2 |
9317708 | Lee et al. | Apr 2016 | B2 |
9323684 | Koker et al. | Apr 2016 | B2 |
9467474 | Barton et al. | Oct 2016 | B2 |
9507589 | Rao et al. | Nov 2016 | B2 |
9507598 | Bonnano et al. | Nov 2016 | B1 |
9513884 | Bates et al. | Dec 2016 | B2 |
9525606 | Staggs et al. | Dec 2016 | B1 |
9571509 | Satish et al. | Feb 2017 | B1 |
9576147 | McClintock et al. | Feb 2017 | B1 |
9665603 | Bester et al. | May 2017 | B2 |
9680736 | Kamboh | Jun 2017 | B2 |
9680738 | Jackson et al. | Jun 2017 | B2 |
9703956 | Watson et al. | Jul 2017 | B1 |
9736185 | Belamaric et al. | Aug 2017 | B1 |
9785440 | DeHon | Oct 2017 | B2 |
9792472 | Robshaw et al. | Oct 2017 | B1 |
9906557 | Hsiung et al. | Feb 2018 | B2 |
9953095 | Scott et al. | Apr 2018 | B1 |
10073977 | Pappachan et al. | Sep 2018 | B2 |
10078763 | Chiricescu et al. | Sep 2018 | B2 |
10114958 | Sell | Oct 2018 | B2 |
10133866 | Kumar et al. | Nov 2018 | B1 |
10152330 | Chiricescu et al. | Dec 2018 | B2 |
10235176 | DeHon et al. | Mar 2019 | B2 |
10261794 | DeHon | Apr 2019 | B2 |
10424043 | Koston et al. | Sep 2019 | B1 |
10503904 | Singh et al. | Dec 2019 | B1 |
10521230 | DeHon | Dec 2019 | B2 |
10545760 | DeHon | Jan 2020 | B2 |
10642616 | DeHon et al. | May 2020 | B2 |
10642753 | Steinberg | May 2020 | B1 |
10719630 | Chiricescu et al. | Jul 2020 | B2 |
10725778 | DeHon et al. | Jul 2020 | B2 |
10754650 | DeHon et al. | Aug 2020 | B2 |
10936713 | DeHon et al. | Mar 2021 | B2 |
11150910 | Milburn et al. | Oct 2021 | B2 |
11182162 | DeHon et al. | Nov 2021 | B2 |
11340902 | DeHon | May 2022 | B2 |
11417109 | Theimer et al. | Aug 2022 | B1 |
11507373 | Dehon et al. | Nov 2022 | B2 |
11556664 | Levy et al. | Jan 2023 | B2 |
11635960 | DeHon | Apr 2023 | B2 |
20020083298 | Cook et al. | Jun 2002 | A1 |
20020087795 | Hum et al. | Jul 2002 | A1 |
20020124156 | Yoaz et al. | Sep 2002 | A1 |
20030014466 | Berger et al. | Jan 2003 | A1 |
20030023783 | Arimilli et al. | Jan 2003 | A1 |
20030058889 | Lansing et al. | Mar 2003 | A1 |
20030120892 | Hum et al. | Jun 2003 | A1 |
20030145235 | Choo | Jul 2003 | A1 |
20030149895 | Choo et al. | Aug 2003 | A1 |
20030172109 | Dalton et al. | Sep 2003 | A1 |
20030196108 | Kung | Oct 2003 | A1 |
20040015845 | Hickman | Jan 2004 | A1 |
20040117599 | Mittal et al. | Jun 2004 | A1 |
20040133777 | Kiriansky et al. | Jul 2004 | A1 |
20040236876 | Kondratiev et al. | Nov 2004 | A1 |
20040255267 | Meijer | Dec 2004 | A1 |
20050055565 | Fournet et al. | Mar 2005 | A1 |
20050108518 | Pandya | May 2005 | A1 |
20050149521 | Wang et al. | Jul 2005 | A1 |
20050149719 | Kilroy | Jul 2005 | A1 |
20050154838 | DeWitt et al. | Jul 2005 | A1 |
20050182667 | Metzger et al. | Aug 2005 | A1 |
20060004548 | Santos et al. | Jan 2006 | A1 |
20060059567 | Bird et al. | Mar 2006 | A1 |
20060080489 | Hiji | Apr 2006 | A1 |
20060080553 | Hall | Apr 2006 | A1 |
20060090084 | Buer | Apr 2006 | A1 |
20060112261 | Yourst et al. | May 2006 | A1 |
20060143689 | Yu et al. | Jun 2006 | A1 |
20060230451 | Kramer | Oct 2006 | A1 |
20060242332 | Johnsen et al. | Oct 2006 | A1 |
20060277392 | Bittner, Jr. | Dec 2006 | A1 |
20070006294 | Hunter | Jan 2007 | A1 |
20070050586 | Shin et al. | Mar 2007 | A1 |
20070226365 | Hildreth et al. | Sep 2007 | A1 |
20070239861 | Reeves et al. | Oct 2007 | A1 |
20070261033 | Chen et al. | Nov 2007 | A1 |
20070279264 | Nakagawa | Dec 2007 | A1 |
20080010233 | Sack et al. | Jan 2008 | A1 |
20080016547 | Anderson et al. | Jan 2008 | A1 |
20080028196 | Kailas | Jan 2008 | A1 |
20080052488 | Fritz et al. | Feb 2008 | A1 |
20080066160 | Becker et al. | Mar 2008 | A1 |
20080083298 | Lin | Apr 2008 | A1 |
20080126841 | Benhanokh et al. | May 2008 | A1 |
20080140737 | Garst et al. | Jun 2008 | A1 |
20080168529 | Anderson et al. | Jul 2008 | A1 |
20080201333 | Rowley | Aug 2008 | A1 |
20080216073 | Yates et al. | Sep 2008 | A1 |
20080216102 | Quinn | Sep 2008 | A1 |
20080222397 | Wilkerson et al. | Sep 2008 | A1 |
20080240111 | Gadelrab | Oct 2008 | A1 |
20080244232 | Sherman et al. | Oct 2008 | A1 |
20080248599 | Jaiswal et al. | Oct 2008 | A1 |
20080250216 | Kershaw et al. | Oct 2008 | A1 |
20080282040 | Doring | Nov 2008 | A1 |
20080282093 | Hatakeyama | Nov 2008 | A1 |
20080288941 | Adams et al. | Nov 2008 | A1 |
20080301256 | McWilliams et al. | Dec 2008 | A1 |
20080301471 | Demarest et al. | Dec 2008 | A1 |
20080320235 | Beckmann et al. | Dec 2008 | A1 |
20090006519 | Nandan et al. | Jan 2009 | A1 |
20090063951 | Rjaibi et al. | Mar 2009 | A1 |
20090097815 | Lahr et al. | Apr 2009 | A1 |
20090113110 | Chen et al. | Apr 2009 | A1 |
20090113132 | Cain, III et al. | Apr 2009 | A1 |
20090113135 | Cain et al. | Apr 2009 | A1 |
20090144388 | Gross et al. | Jun 2009 | A1 |
20090164705 | Gorobets | Jun 2009 | A1 |
20090164766 | Suggs et al. | Jun 2009 | A1 |
20090165078 | Samudrala et al. | Jun 2009 | A1 |
20090178102 | Alghathbar et al. | Jul 2009 | A1 |
20090204785 | Yates, Jr. et al. | Aug 2009 | A1 |
20090241097 | Wang et al. | Sep 2009 | A1 |
20090254543 | Ber et al. | Oct 2009 | A1 |
20090254572 | Redlich et al. | Oct 2009 | A1 |
20100011209 | Kiriansky et al. | Jan 2010 | A1 |
20100011446 | Klucher et al. | Jan 2010 | A1 |
20100022869 | Kimura | Jan 2010 | A1 |
20100049974 | Winjum et al. | Feb 2010 | A1 |
20100125830 | Lamana | May 2010 | A1 |
20100138613 | Parker | Jun 2010 | A1 |
20100154026 | Chatterjee et al. | Jun 2010 | A1 |
20100169382 | Sheaffer et al. | Jul 2010 | A1 |
20100191922 | Dickey et al. | Jul 2010 | A1 |
20100228693 | Dawson et al. | Sep 2010 | A1 |
20100235580 | Bouvier | Sep 2010 | A1 |
20100250729 | Morris | Sep 2010 | A1 |
20100332456 | Prahlad et al. | Dec 2010 | A1 |
20100332716 | Sheaffer et al. | Dec 2010 | A1 |
20110016295 | Catherwood et al. | Jan 2011 | A1 |
20110078389 | Patel et al. | Mar 2011 | A1 |
20110099336 | Yasufuku et al. | Apr 2011 | A1 |
20110126265 | Fullerton | May 2011 | A1 |
20110161623 | Eichenberger et al. | Jun 2011 | A1 |
20110219424 | Panasyuk et al. | Sep 2011 | A1 |
20110238805 | Signori | Sep 2011 | A1 |
20120036507 | Jonnala et al. | Feb 2012 | A1 |
20120079458 | Williams et al. | Mar 2012 | A1 |
20120117610 | Pandya | May 2012 | A1 |
20120144167 | Yates, Jr. et al. | Jun 2012 | A1 |
20120151184 | Wilkerson et al. | Jun 2012 | A1 |
20120180031 | Eichenberger et al. | Jul 2012 | A1 |
20120203970 | Biran et al. | Aug 2012 | A1 |
20120210066 | Joshi et al. | Aug 2012 | A1 |
20120210068 | Joshi et al. | Aug 2012 | A1 |
20120233212 | Newton et al. | Sep 2012 | A1 |
20120236756 | Bennett et al. | Sep 2012 | A1 |
20120255018 | Sallam | Oct 2012 | A1 |
20120297057 | Ghosh et al. | Nov 2012 | A1 |
20130006993 | Kobayashi | Jan 2013 | A1 |
20130010779 | Fischer et al. | Jan 2013 | A1 |
20130016075 | Kim et al. | Jan 2013 | A1 |
20130047142 | Bates et al. | Feb 2013 | A1 |
20130067593 | Candelore | Mar 2013 | A1 |
20130081134 | Glew et al. | Mar 2013 | A1 |
20130097369 | Talagala et al. | Apr 2013 | A1 |
20130097421 | Lim | Apr 2013 | A1 |
20130097667 | Pulfer et al. | Apr 2013 | A1 |
20130138892 | Loh et al. | May 2013 | A1 |
20130159726 | McKeen et al. | Jun 2013 | A1 |
20130160075 | Schlesinger et al. | Jun 2013 | A1 |
20130160775 | Curnow | Jun 2013 | A1 |
20130185475 | Talagala et al. | Jul 2013 | A1 |
20130185488 | Talagala et al. | Jul 2013 | A1 |
20130212321 | Talagala et al. | Aug 2013 | A1 |
20130227218 | Chang et al. | Aug 2013 | A1 |
20130254838 | Ahuja et al. | Sep 2013 | A1 |
20130275656 | Talagala et al. | Oct 2013 | A1 |
20130283017 | Wilkerson et al. | Oct 2013 | A1 |
20130290607 | Chang et al. | Oct 2013 | A1 |
20130312099 | Edwards et al. | Nov 2013 | A1 |
20130326117 | Aune | Dec 2013 | A1 |
20140006804 | Tkacik et al. | Jan 2014 | A1 |
20140019385 | Dawson et al. | Jan 2014 | A1 |
20140047181 | Peterson et al. | Feb 2014 | A1 |
20140047183 | Chawla et al. | Feb 2014 | A1 |
20140101396 | Bonanno et al. | Apr 2014 | A1 |
20140140342 | Narad | May 2014 | A1 |
20140173211 | Loh et al. | Jun 2014 | A1 |
20140223445 | Beckmann et al. | Aug 2014 | A1 |
20140280248 | Bester et al. | Sep 2014 | A1 |
20140281192 | Gilda et al. | Sep 2014 | A1 |
20140282832 | Chanoch et al. | Sep 2014 | A1 |
20140283040 | Wilkerson et al. | Sep 2014 | A1 |
20140283107 | Walton et al. | Sep 2014 | A1 |
20150012689 | Atkisson et al. | Jan 2015 | A1 |
20150046658 | Wilson | Feb 2015 | A1 |
20150058997 | Lee et al. | Feb 2015 | A1 |
20150089186 | Kim et al. | Mar 2015 | A1 |
20150092778 | Jackson et al. | Apr 2015 | A1 |
20150120699 | Faerber et al. | Apr 2015 | A1 |
20150149673 | Balkan et al. | May 2015 | A1 |
20150205535 | Joshi et al. | Jul 2015 | A1 |
20150220453 | Heisswolf et al. | Aug 2015 | A1 |
20150249668 | Reddy et al. | Sep 2015 | A1 |
20150278311 | Isherwood et al. | Oct 2015 | A1 |
20150339062 | Toyoda et al. | Nov 2015 | A1 |
20150339329 | Bester et al. | Nov 2015 | A1 |
20150378780 | Busaba et al. | Dec 2015 | A1 |
20150381660 | Hsiung et al. | Dec 2015 | A1 |
20160048551 | Baldwin et al. | Feb 2016 | A1 |
20160062803 | Beckmann et al. | Mar 2016 | A1 |
20160077816 | Eilam et al. | Mar 2016 | A1 |
20160092702 | Durham et al. | Mar 2016 | A1 |
20160132536 | Lee | May 2016 | A1 |
20160140363 | Chiricescu et al. | May 2016 | A1 |
20160154833 | Isherwood, Jr. et al. | Jun 2016 | A1 |
20160170769 | LeMay | Jun 2016 | A1 |
20160182408 | Jani et al. | Jun 2016 | A1 |
20160188891 | Schlesinger et al. | Jun 2016 | A1 |
20160196432 | Main et al. | Jul 2016 | A1 |
20160239223 | Joshi et al. | Aug 2016 | A9 |
20160274810 | Godard et al. | Sep 2016 | A1 |
20160335187 | Greenspan et al. | Nov 2016 | A1 |
20160350019 | Koufaty et al. | Dec 2016 | A1 |
20160350230 | Murphy | Dec 2016 | A1 |
20160366102 | Smith | Dec 2016 | A1 |
20160371496 | Sell | Dec 2016 | A1 |
20170024568 | Pappachan et al. | Jan 2017 | A1 |
20170031708 | Chen et al. | Feb 2017 | A1 |
20170048249 | Berrangé | Feb 2017 | A1 |
20170061160 | Simonov et al. | Mar 2017 | A1 |
20170083338 | Burger et al. | Mar 2017 | A1 |
20170091107 | Peterson et al. | Mar 2017 | A1 |
20170126687 | Martinelli | May 2017 | A1 |
20170126738 | Wilkerson et al. | May 2017 | A1 |
20170177367 | DeHon | Jun 2017 | A1 |
20170177368 | DeHon et al. | Jun 2017 | A1 |
20170192986 | Isherwood et al. | Jul 2017 | A1 |
20170220806 | Munoz et al. | Aug 2017 | A1 |
20170235840 | Bester et al. | Aug 2017 | A1 |
20170286119 | Al Sheikh et al. | Oct 2017 | A1 |
20170286151 | Landers et al. | Oct 2017 | A1 |
20170293563 | DeHon | Oct 2017 | A1 |
20170308480 | Wilson | Oct 2017 | A1 |
20170329961 | Shanbhogue et al. | Nov 2017 | A1 |
20180011708 | DeHon | Jan 2018 | A1 |
20180046579 | Greenspan et al. | Feb 2018 | A1 |
20180081829 | Kaplan | Mar 2018 | A1 |
20180082055 | Fleming et al. | Mar 2018 | A1 |
20180121650 | Brown | May 2018 | A1 |
20180143890 | Ogawa et al. | May 2018 | A1 |
20180189062 | Baghsorkhi et al. | Jul 2018 | A1 |
20180268136 | Ng | Sep 2018 | A1 |
20180276085 | Mitkar et al. | Sep 2018 | A1 |
20180302443 | Weiss et al. | Oct 2018 | A1 |
20180336031 | DeHon et al. | Nov 2018 | A1 |
20180336032 | DeHon et al. | Nov 2018 | A1 |
20180336033 | DeHon | Nov 2018 | A1 |
20180341490 | DeHon | Nov 2018 | A1 |
20190034665 | Chiricescu et al. | Jan 2019 | A1 |
20190141059 | Shimizu et al. | May 2019 | A1 |
20190155606 | Rotem et al. | May 2019 | A1 |
20190171457 | DeHon et al. | Jun 2019 | A1 |
20190205140 | Grisenthwaite | Jul 2019 | A1 |
20190205244 | Smith | Jul 2019 | A1 |
20190213322 | DeHon et al. | Jul 2019 | A1 |
20190236272 | Piatt | Aug 2019 | A1 |
20190243655 | Milburn | Aug 2019 | A1 |
20190243768 | Doshi et al. | Aug 2019 | A1 |
20190354675 | Gan et al. | Nov 2019 | A1 |
20190384604 | DeHon et al. | Dec 2019 | A1 |
20190392146 | Gezalov et al. | Dec 2019 | A1 |
20190392147 | Gezalov et al. | Dec 2019 | A1 |
20200089500 | DeHon | Mar 2020 | A1 |
20200125502 | Durham et al. | Apr 2020 | A1 |
20200201576 | Yudanov et al. | Jun 2020 | A1 |
20200387374 | DeHon | Dec 2020 | A1 |
20200387384 | Huang | Dec 2020 | A1 |
20210004231 | DeHon | Jan 2021 | A1 |
20210026934 | Boling et al. | Jan 2021 | A1 |
20210042100 | Boling et al. | Feb 2021 | A1 |
20210055954 | Milburn et al. | Feb 2021 | A1 |
20210073375 | Milburn et al. | Mar 2021 | A1 |
20210075797 | Gan et al. | Mar 2021 | A1 |
20210255890 | Milburn et al. | Aug 2021 | A1 |
20210406028 | Boling et al. | Dec 2021 | A1 |
20210406137 | Sutherland et al. | Dec 2021 | A1 |
20220012329 | Boling et al. | Jan 2022 | A1 |
20220043654 | DeHon et al. | Feb 2022 | A1 |
20220050904 | Sullivan | Feb 2022 | A1 |
20220092173 | Sutherland et al. | Mar 2022 | A1 |
20220129343 | Milburn et al. | Apr 2022 | A1 |
20220198014 | Boling et al. | Jun 2022 | A1 |
20220300583 | Boling et al. | Sep 2022 | A1 |
20220309134 | Boling et al. | Sep 2022 | A1 |
20220398312 | Sutherland et al. | Dec 2022 | A1 |
20230054942 | Milburn et al. | Feb 2023 | A1 |
Number | Date | Country |
---|---|---|
101558388 | Oct 2009 | CN |
102160033 | Aug 2011 | CN |
103282889 | Sep 2013 | CN |
104657500 | May 2015 | CN |
104794067 | Jul 2015 | CN |
2519608 | Apr 2015 | GB |
2013-242633 | Dec 2013 | JP |
201333722 | Aug 2013 | TW |
201729068 | Aug 2017 | TW |
201737675 | Oct 2017 | TW |
WO 9203779 | Mar 1992 | WO |
WO 2010028316 | Mar 2010 | WO |
WO 2015047295 | Apr 2015 | WO |
WO 2015183481 | Dec 2015 | WO |
WO 2017106101 | Jun 2017 | WO |
WO 2017106103 | Jun 2017 | WO |
WO 2017221373 | Dec 2017 | WO |
WO 2019152772 | Aug 2019 | WO |
WO 2019152792 | Aug 2019 | WO |
WO 2019152795 | Aug 2019 | WO |
WO 2019152805 | Aug 2019 | WO |
WO 2019152822 | Aug 2019 | WO |
WO 2019213061 | Nov 2019 | WO |
WO 2020097177 | May 2020 | WO |
WO 2020097179 | May 2020 | WO |
WO 2020102064 | May 2020 | WO |
WO 2020132012 | Jun 2020 | WO |
WO 2020150351 | Jul 2020 | WO |
WO 2021076871 | Apr 2021 | WO |
WO 2021092138 | May 2021 | WO |
Entry |
---|
U.S. Appl. No. 16/966,616, filed Jul. 31, 2020, Boling et al. |
U.S. Appl. No. 17/711,092, filed Apr. 1, 2022, Boling et al. |
U.S. Appl. No. 16/966,863, filed Jul. 31, 2020, Milburn et al. |
U.S. Appl. No. 17/051,741, filed Oct. 29, 2020, Sutherland et al. |
U.S. Appl. No. 16/966,865, filed Jul. 31, 2020, Milburn et al. |
U.S. Appl. No. 17/774,799, filed May 5, 2022, Sutherland et al. |
U.S. Appl. No. 17/507,398, filed Oct. 21, 2021, Milburn et al. |
U.S. Appl. No. 17/292,694, filed May 10, 2021, Boling et al. |
U.S. Appl. No. 17/312,675, filed Jun. 10, 2021, Sullivan et al. |
U.S. Appl. No. 17/423,701, filed Jul. 16, 2021, Sutherland et al. |
U.S. Appl. No. 16/966,866, filed Jul. 31, 2020, Boling et al. |
U.S. Appl. No. 17/720,035, filed Apr. 13, 2022, Boling et al. |
U.S. Appl. No. 17/560,975, filed Dec. 23, 2021, Boling et al. |
U.S. Appl. No. 17/769,868, filed Apr. 18, 2022, Boling et al. |
U.S. Appl. No. 17/308,868, filed May 5, 2021, Milburn et al. |
U.S. Appl. No. 15/168,689, filed May 31, 2016, DeHon et al. |
U.S. Appl. No. 15/426,098, filed Feb. 7, 2017, DeHon. |
U.S. Appl. No. 15/624,878, filed Jun. 16, 2017, DeHon et al. |
U.S. Appl. No. 15/695,541, filed Sep. 5, 2017, DeHon. |
U.S. Appl. No. 16/002,642, filed Jun. 7, 2018, DeHon et al. |
U.S. Appl. No. 16/002,757, filed Jun. 7, 2018, DeHon et al. |
U.S. Appl. No. 16/002,957, filed Jun. 7, 2018, DeHon. |
U.S. Appl. No. 16/002,987, filed Jun. 7, 2018, DeHon. |
U.S. Appl. No. 16/062,791, filed Jun. 15, 2018, DeHon et al. |
U.S. Appl. No. 16/256,640, filed Jan. 24, 2019, DeHon et al. |
U.S. Appl. No. 16/684,172, filed Nov. 14, 2019, DeHon. |
U.S. Appl. No. 16/905,680, filed Jun. 18, 2020, DeHon. |
U.S. Appl. No. 16/929,692, filed Jul. 15, 2020, DeHon. |
U.S. Appl. No. 16/062,796, filed Jun. 15, 2018, DeHon et al. |
U.S. Appl. No. 16/264,773, filed Feb. 1, 2019, Milburn et al. |
U.S. Appl. No. 17/474,830, filed Sep. 14, 2021, Milburn et al. |
U.S. Appl. No. 17/452,271, filed Oct. 26, 2021, DeHon. |
PCT/US2019/016272, Apr. 8, 2019, International Search Report and Written Opinion. |
PCT/US2019/016272, Aug. 13, 2020, International Preliminary Report on Patentability. |
PCT/US2019/016276, Apr. 26, 2019, International Search Report and Written Opinion. |
PCT/US2019/016276, Aug. 13, 2020, International Preliminary Report on Patentability. |
PCT/US2019/029880, Aug. 8, 2019, International Search Report and Written Opinion. |
PCT/US2019/029880, Nov. 12, 2020, International Preliminary Report on Patentability. |
PCT/US2019/016317, Apr. 16, 2019, International Search Report and Written Opinion. |
PCT/US2019/016317, Aug. 13, 2020, International Preliminary Report on Patentability. |
PCT/US2020/059057, Feb. 8, 2021, International Search Report and Written Opinion. |
PCT/US2016/066188, Jul. 13, 2017, International Search Report and Written Opinion. |
PCT/US2016/066194, Apr. 7, 2017, International Search Report and Written Opinion. |
PCT/US2019/016242, Mar. 29, 2019, International Search Report and Written Opinion. |
PCT/US2019/060030, May 20, 5021, International Search Report and Written Opinion. |
PCT/US2019/060698, May 20, 2021, International Search Report and Written Opinion. |
PCT/US2019/067084, Jul. 2, 2021, International Search Report and Written Opinion. |
PCT/US2019/013678, Apr. 15, 2020, Invitation to Pay Additional Fees. |
PCT/US2019/013678, Jul. 29, 2021, International Search Report and Written Opinion. |
PCT/US2019/016295, May 3, 2019, Invitation to Pay Additional Fees. |
PCT/US2019/016295, Jun. 26, 2019, International Search Report and Written Opinion. |
PCT/US2019/016295, Aug. 13, 2020, International Preliminary Report on Patentability. |
PCT/US2021/020602, May 11, 2021, International Search Report and Written Opinion. |
PCT/US2020/055952, Jan. 28, 2021, International Search Report and Written Opinion. |
PCT/US2020/055952, Apr. 28, 2022, International Preliminary Report on Patentability. |
PCT/US2019/060028, Mar. 23, 2020, International Search Report and Written Opinion. |
PCT/US2019/060028, May 20, 2021, International Preliminary Report on Patentability. |
U.S. Appl. No. 17/908,879, filed Sep. 1, 2022, Milburn et al. |
U.S. Appl. No. 17/880,539, filed Aug. 3, 2022, Milburn et al. |
PCT/US2020/059057, May 19, 2022, International Preliminary Report on Patentability. |
PCT/US2019/060030, Mar. 19, 2020, International Search Report and Written Opinion. |
PCT/US2019/060698, Feb. 3, 2020, International Search Report and Written Opinion. |
PCT/US2019/067084, Mar. 19, 2020, International Search Report and Written Opinion. |
PCT/US2019/013678, Jun. 23, 2020, International Search Report and Written Opinion. |
PCT/US2021/020602, Sep. 15, 2022, International Preliminary Report on Patentability. |
International Search Report and Written Opinion for International Application No. PCT/US2019/016242 mailed Mar. 29, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2016/066194 mailed Apr. 7, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2016/066188 mailed Jul. 13, 2017. |
Invitation to Pay Additional Fees for International Application No. PCT/US2019/016295 mailed May 3, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/016295 mailed Jun. 26, 2019. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/016295 mailed Aug. 13, 2020. |
International Search Report and Written Opinion for International Application No. PCT/US2019/016276 mailed Apr. 26, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/029880 mailed Aug. 8, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/016317 mailed Apr. 16, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2020/059057 mailed Feb. 8, 2021. |
International Search Report and Written Opinion for International Application No. PCT/US2019/060030 mailed May 20, 2021. |
International Search Report and Written Opinion for International Application No. PCT/US2019/060698 mailed May 20, 2021. |
International Search Report and Written Opinion for International Application No. PCT/US2019/067084 mailed Jul. 1, 2021. |
International Search Report and Written Opinion for International Application No. PCT/US2019/013678 mailed Jul. 29, 2021. |
Invitation to Pay Additional Fees for International Application No. PCT/US2019/013678 mailed Apr. 15, 2020. |
International Search Report and Written Opinion for International Application No. PCT/US2021/020602 mailed May 11, 2021. |
International Search Report and Written Opinion for International Application No. PCT/US2020/055952 mailed Jan. 28, 2021. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/060028 mailed May 20, 2021. |
International Search Report and Written Opinion for International Application No. PCT/US2019/060028 mailed Mar. 23, 2020. |
International Search Report and Written Opinion for International Application No. PCT/US2019/016272 mailed Apr. 8, 2019. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/016272 mailed Aug. 13, 2020. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/016276 mailed Aug. 13, 2020. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/029880 mailed Nov. 12, 2020. |
International Preliminary Report on Patentability for International Application No. PCT/US2019/016317 mailed Aug. 13, 2020. |
International Preliminary Report on Patentability for International Application No. PCT/US2020/055952 mailed Aug. 13, 2020. |
[No Author Listed], Arm Limited: AMBA® AX1™ and ACE™ Protocol Specification. Oct. 28, 2011:1-306. [https://capocaccia.ethz.ch/capo/raw-attachment/wiki/2014/microblaze14/AX14_specification.pdf.]. |
Alves-Foss et al., Evaluating the Use of Security Tags in Security Policy Enforcement Mechanisms. 2015 48th Hawaii International Conference on System Sciences Jan. 5, 2015:5201-10. |
Berlekamp, Algebraic coding theory (revised edition). World Scientific; Mar. 26, 2015. 34 pages. |
Calder et al., Process Algebra for Event-Driven Runtime Verification: A Case Study of Wireless Network Management. IFM LNCS 2012;21-23. |
Dalton et al., Raksha: a flexible information flow architecture for software security. ACM Proceedings of the 34th Annual International Symposium In Computer Architecture. Jun. 9, 2007;35(2):482-93. |
Dalton et al., Real-World Buffer Overflow Protection for Userspace and Kernelspace. USENIX Security Symposium Jul. 28, 2008;395-410. |
De Amorim et al., A verified information-flow architecture. Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages Jan. 8, 2014:165-78. |
De Amorim et al., Micro-policies: Formally verified, tag-based security monitors. 2015 IEEE Symposium on Security and Privacy May 17, 2015:813-30. |
DeHon et al., DOVER A Metadata-Extended RISC-V. Jan. 6, 2016:34. [https://web.archive.org/web/20160331131339 if /http://riscv.org/wp-content/uploads/2016/01/Wedl430-dover riscv Jan. 2016 v3.pdf]. |
DeHon et al., DOVER: A metadata-extended RISC-V. RISC-V Workshop Oracle Conference Center, Redwood Shores, CA. Jan. 6, 2016. 33 pages. |
Dhawan et al., Architectural support for software-defined metadata processing. Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). Mar. 1, 20154:487-502. |
Dhawan et al., Area-efficient near-associative memories on FPGAs. ACM Transactions on Reconfigurable Technology and Systems (TRETS). Jan. 2, 20153;7(4):1-22. |
Dhawan et al., PUMP: a programmable unit for metadata processing. Proceedings of the Third Workshop on Hardware and Architectural Support for Security and Privacy (HASP). Jun. 1, 20145:1-8. |
Engelke et al., Efficient LLVM-Based Dynamic Binary Translation. Acm Vee. Apr. 1, 20216;165-71. |
Evans et al., Melding security metadata between software and hardware. Proceedings of the Posters and Demo Track Dec. 3, 2012:1-2. |
Geater, Tee requirements for ISA. Thales eSecurity. 2018. 21 pages. |
Hritcu, Micro-policies: Formally verified, tag-based security monitors. Proceedings of the 10th ACM Workshop on Programming Languages and Analysis for Security Jul. 4, 2015. |
Hunt et al., The Seven Properties of Highly Secure Devices. 2021. 10 pages. |
Juglaret et al., Towards a fully abstract compiler using Micro-Policies: Secure compilation for mutually distrustful components. arXiv preprint arXiv:1510.00697. Oct. 2, 2015. 31 pages. |
Kane, Runtime Monitoring for Safety-Critical Embedded Systems. Carnegie Mellon University. Feb. 2015;207 pages. |
Kannan et al., Decoupling dynamic information flow tracking with a dedicated coprocessor. 2009 IEEE/IFIP International Conference on Dependable Systems & Networks. Jun. 2, 20099:105-14. |
Mambretti et al., Trellis: Privilege separation for multi-user applications made easy. International Symposium on Research in Attacks, Intrusions, and Defenses. Springer, Cham. Sep. 1, 20169:437-56. |
Nagarakatte et al., SoftBound: Highly Compatible and Complete Spatial Memory Safety for C. University of Pennsylvania Department of Computer and Information Science Technical Report. Jan. 2009. 12 pages. |
Okhravi et al., One Giant Leap for Computer Security. IEEE Computer and Reliability Societies. Jul. 2020/Aug. 18(4):8-19. |
Ozsoy et al., Sift: A low-overhead dynamic information flow tracking architecture for smt processors. Proceedings of the 8th ACM International Conference on Computing Frontiers. May 3, 2011:1-11. |
Roessler et al., Protecting the stack with metadata policies and tagged hardware. 2018 IEEE Symposium on Security and Privacy (SP) May 2, 20180;478-95. |
Song et al., Security tagging for a zero-kernel operating system. 2013 46th Hawaii International Conference on System Sciences Jan. 7, 2013:5049-58. |
Song et al., The 4th lowRISC Release: Tagged Memory and Minion Core. University of Cambridge. May 2017. 20 pages. https://riscv.org/wp- content/uploads/2017/05/Wed0930riscv201705_ppt.pdf [Last accessed Mar. 31, 2022]. |
Suh et al., Secure Program Execution via Dynamic Information Flow Tracking. MIT CSAIL. Jul. 2003. 14 pages. |
Sullivan et al., The dover inherently secure processor. 2017 IEEE International Symposium on Technologies for Homeland Security (HST) Apr. 25, 2017:1-5. |
Tiwari et al., A small cache of large ranges: Hardware methods for efficiently searching, storing, and updating big dataflow tags. 2008 41st IEEE/ACM International Symposium on Microarchitecture Nov. 8, 2008:94-105. |
Tiwari et al., Complete information flow tracking from the gates up. InProceedings of the 14th international conference on Architectural support for programming languages and operating systems Mar. 7, 2009;109-20. |
Waterman et al., The RISC-V Instruction Set Manual, vol. I: Unprivileged ISA, Document Version Dec. 13, 2019. RISC-V Foundation. Dec. 2019. 238 pages. |
Watson et al., Cheri: A hybrid capability-system architecture for scalable software compartmentalization. 2015 IEEE Symposium on Security and Privacy Sep. 2015;20-37. |
Witchel et al., Mondrian Memory Protection. ASPLOS-X. 2002;13 pages. |
Woodruff, Cheri: A RISC capability machine for practical memory safety. University of Cambridge, Computer Laboratory; 2014. 112 pages. |
Zeldovich et al., Hardware Enforcement of Application Security Policies Using Tagged Memory. USENIX Symposium on Operating Systems Design and Implementation. Dec. 8, 2008:8;225-40. |
International Preliminary Report on Patentability for International Application No. PCT/US2020/059057, mailed May 19, 2022. |
International Search Report and Written Opinion for International Application No. PCT/US2019/060030 mailed Mar. 19, 2020. |
International Search Report and Written Opinion for International Application No. PCT/US2019/060698 mailed Feb. 3, 2020. |
International Search Report and Written Opinion for International Application No. PCT/US2019/067084 mailed Mar. 19, 2020. |
International Search Report and Written Opinion for International Application No. PCT/US2019/013678 mailed Jun. 23, 2020. |
International Preliminary Report on Patentability for International Application No. PCT/US2021/020602, mailed Sep. 15, 2022. |
International Preliminary Report on Patentability for International Application No. PCT/US2020/055952 mailed Apr. 28, 2022. |
Dhawan et al., Area-efficient near-associative memories on FPGAs. ACM Transactions on Reconfigurable Technology and Systems (TRETS). Jan. 23, 2015;7(4):1-22. |
Mutlu, 18-447 Computer Architecture Lecture 11: Precise Exceptions, State Maintenance, State Recovery. Carnegie Mellon University Lecture. Feb. 11, 2015, 49 pages. |
International Search Report and Written Opinion mailed Jan. 11, 2023 for International Application No. PCT/US2022/042492. |
Number | Date | Country | |
---|---|---|---|
20220374415 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
62916902 | Oct 2019 | US |