Systems and methods for use of adaptive secondary path estimate to control equalization in an audio device

Abstract
In accordance with embodiments of the present disclosure, an adjustable equalization filter may have a response that generates an equalized source audio signal from a source audio signal to account for effects of changes in an electro-acoustical path of the source audio signal to a transducer. An equalizer coefficient control block may adapt the response of the adjustable equalization filter in response to changes in a response of a secondary path estimate filter for modeling the electro-acoustical path of a source audio signal through the transducer, wherein a response of the secondary path estimate filter is adapted in conformity with an error microphone signal indicative of the acoustic output of the transducer.
Description
FIELD OF DISCLOSURE

The present disclosure relates in general to providing for adaptive playback equalization in an audio device.


BACKGROUND

Personal audio devices, such as mobile/cellular telephones, cordless telephones, and other consumer audio devices, such as mp3 players, are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing noise canceling using a microphone to measure ambient acoustic events and then using signal processing to insert an anti-noise signal into the output of the device to cancel the ambient acoustic events. Because the acoustic environment around personal audio devices such as wireless telephones can change dramatically, depending on the sources of noise that are present and the position of the device itself, it is desirable to adapt the noise canceling to take into account such environmental changes.


Some personal audio devices also include equalizers. Equalizers typically attempt to apply to a source audio signal an inverse of a response of the electro-acoustical path of the source audio signal through the transducer, in order to reduce the effects of the electro-acoustical path. In most traditional approaches, equalization is performed with a static equalizer. However, an adaptive equalizer may provide better output sound quality than a static equalizer, and thus, may be desirable in many applications.


SUMMARY

In accordance with the teachings of the present disclosure, the disadvantages and problems associated with improving audio performance of a personal audio device may be reduced or eliminated.


In accordance with embodiments of the present disclosure, a personal audio device may include a personal audio device housing, a transducer, an error microphone, and a processing circuit. The transducer may be coupled to the housing and may be configured to reproduce an output audio signal including an equalized source audio signal for playback to a listener. The error microphone may be coupled to the housing in proximity to the transducer and may be configured to provide an error microphone signal indicative of the acoustic output of the transducer. The processing circuit may implement a secondary path estimate filter for modeling an electro-acoustical path of a source audio signal through the transducer, a secondary path estimate filter coefficient control block that shapes a response of the secondary path estimate filter in conformity with the error microphone signal, an adjustable equalization filter having a response that generates the equalized source audio signal from the source audio signal to account for effects of changes in an electro-acoustical path of the source audio signal, and an equalizer coefficient control block that adapts the response of the adjustable equalization filter in response to changes in the response of the secondary path estimate filter.


In accordance with these and other embodiments of the present disclosure, a method may include receiving an error microphone signal indicative of an acoustic output of a transducer. The method may also include modeling an electro-acoustical path of a source audio signal with a secondary path estimate filter. The method may further include adapting the response of the secondary path estimate filter in conformity with the error microphone signal. The method may additionally include generating an equalized source audio signal from a source audio signal by filtering the source audio signal with an adjustable equalization filter to account for effects of changes in an electro-acoustical path of the source audio signal. The method may also include adapting the response of the adjustable equalization filter in response to changes in the response of the secondary path estimate filter.


In accordance with these and other embodiments of the present disclosure, an integrated circuit may comprise an output, an error microphone input, and a processing circuit. The output may be configured to provide a signal to a transducer including an equalized source audio signal for playback. The error microphone input may be configured to receive an error microphone signal indicative of the acoustic output of the transducer. The processing circuit may implement a secondary path estimate filter for modeling an electro-acoustical path of a source audio signal through the transducer, a secondary path estimate filter coefficient control block that shapes a response of the secondary path estimate filter in conformity with the error microphone signal, an adjustable equalization filter having a response that generates the equalized source audio signal from the source audio signal to account for effects of changes in an electro-acoustical path of the source audio signal, and an equalizer coefficient control block that adapts the response of the adjustable equalization filter in response to changes in the response of the secondary path estimate filter.


Technical advantages of the present disclosure may be readily apparent to one of ordinary skill in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.


It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1A is an illustration of an example personal audio device, in accordance with embodiments of the present disclosure;



FIG. 1B is an illustration of an example personal audio device with a headphone assembly coupled thereto, in accordance with embodiments of the present disclosure;



FIG. 2 is a block diagram of selected circuits within the personal audio device depicted in FIG. 1, in accordance with embodiments of the present disclosure;



FIG. 3 is a block diagram depicting selected signal processing circuits and functional blocks within an example active noise canceling (ANC) circuit and an adaptive equalization circuit of a coder-decoder (CODEC) integrated circuit of FIG. 3, in accordance with embodiments of the present disclosure;



FIG. 4 is a block diagram depicting least-mean-squares adaptation of an adjustable equalization filter, in accordance with embodiments of the present disclosure;



FIG. 5 illustrates a block diagram depicting a method for exponential smoothing of a single coefficient for an adjustable equalization filter, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

Referring now to FIG. 1A, a personal audio device 10 as illustrated in accordance with embodiments of the present disclosure is shown in proximity to a human ear 5. Personal audio device 10 is an example of a device in which techniques in accordance with embodiments of the invention may be employed, but it is understood that not all of the elements or configurations embodied in illustrated personal audio device 10, or in the circuits depicted in subsequent illustrations, are required in order to practice the invention recited in the claims. Personal audio device 10 may include a transducer such as speaker SPKR that reproduces distant speech received by personal audio device 10, along with other local audio events such as ringtones, stored audio program material, injection of near-end speech (i.e., the speech of the user of personal audio device 10) to provide a balanced conversational perception, and other audio that requires reproduction by personal audio device 10, such as sources from webpages or other network communications received by personal audio device 10 and audio indications such as a low battery indication and other system event notifications. A near-speech microphone NS may be provided to capture near-end speech, which is transmitted from personal audio device 10 to the other conversation participant(s).


Personal audio device 10 may include adaptive noise cancellation (ANC) circuits and features that inject an anti-noise signal into speaker SPKR to improve intelligibility of the distant speech and other audio reproduced by speaker SPKR. A reference microphone R may be provided for measuring the ambient acoustic environment, and may be positioned away from the typical position of a user's mouth, so that the near-end speech may be minimized in the signal produced by reference microphone R. Another microphone, error microphone E, may be provided in order to further improve the ANC operation by providing a measure of the ambient audio combined with the audio reproduced by speaker SPKR close to ear 5, when personal audio device 10 is in close proximity to ear 5. Circuit 14 within personal audio device 10 may include an audio CODEC integrated circuit (IC) 20 that receives the signals from reference microphone R, near-speech microphone NS, and error microphone E, and interfaces with other integrated circuits such as a radio-frequency (RF) integrated circuit 12 having a wireless telephone transceiver. In some embodiments of the disclosure, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that includes control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit. In these and other embodiments, the circuits and techniques disclosed herein may be implemented partially or fully in software and/or firmware embodied in computer-readable media and executable by a controller or other processing device.


In general, ANC techniques of the present disclosure measure ambient acoustic events (as opposed to the output of speaker SPKR and/or the near-end speech) impinging on reference microphone R, and by also measuring the same ambient acoustic events impinging on error microphone E, ANC processing circuits of personal audio device 10 adapt an anti-noise signal generated out of the output of speaker SPKR from the output of reference microphone R to have a characteristic that minimizes the amplitude of the ambient acoustic events at error microphone E. Because acoustic path P(z) extends from reference microphone R to error microphone E, ANC circuits are effectively estimating acoustic path P(z) while removing effects of an electro-acoustical path S(z) that represents the response of the audio output circuits of CODEC IC 20 and the acoustic/electric transfer function of speaker SPKR including the coupling between speaker SPKR and error microphone E in the particular acoustic environment, which may be affected by the proximity and structure of ear 5 and other physical objects and human head structures that may be in proximity to personal audio device 10, when personal audio device 10 is not firmly pressed to ear 5. While the illustrated personal audio device 10 includes a two-microphone ANC system with a third near-speech microphone NS, some aspects of the present invention may be practiced in a system that does not include separate error and reference microphones, or a wireless telephone that uses near-speech microphone NS to perform the function of the reference microphone R. Also, in personal audio devices designed only for audio playback, near-speech microphone NS will generally not be included, and the near-speech signal paths in the circuits described in further detail below may be omitted, without changing the scope of the disclosure, other than to limit the options provided for input to the microphone covering detection schemes. In addition, although only one reference microphone R is depicted in FIG. 1, the circuits and techniques herein disclosed may be adapted, without changing the scope of the disclosure, to personal audio devices including a plurality of reference microphones.


Referring now to FIG. 1B, personal audio device 10 is depicted having a headphone assembly 13 coupled to it via audio port 15. Audio port 15 may be communicatively coupled to RF integrated circuit 12 and/or CODEC IC 20, thus permitting communication between components of headphone assembly 13 and one or more of RF integrated circuit 12 and/or CODEC IC 20. As shown in FIG. 1B, headphone assembly 13 may include a combox 16, a left headphone 18A, and a right headphone 18B. As used in this disclosure, the term “headphone” broadly includes any loudspeaker and structure associated therewith that is intended to be mechanically held in place proximate to a listener's ear or ear canal, and includes without limitation earphones, earbuds, and other similar devices. As more specific non-limiting examples, “headphone,” may refer to intra-canal earphones, intra-concha earphones, supra-concha earphones, and supra-aural earphones.


Combox 16 or another portion of headphone assembly 13 may have a near-speech microphone NS to capture near-end speech in addition to or in lieu of near-speech microphone NS of personal audio device 10. In addition, each headphone 18A, 18B may include a transducer such as speaker SPKR that reproduces distant speech received by personal audio device 10, along with other local audio events such as ringtones, stored audio program material, injection of near-end speech (i.e., the speech of the user of personal audio device 10) to provide a balanced conversational perception, and other audio that requires reproduction by personal audio device 10, such as sources from webpages or other network communications received by personal audio device 10 and audio indications such as a low battery indication and other system event notifications. Each headphone 18A, 18B may include a reference microphone R for measuring the ambient acoustic environment and an error microphone E for measuring of the ambient audio combined with the audio reproduced by speaker SPKR close to a listener's ear when such headphone 18A, 18B is engaged with the listener's ear. In some embodiments, CODEC IC 20 may receive the signals from reference microphone R, near-speech microphone NS, and error microphone E of each headphone and perform adaptive noise cancellation for each headphone as described herein. In other embodiments, a CODEC IC 20 or another circuit may be present within headphone assembly 13, communicatively coupled to reference microphone R, near-speech microphone NS, and error microphone E, and configured to perform adaptive noise cancellation as described herein.


The various microphones referenced in this disclosure, including reference microphones, error microphones, and near-speech microphones, may comprise any system, device, or apparatus configured to convert sound incident at such microphone to an electrical signal that may be processed by a controller, and may include without limitation an electrostatic microphone, a condenser microphone, an electret microphone, an analog microelectromechanical systems (MEMS) microphone, a digital MEMS microphone, a piezoelectric microphone, a piezo-ceramic microphone, or dynamic microphone.


Referring now to FIG. 2, selected circuits within personal audio device 10, which in other embodiments may be placed in whole or part in other locations, such as one or more headphone assemblies 13, are shown in a block diagram. CODEC IC 20 may include an analog-to-digital converter (ADC) 21A for receiving the reference microphone signal and generating a digital representation ref of the reference microphone signal, an ADC 21B for receiving the error microphone signal and generating a digital representation err of the error microphone signal, and an ADC 21C for receiving the near speech microphone signal and generating a digital representation ns of the near speech microphone signal. CODEC IC 20 may generate an output for driving speaker SPKR from an amplifier Al, which may amplify the output of a digital-to-analog converter (DAC) 23 that receives the output of a combiner 26. Combiner 26 may combine an equalized source audio signal generated by adaptive equalization circuit 40 from audio signals is from internal audio sources 24 and/or downlink speech ds which may be received from radio frequency (RF) integrated circuit 12, the anti-noise signal generated by ANC circuit 30, which by convention has the same polarity as the noise in reference microphone signal ref and is therefore subtracted by combiner 26, and a portion of near speech microphone signal ns so that the user of personal audio device 10 may hear his or her own voice in proper relation to downlink speech ds. Near speech microphone signal ns may also be provided to RF integrated circuit 12 and may be transmitted as uplink speech to the service provider via antenna ANT.


Referring now to FIG. 3, details of ANC circuit 30 and adaptive equalization circuit 40 are shown in accordance with embodiments of the present disclosure. With respect to ANC circuit 30, adaptive filter 32 may receive reference microphone signal ref and under ideal circumstances, may adapt its transfer function W(z) to approximate P(z)/S(z) to generate the anti-noise signal, which may be provided to an output combiner that combines the anti-noise signal with the audio to be reproduced by the transducer, as exemplified by combiner 26 of FIG. 2. The coefficients of adaptive filter 32 may be controlled by a W coefficient control block 31 that uses a correlation of signals to determine the response of adaptive filter 32, which generally minimizes the error, in a least-mean squares sense, between those components of reference microphone signal ref present in error microphone signal err. The signals compared by W coefficient control block 31 may be the reference microphone signal ref as shaped by a copy of a response SE(z) estimating the response of path S(z) provided by filter 34B and a playback corrected error, labeled as “PBCE” in FIG. 3, based at least in part on error microphone signal err. The response SE(z) and playback corrected error may be generated as described in greater detail below.


By transforming reference microphone signal ref with a copy of the estimate of the response of path S(z), response SECOPY(z) of filter 34B, and minimizing the difference between the resultant signal and error microphone signal err, adaptive filter 32 may adapt to the desired response of P(z)/S(z). In addition to error microphone signal err, the signal compared to the output of filter 34B by W coefficient control block 31 may include an inverted amount of equalized source audio signal (e.g., downlink audio signal ds and/or internal audio signal ia), that has been processed by filter response SE(z), of which response SECOPY(z) is a copy. By injecting an inverted amount of equalized source audio signal, adaptive filter 32 may be prevented from adapting to the relatively large amount of equalized source audio signal present in error microphone signal err. However, by transforming that inverted copy of equalized source audio signal with the estimate of the response of path S(z), the equalized source audio that is removed from error microphone signal err should match the expected version of the equalized source audio signal reproduced at error microphone signal err, because the electrical and acoustical path of S(z) is the path taken by the equalized source audio signal to arrive at error microphone E. Filter 34B may not be an adaptive filter, per se, but may have an adjustable response that is tuned to match the response of adaptive filter 34A, so that the response of filter 34B tracks the adapting of adaptive filter 34A.


To implement the above, adaptive filter 34A may have coefficients controlled by SE coefficient control block 33, which may compare the equalized source audio signal and a playback corrected error. The playback corrected error may be equal to error microphone signal err after removal of the equalized source audio signal (as filtered by filter 34A to represent the expected playback audio delivered to error microphone E) by a combiner 36. SE coefficient control block 33 may correlate the actual equalized source audio signal with the components of the equalized source audio signal that are present in error microphone signal err. Adaptive filter 34A may thereby be adapted to generate a secondary estimate signal from the equalized source audio signal, that when subtracted from error microphone signal err to generate the playback corrected error, includes the content of error microphone signal err that is not due to the equalized source audio signal.


Although FIGS. 2 and 3 depict a feedforward ANC system in which an anti-noise signal is generated from a filtered reference microphone signal, any other suitable ANC system employing an error microphone may be used in connection with the methods and systems disclosed herein. For example, in some embodiments, an ANC circuit employing feedback ANC, in which anti-noise is generated from a playback corrected error signal, may be used instead of or in addition to feedforward ANC, as depicted in FIGS. 2 and 3.


With respect to adaptive equalizer circuit 40, adjustable equalization filter 42 may receive the source audio signal (e.g., downlink speech ds and/or internal audio ia) and may adapt its transfer function EQ(z) in conformity with a target filter of response TF(z) to generate the equalized source audio signal, which may be provided to ANC circuit 30 (as described above) and provided to an output combiner that combines the anti-noise signal with the equalized source audio signal to be reproduced by the transducer, as exemplified by combiner 26 of FIG. 2. The coefficients of adjustable equalization filter 42 may be controlled by an equalizer coefficient control block 41 configured to shape the response EQ(z) of adjustable equalization filter 42 in conformity with a response TF(z) of a target filter by adapting the response EQ(z) of the adjustable equalization filter to minimize a difference between the response TF(z) of the target filter and the response EQ(z) of the adjustable equalization filter. The response TF(z) of the target filter may be a function of the response SE(z) of adaptive filter 34A.


For example, in some embodiments, the response TF(z) of the target filter may be equal to the ratio of an ideal response SF(z) of the electro-acoustical path to the response SE(z) of secondary path estimate filter 34A. The response SF(z), which may be based on laboratory or production measurements or characterizations, may be a representation of an ideal or desired transfer function to be accomplished by the actual response S(z) of the electro-acoustical path. Thus, the response SF(z) seeks to preserve desirable acoustic properties which are audible to a listener. However, because response S(z) may change over time or change based on environmental or other factors (e.g., placement of a transducer in relation to a listener's ear), response S(z) may differ from the desired response SF(z). As the actual response S(z) changes, so too does response SE(z) of secondary path estimate filter 34A. Accordingly, transfer function EQ(z) of adjustable equalization filter 42, by adapting towards a response TF(z) of a target filter which is a function of response SE(z) of secondary path estimate filter 34A, may serve as a correction filter which may undo the effects of a changing response S(z) so that the path of the source audio signal more closely approximates the desired response SF(z). To illustrate, a transfer function Y(z) of a source audio signal PB(z) through speaker SPKR may be given as:

Y(z)=PB(zS(z)≈PB(zSE(z)

However, the ideal transfer function of the source audio signal PB(z) through speaker SPKR may be given as:

Yideal(z)=PB(zSF(z)

The difference between the desired transfer function Yideal(z) and the actual transfer function Y(z) may be expressed as a ratio of the two in the z-domain. This difference becomes the response TF(z) of the target filter implemented by coefficient control block 41:

TF(z)=SF(z)/SE(z)≈SF(z)/S(z)=Yideal(z)/Y(z)


If this difference, the response TF(z), is applied to the source audio signal, then the desired response SF(z) to be applied to the source audio signal is approximated:

Yactual(z)=PB(zTF(zS(z)=PB(z)·(SF(z)/SE(z))·S(z)≈PB(zSF(z)


In some embodiments, adjustable equalization filter 42 may be applied to the source audio signal at the same sampling rate as the source audio signal (e.g., the baseband rate). However, response TF(z) may be computed at a slower rate, such that when response TF(z) is updated, it may differ significantly from the response EQ(z). Accordingly, it may be desirable to adapt response EQ(z) towards response TF(z) in a manner which smoothly converges response EQ(z) towards response TF(z) in order to avoid creating audio artifacts which may be audible to a listener. Such smooth convergence may be accomplished in any suitable manner.


For example, in some embodiments, a “cross-fade” mechanism may be used to accomplish such smooth convergence. In such embodiments, the source audio signal may be filtered by each of adjustable equalization filter 42 and the target filter implemented by coefficient control block 41 to generate outputs XEQ(z)=EQ(z)·PB(z) and XTF(z)=TF(z)·PB(z), respectively. The outputs may then be individually weighted and summed to provide the equalized source audio signal X(z)=λ·XTF(z)+(1−λ)·XEQ(z). To cross-fade, the value of λ may be dynamically and gradually ramped from 0 to 1, so that equalized source audio signal X(z) is initially the value of XEQ(z) at λ=0, and transitions towards XEQ(z) at λ=1. Response EQ(z) of adjustable equalization filter 42 may then be made equal to response TF(z), the target filter, and its response TF(z) may again be updated based on response SE(z), and the cross-fade applied again.


As another example, in these and other embodiments, least-mean-squares (LMS) techniques may be applied to drive adaptation of response EQ(z) towards response TF(z), as shown in FIG. 4. As shown in FIG. 4, coefficients of adjustable equalization filter 42 may be controlled by an LMS control block 44 that may shape the response EQ(z) of adjustable equalization filter 42 in conformity with the source audio signal and an equalization error ERROR_EQ equal to the difference between the source audio signal as filtered by response TF(z) of filter 43 and the equalized source audio signal, by adapting coefficients of adjustable equalization filter 42 to minimize equalization error ERROR_EQ.


LMS control block 44 may apply at least one of exponential smoothing and linear interpolation to perform such adaptation. In some embodiments, the LMS control block 44 may update all coefficients of adjustable equalization filter 42 for each sample of the source audio signal. In other embodiments, processing requirements of adaptive equalization circuit 40 may be minimized by LMS control block 44 updating only one coefficient of adjustable equalization filter 42 for each sample of the source audio signal. FIG. 5 illustrates a block diagram 50 depicting a method for exponential smoothing of a single coefficient for adjustable equalization filter 42, in accordance with embodiments of the present disclosure. As shown in FIG. 5, in the discrete-time domain where a discrete time is given by n, a coefficient eqk[n] for adjustable equalization filter 42 may be subtracted from a coefficient tfk[n] for filter 43 by a combiner 52. The result may be multiplied by a constant μ at multiplier 54. The constant μ may be a user-adjustable constant which may control or define a rate of adaptation of a coefficient. The result from multiplier 54 may be added to coefficient eqk[n] at combiner 56, resulting in the coefficient eqk[n+1] of the next time step. The coefficient eqk[n+1] may be delayed by delay block 58 by a discrete time step before being fed back to combiners 52 and 56. Accordingly, the value of a coefficient of adjustable equalization filter 42 in embodiments in which each coefficient is updated at each discrete time interval n may be given by the equation:

eqk[n+1]=μ(tfk[n]−eqk[n])+eqk[n]

where k may have a value between 0 and M−1, where M is the number of coefficients of adjustable equalization filter 42. On the other hand, in embodiments in which a single coefficient is updated for each discrete time interval n may be given by:

eqn % M[n+1]=μ(tfn % M[n]−eqn % M[n])+eqn % M[n]

where M is the number of coefficients of adjustable equalization filter 42 and % is the modulo operator.


In addition to the equalization functionality described above, adaptive equalization circuit 40 may perform other functions. For example, in some embodiments, adaptive equalization circuit 40 may perform frequency emphasis allowing for gain or attenuation of certain frequencies. In some of these embodiments, gain emphasis may be fixed by incorporating frequency emphasis into the ideal response SF(z). In other of these embodiments, adaptive equalization circuit 40 may implement frequency emphasis via fixed filters after the application of response EQ(z) to the source audio signal. Frequency emphasis may additionally or alternatively be incorporated into response TF(z), wherein frequency-emphasis shaped signals change the ratio SF(z)/SE(z).


As another example, in these and other embodiments, adaptive equalization circuit 40 may perform psychoacoustic signal processing (e.g., virtual bass) in conjunction with equalization. Such psychoacoustic signal processing may be performed prior to or after application of adjustable equalization filter 42, or may be incorporated into the equalization performed by adjustable equalization filter 42.


This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.


All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present inventions have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.

Claims
  • 1. A personal audio device, comprising: a personal audio device housing;a transducer coupled to the housing for reproducing an output audio signal including an equalized source audio signal for playback to a listener;an error microphone coupled to the housing in proximity to the transducer for providing an error microphone signal indicative of an acoustic output of the transducer;a processing circuit that implements:a secondary path estimate filter for modeling an electro-acoustical path of a source audio signal through the transducer;a secondary path estimate filter coefficient control block that shapes a response of the secondary path estimate filter in conformity with the error microphone signal;an adjustable equalization filter having a response that generates an equalized source audio signal from the source audio signal to account for effects of changes in the electro-acoustical path of the source audio signal; andan equalizer coefficient control block that adapts the response of the adjustable equalization filter in response to changes in the response of the secondary path estimate filter to shape the response of the adjustable equalization filter in conformity with a response of a target filter by adapting the response of the adjustable equalization filter to minimize a difference between the response of the target filter and the response of the adjustable equalization filter; wherein: the target filter has a response equal to a ratio of a response of a fixed ideal filter to the response of the secondary path estimate filter; andthe response of the fixed ideal filter is a pre-calculated transfer function desired to be applied by the electro-acoustical path.
  • 2. The personal audio device of claim 1, wherein the processing circuit further implements a mixer for outputting a blended equalized source audio signal, wherein the blended equalized source audio signal is cross-faded between the source audio signal as filtered by the target filter and the source audio signal as filtered by the adjustable equalization filter.
  • 3. The personal audio device of claim 1, wherein the equalizer coefficient control block is configured to shape the response of the adjustable equalization filter in conformity with the response of the target filter by adapting the response of the adjustable equalization filter to minimize a difference between the source audio signal as filtered by the target filter and the source audio signal as filtered by the adjustable equalization filter using a least-mean-squares adaptation technique.
  • 4. The personal audio device of claim 3, wherein the least-mean-squares adaptation technique comprises updating one coefficient of the adjustable equalization filter for each sample of the source audio signal by applying at least one of exponential smoothing and linear interpolation.
  • 5. The personal audio device of claim 3, wherein the least-mean-squares adaptation technique comprises updating all coefficients of the adjustable equalization filter for each sample of the source audio signal by applying at least one of exponential smoothing and linear interpolation.
  • 6. The personal audio device of claim 1, wherein: the error microphone signal is indicative of the acoustic output of the transducer and ambient audio sounds at the transducer; andthe processing circuit is further configured to implement a noise cancellation system that generates an anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener based at least on the error microphone signal.
  • 7. The personal audio device of claim 1, wherein the response of the adjustable equalization filter further applies frequency emphasis to the source audio signal.
  • 8. The personal audio device of claim 1, wherein the response of the adjustable equalization filter further applies psychoacoustic enhancement to the source audio signal.
  • 9. The personal audio device of claim 1, wherein the response of the secondary path estimate filter generates a secondary path estimate from the equalized source audio signal.
  • 10. The personal audio device of claim 1, wherein the secondary path estimate filter coefficient control block shapes a response of the secondary path estimate filter in conformity with the equalized source audio signal and a playback corrected error by adapting the response of the secondary path estimate filter to minimize the playback corrected error, wherein the playback corrected error is based on a difference between the error microphone signal and a secondary path estimate generated by filtering the equalized source audio signal with the secondary path estimate filter.
  • 11. A method comprising: receiving an error microphone signal indicative of an acoustic output of a transducer;modeling an electro-acoustical path of a source audio signal with a secondary path estimate filter;adapting a response of the secondary path estimate filter in conformity with the error microphone signal;generating an equalized source audio signal from a source audio signal by filtering the source audio signal with an adjustable equalization filter to account for effects of changes in the electro-acoustical path of the source audio signal; andadapting a response of the adjustable equalization filter in response to changes in the response of the secondary path estimate filter to minimize a difference between the response of the target filter and the response of the adjustable equalization filter; wherein:the target filter has a response equal to a ratio of a response of a fixed ideal filter to the response of the secondary path estimate filter; andthe response of the fixed ideal filter is a pre-calculated transfer function desired to be applied by the electro-acoustical path.
  • 12. The method of claim 11, further comprising outputting a blended equalized source audio signal, wherein the blended equalized source audio signal is cross-faded between the source audio signal as filtered by the target filter and the source audio signal as filtered by the adjustable equalization filter.
  • 13. The method of claim 11, further comprising adapting the response of the adjustable equalization filter to minimize a difference between the source audio signal as filtered by the target filter and the source audio signal as filtered by adjustable equalization filter using a least-mean-squares adaptation technique.
  • 14. The method of claim 13, wherein the least-mean-squares adaptation technique comprises updating one coefficient of the adjustable equalization filter for each sample of the source audio signal by applying at least one of exponential smoothing and linear interpolation.
  • 15. The method of claim 13, wherein the least-mean-squares adaptation technique comprises updating all coefficients of the adjustable equalization filter for each sample of the source audio signal by applying at least one of exponential smoothing and linear interpolation.
  • 16. The method of claim 11, wherein the error microphone signal is indicative of the acoustic output of the transducer and ambient audio sounds at the transducer, and the method further comprises generating an anti-noise signal to reduce the presence of the ambient audio sounds heard by a listener of the transducer based at least on the error microphone signal.
  • 17. The method of claim 11, further comprising applying frequency emphasis to the source audio signal.
  • 18. The method of claim 11, further comprises applying psychoacoustic enhancement to the source audio signal.
  • 19. The method of claim 11, further comprising generating a secondary path estimate from the equalized source audio signal with the secondary path estimate filter.
  • 20. The method of claim 11, wherein adapting the response of the adjustable equalization filter comprises shaping a response of the secondary path estimate filter in conformity with the equalized source audio signal and a playback corrected error by adapting the response of the secondary path estimate filter to minimize the playback corrected error, wherein the playback corrected error is based on a difference between the error microphone signal and the secondary path estimate.
  • 21. An integrated circuit comprising: an output for providing a signal to a transducer including an equalized source audio signal for playback;an error microphone input for receiving an error microphone signal indicative of an acoustic output of the transducer; anda processing circuit that implements:a secondary path estimate filter for modeling an electro-acoustical path of a source audio signal through the transducer;a secondary path estimate filter coefficient control block that shapes a response of the secondary path estimate filter in conformity with the error microphone signal;an adjustable equalization filter having a response that generates the equalized source audio signal from the source audio signal to account for effects of changes in the electro-acoustical path of the source audio signal; andan equalizer coefficient control block that adapts the response of the adjustable equalization filter in response to changes in the response of the secondary path estimate filter to shape the response of the adjustable equalization filter in conformity with a response of a target filter by adapting the response of the adjustable equalization filter to minimize a difference between the response of the target filter and the response of the adjustable equalization filter; wherein: the target filter has a response equal to a ratio of a response of a fixed ideal filter to the response of the secondary path estimate filter; andthe response of the fixed ideal filter is a pre-calculated transfer function desired to be applied by the electro-acoustical path.
  • 22. The integrated circuit of claim 21, wherein the processing circuit further implements a mixer for outputting a blended equalized source audio signal, wherein the blended equalized source audio signal is cross-faded between the source audio signal as filtered by the target filter and the source audio signal as filtered by the adjustable equalization filter.
  • 23. The integrated circuit of claim 21, wherein the equalizer coefficient control block is configured to shape the response of the adjustable equalization filter in conformity with the response of the target filter by adapting the response of the adjustable equalization filter to minimize a difference between the source audio signal as filtered by the target filter and the source audio signal as filtered by the adjustable equalization filter using a least-mean-squares adaptation technique.
  • 24. The integrated circuit of claim 23, wherein the least-mean-squares adaptation technique comprises updating one coefficient of the adjustable equalization filter for each sample of the source audio signal by applying at least one of exponential smoothing and linear interpolation.
  • 25. The integrated circuit of claim 23, wherein the least-mean-squares adaptation technique comprises updating all coefficients of the adjustable equalization filter for each sample of the source audio signal by applying at least one of exponential smoothing and linear interpolation.
  • 26. The integrated circuit of claim 21, wherein: the error microphone signal is indicative of the acoustic output of the transducer and ambient audio sounds at the transducer; andthe processing circuit is further configured to implement a noise cancellation system that generates an anti-noise signal to reduce the presence of the ambient audio sounds heard by a listener of the transducer based at least on the error microphone signal.
  • 27. The integrated circuit of claim 21, wherein the response of the adjustable equalization filter further applies frequency emphasis to the source audio signal.
  • 28. The integrated circuit of claim 21, wherein the response of the adjustable equalization filter further applies psychoacoustic enhancement to the source audio signal.
  • 29. The integrated circuit of claim 21, wherein the response of the secondary path estimate filter generates a secondary path estimate from the equalized source audio signal.
  • 30. The integrated circuit of claim 21, wherein the secondary path estimate filter coefficient control block shapes a response of the secondary path estimate filter in conformity with the equalized source audio signal and a playback corrected error by adapting the response of the secondary path estimate filter to minimize the playback corrected error, wherein the playback corrected error is based on a difference between the error microphone signal and a secondary path estimate generated by filtering the equalized source audio signal with the secondary path estimate filter.
US Referenced Citations (267)
Number Name Date Kind
5251263 Andrea et al. Oct 1993 A
5278913 Delfosse et al. Jan 1994 A
5321759 Yuan Jun 1994 A
5337365 Hamabe et al. Aug 1994 A
5359662 Yuan et al. Oct 1994 A
5410605 Sawada et al. Apr 1995 A
5425105 Lo et al. Jun 1995 A
5445517 Kondou et al. Aug 1995 A
5465413 Enge et al. Nov 1995 A
5481615 Eatwell et al. Jan 1996 A
5548681 Gleaves et al. Aug 1996 A
5559893 Krokstad Sep 1996 A
5586190 Trantow et al. Dec 1996 A
5640450 Watanabe Jun 1997 A
5668747 Ohashi Sep 1997 A
5696831 Inanaga Dec 1997 A
5699437 Finn Dec 1997 A
5706344 Finn Jan 1998 A
5740256 Castello Da Costa et al. Apr 1998 A
5768124 Stothers et al. Jun 1998 A
5815582 Claybaugh et al. Sep 1998 A
5832095 Daniels Nov 1998 A
5909498 Smith Jun 1999 A
5940519 Kuo Aug 1999 A
5946391 Dragwidge et al. Aug 1999 A
5991418 Kuo Nov 1999 A
6041126 Terai et al. Mar 2000 A
6118878 Jones Sep 2000 A
6219427 Kates et al. Apr 2001 B1
6278786 McIntosh Aug 2001 B1
6282176 Hemkumar Aug 2001 B1
6418228 Terai et al. Jul 2002 B1
6434246 Kates et al. Aug 2002 B1
6434247 Kates et al. Aug 2002 B1
6522746 Marchok et al. Feb 2003 B1
6683960 Fujii et al. Jan 2004 B1
6766292 Chandran et al. Jul 2004 B1
6768795 Feltstrom et al. Jul 2004 B2
6850617 Weigand Feb 2005 B1
6940982 Watkins Sep 2005 B1
7058463 Ruha et al. Jun 2006 B1
7103188 Jones Sep 2006 B1
7181030 Rasmussen et al. Feb 2007 B2
7330739 Somayajula Feb 2008 B2
7365669 Melanson Apr 2008 B1
7466838 Moseley Dec 2008 B1
7680456 Muhammad et al. Mar 2010 B2
7742790 Konchitsky et al. Jun 2010 B2
7817808 Konchitsky et al. Oct 2010 B2
7885417 Christoph Feb 2011 B2
8019050 Mactavish et al. Sep 2011 B2
8249262 Chua et al. Aug 2012 B2
8290537 Lee et al. Oct 2012 B2
8325934 Kuo Dec 2012 B2
8363856 Lesso et al. Jan 2013 B2
8379884 Horibe et al. Feb 2013 B2
8401200 Tiscareno et al. Mar 2013 B2
8442251 Jensen et al. May 2013 B2
8526627 Asao et al. Sep 2013 B2
8804974 Melanson Aug 2014 B1
8848936 Kwatra et al. Sep 2014 B2
8907829 Naderi Dec 2014 B1
8908877 Abdollahzadeh Milani et al. Dec 2014 B2
8948407 Alderson et al. Feb 2015 B2
8958571 Kwatra et al. Feb 2015 B2
9066176 Hendrix et al. Jun 2015 B2
9094744 Lu et al. Jul 2015 B1
9106989 Li et al. Aug 2015 B2
9107010 Abdollahzadeh Milani et al. Aug 2015 B2
9264808 Zhou et al. Feb 2016 B2
9294836 Zhou et al. Mar 2016 B2
20010053228 Jones Dec 2001 A1
20020003887 Zhang et al. Jan 2002 A1
20030063759 Brennan et al. Apr 2003 A1
20030072439 Gupta Apr 2003 A1
20030185403 Sibbald Oct 2003 A1
20040047464 Yu et al. Mar 2004 A1
20040120535 Woods Jun 2004 A1
20040165736 Hetherington et al. Aug 2004 A1
20040167777 Hetherington et al. Aug 2004 A1
20040176955 Farinelli, Jr. et al. Sep 2004 A1
20040196992 Ryan Oct 2004 A1
20040202333 Csermak et al. Oct 2004 A1
20040240677 Onishi et al. Dec 2004 A1
20040242160 Ichikawa et al. Dec 2004 A1
20040264706 Ray et al. Dec 2004 A1
20050004796 Trump et al. Jan 2005 A1
20050018862 Fisher Jan 2005 A1
20050117754 Sakawaki Jun 2005 A1
20050207585 Christoph Sep 2005 A1
20050240401 Ebenezer Oct 2005 A1
20060035593 Leeds Feb 2006 A1
20060055910 Lee Mar 2006 A1
20060069556 Nadjar et al. Mar 2006 A1
20060109941 Keele, Jr. May 2006 A1
20060153400 Fujita et al. Jul 2006 A1
20070030989 Kates Feb 2007 A1
20070033029 Sakawaki Feb 2007 A1
20070038441 Inoue et al. Feb 2007 A1
20070047742 Taenzer et al. Mar 2007 A1
20070053524 Haulick et al. Mar 2007 A1
20070076896 Hosaka et al. Apr 2007 A1
20070154031 Avendano et al. Jul 2007 A1
20070258597 Rasmussen et al. Nov 2007 A1
20070297620 Choy Dec 2007 A1
20080019548 Avendano Jan 2008 A1
20080101589 Horowitz et al. May 2008 A1
20080107281 Togami et al. May 2008 A1
20080144853 Sommerfeldt et al. Jun 2008 A1
20080166002 Amsel Jul 2008 A1
20080177532 Greiss et al. Jul 2008 A1
20080181422 Christoph Jul 2008 A1
20080226098 Haulick et al. Sep 2008 A1
20080240413 Mohammad et al. Oct 2008 A1
20080240455 Inoue et al. Oct 2008 A1
20080240457 Inoue et al. Oct 2008 A1
20090012783 Klein Jan 2009 A1
20090034748 Sibbald Feb 2009 A1
20090041260 Jorgensen et al. Feb 2009 A1
20090046867 Clemow Feb 2009 A1
20090060222 Jeong et al. Mar 2009 A1
20090080670 Solbeck et al. Mar 2009 A1
20090086990 Christoph Apr 2009 A1
20090136057 Taenzer May 2009 A1
20090175466 Elko et al. Jul 2009 A1
20090196429 Ramakrishnan et al. Aug 2009 A1
20090220107 Every et al. Sep 2009 A1
20090238369 Ramakrishnan et al. Sep 2009 A1
20090245529 Asada et al. Oct 2009 A1
20090254340 Sun et al. Oct 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090296965 Kojima Dec 2009 A1
20090304200 Kim et al. Dec 2009 A1
20090311979 Husted et al. Dec 2009 A1
20100014683 Maeda et al. Jan 2010 A1
20100014685 Wurm Jan 2010 A1
20100061564 Clemow et al. Mar 2010 A1
20100069114 Lee et al. Mar 2010 A1
20100082339 Konchitsky et al. Apr 2010 A1
20100098263 Pan et al. Apr 2010 A1
20100098265 Pan et al. Apr 2010 A1
20100124336 Shridhar et al. May 2010 A1
20100124337 Wertz et al. May 2010 A1
20100131269 Park et al. May 2010 A1
20100142715 Goldstein et al. Jun 2010 A1
20100150367 Mizuno Jun 2010 A1
20100158330 Guissin et al. Jun 2010 A1
20100166203 Peissig et al. Jul 2010 A1
20100183175 Chen et al. Jul 2010 A1
20100195838 Bright Aug 2010 A1
20100195844 Christoph et al. Aug 2010 A1
20100207317 Iwami et al. Aug 2010 A1
20100246855 Chen Sep 2010 A1
20100266137 Sibbald et al. Oct 2010 A1
20100272276 Carreras et al. Oct 2010 A1
20100272283 Carreras et al. Oct 2010 A1
20100272284 Joho et al. Oct 2010 A1
20100274564 Bakalos et al. Oct 2010 A1
20100284546 DeBrunner et al. Nov 2010 A1
20100291891 Ridgers et al. Nov 2010 A1
20100296666 Lin Nov 2010 A1
20100296668 Lee et al. Nov 2010 A1
20100310086 Magrath et al. Dec 2010 A1
20100310087 Ishida Dec 2010 A1
20100316225 Saito et al. Dec 2010 A1
20100322430 Isberg Dec 2010 A1
20110002468 Tanghe Jan 2011 A1
20110007907 Park et al. Jan 2011 A1
20110026724 Doclo Feb 2011 A1
20110096933 Eastty Apr 2011 A1
20110106533 Yu May 2011 A1
20110116643 Tiscareno May 2011 A1
20110129098 Delano et al. Jun 2011 A1
20110130176 Magrath et al. Jun 2011 A1
20110142247 Fellers et al. Jun 2011 A1
20110144984 Konchitsky Jun 2011 A1
20110150257 Jensen Jun 2011 A1
20110158419 Theverapperuma et al. Jun 2011 A1
20110206214 Christoph et al. Aug 2011 A1
20110222698 Asao et al. Sep 2011 A1
20110222701 Donaldson et al. Sep 2011 A1
20110249826 Van Leest Oct 2011 A1
20110288860 Schevciw et al. Nov 2011 A1
20110293103 Park et al. Dec 2011 A1
20110299695 Nicholson Dec 2011 A1
20110305347 Wurm Dec 2011 A1
20110317848 Ivanov et al. Dec 2011 A1
20120057720 Van Leest Mar 2012 A1
20120084080 Konchitsky et al. Apr 2012 A1
20120135787 Kusunoki et al. May 2012 A1
20120140917 Nicholson et al. Jun 2012 A1
20120140942 Loeda Jun 2012 A1
20120140943 Hendrix et al. Jun 2012 A1
20120148062 Scarlett et al. Jun 2012 A1
20120155666 Nair Jun 2012 A1
20120170766 Alves et al. Jul 2012 A1
20120185524 Clark Jul 2012 A1
20120207317 Abdollahzadeh Milani et al. Aug 2012 A1
20120215519 Park et al. Aug 2012 A1
20120250873 Bakalos et al. Oct 2012 A1
20120259626 Li et al. Oct 2012 A1
20120263317 Shin et al. Oct 2012 A1
20120281850 Hyatt Nov 2012 A1
20120300958 Klemmensen Nov 2012 A1
20120300960 Mackay et al. Nov 2012 A1
20120308021 Kwatra et al. Dec 2012 A1
20120308024 Alderson et al. Dec 2012 A1
20120308025 Hendrix et al. Dec 2012 A1
20120308026 Kamath et al. Dec 2012 A1
20120308027 Kwatra Dec 2012 A1
20120308028 Kwatra et al. Dec 2012 A1
20120310640 Kwatra et al. Dec 2012 A1
20120316872 Stoltz Dec 2012 A1
20130010982 Elko et al. Jan 2013 A1
20130083939 Fellers et al. Apr 2013 A1
20130156238 Birch et al. Jun 2013 A1
20130222516 Do et al. Aug 2013 A1
20130243198 Van Rumpt Sep 2013 A1
20130243225 Yokota Sep 2013 A1
20130259251 Bakalos Oct 2013 A1
20130272539 Kim et al. Oct 2013 A1
20130287218 Alderson et al. Oct 2013 A1
20130287219 Hendrix et al. Oct 2013 A1
20130301842 Hendrix et al. Nov 2013 A1
20130301846 Alderson et al. Nov 2013 A1
20130301847 Alderson et al. Nov 2013 A1
20130301848 Zhou et al. Nov 2013 A1
20130301849 Alderson Nov 2013 A1
20130315403 Samuelsson Nov 2013 A1
20130343556 Bright Dec 2013 A1
20130343571 Rayala et al. Dec 2013 A1
20140036127 Pong et al. Feb 2014 A1
20140044275 Goldstein et al. Feb 2014 A1
20140050332 Nielsen et al. Feb 2014 A1
20140051483 Schoerkmaier Feb 2014 A1
20140072134 Po et al. Mar 2014 A1
20140072135 Bajic et al. Mar 2014 A1
20140086425 Jensen et al. Mar 2014 A1
20140126735 Gauger, Jr. May 2014 A1
20140169579 Azmi Jun 2014 A1
20140177851 Kitazawa et al. Jun 2014 A1
20140177890 Hojlund et al. Jun 2014 A1
20140211953 Alderson et al. Jul 2014 A1
20140226827 Abdollahzadeh Milani Aug 2014 A1
20140270222 Hendrix et al. Sep 2014 A1
20140270223 Li et al. Sep 2014 A1
20140270224 Zhou et al. Sep 2014 A1
20140294182 Axelsson Oct 2014 A1
20140307887 Alderson Oct 2014 A1
20140307888 Alderson et al. Oct 2014 A1
20140307890 Zhou et al. Oct 2014 A1
20140307899 Hendrix et al. Oct 2014 A1
20140314244 Yong et al. Oct 2014 A1
20140314246 Hellmann Oct 2014 A1
20140314247 Zhang Oct 2014 A1
20140341388 Goldstein Nov 2014 A1
20140369517 Zhou et al. Dec 2014 A1
20150078572 Milani et al. Mar 2015 A1
20150092953 Abdollahzadeh Milani et al. Apr 2015 A1
20150104032 Kwatra et al. Apr 2015 A1
20150161980 Alderson et al. Jun 2015 A1
20150161981 Kwatra Jun 2015 A1
20150163592 Alderson Jun 2015 A1
20150256660 Kaller et al. Sep 2015 A1
20150256953 Kwatra et al. Sep 2015 A1
20150269926 Alderson et al. Sep 2015 A1
20150365761 Alderson Dec 2015 A1
Foreign Referenced Citations (57)
Number Date Country
102011013343 Sep 2012 DE
0412902 Feb 1991 EP
1691577 Aug 2006 EP
1880699 Jan 2008 EP
1947642 Jul 2008 EP
2133866 Dec 2009 EP
2237573 Oct 2010 EP
2216774 Aug 2011 EP
2395500 Dec 2011 EP
2395501 Dec 2011 EP
2551845 Jan 2013 EP
2583074 Apr 2013 EP
2984648 Feb 2016 EP
2987160 Feb 2016 EP
2987162 Feb 2016 EP
2987337 Feb 2016 EP
2401744 Nov 2004 GB
2436657 Oct 2007 GB
2455821 Jun 2009 GB
2455824 Jun 2009 GB
2455828 Jun 2009 GB
2484722 Apr 2012 GB
H06186985 Jul 1994 JP
07325588 Dec 1995 JP
2006217542 Aug 2006 JP
9911045 Mar 1999 WO
03015074 Feb 2003 WO
03015275 Feb 2003 WO
WO2004009007 Jan 2004 WO
04017303 Feb 2004 WO
2004017303 Feb 2004 WO
2006128768 Dec 2006 WO
2007007916 Jan 2007 WO
2007011337 Jan 2007 WO
2007110807 Oct 2007 WO
2007113487 Nov 2007 WO
2010117714 Oct 2010 WO
2011035061 Mar 2011 WO
2012107561 Aug 2012 WO
2012119808 Sep 2012 WO
2012134874 Oct 2012 WO
2012166273 Dec 2012 WO
2012166388 Dec 2012 WO
2014158475 Oct 2014 WO
2014168685 Oct 2014 WO
2014172005 Oct 2014 WO
2014172006 Oct 2014 WO
2014172010 Oct 2014 WO
2014172019 Oct 2014 WO
2014172021 Oct 2014 WO
2014200787 Dec 2014 WO
2015038255 Mar 2015 WO
2015088639 Jun 2015 WO
2015088651 Jun 2015 WO
2015088653 Jun 2015 WO
2015134225 Sep 2015 WO
2015191691 Dec 2015 WO
Non-Patent Literature Citations (62)
Entry
Parkins, et al., Narrowband and broadband active control in an enclosure using the acoustic energy density, J. Acoust. Soc. Am. Jul. 2000, pp. 192-203, vol. 108, issue 1, U.S.
International Patent Application No. PCT/US2015/022113, International Search Report and Written Opinion, Jul. 23, 2015, 13 pages.
Ray, Laura et al., Hybrid Feedforward-Feedback Active Noise Reduction for Hearing Protection and Communication, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, New York, NY, vol. 120, No. 4, Jan. 2006, pp. 2026-2036.
International Patent Application No. PCT/US2014/017112, International Search Report and Written Opinion, May 8, 2015, 22 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017343, mailed Aug. 8, 2014, 22 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/018027, mailed Sep. 4, 2014, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017374, mailed Sep. 8, 2014, 13 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019395, mailed Sep. 9, 2014, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019469, mailed Sep. 12, 2014, 13 pages.
Feng, Jinwei et al., “A broadband self-tuning active noise equaliser”, Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 62, No. 2, Oct. 1, 1997, pp. 251-256.
Zhang, Ming et al., “A Robust Online Secondary Path Modeling Method with Auxiliary Noise Power Scheduling Strategy and Norm Constraint Manipulation”, IEEE Transactions on Speech and Audio Processing, IEEE Service Center, New York, NY, vol. 11, No. 1, Jan. 1, 2003.
Lopez-Gaudana, Edgar et al., “A hybrid active noise cancelling with secondary path modeling”, 51st Midwest Symposium on Circuits and Systems, 2008, MWSCAS 2008, Aug. 10, 2008, pp. 277-280.
Kou, Sen and Tsai, Jianming, Residual noise shaping technique for active noise control systems, J. Acoust. Soc. Am. 95 (3), Mar. 1994, pp. 1665-1668.
Pfann, et al., “LMS Adaptive Filtering with Delta-Sigma Modulated Input Signals,” IEEE Signal Processing Letters, Apr. 1998, pp. 95-97, vol. 5, No. 4, IEEE Press, Piscataway, NJ.
Toochinda, et al., “A Single-Input Two-Output Feedback Formulation for ANC Problems,” Proceedings of the 2001 American Control Conference, Jun. 2001, pp. 923-928, vol. 2, Arlington, VA.
Kuo, et al., “Active Noise Control: A Tutorial Review,” Proceedings of the IEEE, Jun. 1999, pp. 943-973, vol. 87, No. 6, IEEE Press, Piscataway, NJ.
Johns, et al., “Continuous-Time LMS Adaptive Recursive Filters,” IEEE Transactions on Circuits and Systems, Jul. 1991, pp. 769-778, vol. 38, No. 7, IEEE Press, Piscataway, NJ.
Shoval, et al., “Comparison of DC Offset Effects in Four LMS Adaptive Algorithms,” IEEE Transactions on Circuits and Systems II: Analog and Digital Processing, Mar. 1995, pp. 176-185, vol. 42, Issue 3, IEEE Press, Piscataway, NJ.
Mali, Dilip, “Comparison of DC Offset Effects on LMB Algorithm and its Derivatives,” International Journal of Recent Trends in Engineering, May 2009, pp. 323-328, vol. 1, No. 1, Academy Publisher.
Kates, James M., “Principles of Digital Dynamic Range Compression,” Trends in Amplification, Spring 2005, pp. 45-76, vol. 9, No. 2, Sage Publications.
Gao, et al., “Adaptive Linearization of a Loudspeaker,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 14-17, 1991, pp. 3589-3592, Toronto, Ontario, CA.
Silva, et al., “Convex Combination of Adaptive Filters With Different Tracking Capabilities,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 15-20, 2007, pp. III 925-928, vol. 3, Honolulu, HI, USA.
Akhtar, et al., “A Method for Online Secondary Path Modeling in Active Noise Control Systems,” IEEE International Symposium on Circuits and Systems, May 23-26, 2005, pp. 264-267, vol. 1, Kobe, Japan.
Davari, et al., “A New Online Secondary Path Modeling Method for Feedforward Active Noise Control Systems,” IEEE International Conference on Industrial Technology, Apr. 21-24, 2008, pp. 1-6, Chengdu, China.
Lan, et al., “An Active Noise Control System Using Online Secondary Path Modeling With Reduced Auxiliary Noise,” IEEE Signal Processing Letters, Jan. 2002, pp. 16-18, vol. 9, Issue 1, IEEE Press, Piscataway, NJ.
Liu, et al., “Analysis of Online Secondary Path Modeling With Auxiliary Noise Scaled by Residual Noise Signal,” IEEE Transactions on Audio, Speech and Language Processing, Nov. 2010, pp. 1978-1993, vol. 18, Issue 8, IEEE Press, Piscataway, NJ.
Booji, P.S., Berkhoff, A.P., Virtual sensors for local, three dimensional, broadband multiple-channel active noise control and the effects on the quiet zones, Proceedings of ISMA2010 including USD2010, pp. 151-166.
Lopez-Caudana, Edgar Omar, Active Noise Cancellation: The Unwanted Signal and the Hybrid Solution, Adaptive Filtering Applications, Dr. Lino Garcia, ISBN: 978-953-307-306-4, InTech.
D. Senderowicz et al., “Low-Voltage Double-Sampled Delta-Sigma Converters,” IEEE J. Solid-State Circuits, vol. 32,, No. 12, pp. 1907-1919, Dec. 1997, 13 pages.
Hurst, P.J. and Dyer, K.C., “An improved double sampling scheme for switched-capacitor delta-sigma modulators,” IEEE Int. Symp. Circuits Systems, May 1992, vol. 3, pp. 1179-1182, 4 pages.
Milani, et al., “On Maximum Achievable Noise Reduction in ANC Systems”, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010, Mar. 14-19, 2010 pp. 349-352.
Ryan, et al., “Optimum near-field performance of microphone arrays subject to a far-field beampattern constraint”, 2248 J. Acoust. Soc. Am. 108, Nov. 2000.
Cohen, et al., “Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement”, IEEE Signal Processing Letters, vol. 9, No. 1, Jan. 2002.
Martin, “Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics”, IEEE Trans. on Speech and Audio Processing, col. 9, No. 5, Jul. 2001.
Martin, “Spectral Subtraction Based on Minimum Statistics”, Proc. 7th EUSIPCO '94, Edinburgh, U.K., Sep. 13-16, 1994, pp. 1182-1195.
Cohen, “Noise Spectrum Estimation in Adverse Environments: Improved Minima Controlled Recursive Averaging”, IEEE Trans. on Speech & Audio Proc., vol. 11, Issue 5, Sep. 2003.
Black, John W., “An Application of Side-Tone in Subjective Tests of Microphones and Headsets”, Project Report No. NM 001 064.01.20, Research Report of the U.S. Naval School of Aviation Medicine, Feb. 1, 1954, 12 pages (pp. 1-12 in pdf), Pensacola, FL, US.
Lane, et al., “Voice Level: Autophonic Scale, Perceived Loudness, and the Effects of Sidetone”, The Journal of the Acoustical Society of America, Feb. 1961, pp. 160-167, vol. 33, No. 2., Cambridge, MA, US.
Liu, et al., “Compensatory Responses to Loudness-shifted Voice Feedback During Production of Mandarin Speech”, Journal of the Acoustical Society of America, Oct. 2007, pp. 2405-2412, vol. 122, No. 4
Paepcke, et al., “Yelling in the Hall: Using Sidetone to Address a Problem with Mobile Remote Presence Systems”, Symposium on User Interface Software and Technology, Oct. 16-19, 2011, 10 pages (pp. 1-10 in pdf), Santa Barbara, CA, US
Peters, Robert W., “The Effect of High-Pass and Low-Pass Filtering of Side-Tone Upon Speaker Intelligibility”, Project Report No. NM 001 064.01.25, Research Report of the U.S. Naval School of Aviation Medicine, Aug. 16, 1954, 13 pages (pp. 1-13 in pdf), Pensacola, FL, US.
Therrien, et al., “Sensory Attenuation of Self-Produced Feedback: The Lombard Effect Revisited”, PLOS ONE, Nov. 2012, pp. 1-7, vol. 7, Issue 11, e49370, Ontario, Canada.
Campbell, Mikey, “Apple looking into self-adjusting earbud headphones with noise cancellation tech”, Apple Insider, Jul. 4, 2013, pp. 1-10 (10 pages in pdf), downloaded on May 14, 2014 from http://appleinsider.com/articles/13/07/04/apple-looking-into-self-adjusting-earbud-headphones-with-noise-cancellation-tech.
International Patent Application No. PCT/US2014/017096, International Search Report and Written Opinion, May 27, 2014, 11 pages.
Jin, et al., “A simultaneous equation method-based online secondary path modeling algorithm for active noise control”, Journal of Sound and Vibration, Apr. 25, 2007, pp. 455-474, vol. 303, No. 3-5, London, GB.
Erkelens et al., “Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation”, IEEE Transactions on Audio Speech, and Language Processing, vol. 16, No. 6, Aug. 2008.
Rao et al., “A Novel Two Stage Single Channle Speech Enhancement Technique”, India Conference (Indicon) 2011 Annual IEEE, IEEE, Dec. 15, 2011.
Rangachari et al., “A noise-estimation algorithm for highly non-stationary environments” Speech Communication, Elsevier Science Publishers, vol. 48, No. 2, Feb. 1, 2006.
Widrow, B. et al., Adaptive Noise Cancelling: Principles and Applications, Proceedings of the IEEE, IEEE, New York, NY, U.S., vol. 63, No. 13, Dec. 1975, pp. 1692-1716.
Morgan, Dennis R. et al., A Delayless Subband Adaptive Filter Architecture, IEEE Transactions on Signal Processing, IEEE Service Center, New York, NY, U.S., vol. 43, No. 8, Aug. 1995, pp. 1819-1829.
International Patent Application No. PCT/US2014/040999, International Search Report and Written Opinion, Oct. 18, 2014, 12 pages.
International Patent Application No. PCT/US2013/049407, International Search Report and Written Opinion, Jun. 18, 2014, 13 pages.
International Patent Application No. PCT/US2015/017124, International Search Report and Written Opinion, Jul. 13, 2015, 19 pages.
International Patent Application No. PCT/US2015/035073, International Search Report and Written Opinion, Oct. 8, 2015, 11 pages.
International Patent Application No. PCT/US2014/049600, International Search Report and Written Opinion, Jan. 14, 2015, 12 pages.
International Patent Application No. PCT/US2014/061753, International Search Report and Written Opinion, Feb. 9, 2015, 8 pages.
International Patent Application No. PCT/US2014/061548, International Search Report and Written Opinion, Feb. 12, 2015, 13 pages.
International Patent Application No. PCT/US2014/060277, International Search Report and Written Opinion, Mar. 9, 2015, 11 pages.
Combined Search and Examination Report, Application No. GB1512832.5, mailed Jan. 28, 2016, 7 pages.
International Patent Application No. PCT/US2015/066260, International Search Report and Written Opinion, Apr. 21, 2016, 13 pages.
English machine translation of JP 2006-217542 A (Okumura, Hiroshi; Howling Suppression Device and Loudspeaker, published Aug. 2006).
combined Search and Examination Report, Application No. GB1519000.2, mailed Apr. 21, 2016, 5 pages.