Systems and methods for Utilizing flue gas

Information

  • Patent Grant
  • 11486572
  • Patent Number
    11,486,572
  • Date Filed
    Friday, December 27, 2019
    4 years ago
  • Date Issued
    Tuesday, November 1, 2022
    2 years ago
Abstract
Systems and apparatuses for cooling flue gases emitted from an industrial facility, such as a coke oven in a coke manufacturing plant. A representative system includes a heat recovery steam generator (HRSG) having a steam generation system that converts liquid feedwater into steam by absorbing heat from the flue gases. The steam generation system includes a plurality of tubes that carry the liquid water feedwater and the steam. Some or all of the tubes include steel and a non-corrosive material cladded to the steel that helps to reduce corrosion caused by the high temperature flue gases and extremely corrosive contaminants within the flue gas that can corrode steel.
Description
TECHNICAL FIELD

The present technology relates to systems for processing and utilizing flue gas produced in industrial process, such as flue gas produced by coke ovens during the coking process.


BACKGROUND

Heat recovery steam generators (HRSG) are used in many industrial processes as a means for recovering heat from hot gas streams. Generally speaking, a HRSG is used to produce steam (including superheated steam), which can then be used for a variety of different purposes around an industrial facility. One specific industry that uses HRSGs is the coke manufacturing industry, though HRSGs are also used in, for example, trash-to-steam processes, biomass processing, black liquor processing, and in the processing of other mixed feeds (such as coal and biomass).


With respect to the use of HRSGs in coke manufacturing facilities, and specifically with respect to the use of HRSGs in cokemaking heat recovery facilities, volatile gases emitted during the coking process are directed out of the coke oven and eventually pass into a flue gas desulfurization system, which is used to reduce the acidity and neutralize acids present within the flue gas, and a baghouse, which collects particulate matter within the flue gas, before the flue gas is vented into the atmosphere. In comparison to flue gases exhausted from coal burning power plants, flue gases exhausted from heat recovery coke ovens typically have much higher concentrations of acids, and in particular, hydrochloric acid. For example, flue gas exhausted from heat recovery coke ovens can sometimes have a concentration of hydrochloric acid that is 10 times higher (or more) than flue gas exhausted from coal burning power plants. This is primarily because heat recovery coke plants extract 80-90% of all of the chlorides in the coal while only burning about 25% of the coal and all of this is expelled from the oven as volatile matter during the coking process.


However, the volatile gases expelled from the coke oven typically have a temperature between 1500 and 2200° F., which is too hot to be properly processed by the desulfurization system and the baghouse. Accordingly, before the flue gas can be directed into the desulfurization system and the baghouse, the flue gases pass through a heat recovery steam generator, which helps to cool the flue gases by absorbing heat from the gas and using the heat to convert liquid water into steam, which can then be used to generate power using a steam turbine.


Regardless of the specific context in which the HRSG is used, when exhaust gas begins to cool within the HRSG, vaporized contaminants within the gas condense and precipitate onto the tubes within the HRSG that carry the water and steam. These condensed contaminants are often extremely corrosive to the steel tubes and can cause the tubes to quickly corrode and become damaged. Accordingly, there is a need for an improved heat recovery steam generator that offers increased resistance to corrosion caused by contaminants within flue gases.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric, partial cut-away view of a portion of a horizontal heat recovery/non-recovery coke plant configured in accordance with embodiments of the present technology.



FIG. 2 is a perspective view a coke plant configured in accordance with embodiments of the present technology.



FIG. 3 shows an isometric view of an illustrative HRSG configured in accordance with embodiments of the present technology.



FIG. 4 shows a diagram of the flow path of flue gases passing through the HRSG, in accordance with embodiments of the present technology.



FIGS. 5A and 5B show isometric views of the top and bottom portions of a primary evaporator configured in accordance with embodiments of the present technology.



FIG. 6A shows a diagram of a portion of a waterwall and FIG. 6B shows an isometric view of an exterior wall of the HRSG, in accordance with embodiments of the present technology.



FIGS. 7A and 7B show diagrams of a superheater configured in accordance with embodiments of the present technology.



FIG. 7C shows a diagram of a vertical support tube for the superheater of FIGS. 7A and 7B and configured in accordance with embodiments of the present technology.



FIGS. 8A and 8B show diagrams of an economizer configured in accordance with embodiments of the present technology.



FIG. 9 is a chart that compares temperature ranges for which contaminants within the flue gas are corrosive for steel tubes.



FIGS. 10-16 show the effects of corrosion caused by contaminants within the flue gas interacting with the steel tubes within the HRSG.



FIG. 17A shows a plurality of tubes having a corrosion-resistant alloy cladded to a steel portion of the tube and configured in accordance with embodiments of the present technology.



FIG. 17B show a cross-sectional view of one of the tubes shown in FIG. 17A.



FIG. 18 shows a diagram of a sootblower used to remove precipitated particles from the tubes, in accordance with embodiments of the present technology.



FIGS. 19A-E show diagrams of HRSGs having different layouts and arrangements, in accordance with embodiments of the present technology.



FIG. 20 shows a graph charting tube temperature and flue gas temperature at various stages of an HRSG configured in accordance with embodiments described herein.





DETAILED DESCRIPTION

Specific details of several embodiments of the disclosed technology are described below with reference to particular, representative configurations. The disclosed technology is also described herein with reference to HRSGs used in coke manufacturing plants. However, it should be appreciated that the technology described herein is not limited to this specific application. For example, HRSG and related technology described herein can be implemented in any industrial process where exhaust gas is processed to cool the exhaust gas and/or utilize exhaust gas heat for steam production. Accordingly, the technology described herein should not be considered as limited to coke manufacturing processes.


In some non-limiting embodiments the disclosed technology can be practiced in accordance with ovens, coke manufacturing facilities, and insulation and heat shielding structures having other suitable configurations. Specific details describing structures or processes that are well-known and often associated with coke ovens but that can unnecessarily obscure some significant aspects of the presently disclosed technology, are not set forth in the following description for clarity. Moreover, although the following disclosure sets forth some embodiments of the different aspects of the disclosed technology, some embodiments of the technology can have configurations and/or components different than those described in this section. As such, the present technology can include some embodiments with additional elements and/or without several of the elements described below with reference to FIGS. 1-20.


Referring to FIG. 1, a coke plant 100 is illustrated which produces coke from coal in a reducing environment. FIG. 1 illustrates four ovens 101 with sections cut away for clarity. Each oven 101 comprises an oven chamber 110 preferably defined by a floor 111, a front door 114, a rear door 115 preferably opposite the front door 114, two sidewalls 112 extending upwardly from the floor 111 intermediate the front 114 and rear 115 doors, and a crown 113 which forms the top surface of the oven chamber 110. The oven 101 can also include a platform 105 adjacent to the front door 114 that a worker can stand and walk on to access the front door and the oven chamber 110. In operation, coke is produced in the ovens 101 by first loading coal into the oven chamber 110, heating the coal in an oxygen depleted environment, driving off the volatile fraction of coal and then oxidizing the volatiles within the oven 101 to capture and utilize the heat given off. The coal volatiles are oxidized within the ovens over a 48-hour coking cycle and release heat to regeneratively drive the carbonization of the coal to coke. The coking cycle begins when the front door 114 is opened and coal is charged onto the floor 111. The coal on the floor 111 is known as the coal bed. Heat from the oven (due to the previous coking cycle) starts the carbonization cycle. Preferably, no additional fuel other than that produced by the coking process is used. Roughly half of the total heat transfer to the coal bed is radiated down onto the top surface of the coal bed from the luminous flame and radiant oven crown 113. The remaining half of the heat is transferred to the coal bed by conduction from the floor 111 which is convectively heated from the volatilization of gases in sole flue 118. In this way, a carbonization process “wave” of plastic flow of the coal particles and formation of high strength cohesive coke proceeds from both the top and bottom boundaries of the coal bed at the same rate, preferably meeting at the center of the coal bed after about 45-48 hours.


In operation, volatile gases emitted from the coal positioned inside the oven chamber 110 (also referred to herein as flue gases) collect in the crown 113 and are drawn downstream in the overall system into downcomer channels 117 formed in one or both sidewalls 112. The downcomer channels 117 fluidly connect the oven chamber 110 with the sole flue 118 positioned under the floor 111. The sole flue 118 forms a circuitous path beneath the floor 111 and volatile gases emitted from the coal can pass through the downcomer channels 117 and enter the sole flue 118, where they combust and emit heat that supports the reduction of coal into coke. Uptake channels 116 are formed in one or both sidewalls 112 of the oven chambers 110 and are fluidly coupled between the sole flue 118 and uptake ducts 103 such that the combusted volatile gases can leave the sole flue 118 by passing through the uptake channels 116 toward the uptake ducts 103. The uptake ducts 103 direct the volatile gases into the common tunnel 102, which transports these gases downstream for further processing.



FIG. 2 shows a perspective view of the coke plant 100. After passing into the common tunnel 102 from the uptake ducts 103, the common tunnel 102 directs the flue gases to one or more heat recovery steam generators (HRSG) 120, which cools the flue gas by using the heat from the flue gas to convert liquid water into steam. A cooled gas duct 121 transports the cooled gas from the HRSG 120 to a flue gas desulfurization system 122, which is used to reduce the acidity and neutralize acids present within the flue gas. Fluidly connected and further downstream are a baghouse for collecting particulates, at least one draft fan for controlling air pressure within the system, and a main gas stack for exhausting cooled, treated exhaust to the environment. Steam lines interconnect the heat recovery steam generators and a cogeneration plant so that the recovered heat can be utilized. The coke plant 100 can also be fluidly connected to a bypass exhaust stack 104 that can be used to vent hot exhaust gases to the atmosphere in emergency situations.



FIG. 3 shows an isometric view of an illustrative HRSG 120 and FIG. 4 shows a diagram of the flow path of the flue gases through the HRSG 120. The HRSG 120 includes an inlet duct 124 configured to receive hot flue gases from a cross-over tunnel 123 (FIG. 2) that is coupled to the common tunnel 102 (FIG. 2). The flue gases enter the HRSG 120 and pass through an inlet damper (not labeled) positioned adjacent to the inlet duct 124, which can be used to control the flow of the flue gases into the HRSG 120, and into a radiation chamber (not labeled), which can be used to address gas flow distribution and to allow the flue gases to cool sufficiently so that any molten species within the flue gas can solidify. The HRSG 120 includes a steam generation system 125 that uses the heat and thermal energy of the hot flue gas to vaporize liquid water within the steam generation system 125 into steam and then superheat the steam. In some embodiments, the superheated steam is provided to a steam turbine that uses the superheated steam to generate electricity. In other embodiments, the superheated steam is provided to other systems for other purposes.


In the illustrated embodiment, the steam generation system 125 includes an economizer 126, a primary evaporator 127, two secondary evaporators 128, two superheaters 129, steam drums 130A and mud drums 130B, and a waterwall 133. As the flue gas flows through the HRSG 120, heat from the flue gas can be transferred to each of the different components of the steam generation system 125. In this way, the temperature of the flue gas can decrease as it flows through the HRSG 120. For example, when the flue gas is first received at the inlet duct 124, the flue gas can have a temperature between 800 and 2500° F. As the flue gases pass through the HRSG 120, the flue gases can be cooled by the various components of the HRSG 120 such that, when the flue gas exits the HRSG 120 via the outlet duct 132 and is directed into the cooled gas duct 121, the flue gas can have a temperature between 300 and 600° F., and specifically to a temperature between 375 and 500° F. However, these temperatures are only examples. The specific flue gas temperatures measured at the inlet duct 123 and the outlet duct 132 are dependent on the specific operating conditions and design of the HRSG 120 and other components of the coke plant.


As the flue gas passes and transfers heat to the various components of the steam generation system 125, these components absorb the thermal energy from the flue gas, causing their temperature to increase. In this way, the flue gas can be used to heat water within the various components of the steam generation system 125 to create steam. For example, during operation of the steam generation system 125, feedwater is provided to economizer 126. The feedwater is typically provided to the economizer 126 at a temperature of approximately 270° F. However, the feedwater can be highly pressurized such that, even at this elevated temperature, the feedwater does not boil. As the hot flue gases flow past the economizer 126, at least some of the thermal energy of the flue gases can be absorbed by the economizer 126 and by the feedwater within the economizer 126. As a result, the feedwater within the economizer 126 can be heated to temperatures greater than 270° F. The heated feedwater is then directed into a drum for temporary storage before being directed into the primary and secondary evaporators 127 and 128. As the heated feedwater flows through the evaporators 127 and 128, heat from the hot flue gases flowing by the evaporators 127/128 can be transferred into the evaporators 127 and 128, which can in turn heat up the liquid water to a sufficiently high enough temperature that the water evaporates into steam. The steam is then directed into a drum for temporary storage before being directed into the superheaters 129. As the steam flows through the superheaters 129, heat from the flue gas can be absorbed by the superheaters 129, which can cause the steam within the superheaters 129 to become superheated. Once superheated, the steam can then be directed out of the HRSG for further use.


In the embodiments shown in FIGS. 3 and 4, after the flue gas passes through the inlet duct 124, the flue gases first flow through the primary evaporator 127. FIGS. 5A and 5B show isometric views of the top and bottom portions of the primary evaporator 127. The primary evaporator 127 includes a plurality of evaporator tubes 135 that are generally vertically oriented and are fluidly coupled in parallel between the mud drum 130B and the steam drum 130A. As the liquid water flows through the evaporator tubes 135, the hot flue gases pass through the primary evaporator 127 and flow around the individual evaporator tubes 135. This can cause the flue gases to transfer thermal energy into each of the evaporator tubes 135, causing the individual evaporator tubes 135 to heat up. In some embodiments, the evaporator tubes 135 can be heated to temperatures from 500° F. to over 1000° F. However, these temperatures are only examples and the specific temperatures experienced by the various components of the heat recovery steam generator are dependent on the specific design and operating conditions of the heat recovery steam generator and other components of the coke plant (or other industrial plant). The evaporator tubes 135, which can be formed from metal, can then transfer at least some of this absorbed thermal energy into the water flowing through the evaporator tubes 135, causing the liquid water to heat up and evaporate into steam.


The secondary evaporators 128, which are positioned further downstream from the primary evaporator 127, can also include evaporator tubes 135 that are generally vertically oriented and that are fluidly coupled in parallel between the mud drum 130B and the steam drum 130A such that heat from the flue gas can be absorbed by the evaporator tubes 135 of the secondary evaporators 128 and liquid water flowing through the secondary evaporators 128 can be evaporated into steam. However, because the secondary evaporators 128 are positioned further downstream from the primary evaporator 127, the flue gas that passes through the secondary evaporators 128 can be cooler than the flue gas passing through the primary evaporator 127. For example, the flue gas passing by the secondary evaporator may only be approximately 730° F. To ensure that sufficient thermal energy is transferred to the evaporator tubes 135 of the secondary evaporators 128, the secondary evaporators 128 can include more evaporator tubes 135 than the primary evaporator 127 and the evaporator tubes 135 of the secondary evaporators 128 can be more densely packed together. In this way, it is more difficult for the flue gases to flow through the secondary evaporators 128 and the amount of thermal energy transferred into the evaporator tubes 135, and therefore the amount of heat transferred into the liquid water within these tubes 135 can be sufficiently high enough to cause the liquid water to evaporate into steam.


In some embodiments, the HRSG 120 can also include a waterwall 133 (FIGS. 6A and 6B) that is configured to thermally protect exterior portions of the HRSG 120 from the heat given off by the flue gases flowing through the HRSG 120. In these embodiments, at least some of the evaporator tubes 135 can be positioned adjacent to exterior walls of the HRSG 120 such that these evaporator tubes 135 can absorb heat from the flue gas near the exterior walls instead of the heat being absorbed by the walls. For example, FIG. 6A shows a diagram of a portion of a waterwall 133 and FIG. 6B shows an exterior view of an exterior wall 136 of the HRSG 120. The evaporator tube 135 extends between the mud drum 130B and the steam drum 130A and is positioned adjacent to the exterior wall 136, though separated from the exterior wall 136 by a gap 137. In this way, the evaporator tube 135 can be positioned between the exterior wall 136 and the flue gas and can therefore reduce the heat of the flue gas that reaches the exterior wall 136. As a result, the waterwall can prevent the exterior wall 136 from being heated to an undesirably high temperature and the temperature within the gap 137 can be lower than the temperature on the other side of the waterwall 133.


After the liquid water evaporates into steam, the evaporator tubes 135 direct the steam out of the primary and secondary evaporators 127 and 128 and into the steam drum 130A. The steam drums 130A extend along a top of the HRSG 120 and fluidly couple the evaporators 127 and 128 to the superheaters 129. Further, the steam drums 130A can be sufficiently pressurized such that the steam within the steam drums 130A can be saturated.


After passing by the primary evaporator 127, the flue gases flow toward superheaters 129. The HRSG 120 can be configured to provide steam to a steam turbine that uses the steam to generate electricity. However, if the steam provided to the steam turbine is at too low of a pressure and/or temperature, the steam turbine can become damaged. Accordingly, before the saturated steam within the steam drum 130A can be provided to the steam turbine, superheaters 129 can take the saturated steam from the steam drums 130A to superheat and pressurize the steam. FIG. 7A shows a front elevation view one of the superheaters 129 and FIG. 7B shows a top plan view of a single superheater tube 138. Each of the superheaters 129 includes a plurality of generally horizontal superheater tubes 138 stacked on top of each other and fluidly coupled together. Each of the superheater tubes 138 has a plurality of straight segments 138A and a plurality of curved segments 138B that form end portions of the tubes and that couple adjacent straight segments 138A together. With this arrangement, each of the superheater tubes 138 can have a generally serpentine configuration.


During operation of the superheaters 129, steam within the steam drums 130A is directed into each of the superheater tubes 138 by a tube 141A. As the steam flows through the superheater tubes 138 by following the serpentine path, hot flue gases within the HRSG 120 can flow over the individual superheater tubes 138, thereby causing the individual superheater tubes 138 to heat up until the temperature of the outer surface of the superheater tubes 138 reaches temperatures between about 500° F. and 1000° F. The superheater tubes 138, which are typically formed from metal, can then transfer at least some of this absorbed thermal energy to the steam flowing through the superheater tubes 138, thereby causing the steam to become superheated. Once the superheated steam reaches the end of the superheater tube 138, the superheated steam is directed out of the superheater 129 and into tube 141B, which directs the steam out of the HRSG 120 via nozzle 142. The superheated steam can then be provided to the steam turbine.


To support the generally horizontal superheater tubes 138, the HRSG 120 can include a plurality of vertical support tubes 139. The vertical support tubes 139 are generally vertically oriented and each includes a plurality of fins projecting horizontally such that the horizontal superheater tubes 138 can rest on the fins. As shown in FIG. 7C, each of the vertical support tubes 139 include an evaporator tube 135 and a plurality of fins 140 welded to the evaporator tube 135 such that fins 140 extend away from the evaporator tube 135 and can support one of the superheater tubes 138. While FIG. 7C shows the fins 140 having a upwardly curved terminal end, the fins 140 may have other shapes, such as straight fins that project horizontally with no upward curve at the terminal end.


During operation of the HRSG 120, the flue gases flowing through the HRSG 120 can be hot enough to soften and weaken the metal that forms the vertical support tubes 139, which can potentially cause damage to the superheater 129. However, because the evaporator tube 135 includes water and steam flowing therethrough, the water and steam can absorb enough of the heat absorbed by the vertical support tubes 139 to cool the vertical support tubes 139 down so that the metal remains sufficiently strong.


In the embodiment shown in FIGS. 3 and 4, the steam generation system 125 includes two superheaters 129. In some embodiments, the two superheaters 129 can be fluidly coupled together in series. In these embodiments, one of the superheaters 129 receives steam from the steam drums 130A, at least partially superheats the steam, and provides the at least partially superheated steam to the second superheater 129, which continues to heat the at least partially superheated steam until the steam is fully superheated. The superheated steam is then directed out of the HRSG 120. In other embodiments, however, the two superheaters 129 are not fluidly coupled together and superheat the steam independent from each other. In still other embodiments, the steam generation system may only include one superheater 129, or may include more than two superheaters 129.


After passing by the superheaters 129, the flue gases pass through the secondary evaporators 128 and flow towards the economizer 126. FIG. 8A is a front view of the economizer 126 showing a single economizer tube 143 and FIG. 8B is a diagram showing the side of the economizer 126. The economizer 126 includes a plurality of economizer tubes 143 positioned adjacent to each other. Each of the economizer tubes 143 has a plurality of straight segments 143A and a plurality of curved segments 143B that couple adjacent straight segments 143A together. With this arrangement, each of the economizer tubes 143 can have a generally serpentine configuration.


During operation of the economizer 126, feedwater from outside of the HRSG 120 is directed into each of the economizer tubes 143 by a feedwater inlet 144A. As the feedwater flows through the economizer tubes 143 by following the serpentine path, flue gases within the HRSG 120 can flow between adjacent economizer tubes 143, causing the economizer tubes 143 to heat up. The economizer tubes 143, which are typically formed from metal, can then transfer at least some of the absorbed thermal energy to the feedwater flowing through the economizer tubes 143. However, the high pressures within the economizer tubes can ensure that the feedwater remains a liquid at these elevated temperatures. Once the heated feedwater reaches the end of the economizer tubes 143, the heated feedwater is directed out of the economizer 126 and into tube 144B, which directs the heated feedwater into the mud drums 130B. Further, once the flue gases pass by the economizer 126, the flue gases can be sufficiently cool and can be directed out of the HRSG 120.


In the embodiments shown in FIGS. 5A-8B, the tubes 135, 138, and 143 are each depicted as being generally cylindrical and not having protrusions extending away from the tubes. In other embodiments, however, some or all of these tubes can include fins that extend away from the tubes and act as heatsinks that can help the tubes absorb additional heat from the flue gas.


During the coking process, contaminants found in the coal are emitted from the coal and are expelled from the coke oven as part of the flue gas. In some embodiments, these contaminants can include sulfur, chlorine, ash, and other materials/chemicals. When the flue gas leaves the coke oven, the flue gas can sometimes be hot enough to cause the contaminants to vaporize and be in a gaseous state. When the flue gas reaches the HRSG 120 and begins to cool, however, these contaminants condense into liquids and solids that are extremely corrosive. As these condensed contaminants flow around the various components of the steam generation system 125, the contaminants can be deposited onto, e.g., the exterior surfaces of the evaporator, superheater, and economizer tubes as well as the vertical support tubes and the waterwall. In conventional heat recovery steam generators, these tubes are formed entirely from steel, which is extremely prone to corrosion. FIG. 9 is a chart that compares the temperature ranges for which the contaminants are corrosive for steel tubes. For example, the superheater tubes 138 can be heated by the hot flue gases such that the portions of the steel are between 700° F. and 1100° F. At these temperatures, the steel that forms the superheater tubes 138 is subject to corrosion from molten sulfates and oxidation caused by gaseous chlorides. In addition, evaporator tubes 135, including the evaporator tubes 135 that form both the waterwall 133 and the evaporators 127 and 128, can be heated such that portions of the steel can reach temperatures between 390 and 800° F., which puts the evaporator tubes 135 at risk of corrosion caused by molten chloride salts.



FIGS. 10-16 show the effects of corrosion and degradation caused by contaminants interacting with the heated steel. FIG. 10 shows the exterior surface of one of the superheater tubes 138 after the steel has corroded. During operation of the HRSG 120, a protective layer of oxidation is stripped off of the steel by alkali compounds in the flue gas. The steel is thus left exposed to the corrosive compounds in the flue gas that attack the metal surface and can cause it to thin. FIG. 11 shows a cross-sectional view of one of the superheater tubes 138. During operation of the HRSG 120, the protective oxidation layer is stripped off by chlorine compounds in the flue gas, exposing the unprotected steel to deposited compounds such as carbon. The carbon can then migrate into the crystal structure of the steel and weaken the material. Other deposits, such as chloride salts and sulfates can then adhere to the carburized layer that forms as the carbon migrates into the steel. The various corrosive compounds in the flue gas have worn away a portion of the steel, resulting in localized thinning of the tube wall. If left unchecked, this thinning can continue until pin holes form through the tube wall, allowing the superheated steam within the superheater tube 138 to leak out of the superheater tube 138. If the tubes are heated to too high of a temperature, the steel can soften and the tubes can deform and bend. For example, FIG. 12 shows evaporator tubes that have bent due to overheating of the steel. FIG. 13 shows an oblique view of a portion of ash deposits that can form on the steel tubes and FIG. 14 shows how the contaminants can cause pitting in the steel tubes.



FIGS. 15 and 16 show how the corrosive compounds can corrode the fins 140 of the vertical support tubes that are used to hold the superheater tubes 138 in place. While the evaporator tubes 135 and the superheater tubes 138 have water flowing through them, which can help to cool down the steel that forms these tubes, the fins 140 are formed entirely from metal and project away from the water within the evaporator tubes 135. Accordingly, the fins 140 do not experience significant cooling from the water within the evaporator tubes 135. In fact, the fins 140 can act as heat sinks that draw more heat from the flue gas, which can lead to localized heating of the evaporator tubes 135 near where the fins 140 are attached to the evaporator tubes 135. As a result, the corrosive contaminants in the flue gas corrode away the steel that forms the fins 140 significantly faster than the evaporator tubes 135 or the superheater tubes 138. Accordingly, corrosive flue gas can corrode the vertical support tubes 139, leading to the superheater tubes 138 being unsupported, which can damage the superheater 129. Further, the localized heating of the evaporator tubes 135 can accelerate corrosion around the evaporator tubes near the fins that can cause the tubes 135 to fail more quickly, potentially causing damage to other tubes in the HRSG 120.


To extend the lifetime of the tubes within the HRSG 120, in some embodiments, the thickness of the walls of the tubes can be increased. The thickness of fins 140 can also be increased. In this way, the amount of time that these tubes/fins can operate without corrosion affecting the performance of the HRSG 120 can be prolonged. However, increasing the thickness of the tubes/fins may not be enough to sufficiently prolong the lifetime of these tubes. To further reduce and/or eliminate the corrosive effects of the flue gas on the tubes/fins, at least some of the steel components within the HRSG 120 (e.g., tubes or fins) can be clad with a corrosion resistant alloy or other corrosion resistant material. FIG. 17A shows an isometric view of a plurality of tubes 145 having a steel portion 146 and a corrosion resistant portion 147 cladded to the steel portion and FIG. 17B shows a cross-sectional view of one of the tubes 145. The corrosion resistant portion 147 is formed from a corrosion-resistant alloy or material that resists corrosion at elevated temperatures. In representative embodiments, the corrosion-resistant alloy is a Nickel-based alloy. For example, in some embodiments, the corrosion resistant portion 147 comprises a Nickel-Chromium alloy such as Inconel. In other embodiments, the corrosion resistant portion 147 comprises a Nickel-Molybdenum such as Hastelloy, a Nickel-Molybdenum-Chromium-Copper alloy such as Illium or a Nickel-Copper alloy such as Monel. Other alloys, such as Ferritic alloy steels (e.g., T22 and T91 alloy steel) can also be used. In some embodiments the corrosion resistant portion 147 comprises two or more corrosion resistant materials, such as a cladding including a first layer of a first corrosion resistant material and a second layer disposed on the first layer, the second layer being made from a second corrosion resistant material different from the first corrosion resistant material. In one non-limiting example, T91 alloy steel can be overlaid with Inconel to form the corrosion resistant portion 147. In embodiments where the corrosion resistant portion 147 is an alloy, the corrosion resistant portion 147 can include any Nickel-based alloy or superalloy that has high resistance to corrosion at high temperatures. In this way, the corrosion resistant portions 147 can prevent (or at least reduce) corrosion caused by the contaminants in the hot flue gas interacting with the tubes. Further, when it is discovered that tubes in existing heat recovery steam generators that are formed only from steel and do not have corrosion resistant portions have corroded, these corroded tubes can be easily switched out for tubes 145 having the corrosion resistant portions 147. In this way, older heat recovery steam generators can be retrofitted to increase their performance and lifespan without a completely new heat recovery steam generator having to be constructed.


In other embodiments, the corrosion resistant material used for at least a portion of corrosion resistant portion 147 is silicon carbide. Silicon carbide is both chemically resistant and provides good heat transfer, thereby making it a suitable material for the corrosion resistant portion 147. In some embodiments, the corrosion resistant portion 147 is a layer of silicon carbide with no other layers or materials. In other embodiments, the silicon carbide is used in conjunction with other materials to form the corrosion resistant portion 147, such as with previously discussed alloys. In one non-limiting example, T91 alloy steel can be overlaid with silicon carbide to form the corrosion resistant portion 147.


To clad the steel portions 146 of the tubes 145 with the corrosion resistant portion 147, the corrosion resistant portion 147 can be welded to the steel portions 146. For example, in some embodiments, an automatic welding system, such as an orbital welder, can weld the corrosion-resistant material to the steel before the tubes 145 are installed within the HRSG 120. In this way, the corrosion resistant portion 147 can have a generally uniform thickness and properties. However, it may not be desirable for each of the tubes 145 to be completely cladded with the corrosion resistant material along the entire length of the tubes 145 as it is typically not possible (or it is at least very difficult) to weld the corrosion resistant material-clad steel to other metals. Accordingly, end portions of each of the tubes 145 are typically uncladded so that they can be more easily welded to each other or to other components of the HRSG 120. For example, as previously discussed in connection with FIG. 7B, the superheater tubes 138 include straight segments 138A and curved segments 138B. When the superheaters 129 are assembled (or repaired) a straight segment 138A and a curved segment 138B can be coupled together by welding the uncladded end portion of the straight segments 138A to the uncladded curved segment 138B. Similarly, two straight segments 138A can be coupled together by welding uncladded end portions of the two segments together. Further, when the superheater tubes 138 are attached to the tubes 141A and 141B, which act as headers for the individual superheater tubes 138, uncladded steel portions of the superheater tubes 138 are welded to the tubes 141A and 141B. In some embodiments, the tubes 141A and 141B can include stubs that extend toward the superheater tubes 138 and the uncladded steel portions of the superheater tubes 138 can be welded to these stubs. In other embodiments, the uncladded steel portions can extend into the tubes 141A and 141B and can then be welded to the tubes 141A and 141B. The evaporator tubes 135 can also have uncladded end portions. In this way, the evaporator tubes 135 can be coupled to the drums 130A and 130B by welding uncladded end portions of the evaporator tubes 135 to the drums 130A and 130B.


In the case of, for example, evaporator tubes, the evaporator tubes can be inserted into the steam and mud drums and then rolled and welded in place, and therefore, the ends are not typically overlaid originally. Consequently, for the non-overlay ends that have been inserted into the drum, a field overlay can be used (as discussed above) or the overlay sections can be coated in refractory. For example, if an evaporator tube is extending into the drum, a refractory coat can be applied to the end into the drum as a protective layer. When the HRSG is opened, the refractory can be checked and replaced if needed. A similar process can be performed for uncoated portions.


In some embodiments, after each of the uncladded end portions has been welded in place, the uncladded end portions can then be cladded with the corrosion resistant material by manually welding the corrosion resistant material to the exposed steel portions. In other embodiments, after the uncladded end portion for the individual tubes has been welded in place, the uncladded end portions can then be encased in refractory instead of being clad with the alloy portion 147.


In some embodiments, all of the tubes within the HRSG 120 can include an corrosion resistant portion 147 cladded to the steel portion. For example, all of the evaporator tubes 135 that form the primary and secondary evaporators 127 and 128, all of the evaporator tubes 135 that form the waterwall 133, all of the superheater tubes 138 for the superheaters 129, all of vertical support tubes 139 (including fins 140 and the evaporator tubes 135 that the fins 140 are coupled to), and all of the economizer tubes 143 for the economizer 126 can include corrosion resistant portions 147 cladded to steel portions 146. Other portions of the HRSG 120, such as the exterior walls 136, can also include corrosion resistant portions 147. In other embodiments, however, only some of the tubes can include the corrosion resistant portions 147. For example, in some embodiments, the economizer tubes 143 may not include a corrosion resistant portion 147. As the hot flue gases flow through the HRSG 120, the various components of the steam generation system 125 cause the flue gas to cool down such that, by the time the flue gases reach the economizer 126, the flue gases are cool enough that the contaminants in the flue gases are not as corrosive to the steel. In these embodiments, it may not be necessary to clad the economizer tubes 143 with the corrosion resistant portion 147 as the risk of the steel economizer tubes 143 corroding is sufficiently reduced. In still other embodiments, only a portion of individual tubes can include a corrosion resistant portion 147. For example, to ensure that the superheater tubes 138 are properly welded to the tubes 141A and 141B, end portions of individual of the superheater tubes 138 are typically not cladded with the corrosion resistant portion 147. Instead, the superheater tubes 138 can extend through the waterwall 133 so that the uncladded end portions are behind the waterwall 133 and are therefore not in the flow path of the hot and corrosive flue gases. With this arrangement, only portions of the superheater tubes 138 having the corrosion resistant portion 147 can be in the flow path of the flue gases while the uncladded portions are protected by the waterwall 133.


In some embodiments, welds used to join together various pipes used in the HRSG can be cladded with corrosion resistant material to ensure the welds are not corroded and weakened. For example and with reference back to FIG. 7C, welds 140a can be used to weld fins 140 to the vertical support tubes 139. In order to protect this type of weld, corrosion resistant material, such as any of the corrosion resistant material discussed previously, can be cladded over the weld 140a. With further reference to FIG. 7C, wear plates can be provided between the fins 140 and the superheater tubes 138 to further support the superheater tubes 138 and protect the fins against corrosion. In some embodiments, such wear plates are made from corrosion resistant material as discussed previously, including T22 alloy steel.


During operation of the HRSG 120, ash and other particulate matter can be deposited on the various tubes within the HRSG 120. Embodiments of the HRSG 120 in which some or all of the tubes have fins that extend away from the tubes are particularly prone to deposits forming on the various tubes as the fins can help to trap the deposits. In addition to potentially corroding and damaging these tubes, the particulate matter can sometimes reduce heat transfer between the hot flue gas and the tubes. Accordingly, to ensure that these deposits do not severely impact the performance of the HRSG 120, the HRSG 120 can include one or more sootblowers that are configured to blow deposits off the tubes. For example, FIG. 18 shows a diagram of a sootblower 148 having an extending portion 149 that extends through the exterior wall 136 of the HRSG 120. The sootblower 148 is positioned such that the extending portion 149 moves into and out of one of the superheaters 129 and blows deposits off of the superheater tubes 138. However, in some embodiments, the sootblower 148 blows steam and/or liquid water onto the superheater tubes 138, which can cause the superheater tubes to erode. To prevent the sootblower from damaging the superheater tubes 138, superheater tubes 138 near the sootblower 148 can include the corrosion resistant portion 147 cladded to the superheater tubes 138. In this way, the corrosion resistant portion 147 can limit and/or prevent the water emitted by the extending portion 149 from damaging the superheater pipes. In some embodiments, only the superheater tubes 138 near the extending portion 149 of the sootblower 148 have the corrosion resistant portion 147 while the superheater tubes 138 positioned further away do not. For example, in some embodiments, only the first row of superheater tubes closest to the sootblower 148 include corrosion resistant portions. In other embodiments, superheater tubes 148 located within 2 rows of the sootblower 148 include the corrosion resistant portion, while in other embodiments, only the superheater tubes 138 located within 4 rows of the sootblower 148 include the alloy portion 147. Regardless of the number of rows of superheater tubes 138 cladded with corrosion resistant portion 147, the corrosion resistant material can be cladded along some or all of the length of the superheater tube within the given row. For example, in some embodiments, the superheater tubes that are cladded with corrosion resistant material are cladded only on the length of the superheater tube 138 closest to the sootblower 148. In other embodiments, the entire length of the superheater tubes in the rows being cladded are cladded with corrosion resistant material.


While sootblowers 148 can be used to clean tubes within the HRSG as described previously, other cleaning techniques can also be used, including cleaning techniques that do not run the risk of corroding the tubes and therefore do not require additional cladding to protect tubes near the sootblower. For example, explosive cleaning can be used to keep tubes within the HRSG, including superheater tubes, clean.


In the previously discussed embodiments, the tubes are described as being formed from a steel portion that is clad with a corrosion-resistant material. In other embodiments, however, the tubes can have a different formulation. For example, in some embodiments, the tubes may not include a steel portion and instead may be formed entirely from the corrosion-resistant material. Further, in tubes that do include the steel portion, the metallurgy and composition of the steel may be chosen based on the specific configuration and operating conditions of the HRSG and the coke plant as well as the location of the tube within the HRSG. Different types of steel, such as carbon steel, T22 steel, and T91 steel all have different compositions that affect their resistance to corrosion as well as the temperature ranges for which they are the most effective. For example, T22 steel offers better corrosion resistance than carbon steel but not as much corrosion resistance as T91 steel. However, a tube formed form T22 steel that has been cladded with a corrosion resistant alloy (e.g., Inconel) can have better corrosion resistance than a tube formed only form T91 steel. In some embodiments, individual tubes can also include more than one type of steel. For example, the evaporator tubes that form part of the vertical support tubes can be formed from a T22 steel tube clad with Inconel while the fins that are welded to the evaporator tube are formed from a 9Cr steel that tends to resist high temperature corrosion than T22 steel tube does.



FIG. 19A shows a diagram of the HRSG 120 depicted in FIGS. 3 and 4. In the illustrated embodiment, HRSG 120 includes a single economizer 126, a primary evaporator 127, two secondary evaporators 128, and two superheaters 129. In other embodiments, however, the steam generation system can have a different configuration. For example, FIG. 19B shows a diagram of a HRSG 220 that includes a single economizer 226, a primary evaporator 227, and five secondary evaporators 228 and does not include a superheater. With this arrangement, the HRSG 220 can be configured to produce low pressure steam and can provide the low-pressure steam to a chemical plant that requires low pressure steam, instead of a steam turbine. FIG. 19C shows a diagram of a HRSG 320 that includes three economizers 326 fluidly coupled together in series, a primary evaporator 327, two secondary evaporators 328, and two superheaters 329. FIG. 19D shows a diagram of a HRSG 420 that includes four economizers 426 coupled together in series, a primary evaporator 427, secondary evaporators 428, and two superheaters 429.


In the embodiment shown in FIG. 19D, the two superheaters 429 are fluidly coupled together in series such that the steam traveling through the two superheaters generally flows in the opposite direction from the flowing gas moving through the HRSG 420. In other words, the inlets for both superheaters 429 are positioned downstream from the outlets. With this arrangement, the steam flowing through the superheater tubes positioned closer to the inlet duct 424 tends to be hotter than the steam flowing through the superheater tubes closer to the outlet duct 426. By arranging the HRSG in this way, the steam can be superheated to an extremely high temperature. However, this arrangement also causes the superheater tubes nearer to the inlet duct 424 to be heated to a very high temperature as the steam within these pipes is too hot to provide significant cooling to the pipes, which can increase the corrosion on these pipes. Accordingly, in some embodiments, the superheaters can be arranged to reduce the temperature of the superheater tubes.



FIG. 19E shows a diagram of an HRSG 520. As in the HRSG 420 shown in FIG. 19D, the HRSG 520 includes four economizers 526 coupled together in series, a primary evaporator 527, secondary evaporators 528, and two superheaters 529A and 529B. In contrast to the superheaters 429, the superheaters 529A and 529B are fluidly coupled together in series such that the steam flowing through the first superheater 529A flows in the opposite direction from the flowing gas moving through the HRSG 520 while the steam flowing through the second superheater 529B flows in the same direction as the flowing gas. With this arrangement, the tubes of the second superheater 529B that are positioned closer to the inlet duct 524 can be heated to a lower temperature as the steam flowing through these tubes is typically cooler and can provide some cooling. While arranging the superheaters 529A and 529B in this way can reduce the heating efficiency of the HRSG 520, and therefore the maximum temperature that the steam can be superheated, this arrangement can also result in the superheater tubes being heated to a lower temperature, which can reduce the rate at which these tubes corrode and can increase the lifespan of the HRSG 520. In some embodiments, the superheaters 529A and 529B can be arranged such that the steam flowing through both of the superheaters 529A and 529B flows in the same direction as the gas flowing through the HRSG 520.


Other HRSG configurations not shown in FIGS. 19A-E can also be used. In one example, the HRSG configuration is similar to the configuration shown in FIG. 19E, but includes a superheater at the front end of the HRSG. Furthermore, while FIGS. 19A-19E and other descriptions of HRSGs provided herein reference and/or illustrate a horizontally oriented HRSG, it should be appreciated that the technology described herein is equally applicable to vertically oriented HRSGs. Vertically oriented HRSGs can have some benefits over horizontally oriented HRSGs. For example, vertically oriented HRSGs can obviate the need for support fins 140 as shown in FIG. 7C.



FIG. 20 is a graph charting tube temperature and flue gas temperature throughout an HRSG as described herein, and more specifically, and HRSG as shown in, for example, FIG. 19A (having a primary evaporator 127, two superheaters 129, two secondary evaporators 128 and an economizer). As shown in FIG. 20, the temperature of the flue gas decreases steadily as it moves from the inlet of the HRSG 120 to the outlet of the HRSG, based on heat from the flue gas being transferred to the various tubes of the components of the HRSG. Tube temperature fluctuates non-uniformly across the length of the HRSG based on the specific path of the fluid flowing through the tubes that is not a direct line path from the inlet to the outlet of the HRSG (e.g., fluid first goes through the economizer positioned near the outlet of the HRSG, and is then directed to the primary evaporator positioned near the inlet of the HRSG).


From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims
  • 1. A heat recovery steam generator (HRSG) configured to receive flue gases, the HRSG comprising: an inlet duct positioned at a first end of the HRSG and configured to receive the flue gases;an outlet duct positioned at a second end of the HRSG, wherein the flue gases are configured to flow through the HRSG by flowing from the inlet duct to the outlet duct; anda steam generation system fluidly isolated from the flue gases flowing through the HRSG, wherein the steam generation system comprises: at least one economizer configured to receive liquid water at a first temperature, wherein the at least one economizer includes a plurality of economizer tubes through which the liquid water flows, wherein the flue gases flowing through the HRSG heat the liquid water within the plurality of economizer tubes from the first temperature to a second temperature greater than the first temperature;at least one evaporator configured to receive the liquid water at the second temperature from the at least one economizer, wherein the at least one evaporator includes a plurality of evaporator tubes through which the liquid water flows, wherein the flue gases flowing through the HRSG heat the liquid water within the plurality of evaporator tubes until the liquid water evaporates into steam, and wherein at least a portion of individual ones of the plurality of evaporator tubes comprise a base material including steel, and a cladding material that is resistant to corrosion at high temperatures and disposed over the base material, wherein the cladding material comprises a metal alloy ad forms an outermost layer of the individual ones of the plurality of evaporator tubes.
  • 2. The HRSG of claim 1, the steam generation system further comprising: at least one superheater wherein the at least one superheater includes a plurality of superheater tubes through which the steam flows, wherein the flue gases flowing through the HRSG superheat the steam within the plurality of superheater tubes, and wherein at least a portion of individual of the plurality of superheater tubes are cladded with the cladding material resistant to corrosion at high temperatures.
  • 3. The HRSG of claim 2, wherein the pluralities of economizer tubes, evaporator tube, and superheater tubes comprise steel.
  • 4. The HRSG of claim 1 wherein the metal alloy comprises a Ni-Cr alloy.
  • 5. The HRSG of claim 3, wherein the metal alloy comprises Ferritic alloy steel.
  • 6. The HRSG of claim 2, wherein the cladding material resistant to corrosion at high temperatures comprises a first layer of a Ferritic alloy steel and a second layer of Inconel disposed on the first layer.
  • 7. The HRSG of claim 2, wherein the plurality of superheater tubes is supported by support tubes.
  • 8. The HRSG of claim 7, wherein the support tubes include the evaporator tubes.
  • 9. The HRSG of claim 2 wherein the plurality of superheater tubes are oriented horizontally, wherein the at least one superheater includes one or more vertical support tubes configured to support the plurality of superheater tubes, and wherein at least a portion of the one or more vertical support tubes is cladded with the cladding material resistant to corrosion at high temperatures.
  • 10. The HRSG of claim 9, wherein the one or more vertical support tubes include generally horizontally projecting fins on which the superheater tubes are disposed.
  • 11. The HRSG of claim 10, wherein at least a portion of the fins are cladded with the cladding material resistant to corrosion at elevated temperatures.
  • 12. The HRSG of claim 9 wherein the one or more vertical support tubes comprises one of the plurality of evaporator tubes.
  • 13. The HRSG of claim 2, further comprising: a plurality of sootblowers configured to remove compounds deposited on one or more the pluralities of economizer tubes, evaporator tubes, and superheater tubes, wherein at least at least one of the individual evaporator tubes and at least one of the individual superheater tubes that are cladded with the cladding material resistant to corrosion at high temperatures are adjacent to individual of the plurality of sootblowers.
  • 14. The HRSG of claim 2, further comprising: an exterior wall that defines an exterior surface of the HRSG; anda waterwall within the HRSG and positioned adjacent to the exterior wall, wherein— the waterwall includes at least one of the plurality of evaporator tubes the plurality of economizer tubes and the plurality of superheater tubes, andthe waterwall is configured to reduce the amount of heat given off by the flue gases that can reach the exterior wall.
  • 15. The HRSG of claim 14 wherein at least one of the plurality of superheater tubes, economizer tubes and evaporator tubes includes a curved segment and two straight segments, wherein end portions of the two straight segments are welded to the curved segment such that the curved segment fluidly couples the two straight segments together.
  • 16. The HRSG of claim 15 wherein the end portions of the two straight segments are free of the material resistant to corrosion at high temperatures.
  • 17. The HRSG of claim 16 wherein the end portions of the two straight segments are coated with refractory after the end portions and the curved segment have been welded together.
  • 18. The HRSG of claim 1 wherein each of the plurality of economizer tubes is free of the material resistant to corrosion at high temperatures.
  • 19. The HRSG of claim 1 wherein the flue gases are configured to flow in a first direction through the HRSG, and wherein the evaporator tubes are oriented in a second direction normal to the first direction, the HRSG further comprising a superheater including a plurality of superheater tubes through which the steam from the evaporator tubes flows, wherein the superheater tubes are oriented in a third direction normal to the first direction and the second direction.
  • 20. The HRSG of claim 1 wherein the steam generation system further comprises one or more steam drums and one or more mud drums, wherein the evaporator tubes extend between and are fluidly coupled to one or more steam drums and the one or more mud drums.
  • 21. A heat recovery steam generator (HRSG) configured to receive flue gases, the HRSG comprising: a steam generation system comprising: an economizer configured to receive a fluid at a first temperature and including economizer tubes through which the fluid flows, wherein the flue gases flowing through the HRSG heat the fluid within the economizer tubes from the first temperature to a second temperature greater than the first temperature;an evaporator configured to receive the fluid at the second temperature from the economizer, wherein the evaporator includes a plurality of evaporator tubes through which the fluid flows, wherein the flue gases flowing through the HRSG heat the fluid within the evaporator tubes until the fluid evaporates, wherein at least a portion of the evaporator tubes comprise a base material including steel, and a cladding material that is resistant to corrosion at high temperatures and disposed over the base material, wherein the cladding material comprises a metal alloy and forms an outermost layer of the portion of the evaporator tubes.
CROSS-REFERENCE TO RELATED APPLICATION

This non-provisional patent application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/787,116, titled “IMPROVED HEAT RECOVERY STEAM GENERATOR” and filed Dec. 31, 2018, which is incorporated by reference herein in its entirety by reference thereto.

US Referenced Citations (472)
Number Name Date Kind
425797 Hunt Apr 1890 A
469868 Osbourn Mar 1892 A
760372 Beam May 1904 A
845719 Schniewind Feb 1907 A
875989 Garner Jan 1908 A
976580 Krause Jul 1909 A
1140798 Carpenter May 1915 A
1378782 Floyd May 1921 A
1424777 Schondeling Aug 1922 A
1430027 Plantinga Sep 1922 A
1486401 Van Ackeren Mar 1924 A
1530995 Geiger Mar 1925 A
1572391 Klaiber Feb 1926 A
1677973 Marquard Jul 1928 A
1705039 Thornhill Mar 1929 A
1721813 Geipert Jul 1929 A
1757682 Palm May 1930 A
1818370 Wine Aug 1931 A
1818994 Kreisinger Aug 1931 A
1830951 Lovett Nov 1931 A
1848818 Becker Mar 1932 A
1895202 Montgomery Jan 1933 A
1947499 Schrader et al. Feb 1934 A
1955962 Jones Apr 1934 A
1979507 Underwood Nov 1934 A
2075337 Burnaugh Mar 1937 A
2141035 Daniels Dec 1938 A
2195466 Otto Apr 1940 A
2235970 Wilputte Mar 1941 A
2340283 Vladu Jan 1944 A
2340981 Otto Feb 1944 A
2394173 Harris et al. Feb 1946 A
2424012 Bangham et al. Jul 1947 A
2486199 Nier Oct 1949 A
2609948 Laveley Sep 1952 A
2641575 Otto Jun 1953 A
2649978 Such Aug 1953 A
2667185 Beavers Jan 1954 A
2723725 Keiffer Nov 1955 A
2756842 Chamberlin et al. Jul 1956 A
2813708 Frey Nov 1957 A
2827424 Homan Mar 1958 A
2873816 Emil et al. Feb 1959 A
2902991 Whitman Sep 1959 A
2907698 Schulz Oct 1959 A
2968083 Lentz et al. Jan 1961 A
3015893 McCreary Jan 1962 A
3026715 Briggs Mar 1962 A
3033764 Hannes May 1962 A
3175961 Samson Mar 1965 A
3199135 Trucker Aug 1965 A
3224805 Clyatt Dec 1965 A
3259551 Thompson, Jr. Jul 1966 A
3265044 Juchtern Aug 1966 A
3267913 Bruhl Aug 1966 A
3327521 Briggs Jun 1967 A
3342990 Barrington et al. Sep 1967 A
3444046 Harlow May 1969 A
3444047 Wilde May 1969 A
3448012 Allred Jun 1969 A
3462345 Kernan Aug 1969 A
3511030 Brown et al. May 1970 A
3542650 Kulakov Nov 1970 A
3545470 Paton Dec 1970 A
3587198 Hensel Jun 1971 A
3591827 Hall Jul 1971 A
3592742 Thompson Jul 1971 A
3616408 Hickam Oct 1971 A
3623511 Levin Nov 1971 A
3630852 Nashan et al. Dec 1971 A
3652403 Knappstein et al. Mar 1972 A
3676305 Cremer Jul 1972 A
3709794 Kinzler et al. Jan 1973 A
3710551 Sved Jan 1973 A
3746626 Morrison, Jr. Jul 1973 A
3748235 Pries Jul 1973 A
3784034 Thompson Jan 1974 A
3806032 Pries Apr 1974 A
3811572 Tatterson May 1974 A
3836161 Pries Oct 1974 A
3839156 Jakobie et al. Oct 1974 A
3844900 Schulte Oct 1974 A
3857758 Mole Dec 1974 A
3875016 Schmidt-Balve Apr 1975 A
3876143 Rossow et al. Apr 1975 A
3876506 Dix et al. Apr 1975 A
3878053 Hyde Apr 1975 A
3894302 Lasater Jul 1975 A
3897312 Armour et al. Jul 1975 A
3906992 Leach Sep 1975 A
3912091 Thompson Oct 1975 A
3912597 MacDonald Oct 1975 A
3917458 Polak Nov 1975 A
3928144 Jakimowicz Dec 1975 A
3930961 Sustarsic et al. Jan 1976 A
3933443 Lohrmann Jan 1976 A
3957591 Riecker May 1976 A
3959084 Price May 1976 A
3963582 Helm et al. Jun 1976 A
3969191 Bollenbach Jul 1976 A
3975148 Fukuda et al. Aug 1976 A
3979870 Moore Sep 1976 A
3984289 Sustarsic et al. Oct 1976 A
3990948 Lindgren Nov 1976 A
4004702 Szendroi Jan 1977 A
4004983 Pries Jan 1977 A
4025395 Ekholm et al. May 1977 A
4040910 Knappstein et al. Aug 1977 A
4045056 Kandakov et al. Aug 1977 A
4045299 McDonald Aug 1977 A
4059885 Oldengott Nov 1977 A
4065059 Jablin Dec 1977 A
4067462 Thompson Jan 1978 A
4077848 Grainer et al. Mar 1978 A
4083753 Rogers et al. Apr 1978 A
4086231 Ikio Apr 1978 A
4093245 Connor Jun 1978 A
4100033 Holter Jul 1978 A
4100491 Newman, Jr. et al. Jul 1978 A
4100889 Chayes Jul 1978 A
4111757 Carimboli Sep 1978 A
4124450 MacDonald Nov 1978 A
4133720 Franzer et al. Jan 1979 A
4135948 Mertens et al. Jan 1979 A
4141796 Clark et al. Feb 1979 A
4143104 van Konijnenburg et al. Mar 1979 A
4145195 Knappstein et al. Mar 1979 A
4147230 Ormond et al. Apr 1979 A
4162546 Shortell et al. Jul 1979 A
4181459 Price Jan 1980 A
4189272 Gregor et al. Feb 1980 A
4194951 Pries Mar 1980 A
4196053 Grohmann Apr 1980 A
4211608 Kwasnoski et al. Jul 1980 A
4211611 Bocsanczy Jul 1980 A
4213489 Cain Jul 1980 A
4213828 Calderon Jul 1980 A
4222748 Argo et al. Sep 1980 A
4222824 Flockenhaus et al. Sep 1980 A
4224109 Flockenhaus et al. Sep 1980 A
4225393 Gregor et al. Sep 1980 A
4226113 Pelletier et al. Oct 1980 A
4230498 Ruecki Oct 1980 A
4235830 Bennett et al. Nov 1980 A
4239602 La Bate Dec 1980 A
4248671 Belding Feb 1981 A
4249997 Schmitz Feb 1981 A
4263099 Porter Apr 1981 A
4268360 Tsuzuki et al. May 1981 A
4271814 Lister Jun 1981 A
4284478 Brommel Aug 1981 A
4285772 Kress Aug 1981 A
4287024 Thompson Sep 1981 A
4289479 Johnson Sep 1981 A
4289584 Chuss et al. Sep 1981 A
4289585 Wagener et al. Sep 1981 A
4296938 Offermann et al. Oct 1981 A
4299666 Ostmann Nov 1981 A
4302935 Cousimano Dec 1981 A
4303615 Jarmell et al. Dec 1981 A
4307673 Caughey Dec 1981 A
4314787 Kwasnik et al. Feb 1982 A
4316435 Nagamatsu Feb 1982 A
4324568 Wilcox et al. Apr 1982 A
4330372 Cairns et al. May 1982 A
4334963 Stog Jun 1982 A
4336107 Irwin Jun 1982 A
4336843 Petty Jun 1982 A
4340445 Kucher et al. Jul 1982 A
4342195 Lo Aug 1982 A
4344820 Thompson Aug 1982 A
4344822 Schwartz et al. Aug 1982 A
4353189 Thiersch et al. Oct 1982 A
4366029 Bixby et al. Dec 1982 A
4373244 Mertens et al. Feb 1983 A
4375388 Hara et al. Mar 1983 A
4385962 Stewen et al. May 1983 A
4391674 Velmin et al. Jul 1983 A
4392824 Struck et al. Jul 1983 A
4394217 Holz et al. Jul 1983 A
4395269 Schuler Jul 1983 A
4396394 Li et al. Aug 1983 A
4396461 Neubaum et al. Aug 1983 A
4407237 Merritt Oct 1983 A
4421070 Sullivan Dec 1983 A
4431484 Weber et al. Feb 1984 A
4439277 Dix Mar 1984 A
4440098 Adams Apr 1984 A
4445977 Husher May 1984 A
4446018 Cerwick May 1984 A
4448541 Lucas May 1984 A
4452749 Kolvek et al. Jun 1984 A
4459103 Gieskieng Jul 1984 A
4469446 Goodboy Sep 1984 A
4474344 Bennett Oct 1984 A
4487137 Horvat et al. Dec 1984 A
4498786 Ruscheweyh Feb 1985 A
4506025 Kleeb et al. Mar 1985 A
4508539 Nakai Apr 1985 A
4518461 Gelfand May 1985 A
4527488 Lindgren Jul 1985 A
4564420 Spindeler et al. Jan 1986 A
4568426 Orlando Feb 1986 A
4570670 Johnson Feb 1986 A
4614567 Stahlherm et al. Sep 1986 A
4643327 Campbell Feb 1987 A
4645513 Kubota et al. Feb 1987 A
4655193 Blacket Apr 1987 A
4655804 Kercheval et al. Apr 1987 A
4666675 Parker et al. May 1987 A
4680167 Orlando Jul 1987 A
4690689 Malcosky et al. Sep 1987 A
4704195 Janicka et al. Nov 1987 A
4720262 Durr et al. Jan 1988 A
4724976 Lee Feb 1988 A
4726465 Kwasnik et al. Feb 1988 A
4732652 Durselen et al. Mar 1988 A
4749446 van Laar et al. Jun 1988 A
4793981 Doyle et al. Dec 1988 A
4821473 Cowell Apr 1989 A
4824614 Jones et al. Apr 1989 A
4889698 Moller et al. Dec 1989 A
4898021 Weaver et al. Feb 1990 A
4918975 Voss Apr 1990 A
4919170 Kallinich et al. Apr 1990 A
4929179 Breidenbach et al. May 1990 A
4941824 Holter et al. Jul 1990 A
5052922 Stokman et al. Oct 1991 A
5062925 Durselen et al. Nov 1991 A
5078822 Hodges et al. Jan 1992 A
5087328 Wegerer et al. Feb 1992 A
5114542 Childress et al. May 1992 A
5213138 Presz May 1993 A
5227106 Kolvek Jul 1993 A
5228955 Westbrook, III Jul 1993 A
5234601 Janke et al. Aug 1993 A
5318671 Pruitt Jun 1994 A
5370218 Johnson et al. Dec 1994 A
5398543 Fukushima et al. Mar 1995 A
5423152 Kolvek Jun 1995 A
5447606 Pruitt Sep 1995 A
5480594 Wilkerson et al. Jan 1996 A
5542650 Abel et al. Aug 1996 A
5597452 Hippe et al. Jan 1997 A
5622280 Mays et al. Apr 1997 A
5659110 Herden et al. Aug 1997 A
5670025 Baird Sep 1997 A
5687768 Albrecht et al. Nov 1997 A
5705037 Reinke et al. Jan 1998 A
5715962 McDonnell Feb 1998 A
5720855 Baird Feb 1998 A
5752548 Matsumoto et al. May 1998 A
5787821 Bhat et al. Aug 1998 A
5810032 Hong et al. Sep 1998 A
5816210 Yamaguchi Oct 1998 A
5857308 Dismore et al. Jan 1999 A
5881551 Dang Mar 1999 A
5913448 Mann et al. Jun 1999 A
5928476 Daniels Jul 1999 A
5966886 Di Loreto Oct 1999 A
5968320 Sprague Oct 1999 A
6002993 Naito et al. Dec 1999 A
6017214 Sturgulewski Jan 2000 A
6059932 Sturgulewski May 2000 A
6139692 Tamura et al. Oct 2000 A
6152668 Knoch Nov 2000 A
6156688 Ando et al. Dec 2000 A
6173679 Bruckner Jan 2001 B1
6187148 Sturgulewski Feb 2001 B1
6189819 Racine Feb 2001 B1
6290494 Barkdoll Sep 2001 B1
6412221 Emsbo Jul 2002 B1
6495268 Harth, III Dec 2002 B1
6539602 Ozawa et al. Apr 2003 B1
6596128 Westbrook Jul 2003 B2
6626984 Taylor Sep 2003 B1
6699035 Brooker Mar 2004 B2
6712576 Skarzenski et al. Mar 2004 B2
6758875 Reid et al. Jul 2004 B2
6786941 Reeves et al. Sep 2004 B2
6830660 Yamauchi et al. Dec 2004 B1
6907895 Johnson et al. Jun 2005 B2
6946011 Snyder Sep 2005 B2
6964236 Schucker Nov 2005 B2
7056390 Fratello Jun 2006 B2
7077892 Lee Jul 2006 B2
7314060 Chen et al. Jan 2008 B2
7331298 Barkdoll et al. Feb 2008 B2
7433743 Pistikopoulos et al. Oct 2008 B2
7497930 Barkdoll et al. Mar 2009 B2
7547377 Inamasu et al. Jun 2009 B2
7611609 Valia et al. Nov 2009 B1
7644711 Creel Jan 2010 B2
7722843 Srinivasachar May 2010 B1
7727307 Winkler Jun 2010 B2
7785447 Eatough et al. Aug 2010 B2
7803627 Hodges et al. Sep 2010 B2
7823401 Takeuchi et al. Nov 2010 B2
7827689 Crane Nov 2010 B2
7998316 Barkdoll Aug 2011 B2
8071060 Ukai et al. Dec 2011 B2
8079751 Kapila et al. Dec 2011 B2
8080088 Srinivasachar Dec 2011 B1
8146376 Williams et al. Apr 2012 B1
8152970 Barkdoll et al. Apr 2012 B2
8172930 Barkdoll May 2012 B2
8236142 Westbrook Aug 2012 B2
8266853 Bloom et al. Sep 2012 B2
8398935 Howell et al. Mar 2013 B2
8409405 Kim et al. Apr 2013 B2
8500881 Orita et al. Aug 2013 B2
8515508 Kawamura et al. Aug 2013 B2
8568568 Schuecker et al. Oct 2013 B2
8640635 Bloom et al. Feb 2014 B2
8647476 Kim et al. Feb 2014 B2
8800795 Hwang Aug 2014 B2
8956995 Masatsugu et al. Feb 2015 B2
8980063 Kim et al. Mar 2015 B2
9039869 Kim et al. May 2015 B2
9057023 Reichelt et al. Jun 2015 B2
9103234 Gu et al. Aug 2015 B2
9193915 West et al. Nov 2015 B2
9238778 Quanci et al. Jan 2016 B2
9243186 Quanci et al. Jan 2016 B2
9249357 Quanci et al. Feb 2016 B2
9273249 Quanci et al. Mar 2016 B2
9359554 Quanci et al. Jun 2016 B2
9404043 Kim Aug 2016 B2
9463980 Fukada et al. Oct 2016 B2
9498786 Pearson Nov 2016 B2
9580656 Quanci et al. Feb 2017 B2
9672499 Quanci et al. Jun 2017 B2
9708542 Quanci et al. Jul 2017 B2
9862888 Quanci et al. Jan 2018 B2
9976089 Quanci et al. May 2018 B2
10016714 Quanci et al. Jul 2018 B2
10041002 Quanci et al. Aug 2018 B2
10047295 Chun et al. Aug 2018 B2
10047296 Chun et al. Aug 2018 B2
10053627 Sarpen et al. Aug 2018 B2
10233392 Quanci et al. Mar 2019 B2
10308876 Quanci et al. Jun 2019 B2
10323192 Quanci et al. Jun 2019 B2
10526541 West et al. Jan 2020 B2
10578521 Dinakaran et al. Mar 2020 B1
10732621 Cella et al. Aug 2020 B2
10877007 Steele et al. Dec 2020 B2
11008517 Chun et al. May 2021 B2
20020170605 Shiraishi et al. Nov 2002 A1
20030014954 Ronning et al. Jan 2003 A1
20030015809 Carson Jan 2003 A1
20030057083 Eatough et al. Mar 2003 A1
20040220840 Bonissone et al. Nov 2004 A1
20050087767 Fitzgerald et al. Apr 2005 A1
20050096759 Benjamine et al. May 2005 A1
20060029532 Breen et al. Feb 2006 A1
20060102420 Huber et al. May 2006 A1
20060149407 Markham et al. Jul 2006 A1
20070087946 Quest et al. Apr 2007 A1
20070102278 Inamasu et al. May 2007 A1
20070116619 Taylor et al. May 2007 A1
20070251198 Witter Nov 2007 A1
20080028935 Andersson Feb 2008 A1
20080179165 Chen et al. Jul 2008 A1
20080250863 Moore Oct 2008 A1
20080257236 Green Oct 2008 A1
20080271985 Yamasaki Nov 2008 A1
20080289305 Girondi Nov 2008 A1
20090007785 Kimura et al. Jan 2009 A1
20090032385 Engle Feb 2009 A1
20090105852 Wintrich et al. Apr 2009 A1
20090152092 Kim et al. Jun 2009 A1
20090162269 Barger et al. Jun 2009 A1
20090217576 Kim et al. Sep 2009 A1
20090257932 Canari et al. Oct 2009 A1
20090283395 Hippe Nov 2009 A1
20100015564 Chun Jan 2010 A1
20100095521 Kartal et al. Apr 2010 A1
20100106310 Grohman Apr 2010 A1
20100113266 Abe et al. May 2010 A1
20100115912 Worley May 2010 A1
20100119425 Palmer May 2010 A1
20100181297 Whysail Jul 2010 A1
20100196597 Di Loreto Aug 2010 A1
20100276269 Schuecker et al. Nov 2010 A1
20100287871 Bloom et al. Nov 2010 A1
20100300867 Kim et al. Dec 2010 A1
20100314234 Knoch et al. Dec 2010 A1
20110000284 Kumar et al. Jan 2011 A1
20110014406 Coleman et al. Jan 2011 A1
20110048917 Kim et al. Mar 2011 A1
20110083314 Baird Apr 2011 A1
20110088600 McRae Apr 2011 A1
20110120852 Kim May 2011 A1
20110144406 Masatsugu et al. Jun 2011 A1
20110168482 Merchant et al. Jul 2011 A1
20110174301 Haydock et al. Jul 2011 A1
20110192395 Kim Aug 2011 A1
20110198206 Kim et al. Aug 2011 A1
20110223088 Chang et al. Sep 2011 A1
20110253521 Kim Oct 2011 A1
20110291827 Baldocchi et al. Dec 2011 A1
20110313218 Dana Dec 2011 A1
20110315538 Kim et al. Dec 2011 A1
20120024688 Barkdoll Feb 2012 A1
20120030998 Barkdoll et al. Feb 2012 A1
20120031076 Frank et al. Feb 2012 A1
20120125709 Merchant et al. May 2012 A1
20120152720 Reichelt et al. Jun 2012 A1
20120177541 Mutsuda et al. Jul 2012 A1
20120179421 Dasgupta Jul 2012 A1
20120180133 Ai-Harbi et al. Jul 2012 A1
20120228115 Westbrook Sep 2012 A1
20120247939 Kim et al. Oct 2012 A1
20120305380 Wang et al. Dec 2012 A1
20120312019 Rechtman Dec 2012 A1
20130020781 Kishikawa Jan 2013 A1
20130045149 Miller Feb 2013 A1
20130216717 Rago et al. Aug 2013 A1
20130220373 Kim Aug 2013 A1
20130306462 Kim et al. Nov 2013 A1
20140033917 Rodgers et al. Feb 2014 A1
20140039833 Sharpe, Jr. et al. Feb 2014 A1
20140061018 Sarpen et al. Mar 2014 A1
20140083836 Quanci et al. Mar 2014 A1
20140156584 Motukuri et al. Jun 2014 A1
20140182195 Quanci et al. Jul 2014 A1
20140182683 Quanci et al. Jul 2014 A1
20140183023 Quanci et al. Jul 2014 A1
20140208997 Alferyev et al. Jul 2014 A1
20140224123 Walters Aug 2014 A1
20140262139 Choi et al. Sep 2014 A1
20140262726 West et al. Sep 2014 A1
20150122629 Freimuth et al. May 2015 A1
20150143908 Cetinkaya May 2015 A1
20150175433 Micka et al. Jun 2015 A1
20150219530 Li et al. Aug 2015 A1
20150226499 Mikkelsen Aug 2015 A1
20150247092 Quanci et al. Sep 2015 A1
20150361346 West et al. Dec 2015 A1
20150361347 Ball et al. Dec 2015 A1
20160026193 Rhodes et al. Jan 2016 A1
20160048139 Samples et al. Feb 2016 A1
20160149944 Obermeirer et al. May 2016 A1
20160154171 Kato et al. Jun 2016 A1
20160186063 Quanci et al. Jun 2016 A1
20160186064 Quanci et al. Jun 2016 A1
20160186065 Quanci et al. Jun 2016 A1
20160222297 Choi et al. Aug 2016 A1
20160319197 Quanci et al. Nov 2016 A1
20160319198 Quanci et al. Nov 2016 A1
20170015908 Quanci et al. Jan 2017 A1
20170182447 Sappok et al. Jun 2017 A1
20170183569 Quanci et al. Jun 2017 A1
20170253803 West et al. Sep 2017 A1
20170261417 Zhang Sep 2017 A1
20170313943 Valdevies Nov 2017 A1
20170352243 Quanci et al. Dec 2017 A1
20180340122 Crum et al. Nov 2018 A1
20190099708 Quanci Apr 2019 A1
20190161682 Quanci et al. May 2019 A1
20190169503 Chun et al. Jun 2019 A1
20190317167 LaBorde et al. Oct 2019 A1
20190352568 Quanci et al. Nov 2019 A1
20200071190 Wiederin et al. Mar 2020 A1
20200139273 Badiei May 2020 A1
20200173679 O'Reilly et al. Jun 2020 A1
20210130697 Quanci et al. May 2021 A1
20210163821 Quanci et al. Jun 2021 A1
20210163822 Quanci et al. Jun 2021 A1
20210163823 Quanci et al. Jun 2021 A1
20210198579 Quanci et al. Jul 2021 A1
Foreign Referenced Citations (216)
Number Date Country
1172895 Aug 1984 CA
2775992 May 2011 CA
2822841 Jul 2012 CA
2822857 Jul 2012 CA
2905110 Sep 2014 CA
87212113 Jun 1988 CN
87107195 Jul 1988 CN
2064363 Oct 1990 CN
2139121 Jul 1993 CN
1092457 Sep 1994 CN
1255528 Jun 2000 CN
1270983 Oct 2000 CN
2528771 Feb 2002 CN
1358822 Jul 2002 CN
2521473 Nov 2002 CN
1468364 Jan 2004 CN
1527872 Sep 2004 CN
2668641 Jan 2005 CN
1957204 May 2007 CN
101037603 Sep 2007 CN
101058731 Oct 2007 CN
101157874 Apr 2008 CN
101211495 Jul 2008 CN
201121178 Sep 2008 CN
101395248 Mar 2009 CN
100510004 Jul 2009 CN
101486017 Jul 2009 CN
201264981 Jul 2009 CN
101497835 Aug 2009 CN
101509427 Aug 2009 CN
101886466 Nov 2010 CN
101910530 Dec 2010 CN
102072829 May 2011 CN
102155300 Aug 2011 CN
2509188 Nov 2011 CN
202226816 May 2012 CN
202265541 Jun 2012 CN
102584294 Jul 2012 CN
202415446 Sep 2012 CN
202470353 Oct 2012 CN
103399536 Nov 2013 CN
103468289 Dec 2013 CN
103913193 Jul 2014 CN
203981700 Dec 2014 CN
105137947 Dec 2015 CN
105189704 Dec 2015 CN
105264448 Jan 2016 CN
105467949 Apr 2016 CN
106661456 May 2017 CN
106687564 May 2017 CN
107445633 Dec 2017 CN
100500619 Jun 2020 CN
201729 Sep 1908 DE
212176 Jul 1909 DE
1212037 Mar 1966 DE
2720688 Nov 1978 DE
3231697 Jan 1984 DE
3328702 Feb 1984 DE
3315738 Mar 1984 DE
3329367 Nov 1984 DE
3407487 Jun 1985 DE
19545736 Jun 1997 DE
19803455 Aug 1999 DE
10122531 Nov 2002 DE
10154785 May 2003 DE
102005015301 Oct 2006 DE
102006004669 Aug 2007 DE
102006026521 Dec 2007 DE
102009031436 Jan 2011 DE
102011052785 Dec 2012 DE
0126399 Nov 1984 EP
0208490 Jan 1987 EP
0903393 Mar 1999 EP
1538503 Jun 2005 EP
2295129 Mar 2011 EP
2468837 Jun 2012 EP
2339664 Aug 1977 FR
2517802 Jun 1983 FR
2764978 Dec 1998 FR
364236 Jan 1932 GB
368649 Mar 1932 GB
441784 Jan 1936 GB
606340 Aug 1948 GB
611524 Nov 1948 GB
725865 Mar 1955 GB
871094 Jun 1961 GB
923205 May 1963 GB
S50148405 Nov 1975 JP
S5319301 Feb 1978 JP
54054101 Apr 1979 JP
S5453103 Apr 1979 JP
57051786 Mar 1982 JP
57051787 Mar 1982 JP
57083585 May 1982 JP
57090092 Jun 1982 JP
S57172978 Oct 1982 JP
58091788 May 1983 JP
59051978 Mar 1984 JP
59053589 Mar 1984 JP
59071388 Apr 1984 JP
59108083 Jun 1984 JP
59145281 Aug 1984 JP
60004588 Jan 1985 JP
61106690 May 1986 JP
62011794 Jan 1987 JP
62285980 Dec 1987 JP
01103694 Apr 1989 JP
01249886 Oct 1989 JP
H0319127 Mar 1991 JP
03197588 Aug 1991 JP
04159392 Jun 1992 JP
H04178494 Jun 1992 JP
H05230466 Sep 1993 JP
H0649450 Feb 1994 JP
H0654753 Jul 1994 JP
H06264062 Sep 1994 JP
H06299156 Oct 1994 JP
07188668 Jul 1995 JP
07216357 Aug 1995 JP
H07204432 Aug 1995 JP
H08104875 Apr 1996 JP
08127778 May 1996 JP
H10273672 Oct 1998 JP
H11-131074 May 1999 JP
H11256166 Sep 1999 JP
2000204373 Jul 2000 JP
2000219883 Aug 2000 JP
2001055576 Feb 2001 JP
2001200258 Jul 2001 JP
2002097472 Apr 2002 JP
2002106941 Apr 2002 JP
2003041258 Feb 2003 JP
2003051082 Feb 2003 JP
2003071313 Mar 2003 JP
2003292968 Oct 2003 JP
2003342581 Dec 2003 JP
2004169016 Jun 2004 JP
2005503448 Feb 2005 JP
2005135422 May 2005 JP
2005154597 Jun 2005 JP
2005263983 Sep 2005 JP
2005344085 Dec 2005 JP
2006188608 Jul 2006 JP
2007063420 Mar 2007 JP
4101226 Jun 2008 JP
2008231278 Oct 2008 JP
2009019106 Jan 2009 JP
2009073864 Apr 2009 JP
2009073865 Apr 2009 JP
2009135276 Jun 2009 JP
2009144121 Jul 2009 JP
2010229239 Oct 2010 JP
2010248389 Nov 2010 JP
2011504947 Feb 2011 JP
2011068733 Apr 2011 JP
2011102351 May 2011 JP
2012102302 May 2012 JP
2013006957 Jan 2013 JP
2013510910 Mar 2013 JP
2013189322 Sep 2013 JP
2014040502 Mar 2014 JP
2015094091 May 2015 JP
2016169897 Sep 2016 JP
1019960008754 Oct 1996 KR
19990017156 May 1999 KR
1019990054426 Jul 1999 KR
20000042375 Jul 2000 KR
100296700 Oct 2001 KR
20030012458 Feb 2003 KR
1020040020883 Mar 2004 KR
20040107204 Dec 2004 KR
1020050053861 Jun 2005 KR
20060132336 Dec 2006 KR
100737393 Jul 2007 KR
100797852 Jan 2008 KR
20080069170 Jul 2008 KR
20110010452 Feb 2011 KR
101314288 Apr 2011 KR
20120033091 Apr 2012 KR
20130050807 May 2013 KR
101318388 Oct 2013 KR
20140042526 Apr 2014 KR
20150011084 Jan 2015 KR
20170038102 Apr 2017 KR
20170058808 May 2017 KR
20170103857 Sep 2017 KR
101862491 May 2018 KR
2083532 Jul 1997 RU
2441898 Feb 2012 RU
2493233 Sep 2013 RU
1535880 Jan 1990 SU
201241166 Oct 2012 TW
201245431 Nov 2012 TW
50580 Oct 2002 UA
WO9012074 Oct 1990 WO
WO9945083 Sep 1999 WO
WO02062922 Aug 2002 WO
WO2005023649 Mar 2005 WO
WO2005031297 Apr 2005 WO
WO2005115583 Dec 2005 WO
WO2007103649 Sep 2007 WO
WO2008034424 Mar 2008 WO
WO2008105269 Sep 2008 WO
WO2011000447 Jan 2011 WO
WO2011126043 Oct 2011 WO
WO2012029979 Mar 2012 WO
WO2012031726 Mar 2012 WO
WO2013023872 Feb 2013 WO
WO2010107513 Sep 2013 WO
WO2014021909 Feb 2014 WO
WO2014043667 Mar 2014 WO
WO2014105064 Jul 2014 WO
WO2014153050 Sep 2014 WO
WO2016004106 Jan 2016 WO
WO2016033511 Mar 2016 WO
WO2016086322 Jun 2016 WO
Non-Patent Literature Citations (135)
Entry
U.S. Appl. No. 07/587,742, filed Sep. 25, 1990, now U.S. Pat. No. 5,114,542, titled Nonrecovery Coke Oven Battery and Method of Operation.
U.S. Appl. No. 07/878,904, filed May 6, 1992, now U.S. Pat. No. 5,318,671, titled Method of Operation of Nonrecovery Coke Oven Battery.
U.S. Appl. No. 09/783,195, filed Feb. 14, 2001, now U.S. Pat. No. 6,596,128, titled Coke Oven Flue Gas Sharing.
U.S. Appl. No. 07/886,804, filed May 22, 1992, now U.S. Pat. No. 5,228,955, titled High Strength Coke Oven Wall Having Gas Flues Therein.
U.S. Appl. No. 08/059,673, filed May 12, 1993, now U.S. Pat. No. 5,447,606, titled Method of and Apparatus for Capturing Coke Oven Charging Emissions.
U.S. Appl. No. 08/914,140, filed Aug. 19, 1997, now U.S. Pat. No. 5,928,476, titled Nonrecovery Coke Oven Door.
U.S. Appl. No. 09/680,187, filed Oct. 5, 2000, now U.S. Pat. No. 6,290,494, titled Method and Apparatus for Coal Coking.
U.S. Appl. No. 10/933,866, filed Sep. 3, 2004, now U.S. Pat. No. 7,331,298, titled Coke Oven Rotary Wedge Door Latch.
U.S. Appl. No. 11/424,566, filed Jun. 16, 2006, now U.S. Pat. No. 7,497,930, titled Method and Apparatus for Compacting Coal for a Coal Coking Process.
U.S. Appl. No. 12/405,269, filed Mar. 17, 2009, now U.S. Pat. No. 7,998,316, titled Flat Push Coke Wet Quenching Apparatus and Process.
U.S. Appl. No. 13/205,960, filed Aug. 9, 2011, now U.S. Pat. No. 9,321,965, titled Flat Push Coke Wet Quenching Apparatus and Process.
U.S. Appl. No. 11/367,236, filed Mar. 3, 2006, now U.S. Pat. No. 8,152,670, titled Method and Apparatus for Producing Coke.
U.S. Appl. No. 12/403,391, filed Mar. 13, 2009, now U.S. Pat. No. 8,172,930, titled Cleanable In Situ Spark Arrestor.
U.S. Appl. No. 12/849,192, filed Aug. 3, 2010, now U.S. Pat. No. 9,200,225, titled Method and Apparatus for Compacting Coal for a Coal Coking Process.
U.S. Appl. No. 13/631,215, filed Sep. 28, 2012, now U.S. Pat. No. 9,683,740, titled Methods for Handling Coal Processing Emissions and Associated Systems and Devices.
U.S. Appl. No. 13/730,692, filed Dec. 28, 2012, now U.S. Pat. No. 9,193,913, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle.
U.S. Appl. No. 14/921,723, filed Oct. 23, 2015, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle.
U.S. Appl. No. 14/655,204, filed Jun. 24, 2015, titled Systems and Methods for Removing Mercury From Emissions.
U.S. Appl. No. 16/000,516, filed Jun. 5, 2018, titled Systems and Methods for Removing Mercury From Emissions.
U.S. Appl. No. 13/830,971, filed Mar. 14, 2013, now U.S. Pat. No. 10,047,296, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods, now U.S. Pat. No. 10,047,295.
U.S. Appl. No. 16/026,363, filed Jul. 3, 2018, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods.
U.S. Appl. No. 13/730,796, filed Dec. 28, 2012, titled Methods and Systems for Improved Coke Quenching.
U.S. Appl. No. 13/730,598, filed Dec. 28, 2012, now U.S. Pat. No. 9,238,778, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 14/952,267, filed Nov. 25, 2015, now U.S. Pat. No. 9,862,888, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 15/830,320, filed Dec. 4, 2017, now U.S. Pat. No. 10,323,192, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 13/730,735, filed Dec. 28, 2012, now U.S. Pat. No. 9,273,249, titled Systems and Methods for Controlling Air Distribution in a Coke Oven.
U.S. Appl. No. 14/655,013, filed Jun. 23, 2015, titled Vent Stack Lids and Associated Systems and Methods.
U.S. Appl. No. 13/843,166, now U.S. Pat. No. 9,273,250, filed Mar. 15, 2013, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 15/014,547, filed Feb. 3, 2016, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 14/655,003, filed Jun. 23, 2015, titled Systems and Methods and Maintaining a Hot Car in a Coke Plant.
U.S. Appl. No. 13/829,588, now U.S. Pat. No. 9,193,915, filed Mar. 14, 2013, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 15/322,176, filed Dec. 27, 2016, now U.S. Appl. No. 10,526,541, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 15/511,036, filed Mar. 14, 2017, titled Coke Ovens Having Monolith Component Construction.
U.S. Appl. No. 16/704,689, filed Dec. 5, 2019, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 13/589,009, filed Aug. 17, 2012, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 15/139,568, filed Apr. 27, 2016, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 13/588,996, now U.S. Pat. No. 9,243,186, filed Aug. 17, 2012, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 14/959,450, filed Dec. 4, 2015, now U.S. Pat. No. 10,041,002, titled Coke Plant Including Exhaust Gas Sharing, now U.S. Pat. No. 10,041,002.
U.S. Appl. No. 16/047,198, filed Jul. 27, 2018, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 13/589,004, now U.S. Pat. No. 9,249,357, filed Aug. 17, 2012, titled Method and Apparatus for Volatile Matter Sharing in Stamp-Charged Coke Ovens.
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012, titled Exhaust Flow Modifier, Duct Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 15/281,891, filed Sep. 30, 2016, titled Exhaust Flow Modifier, Duck Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 13/598,394, now U.S. Pat. No. 9,169,439, filed Aug. 29, 2012, titled Method and Apparatus for Testing Coal Coking Properties.
U.S. Appl. No. 14/865,581, filed Sep. 25, 2015, now Pat. No. 10,053,627, titled Method and Apparatus for Testing Coal Coking Properties, now U.S. Pat. No. 10,053,627.
U.S. Appl. No. 14/839,384, filed Aug. 28, 2015, titled Coke Oven Charging System.
U.S. Appl. No. 15/443,246, now U.S. Pat. No. 9,976,089, filed Feb. 27, 2017, titled Coke Oven Charging System.
U.S. Appl. No. 14/587,670, filed Dec. 31, 2014, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices.
U.S. Appl. No. 14/984,489, filed Dec. 30, 2015, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/983,837, filed Dec. 30, 2015, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/986,281, filed Dec. 31, 2015, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/987,625, filed Jan. 4, 2016, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques.
U.S. Appl. No. 14/839,493, filed Aug. 28, 2015, now U.S. Pat. No. 10,233,392, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 16/251,352, filed Jan. 18, 2019, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 14/839,551, filed Aug. 28, 2015, now U.S. Pat. No. 10/308,876, titled Burn Profiles for Coke Operations.
U.S. Appl. No. 16/428,014, filed May 31, 2019, titled Improved Burn Profiles for Coke Operations.
U.S. Appl. No. 14/839,588, filed Aug. 28, 2015, now U.S. Pat. No. 9,708,542, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 15/392,942, filed Dec. 28, 2016, now U.S. Pat. No. 10,526,542, titled Method and System for Dynamically Charging a Coke Oven.
U.S. Appl. No. 16/735,103, filed Jan. 6, 2020, titled Method and System for Dynamically Charging a Coke Oven.
U.S. Appl. No. 15/614,525, filed Jun. 5, 2017, titled Methods and Systems for Automatically Generating a Remedial Action in an Industrial Facility.
U.S. Appl. No. 15/987,860, filed May 23, 2018, titled System and Method for Repairing a Coke Oven.
U.S. Appl. No. 16/729,053, filed Dec. 27, 2019, titled Oven Uptakes.
U.S. Appl. No. 16/729,036, filed Dec. 27, 2019, titled Systems and Methods for Treating a Surface of a Coke Plant.
U.S. Appl. No. 16/729,201, filed Dec. 27, 2019, titled Gaseous Tracer Leak Detection.
U.S. Appl. No. 16/729,122, filed Dec. 27, 2019, titled Methods and Systems for Providing Corrosion Resistant Surfaces in Contaminant Treatment Systems.
U.S. Appl. No. 16/729,129, filed Dec. 27, 2019, titled Coke Plant Tunnel Repair and Flexible Joints.
U.S. Appl. No. 16/729,170, filed Dec. 27, 2019, titled Coke Plant Tunnel Repair and Anchor Distribution.
U.S. Appl. No. 16/729,157, filed Dec. 27, 2019, titled Particulate Detection for Industrial Facilities, and Associated Systems and Methods.
U.S. Appl. No. 16/729,057, filed Dec. 27, 2019, titled Decarbonization of Coke Ovens and Associated Systems and Methods.
U.S. Appl. No. 16/729,212, filed Dec. 27, 2019, titled Heat Recovery Oven Foundation.
U.S. Appl. No. 16/729,219, filed Dec. 27, 2019, titled Spring-Loaded Heat Recovery Oven System and Method.
U.S. Appl. No. 16/428,014, filed May 31, 2019, Quanci et al.
U.S. Appl. No. 16/704,689, filed Dec. 5, 2019, West et al.
U.S. Appl. No. 16/729,036, filed Dec. 27, 2019, Quanci et al.
U.S. Appl. No. 16/729,053, filed Dec. 27, 2019, Quanci et at.
U.S. Appl. No. 16/729,057, filed Dec. 27, 2019, Quanci et at.
U.S. Appl. No. 16/729,122, filed Dec. 27, 2019, Quanci et al.
U.S. Appl. No. 16/729,129, filed Dec. 27, 2019, Quanci et at.
U.S. Appl. No. 16/729,157, filed Dec. 27, 2019, Quanci et at.
U.S. Appl. No. 16/729,170, filed Dec. 27, 2019, Quanci et at.
U.S. Appl. No. 16/729,201, filed Dec. 27, 2019, Quanci et al.
U.S. Appl. No. 16/729,212, filed Dec. 27, 2019, Quanci et at.
U.S. Appl. No. 16/729,219, filed Dec. 27, 2019, Quanci et at.
U.S. Appl. No. 16/735,103, filed Jan. 6, 2020, Quanci et al.
ASTM D5341-99(2010)e1, Standard Test Method for Measuring Coke Reactivity Index (CRI) and Coke Strength After Reaction (CSR), ASTM International, West Conshohocken, PA, 2010.
Astrom, et al., “Feedback Systems: An Introduction for Scientists and Engineers,” Sep. 16, 2006, available on line at http://people/duke.edu/-hpgavin/SystemID/References/Astrom-Feedback-2006.pdf ; 404 pages.
Basset et al., “Calculation of steady flow pressure loss coefficients for pipe junctions,” Proc Instn Mech Engrs., vol. 215, Part C, p. 861-881 IMechIE 2001.
Beckman et al., “Possibilities and limits of cutting back coking plant output,” Stahl Und Eisen, Verlag Stahleisen, Dusseldorf, DE, vol. 130, No. 8, Aug. 16, 2010, pp. 57-67.
Bloom, et al., “Modular cast block—The future of coke oven repairs,” Iron & Steel Technol, AIST, Warrendale, PA, vol. 4, No. 3, Mar. 1, 2007, pp. 61-64.
Boyes, Walt. (2003), Instrumentation Reference Book (3rd Edition)—34.7.4.6 Infrared and Thermal Cameras, Elsevier. Online version available at: https://app.knovel.com/hotlink/pdf/id:kt004QMGV6/instrumentation-reference-2/ditigal-video.
Clean coke process: process development studies by USS Engineers and Consultants, Inc., Wisconsin Tech Search, request date Oct. 5, 2011, 17 pages.
“Conveyor Chain Designer Guild”, Mar. 27, 2014 (date obtained from wayback machine), Renold.com, Section 4, available online at: http://www.renold/com/upload/renoldswitzerland/conveyor_chain_-_designer_guide.pdf.
Costa, et al., “Edge Effects on the Flow Characteristics in a 90 deg Tee Junction,” Transactions of the ASME, Nov. 2006, vol. 128, pp. 1204-1217.
Crelling, et al., “Effects of Weathered Coal on Coking Properties and Coke Quality”, Fuel, 1979, vol. 58, Issue 7, pp. 542-546.
Database WPI, Week 199115, Thomson Scientific, Lond, GB; AN 1991-107552.
Diez, et al., “Coal for Metallurgical Coke Production: Predictions of Coke Quality and Future Requirements for Cokemaking”, International Journal of Coal Geology, 2002, vol. 50, Issue 1-4, pp. 389-412.
Industrial Furnace Design Handbook, Editor-in-Chief: First Design Institute of First Ministry of Machinery Industry, Beijing: Mechanical Industry Press, pp. 180-183, Oct. 1981.
Joseph, B., “A tutorial on inferential control and its applications,” Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), San Diego, CA, 1999, pp. 3106-3118 vol. 5.
JP 03-197588, Inoue Keizo et al., Method and Equipment for Boring Degassing Hole in Coal Charge in Coke Oven, Japanese Patent (Abstract Only) Aug. 28, 1991.
JP 04-159392, Inoue Keizo et al., Method and Equipment for Opening Hole for Degassing of Coal Charge in Coke Oven, Japanese Patent (Abstract Only) Jun. 2, 1992.
Kerlin, Thomas (1999), Practical Thermocouple Thermometry—1.1 The Thermocouple. ISA. Online version available at https:app.knovel.com/pdf/id:kt007XPTM3/practical-thermocouple/the-thermocouple.
Kochanski et al., “Overview of Uhde Heat Recovery Cokemaking Technology,” AISTech Iron and Steel Technology Conference Proceedings, Association for Iron and Steel Technology, U.S., vol. 1, Jan. 1, 2005, pp. 25-32.
Knoerzer et al. “Jewell-Thompson Non-Recovery Cokemaking”, Steel Times, Fuel & Metallurgical Journals LTD. London, GB, vol. 221, No. 4, Apr. 1, 1993, pp. 172-173, 184.
Madias, et al., “A review on stamped charging of coals” (2013). Available at https://www.researchgate.net/publication/263887759_A_review_on_stamped_charging_of_coals.
Metallurgical Coke MSDS, ArcelorMittal, May 30, 2011, available online at http://dofasco.arcelormittal.com/-/media/Files/A/Arcelormittal-Canada/material-safety/metallurgical-coke.pdf.
“Middletown Coke Company HRSG Maintenance BACT Analysis Option 1—Individual Spray Quenches Sun Heat Recovery Coke Facility Process Flow Diagram Middletown Coke Company 100 Oven Case #1—24.5 VM”, (Sep. 1, 2009), URL: http://web.archive.org/web/20090901042738/http://epa.ohio.gov/portals/27/transfer/ptiApplicati on/mcc/new/262504.pdf, (Feb. 12, 2016), XP055249803 [X] 1-13 * p. 7 * * pp. 8-11 *.
Practical Technical Manual of Refractories, Baoyu Hu, etc., Beijing: Metallurgical Industry Press, Chapter 6; 2004, 6-30.
Refractories for Ironmaking and Steelmaking: A History of Battles over High Temperatures; Kyoshi Sugita (Japan, Shaolin Zhang), 1995, p. 160, 2004, 2-29.
“Resources and Utilization of Coking Coal in China,” Mingxin Shen ed., Chemical Industry Press, first edition, Jan. 2007, pp. 242-243, 247.
Rose, Harold J., “The Selection of Coals for the Manufacture of Coke,” American Institute of Mining and Metallurgical Engineers, Feb. 1926, 8 pages.
Waddell, et al., “Heat-Recovery Cokemaking Presentation,” Jan. 1999, pp. 1-25.
Walker, et al., “Sun Coke Company's heat recovery cokemaking technology high coke quality and low environmental impact”, Revue De Metallurgie—Cahiers D'Informations Techniques, Revue De Metallurgie. Paris, FR, (Mar. 1, 2003), vol. 100, No. 3, ISSN 0035-1563, p. 23.
Westbrook, “Heat-Recovery Cokemaking at Sun Coke,” AISE Steel Technology, Pittsburg, PA, vol. 76, No. 1, Jan. 1999, pp. 25-28.
“What is dead-band control,” forum post by user “wireaddict” on AllAboutCircuits.com message board, Feb. 8, 2007, accessed Oct. 24, 2018 at https:/forum.allaboutcircuits.com/threads/what-is-dead-band-control.4728/; 8 pages.
Yu et al., “Coke Oven Production Technology,” Lianoning Science and Technology Press, first edition, Apr. 2014, pp. 356-358.
U.S. Appl. No. 17/155,818, filed Jan. 22, 2021, Choi et al.
U.S. Appl. No. 17/190,720, filed Mar. 3, 2021, West et al.
U.S. Appl. No. 17/191,119, filed Mar. 3, 2021, Quanci et al.
U.S. Appl. No. 17/222,886, filed Apr. 5, 2021, Quanci et al.
U.S. Appl. No. 17/228,469, filed Apr. 12, 2021, Quanci et al.
U.S. Appl. No. 17/228,501, filed Apr. 12, 2021, Quanci et al.
U.S. Appl. No. 17/306,895, filed May 3, 2021, Quanci et al.
U.S. Appl. No. 17/321,857, filed May 17, 2021, Quanci et al.
U.S. Appl. No. 17/320,343, filed May 24, 2021, Quanci et al.
U.S. Appl. No. 16/828,448, filed Mar. 24, 2020, Quanci et al.
U.S. Appl. No. 16/845,530, filed Apr. 10, 2020, Quanci et al.
U.S. Appl. No. 16/897,957, filed Jun. 10, 2020, Ball et al.
U.S. Appl. No. 17/076,563, filed Oct. 21, 2020, Crum et al.
International Search Report and Written Opinion for PCT/US2019/068808; dated Apr. 28, 2020; 13 pages.
U.S. Appl. No. 17/388,874, filed Jul. 29, 2021, Quanci et al.
U.S. Appl. No. 17/459,380, filed Aug. 27, 2021, Quanci et al.
U.S. Appl. No. 17/471,491, filed Sep. 10, 2021, West et al.
U.S. Appl. No. 17/521,061, filed Nov. 8, 2021, Crum et al.
U.S. Appl. No. 17/526,477, filed Nov. 15, 2021, Quanci et al.
U.S. Appl. No. 17/532,058, filed Nov. 22, 2021, Quanci et al.
U.S. Appl. No. 17/584,672, filed Jan. 26, 2022, Quanci et al.
Related Publications (1)
Number Date Country
20200208833 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62787116 Dec 2018 US