Field of the Invention
The present disclosure generally relates to the treatment of heart defects by the administration of electrical therapy and, more particularly, to a defibrillator for imparting the electrical therapy to the heart.
Description of Related Art
Technology is available for correcting excessively slow heart rates (bradycardia) using implantable devices, commonly referred to as pacemakers, which deliver microjoule electrical pulses to a slowly beating heart in order to speed the heart rate up to an acceptable level. Also, it is well known to deliver high energy shocks (e.g., 180 to 360 joules) via external paddles applied to the chest wall in order to correct excessively fast heart rates, and prevent the possible fatal outcome of ventricular fibrillation or certain ventricular tachycardias. Bradycardia, ventricular fibrillation, and ventricular tachycardia are all electrical malfunctions (arrhythmias) of the heart. Each may lead to death within minutes unless corrected by the appropriate electrical stimulation.
One of the most deadly forms of heart arrythmias is ventricular fibrillation, which occurs when the normal, regular electrical impulses are replaced by irregular and rapid impulses, causing the heart muscle to stop normal contractions and to begin to quiver. Normal blood flow ceases, and organ damage or death may result in minutes if normal heart contractions are not restored. Although frequently not noticeable to the victim, ventricular fibrillation is often preceded by ventricular tachycardia, which is a regular but fast rhythm of the heart. Because the victim has no noticeable warning of the impending fibrillation, death often occurs before the necessary medical assistance can arrive.
Because time delays in applying the corrective electrical treatment may result in death, implantable pacemakers and defibrillators have significantly improved the ability to treat these otherwise life-threatening conditions. Being implanted within the patient, the device continuously monitors the patient's heart for treatable arrhythmias and, when such is detected, the device applies corrective electrical pulses directly to the heart.
Normal heart function often can be restored to a person suffering ventricular fibrillation or ventricular tachycardia by a procedure known as cardioversion, the synchronized application of electrical therapy to the heart muscle. Pacemakers and defibrillators that apply corrective electrical pulses externally to the patient's chest wall also are used to correct such life-threatening arrhythmias, but suffer from a drawback insofar as it may not be possible to apply the device in time during an acute arrhythmic emergency to save the patient's life. Such treatment is needed within a few minutes to be effective.
Consequently, when a patient is deemed at high risk of death from such arrhythmias, electrical devices often are implanted so as to be readily available when treatment is needed. However, patients that have recently had a heart attack or are awaiting such an implantable device, may be kept in a hospital where corrective electrical therapy is generally close at hand. Long-term hospitalization is frequently impractical due to its high cost, or due to the need for patients to engage in normal daily activities.
Defibrillators have been developed for patients that have recently experienced a heart attack, that are susceptible to heart arrhythmias and are at temporary risk of sudden death, and that are awaiting an implantable device. However, current wearable defibrillators may lack the required size and durability to provide maximum comfort and usability to the patient.
Accordingly, a need exists for a portable, wearable defibrillator that is small, lightweight, and extremely durable.
According to one aspect of the invention, a system is provided that comprises: at least one identification device associated with a wearable medical therapy device and configured to have information read therefrom and written thereto; at least one controller operatively connected to the at least one identification device and configured to at least one of retrieve the information from the at least one identification device and write the information to the at least one identification device; and at least one device positioned externally from the wearable medical therapy device and configured to interrogate the at least one identification device to at least one of obtain the information from the at least one identification device and write additional information to the at least one identification device.
The at least one identification device may be a radio frequency identification (RFID) module comprising at least an RFID transceiver and antenna. The antenna may be spaced from a backup battery within a housing of the wearable medical device. The wearable medical therapy device may be a wearable defibrillator. The at least one identification device may have information identifying the wearable medical therapy device stored thereon that can be accessed by the at least one device positioned externally from the wearable medical therapy device such that the wearable medical therapy device can be identified thereby.
The at least one controller may be configured to write problems that occur with the wearable medical therapy device during patient field use to the at least one identification device, and the at least one identification device may be interrogated by the at least one device positioned externally from the wearable medical therapy device to obtain the problems that have been written to the at least one identification device such that the problems can be diagnosed by service personnel.
The additional information that is written to the at least one identification device may comprise shipping information, such as, but not limited to, shipping boxes, software versions, board revisions, and assembly revisions.
The information written to the at least one identification device by the at least one controller may comprise patient parameters of a patient utilizing the wearable medical therapy device. The at least one device positioned externally from the wearable medical therapy device may be configured to interrogate the at least one identification device to obtain the patient parameters therefrom. The at least one device positioned externally from the wearable medical therapy device may be configured to communicate with at least one second identification device associated with a second wearable medical therapy device to write the patient parameters to the at least one second identification device. At least one controller of the second wearable medical therapy device may be configured to read the patient parameters from the at least one second identification device and store the patient parameters.
The additional information written to the at least one identification device by the at least one device positioned externally from the wearable medical therapy device may be a command to at least one of enter into a test mode and initiate a self-test. The at least one controller may be configured to read the command from the at least one identification device and at least one of enter into the test mode and begin the self-test.
The at least one identification device may be a storage device having reading and writing capabilities and wireless communication capabilities or wired communication capabilities. Examples of storage devices having wireless communication capabilities include, but are not limited to, a cellular-ready storage device, a Wi-Fi-ready storage device, and a short-range wireless communication protocol-ready storage device. Examples of storage devices having wired communication capabilities include, but are not limited to, a flash drive, a USB device, a mini-USB device, a SD card, a miniSD card, and a microSD card.
According to another aspect of the invention, provided is a method for utilizing at least one identification configured to have information read therefrom and written thereto associated with a wearable medical therapy device. The method comprises: at least one of retrieving the information from the at least one identification device and writing the information to the identification device by at least one controller operatively connected to the at least one identification device; and interrogating the at least one identification device by at least one device positioned externally from the wearable medical therapy device to at least one of obtain the information from the at least one identification device and write additional information to the at least one identification device.
According to yet another aspect of the invention, provided is a method for servicing a wearable medical therapy device. The method comprises: configuring at least one identification device associated with the wearable medical therapy device to have problems that occur with the wearable medical therapy device during patient field use written thereto by at least one controller operatively connected to the at least one identification device; and interrogating the at least one identification device by at least one device positioned externally from the wearable medical therapy device to obtain the written problems for diagnosis of the problems by service personnel.
According to still another aspect of the invention, provided is a method for cloning patient parameters from a first wearable medical therapy device to a second wearable medical therapy device. The method comprises: configuring at least one first identification device associated with the first wearable medical therapy device to have patient parameters of a patient utilizing the first wearable medical therapy device written thereto by at least one first controller operatively connected to the at least one first identification device; interrogating the at least one first identification device by at least one device positioned externally from the first wearable medical therapy device to obtain the written patient parameters; establishing communication between the at least one device positioned externally from the first wearable medical therapy device and at least one second identification device associated with the second wearable medical therapy device; rewriting the written patient parameters to the at least one second identification device; reading the rewritten patient parameters by at least one second controller operatively connected to the at least one second identification device; and storing the read patient parameters in a memory operatively connected to the at least one second controller.
These and other features and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structures and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention. As used in the specification and the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
As used herein, spatial or directional terms, such as “inner”, “left”, “right”, “up”, “down”, “horizontal”, “vertical” and the like, relate to the invention as it is described herein. However, it is to be understood that the invention can assume various alternative orientations and, accordingly, such terms are not to be considered as limiting. For the purposes of this specification, unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, dimensions, physical characteristics, and so forth used in the specification and claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
Also, it should be understood that any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of “1 to 10” is intended to include any and all sub-ranges between and including the recited minimum value of 1 and the recited maximum value of 10, that is, all subranges beginning with a minimum value equal to or greater than 1 and ending with a maximum value equal to or less than 10, and all subranges in between, e.g., 1 to 6.3, or 5.5 to 10, or 2.7 to 6.1.
With reference to
The wearable defibrillator 100 may comprise a monitor unit 1 positioned within an external housing 3 that is configured to be worn by a patient and connected to a therapeutic or treatment device, such as an upper body harness or vest that includes ECG electrodes 101a, 101b, 101c, and 101d and therapy pads 103. The ECG electrodes 101a, 101b, 101c, and 101d and therapy pads 103 of the harness or vest are operatively connected to the monitor unit 1 via a trunk cable 105 or other suitable connection mechanism. Non-limiting examples of suitable wearable defibrillators are disclosed in U.S. Pat. Nos. 4,928,690; 5,078,134; 5,741,306; 5,944,669; 6,065,154; 6,253,099; 6,280,461; 6,681,003; 8,271,082; and 8,369,944; the entirety of all of which are incorporated by reference herein. The upper body harness or vest may also include other sensing electrodes (not shown) such as heart beat sensors, accelerometers, and sensors capable of measuring blood pressure, heart rate, thoracic impedance, respiration rate, heart sounds, acoustic sensors, audio transducers, and the activity level of the subject.
Electrodes 101a, 101b, 101c, and 101d are removably attached to the patient when the wearable defibrillator 100 is worn by the patient. The electrodes 101a, 101b, 101c, and 101d form part of an electrode assembly 107. According to one example, the electrode assembly 107 receives ECG signals from a front-to-back channel and from a side-to-side channel. The front-to-back (FB) channel includes an electrode 101a, 101b, 101c, and 101d positioned on the chest of the patient and another electrode 101a, 101b, 101c, and 101d positioned on the back of the patient. The side-to-side (SS) channel includes an electrode 101a, 101b, 101c, and 101d positioned on the left side of the chest and another electrode 101a, 101b, 101c, and 101d positioned on the right side of the patient.
The monitor unit 1 is operatively connected to the therapy pads 103, at least one tactile stimulator 109, and electrode assembly 107. The therapy pads 103 are removably connected to the patient when the defibrillator 100 is worn. Optionally, the monitor unit 1 may be operatively connected to other electrodes/devices which provide data to the controller regarding other physiological conditions or parameters of the patient.
While a trunk cable 105 may be used to connect the electrode assembly 107 to the monitor unit 1, other types of cables or other connection devices to operatively connect the electrode assembly 107 to the monitor unit 1 may also be used. Wiring or other connection devices may be used to connect at least one portion of the electrode assembly 107 to the electrodes 101a, 101b, 101c, and 101d. In addition, the monitor unit 1 may alternatively be operatively connected to one or more of the electrodes 101a, 101b, 101c, and 101d, therapy pads 103, electrode assembly 107, and tactile stimulator 109 by a wireless connection or a combination of wireless and wired connections.
In some embodiments, the monitor unit 1 may include, without limitation, one or more processors, one or more controllers, and/or one or more programs or other software stored in memory operatively connected to one or more processors, as will be discussed in greater detail hereinafter.
With reference to
In some embodiments, the external housing 3 of the monitor unit 1 comprises a front cover 7, a rear cover 9, and a top cover 11. A rechargeable and removable battery pack 13 is positioned within a battery well 15 provided in the rear cover 9. The battery pack 13 is secured to the rear cover 9 by a battery latching mechanism 17. The battery latching mechanism 17 is positioned at the top left corner of the battery pack 13 to allow for the battery pack 13 to be removed from the external housing 3 with one rocking motion. This rocking motion increases usability for patients with decreased dexterity, such as a patient with arthritis. The battery pack 13 has sufficient capacity to administer one or more therapeutic shocks to the therapeutic electrodes as well as provide power to all of the internal components of the defibrillator 1.
With reference to
The battery pack 13 may include a body 201 having a front side 203, rear side 205, top side 207, and bottom side 209. Desirably, the body 201 of the battery pack 13 has a substantially parallelepiped shape and is manufactured from plastic or any other suitable material. The latching mechanism 17 may be positioned at one of the upper corners of the top side 207 of the body 201 and is configured to be placed in an extended position to grasp a portion 211 (see
The latching mechanism 17 of the battery pack 13 desirably comprises a single latch that is automatically engaged when the battery is slid into position, and deactivated with a downward pushing action of a single finger. With specific reference to
The battery pack 13 also includes a biasing element 229 (see
The battery pack 13 houses rechargeable cells. Two battery packs 13 may be supplied to a patient to provide continuous device use while one is charging. When fully charged, the battery pack 13 may provide power to monitor the patient for a minimum of 24 hours at an ambient temperature of 20° C. (with the patient wearing the device), with sufficient reserve capacity to deliver at least one 5-pulse defibrillating sequence at the maximum joule setting (150 joules) (−5%/+5% into a 50 ohm resistive load). The battery pack 13 also provides sufficient capacity to support full energy pacing for 60 minutes at the end of a 24 hour monitoring period.
With specific reference to
The battery pack 13 may be removed from the battery well 15 by pressing on the latching mechanism 17 to move the latching mechanism 17 into the depressed position, thereby disengaging the portion 211 of the upper edge 213 of the battery well 15 from the channel 223 of the latching mechanism 17, and rotating the battery pack 13 away from the battery well 15. Accordingly, removal of the battery pack 13 can be accomplished with one hand.
As mentioned hereinabove, the external housing 3 of the monitor unit 1 is configured to be worn by the patient and is, accordingly, sized such that it does not interfere with the patient's movement and activity. More particularly, the external housing 3 may have a length of about 5 to 6 inches, a height of about 4 to 5 inches, and a width of about 1 to 2 inches. Desirably, the weight of the monitor unit 1 is 1.8 pounds.
Returning to
In some embodiments, the monitor unit 1 further comprises an audio system having a speaker port 21 and a microphone port 23 positioned on the external housing 3. The speaker port 21 is desirably positioned at least 2.5 inches away from the microphone port 23 to minimize feedback. In addition, the speaker port 21 and the microphone port 23 can be located on the top cover 11 of the external housing 3 in order to face the patient for better orientation and functionality. The speaker port 21 is also positioned on an upper corner of the external housing 3 and wraps from the top of the external housing 3 to a side thereof. This allows the speaker port 21 to be more difficult to block if the top of the monitor unit 1 is obstructed. In addition, the speaker is mounted in a reverberator which uses a specific volume of air to artificially amplify audio at specific frequencies. The outlet of the reverberator is the speaker port 21. In one non-limiting embodiment, the reverberator is tuned to amplify the alarm frequencies at 2.272 kHz and 2.5 kHz in order to get to 95 dB at 1 m for the alarm. The microphone port 23 and the speaker port 21 are covered by a mesh or other suitable covering to prevent the ingress of fluid and/or particles into the external housing 3.
The external housing 3 of the monitor unit 1 also includes a display screen 25 for providing information to a patient and for providing a user input device to the patient. The display screen 25 provides information such as, but not limited to, time, battery life, volume, signal strength, device status, and any other useful information to the patient. In addition, the display screen 25 also allows the user to access various data regarding the monitor unit 1 such as, but not limited to, the settings of the device, data stored by the device, and various other data accumulated by the monitor unit 1. The display screen 25 further acts as a communication interface to allow the patient to send and receive data.
The display screen 25 may be any suitable capacitive touch screen device. For instance, the display screen 25 may include a 1.1 mm thick Dragontrail™ lens, manufactured by Asahi Glass Co. of Tokyo, JP, which supports a projected capacitive touch screen having a 4.3 inch LCD on the reverse side. A glass display may be provided to cover the entire front of the monitor unit 1, except for the response buttons 19, to provide the monitor unit 1 with a smooth, finished look and feel.
In operation and, as will be discussed in greater detail hereinafter, if the monitor unit 1 detects an abnormal condition, the monitor unit 1 is configured to stimulate the patient for a predetermined time period. The stimulus may be any stimulus perceptible by the patient. Examples of stimuli that the monitor unit 1 may produce include visual (via the display screen 25 and/or indicator LEDs discussed in greater detail hereinafter), audio (via the speaker port 21), tactile stimulation (via tactile stimulator 109) or a mild stimulating alarm shock (via the therapy pads 103). The response buttons 19 are provided to allow a user to turn off the stimulus by pressing both of the response buttons 19 within the predetermined time period. By pressing both of the response buttons 19, the stimulus is ceased and no further action is taken by the monitor unit 1. If the patient does not press both of the response buttons 19 within the predetermined time period, the monitor unit 1 administers one or more therapeutic shocks to the therapy pads 103.
With reference to
The distributed printed circuit board 41 comprises a discharge module 43, an energy storage module 45, a controller module 47, and, optionally, a communication module 49. The discharge module 43 is disposed on a first portion 51 of the distributed printed circuit board 41 and is for selectively delivering an energy pulse to the patient. The energy storage module 45 is disposed on a second portion 53 of the distributed printed circuit board 41. The energy storage module 45 is operatively connected to the discharge module 43 by a first flexible member 55. The controller module 47 is provided to control the delivery of the energy pulse to the patient and is disposed on a third portion 57 of the distributed printed circuit board 41. The controller module 47 is operatively connected to the energy storage module 45 by a second flexible member 59. The communication module 49 can be disposed on a fourth portion 61 of the distributed printed circuit board 41 and can be operatively connected to the controller module 47 by a third flexible member 63.
The discharge module 43 and the energy storage module 45 can be considered high-voltage modules as each of these modules requires a high voltage for operation. These modules 43, 45 are provided on a high-voltage portion 46 of the distributed printed circuit board 41. The controller module 47 and the communication module 49 can be considered low-voltage modules as each of these modules requires a low voltage for operation. These modules 47, 49 are provided on a low-voltage portion 48 of the distributed printed circuit board 41. The flexible members 55, 59, and 63 (or connectors) are positioned such that, when the distributed printed circuit board 41 is folded to be positioned within the external housing 3, as discussed in greater detail hereinafter, the spacing between the high-voltage modules and the low-voltage modules provides at least one of isolation of high-voltage from low-voltage or minimizes interference, such as electromagnetic interference, between the modules. The spacing provided between the high-voltage modules and the low-voltage modules is desirably at least 0.350 inches. In some embodiments, one or more of the members 55, 59, and 63 can include a flexible portion of the distributed printed circuit board 41. In some embodiments, one or more of the members 55, 59, and 63 can be a separate connector, for example, a wire, cable, flex connector such as a ZIF (zero insertion force) connector, or any suitable electrical connector known to those skilled in the art.
The first portion 51 of the distributed printed circuit board 41 that encompasses the discharge module 43 may be a long, narrow printed circuit board. It has a length in the range of about 4 to 6 inches and a width in the range of about 0.5 to 1.5 inches. This configuration of the first portion 51 allows it to be fit securely within a bottom portion of the external housing 3 substantially perpendicular to the front cover 7 and the rear cover 9. The first portion 51 of the distributed printed circuit board 41 comprises a plurality of high voltage switches 65, such as Insulated Gate Bipolar Transistors (IGBTs), Field Effect Transistors (FETs), transistors, or Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs). Desirably, IGBTs are used as the high voltage switch. The discharge module 43 is configured to selectively deliver an energy pulse stored in the energy storage module 45 to the patient based on a signal from the controller module 47. The energy pulse is sent from the discharge module 43 through the port 5 to the therapy pads 103.
The second portion 53 of the distributed printed circuit board 41 that encompasses the energy storage module 45 is also a long, narrow printed circuit board. It has a length in the range of about 5 to 6 inches and a width in the range of about 0.5 to 1.5 inches. This configuration of the second portion 53 allows it to be fit securely within a bottom portion of the external housing 3 substantially perpendicular to the front cover 7 and the rear cover 9 and substantially parallel to the first portion 51. The second portion 53 of the distributed printed circuit board 41 includes a capacitive device mounted thereon, such as a bank of capacitors 67. Each of the capacitors in the bank of capacitors 67 may have a capacitance value of greater than 300 microfarads, such as 650 microfarads.
The second portion 53 further comprises the contact mechanism 233 for the battery pack 13 mounted thereon. The contact mechanism 233 is configured to extend through an opening 71 (see
The first flexible member 55 is folded such that the first portion 51 of the distributed printed circuit board 41 is positioned substantially parallel to the second portion 53 of the distributed printed circuit board 41. The first flexible member 55 has a sufficient length to prevent the first portion 51 from colliding with the second portion 53 when the distributed circuit board 41 is folded into the folded configuration (see
The third portion 57 of the distributed printed circuit board 41 that encompasses the controller module 47 generally has a length in the range of about 3.5 to 4.5 inches and a width in the range of about 2.5 to 3.5 inches. This configuration of the third portion 57 allows it to be fit securely within a central portion of the external housing 3 substantially parallel to the front cover 7 and the rear cover 9 and substantially perpendicular to the first portion 51 and the second portion 53. The second flexible member 59 extending between the second portion 53 and the third portion 57 of the distributed printed circuit board 41 is folded such that the third portion 57 is positioned substantially perpendicular to the first portion 51 and the second portion 53 of the distributed printed circuit board 41. The second flexible member 59 is folded such that it has a substantially L-shaped cross-section. With reference to
The controller module 47 may comprise a microprocessor and memory device 75 and an SD card holder 77 mounted on a separate printed circuit board 79 that is operatively connected to the third portion 57 of the distributed printed circuit board 41. The memory device is desirably flash memory. These elements can be operatively connected to the separate printed circuit board 79 by ball grid arrays (BGAs) that are located so as to be minimally affected by mechanical stress that can be transmitted through the monitor unit 1, for example, such as upon impact of a portion of the housing of the monitor unit 1 with a hard surface. The BGAs can be located upon a separate printed circuit board 79 and/or upon a portion of the distributed printed circuit board 41 that is not susceptible to excess flexing, for example, on the third portion 57 of the distributed printed circuit board 41. If the BGAs that control the memory were placed indiscriminately on the distributed printed circuit board 41, they would be more susceptible to flexing, ultimately breaking the brittle solder balls that make up the base of the component. By moving the BGAs to the separate printed circuit board 79, or by selecting a portion of the distributed printed circuit board 41 that is not susceptible to excess flexing, for example, on the third portion 57 of the distributed printed circuit board 41, an extra layer of protection for the BGAs is provided since they are isolated from the bending of the distributed printed circuit board 41 during impacts or other mechanical loads, making the design more rugged, and increasing longevity.
The BGAs can be secured to the separate printed circuit board 79 or the third portion 57 of the distributed printed circuit board 41 by a suitable adhesive, for example, by being under-filled with an epoxy material, such as Loctite 3536 epoxy, available from Henkel AG & Co. KGaA of Dusseldorf, Germany. This process allows for the epoxy material to flow under the BGAs and around the solder balls that make the electro-mechanical connections to the separate printed circuit board 79 to form a rigid and secure support for the BGAs. Once under-filled, the BGAs are subjected to stress shielding, which further protects them from flexing.
Finally, finite element analysis (FEA) was utilized to estimate the flexure of the boards during drop simulations. To set up the analysis, a fixed boundary was established on the side of the external housing 3 impacting the ground, and then a 400G gravity load was applied to the system in the direction of a fall. This is a quasi-static estimation of a dynamic load, but is generally accurate for a 40 foot drop. Once the external housing 3 and distributed printed circuit board 41 are assembled, and the simulation run, the results of the analysis illustrated the area on third portion 57 of the distributed printed circuit board 41 where the BGAs of the separate printed circuit board 79 should be mounted (i.e., away from major flexure points in the distributed printed circuit board 41, which were centered around the screw holes). By mounting the separate printed circuit board 79 in this area, the BGAs thereof are prevented from failing due to flexure, thereby making the monitor unit 1 resistant to drop failures. The above-described measures allow the monitor unit 1 to be highly durable and resistant to breaking.
Furthermore, the separate printed circuit board 79 may be accessed and replaced, if needed, through an access opening 81 provided in a rear portion of the battery well 15 (see
The microprocessor 75 is configured to receive digital or analog ECG information either directly or indirectly from the ECG electrodes (not shown) of the therapeutic device (not shown), detect abnormal heart rhythms based on the information received from the ECG electrodes, charge the capacitors 67 of the energy storage module 45, and control the energy discharge module 43 to administer a therapeutic shock to the patient, unless a user intervenes within a predetermined period of time via the response buttons 19. In at least one example, the predetermined period of time in which a user may intervene does not end until actual delivery of the therapeutic shock. An example of the methods used to detect abnormal heart rhythms can be found in U.S. Pat. No. 5,944,669, which is assigned to the assignee of the present application and which is hereby incorporated by reference in its entirety. Additionally, an example of the general features of a defibrillator can be found in U.S. Pat. No. 6,280,461, which is assigned to the assignee of the present application and which is also hereby incorporated by reference in its entirety.
The microprocessor 75 is also configured to perform several other functions. These other functions may leverage the robust computing platform provided by the microprocessor 75 without disrupting the therapy delivering functions of the monitor unit 1. Some examples of these other functions include notifying emergency personnel of the location of a patient who just received a therapeutic shock via the communication module 49, providing users of the device with the historical physiological data of the wearer of the device via the display screen 25, and/or notifying the manufacturer of the monitor unit 1 of potential performance issues within the monitor unit 1 that may require repair to or replacement of the monitor unit 1 via the communication module 49. Moreover, these other functions can include maintaining a history of data and events by storing this information in the memory device, communicating with the user via the display screen 25, and/or reporting data and events via the communication module 49. In addition, other functions may perform additional operations on the history of critical data. For instance, in one example, a function analyzes the history of critical data to predict worsening heart failure or an increased risk of sudden cardiac death.
The memory device of the monitor unit 1 is sized to store months or years of sensor information, such as ECG data, that is gathered over several monitoring and treatment periods. These monitoring and treatment periods may include continuous monitoring periods of approximately 23 hours (and substantially continuous monitoring periods of approximately 1-2 months) during which several treatments may be delivered to the patient. In some of these examples, the microprocessor 75 is configured to analyze the stored sensor information and to determine adjustments to the treatment method, or alternative treatment methods, of benefit to the patient. For instance, in one example, the microprocessor 75 is configured to analyze ECG data collected substantially contemporaneously with each instance of patient initiated delay, or cancellation of treatment. In this example, the microprocessor 75 is configured to analyze the stored months of ECG data to recognize individualized, idiosyncratic rhythms that, while not normal, do not indicate a need for treatment. In some examples, the microprocessor 75 may automatically adjust the treatment method of the monitor unit 1 to better suit the patient by not initiating treatment in response to the recognized, idiosyncratic rhythm. Such an adjustment may be performed in conjunction with review by appropriate medical personnel.
Referring now to
In addition, a pair of LEDs 85 are mounted on the third portion 57 of the distributed printed circuit board 41. Light pipes can redirect the light from the LEDs 85 to a pair of lenses 86a, 86b provided on the top cover 11 of the monitor unit 1. In one embodiment, the LEDs 85 may be surface mounted to the distributed printed circuit board 41 such that they project perpendicular to the distributed printed circuit board 41, and the light pipes are used to bend the light to the pair of lenses 86a, 86b. In another embodiment, the LEDs 85 project parallel to the distributed printed circuit board 81 and the light pipes essentially shine straight through to the pair of lenses 86a, 86b. The LEDs 85 are configured as indication mechanisms to provide an indication to the patient of at least one condition of at least one of the defibrillator, the electrodes 101a, 101b, 101c, and 101d, the therapy pads 103, and the patient. The LEDs are viewable on the top cover 11 of the monitor unit 1 such that they are visible without manipulation of the device.
More specifically, the LED 85 visible through lens 86a may be a solid green indicator that provides an indication to the patient that the monitor unit 1 is active and operating properly. The LED 85 visible through lens 86b may be a flashing yellow indicator that is activated when a notification is displayed on the display screen 25. In some embodiments, the LED 85 visible through lens 86b providing the second flashing yellow indicator is activated only when a notification is displayed on the display screen 25.
These LEDs 85 provide a simple visual status indication to the patient while he/she is wearing the device. Multiple LEDs 85 and multiple color outputs by the LEDs 85 allow multiple status messages to be conveyed to patients during operation of the monitor unit 1. In one embodiment, two LEDs 85 are viable through lenses 86a, 86b provided on the top cover 11 of the monitor unit 1, thereby providing a first or green indicator 90 and a second or yellow indicator 92. When activated, one LED 85 is green 90 and the other is yellow 92. A third LED is provided under the response buttons 19 as described hereinabove such that it is viewable to the patient through at least the top surface 88 of at least one of the response buttons 19. Desirably, the third response button LED is red in color. In certain embodiments, the third LED is a set of LEDs, one associated with each of the buttons 19.
The following provides a brief description of the manner in which the three LEDs described hereinabove function as status indicators. Please note that this description is for exemplary purposes only and is not to be construed as limiting the invention as other systems may be utilized for providing status indicators using LEDs.
Initially, when the device is turned on both the green and yellow indicators 90, 92 are provided OFF, as is the response button LED. If the monitor unit 1 requires a test of the response buttons 19, the response button LED is provided in a solid ON fashion and the green and yellow indicators 90, 92 are both provided in a solid ON fashion as well. If a belt 111 (see
Once the belt 111 is properly connected and the monitor unit 1 is turned on and monitoring the patient, the green indicator 90 is provided in a solid ON fashion and the yellow indicator 92 is OFF. If during the monitoring, a notification appears on the display screen 25 of the monitor unit 1 (such as indicating that the belt 111 needs adjusted, batteries low, etc.), the green indicator 90 turns OFF and the yellow indicator 92 begins flashing. The yellow indicator 92 may flash at 0.4 Hz to 0.8 Hz with a 20% to 60% ON duty cycle. Once the patient acknowledges the notification screen (i.e., by pressing a button, providing a remedy to the problem, etc.), the yellow indicator 92 stops flashing and the green indicator turns 90 ON. Finally, when the patient is notified that an arrhythmia has been detected and a treatment is expected, the green indicator 90 turns OFF, the yellow indicator 92 turns OFF, and the response button LED begins flashing. The response button LED may flash at 1.4 Hz to 2.8 Hz with a 20% to 60% ON duty cycle.
Alternatively, the at least one indication mechanism may be a visual indication or audible indication. Such visual indications may be provided on a display screen, and may comprise a visual prompt, such as an instruction, a flashing screen, and the like. The audible indications may be provided by the speaker and may include audible prompts, such as instructions or sounds. If instructions are provided, such instructions may be automated instructions recorded on the monitor unit 1 or manual instructions provided by a person at a central monitoring station. Such indications may be coordinated with the LEDs 85.
A flex connector 87 for the touch screen of the display screen 25 and a flex connector 89 for the LCD of the display screen 25 can be mounted on the third portion 57 of the distributed printed circuit board 41. These connectors 87, 89 allow the display screen 25 to be operatively coupled to the third portion 57 of the distributed printed circuit board 41. Alternatively, one or more of the flex connectors 87, 89 can include a flexible portion of the distributed printed circuit board 41.
The fourth portion 61 of the distributed printed circuit board 41 that encompasses the communication module 49 may have a width that is greater than its length. Generally, it has a length in the range of about 0.5 to 1.5 inches and a width in the range of about 2.5 to 3.5 inches. This configuration of the fourth portion 61 allows it to be fit securely within the external housing 3 substantially parallel to the front cover 7 and the rear cover 9 and substantially perpendicular to the first portion 51 and the second portion 53. The third flexible member 63, extending between the third portion 57 and the fourth portion 61 of the distributed printed circuit board 41, is folded such that the fourth portion 61 is positioned substantially perpendicular to the first portion 51 and the second portion 53 of the distributed printed circuit board 41 and substantially parallel to the third portion 57 of the distributed printed circuit board 41. The third flexible member 63 is folded such that it has a substantially S-shaped cross-section, as shown in
The communication module 49 provided on the fourth portion 61 of the distributed printed circuit board 41 provides various devices for communicating information to and from the monitor unit 1. For instance, the communication module 49 may include a GPS transceiver, a Bluetooth™ transceiver, a Wi-Fi transceiver, and/or a cellular transceiver. The communication module 49 is controlled by the controller module 47 to communicate information regarding the monitor unit 1 as discussed hereinabove.
A cellular antenna (not shown) for the cellular transceiver can be positioned within the external housing 3 of the monitor unit 1. The cellular antenna is optimized to have peak efficiency at the cell frequencies of several regions including, but not limited to, the United States, Japan, and Europe. The cellular antenna is located under the dragon trail lens of the display screen 25 and far enough away from the distributed printed circuit board 41 so that it can communicate efficiently. As shown in
Similarly, an RFID antenna 91 (see
The RFID module 300 is configured to have information written thereto and information read therefrom. Accordingly, the monitor unit 1 is capable of reading and writing information to the RFID module 300 from the microprocessor and memory device 75. In addition, an external device 302 that includes an RFID module 304 operatively coupled to an RFID antenna 306 and a microprocessor 308. The RFID module 300 of monitor unit 1 is configured to perform a variety of functions. As mentioned hereinabove, the RFID module 300 may be configured to communicate the identification of the monitor unit 1 to a personal computing device (acting as external device 302) of service personnel. In addition, the RFID module 300 may further be used as an aid when servicing the monitor unit by configuring the RFID module 300 to automatically record problems during patient field use. The RFID module 300 may then be scanned during service by the RFID module 304 of the personal computing device (acting as external device 302) of service personnel. During such a scan, the RFID module 300 of the monitor unit provides an indication/flag to the RFID module 304 of the personal computing device (acting as external device 302) of service personnel of the problems that occurred during patient field use.
In addition, an external data writing mechanism at a shipping location may communicate with the RFID module 300 of the monitor unit 1 to write information thereto, such as shipping boxes, software versions, board revisions, assembly revisions, etc. This information may be later verified by reading this information from the RFID module 300 using an external device 302 such as a personal computer.
A further example of the manner in which RFID module 300 of monitor unit 1 may be utilized to transmit and store information is the cloning of patient parameters from one monitor unit 1 to another. More specifically, in certain instances, it may be desirable to have patient parameters and information moved from one monitor unit 1 to another. The movement of such parameters and information may be accomplished utilizing the RFID module 300 as follows. First, the microprocessor and memory device 75 of a first monitor unit 1 writes its patient parameters into the RFID module 300. Thereafter, an external RFID reader (acting as external device 302) reads these patient parameters out of the RFID module 300 in the monitor unit 1. The external RFID reader then writes these patient parameters into an RFID module of a second monitor unit and the microprocessor and memory device 75 of the second monitor unit reads and stores these patient parameters and information from its RFID module, thereby cloning the patient parameters from one monitor to another.
Yet another use for RFID module 300 is in manufacturing to automatically configure the monitor unit 1 into a test mode so that it can be tested and/or initiate a self-test. More specifically, a monitor unit 1 may be returned to the manufacturer for servicing. At this time, testing of the monitoring unit is required. An external RFID reader (acting as external device 302) may be configured to write into the RFID module 300 of the monitor unit 1 a command to enter into a test mode or initiate a self-test. The microprocessor and memory device 75 of the monitor unit 1 then reads this information from the RFID module 300 and enters into the test mode or begins the self test.
While some uses for RFID module 300 of monitor unit 1 are discussed hereinabove, this list of uses is not to be considered as limiting the invention as other uses for RFID module 300 may also be incorporated into monitor unit 1.
Rather than using RFID, the present disclosure contemplates the use of other identification devices to achieve the above described objectives. For instance, the identification device may be any suitable storage device having reading and writing capabilities and wireless communication capabilities or wired communication capabilities. Examples of storage devices having wireless communication capabilities include, but are not limited to, a cellular-ready storage device, a Wi-Fi-ready storage device, and a short-range wireless communication protocol-ready storage device, such as a Bluetooth™-ready storage device. Examples of storage devices having wired communication capabilities include, but are not limited to, a flash drive, a USB device, a mini-USB device, a SD card, a miniSD card, a microSD card, and any other storage or memory device having a communication port for receiving a cable or bus.
With reference to
Next, the front cover 7, rear cover 9, and top cover 11 are provided. The folded distributed printed circuit board 41 is positioned within the front cover 7 and secured thereto via an appropriate fastening device, such as screws. Finally, the top cover 11 is positioned in the appropriate location and the rear cover 9 is secured to the front cover 7 and top cover 11 using any appropriate fastening device. This produces a monitor unit 1 as shown in
Accordingly, a monitor unit 1 is provided that has a small footprint, is very durable, and can be used in a variety of patient care scenarios where a conventional implantable cardioverter-defibrillator cannot. Examples of these scenarios include treatment when the patient is awaiting a pending transplant or where the patient has a systemic infection (e.g., influenza or osteomyelitis), myocarditis, intra-ventricular thrombus, cancer, or a life-limiting serious illness such that an implantable device is not medically prudent.
Although a defibrillator 100 having a monitor unit 1 has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements. For example, it is to be understood that this disclosure contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/861,110 entitled “Compact Controller Device for Defibrillator” filed Aug. 1, 2013, U.S. Provisional Patent Application Ser. No. 62/021,609 entitled “Wearable Defibrillator” filed Jul. 7, 2014, and U.S. Provisional Patent Application Ser. No. 62/025,660 entitled “Wearable Defibrillator” filed Jul. 17, 2014, all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4928690 | Heilman et al. | May 1990 | A |
5078134 | Heilman et al. | Jan 1992 | A |
5466244 | Morgan | Nov 1995 | A |
5503158 | Coppock et al. | Apr 1996 | A |
5662690 | Cole et al. | Sep 1997 | A |
5716380 | Yerkovich et al. | Feb 1998 | A |
5724025 | Tavori | Mar 1998 | A |
5730143 | Schwarzberg | Mar 1998 | A |
5741306 | Glegyak et al. | Apr 1998 | A |
5749913 | Cole | May 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5782878 | Morgan et al. | Jul 1998 | A |
5879374 | Powers et al. | Mar 1999 | A |
5899925 | Ochs et al. | May 1999 | A |
5919212 | Olson et al. | Jul 1999 | A |
5931791 | Saltzstein et al. | Aug 1999 | A |
5941829 | Saltzstein et al. | Aug 1999 | A |
5944669 | Kaib | Aug 1999 | A |
5955956 | Stendahl et al. | Sep 1999 | A |
5983137 | Yerkovich | Nov 1999 | A |
6065154 | Hulings et al. | May 2000 | A |
6169387 | Kaib | Jan 2001 | B1 |
6253099 | Oskin et al. | Jun 2001 | B1 |
6280461 | Glegyak et al. | Aug 2001 | B1 |
6314320 | Powers et al. | Nov 2001 | B1 |
6364834 | Reuss et al. | Apr 2002 | B1 |
6366809 | Olson et al. | Apr 2002 | B1 |
6397104 | Miller et al. | May 2002 | B1 |
6405082 | Borgenicht | Jun 2002 | B1 |
6449504 | Conley et al. | Sep 2002 | B1 |
6456042 | Kwok | Sep 2002 | B1 |
6494829 | New, Jr. et al. | Dec 2002 | B1 |
6498951 | Larson et al. | Dec 2002 | B1 |
6510344 | Halpern | Jan 2003 | B1 |
6537214 | Hood et al. | Mar 2003 | B1 |
6553262 | Lang et al. | Apr 2003 | B1 |
6569095 | Eggers | May 2003 | B2 |
6591135 | Palmer et al. | Jul 2003 | B2 |
6597948 | Rockwell et al. | Jul 2003 | B1 |
6658296 | Wong et al. | Dec 2003 | B1 |
6662046 | Hansen | Dec 2003 | B2 |
6664891 | Davies et al. | Dec 2003 | B2 |
6681003 | Linder et al. | Jan 2004 | B2 |
6697671 | Nova et al. | Feb 2004 | B1 |
6801137 | Eggers | Oct 2004 | B2 |
6820057 | Loch et al. | Nov 2004 | B1 |
6826425 | Bardy | Nov 2004 | B2 |
6829501 | Nielsen et al. | Dec 2004 | B2 |
6847892 | Zhou et al. | Jan 2005 | B2 |
6871093 | Hansen | Mar 2005 | B2 |
6871211 | Labounty et al. | Mar 2005 | B2 |
6885894 | Stessman | Apr 2005 | B2 |
6897788 | Khair et al. | May 2005 | B2 |
6898462 | Rock et al. | May 2005 | B2 |
6907283 | Carter et al. | Jun 2005 | B2 |
6937150 | Medema et al. | Aug 2005 | B2 |
6940403 | Kail, IV | Sep 2005 | B2 |
6944498 | Owen et al. | Sep 2005 | B2 |
6955864 | Vaisnys et al. | Oct 2005 | B1 |
6957102 | Silver et al. | Oct 2005 | B2 |
6980859 | Powers et al. | Dec 2005 | B2 |
6990373 | Jayne et al. | Jan 2006 | B2 |
7006865 | Cohen et al. | Feb 2006 | B1 |
7016727 | Powers et al. | Mar 2006 | B2 |
7074195 | Nelson et al. | Jul 2006 | B2 |
7085601 | Bardy et al. | Aug 2006 | B1 |
7096062 | Kelly et al. | Aug 2006 | B2 |
7107096 | Fischell et al. | Sep 2006 | B2 |
7117031 | Lohman et al. | Oct 2006 | B2 |
7120488 | Nova et al. | Oct 2006 | B2 |
7129836 | Lawson et al. | Oct 2006 | B2 |
7138902 | Menard | Nov 2006 | B2 |
7162306 | Caby et al. | Jan 2007 | B2 |
7231258 | Moore et al. | Jun 2007 | B2 |
7238156 | Adamczyk | Jul 2007 | B1 |
7245964 | Moore et al. | Jul 2007 | B2 |
7257440 | Morgan et al. | Aug 2007 | B2 |
7289029 | Medema et al. | Oct 2007 | B2 |
7340301 | Weiss et al. | Mar 2008 | B2 |
7343197 | Shusterman | Mar 2008 | B2 |
7390299 | Weiner et al. | Jun 2008 | B2 |
7439705 | Koike | Oct 2008 | B2 |
7474914 | Barr | Jan 2009 | B2 |
7477933 | Ueyama | Jan 2009 | B2 |
7515044 | Welch et al. | Apr 2009 | B2 |
7587237 | Korzinov et al. | Sep 2009 | B2 |
7595723 | Heitzmann et al. | Sep 2009 | B2 |
7653435 | Halsne | Jan 2010 | B2 |
7715913 | Froman et al. | May 2010 | B1 |
7761261 | Shmueli et al. | Jul 2010 | B2 |
7782192 | Jeckelmann et al. | Aug 2010 | B2 |
7953478 | Vaisnys et al. | May 2011 | B2 |
8000799 | Verhoef | Aug 2011 | B2 |
8005552 | Covey et al. | Aug 2011 | B2 |
8086320 | Saketkhou | Dec 2011 | B2 |
8090441 | Chapman et al. | Jan 2012 | B2 |
8121683 | Bucher et al. | Feb 2012 | B2 |
8147486 | Honour et al. | Apr 2012 | B2 |
8183823 | Neumiller et al. | May 2012 | B2 |
8260413 | Heath | Sep 2012 | B2 |
8265740 | Fischell et al. | Sep 2012 | B2 |
8265907 | Nanikashvili et al. | Sep 2012 | B2 |
8271082 | Donnelly et al. | Sep 2012 | B2 |
RE43767 | Eggers et al. | Oct 2012 | E |
8277377 | Quy | Oct 2012 | B2 |
8290129 | Rogers et al. | Oct 2012 | B2 |
8290574 | Feild et al. | Oct 2012 | B2 |
8301245 | Garrett et al. | Oct 2012 | B2 |
8319632 | Vaisnys et al. | Nov 2012 | B1 |
8331574 | Powers | Dec 2012 | B2 |
8332233 | Ott et al. | Dec 2012 | B2 |
8334768 | Eaton et al. | Dec 2012 | B2 |
8335562 | Hansen et al. | Dec 2012 | B2 |
8364250 | Moon et al. | Jan 2013 | B2 |
8364260 | Kumar | Jan 2013 | B2 |
8369936 | Farringdon et al. | Feb 2013 | B2 |
8369944 | Macho et al. | Feb 2013 | B2 |
8376943 | Kovach et al. | Feb 2013 | B2 |
8419644 | Eerden | Apr 2013 | B2 |
8425414 | Eveland | Apr 2013 | B2 |
8425415 | Tran | Apr 2013 | B2 |
8428722 | Verhoef et al. | Apr 2013 | B2 |
8438038 | Cosentino et al. | May 2013 | B2 |
8473039 | Michelson et al. | Jun 2013 | B2 |
8477026 | Bruegger et al. | Jul 2013 | B2 |
8480577 | Tuccillo | Jul 2013 | B2 |
8498701 | Vaisnys et al. | Jul 2013 | B2 |
8565871 | Tuysserkani | Oct 2013 | B2 |
8587427 | LaLonde et al. | Nov 2013 | B2 |
8600491 | McMahon et al. | Dec 2013 | B2 |
8600506 | Hahn et al. | Dec 2013 | B2 |
8608654 | Carlberg et al. | Dec 2013 | B2 |
8620418 | Kuppuraj et al. | Dec 2013 | B1 |
8639346 | Seeberger et al. | Jan 2014 | B2 |
8666488 | Duke | Mar 2014 | B2 |
8676312 | Daynes et al. | Mar 2014 | B2 |
8702603 | Bardy | Apr 2014 | B2 |
8706225 | Matos | Apr 2014 | B2 |
8771184 | Besson et al. | Jul 2014 | B2 |
8774917 | Macho et al. | Jul 2014 | B2 |
8774932 | Fahey | Jul 2014 | B2 |
8798729 | Kaib et al. | Aug 2014 | B2 |
20030158593 | Heilman | Feb 2003 | A1 |
20030216786 | Russial | Nov 2003 | A1 |
20040162586 | Covey et al. | Aug 2004 | A1 |
20040171914 | Avni | Sep 2004 | A1 |
20060136000 | Bowers | Jun 2006 | A1 |
20060149126 | Ertas | Jul 2006 | A1 |
20060290496 | Peeters | Dec 2006 | A1 |
20070106145 | Kim et al. | May 2007 | A1 |
20070115016 | Chang | May 2007 | A1 |
20080094228 | Welch et al. | Apr 2008 | A1 |
20080281217 | Peterson et al. | Nov 2008 | A1 |
20090028185 | Doerr et al. | Jan 2009 | A1 |
20090152954 | Le | Jun 2009 | A1 |
20090171227 | Dziubinski et al. | Jul 2009 | A1 |
20090289776 | Moore | Nov 2009 | A1 |
20090299156 | Simpson | Dec 2009 | A1 |
20100057167 | Evers et al. | Mar 2010 | A1 |
20100087883 | Sullivan et al. | Apr 2010 | A1 |
20100174331 | Garrett et al. | Jul 2010 | A1 |
20100198089 | Litovchick et al. | Aug 2010 | A1 |
20100241181 | Savage et al. | Sep 2010 | A1 |
20100249625 | Lin | Sep 2010 | A1 |
20100249860 | Shuros et al. | Sep 2010 | A1 |
20100268103 | McNamara et al. | Oct 2010 | A1 |
20100331932 | Stevenson et al. | Dec 2010 | A1 |
20110144707 | Sullivan et al. | Jun 2011 | A1 |
20110166468 | Prystowsky et al. | Jul 2011 | A1 |
20110213433 | Vaisnys et al. | Sep 2011 | A1 |
20110213620 | Dziubinski | Sep 2011 | A1 |
20110224747 | Maile et al. | Sep 2011 | A1 |
20110288604 | Kaib et al. | Nov 2011 | A1 |
20110288605 | Kaib et al. | Nov 2011 | A1 |
20120011382 | Volpe et al. | Jan 2012 | A1 |
20120071940 | Frank et al. | Mar 2012 | A1 |
20120110226 | Vlach et al. | May 2012 | A1 |
20120112903 | Kaib et al. | May 2012 | A1 |
20120143025 | Porges et al. | Jun 2012 | A1 |
20120146797 | Oskin et al. | Jun 2012 | A1 |
20120158075 | Kaib et al. | Jun 2012 | A1 |
20120190994 | Kim et al. | Jul 2012 | A1 |
20120191147 | Rao et al. | Jul 2012 | A1 |
20120197353 | Donnelly et al. | Aug 2012 | A1 |
20120283794 | Kaib et al. | Nov 2012 | A1 |
20120293323 | Kaib et al. | Nov 2012 | A1 |
20120302860 | Volpe et al. | Nov 2012 | A1 |
20130012827 | Kurzweil et al. | Jan 2013 | A1 |
20130013014 | Donnelly et al. | Jan 2013 | A1 |
20130046162 | Baumann et al. | Feb 2013 | A1 |
20130060098 | Thomsen et al. | Mar 2013 | A1 |
20130085364 | Lu et al. | Apr 2013 | A1 |
20130085538 | Volpe et al. | Apr 2013 | A1 |
20130144536 | Baker et al. | Jun 2013 | A1 |
20130150698 | Hsu et al. | Jun 2013 | A1 |
20130218252 | Kaib et al. | Aug 2013 | A1 |
20130231711 | Kaib | Sep 2013 | A1 |
20130261479 | Kemppainen et al. | Oct 2013 | A1 |
20130304143 | Banville | Nov 2013 | A1 |
20130317377 | Gupta et al. | Nov 2013 | A1 |
20130324868 | Kaib et al. | Dec 2013 | A1 |
20130325078 | Whiting et al. | Dec 2013 | A1 |
20130331663 | Albert et al. | Dec 2013 | A1 |
20140005506 | Elghazzawi | Jan 2014 | A1 |
20140018637 | Bennett et al. | Jan 2014 | A1 |
20140025131 | Sullivan et al. | Jan 2014 | A1 |
20140039593 | Savage et al. | Feb 2014 | A1 |
20140046391 | Cowan et al. | Feb 2014 | A1 |
20140070957 | Longinotti-Buitoni et al. | Mar 2014 | A1 |
20140085081 | Brown et al. | Mar 2014 | A1 |
20140085082 | Lyon et al. | Mar 2014 | A1 |
20140088660 | Debardi et al. | Mar 2014 | A1 |
20140107718 | Foote et al. | Apr 2014 | A1 |
20140148869 | Stickney et al. | May 2014 | A1 |
20140163334 | Volpe et al. | Jun 2014 | A1 |
20140249613 | Kaib | Sep 2014 | A1 |
20140296931 | Chapman | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2004084720 | Oct 2004 | WO |
2007114968 | Oct 2007 | WO |
2008054980 | May 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20150035654 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
61861110 | Aug 2013 | US | |
62021609 | Jul 2014 | US | |
62025660 | Jul 2014 | US |