Communication networks typically include numerous logical communication links between various items of equipment. Often a single logical communication link is implemented using several pieces of physical communication media. For example, a logical communication link between a computer and an inter-networking device such as a hub or router can be implemented as follows. A first cable connects the computer to a jack mounted in a wall. A second cable connects the wall-mounted jack to a port of a patch panel, and a third cable connects the inter-networking device to another port of a patch panel. A “patch cord” cross connects the two together. In other words, a single logical communication link is often implemented using several segments of physical communication media.
A network or enterprise management system (generally referred to here as a “network management system” or “NMS”) is typically aware of the logical communication links that exist in a network but typically does not have information about the specific physical layer media that are used to implement the logical communication links. Indeed, NMS systems typically do not have the ability to display or otherwise provide information about how logical communication links are implemented at the physical layer level.
Physical layer management (PLM) systems do exist. However, existing PLM systems are typically designed to facilitate the adding, changing, and removing of cross connections at a particular patch panel or a set of patch panels at a given location. Generally, such PLM systems include functionality to track what is connected to each port of a patch panel, trace connections that are made using a patch panel, and provide visual indications to a user at a patch panel. However, such PLM systems are typically “patch-panel” centric in that they are focused on helping a technician correctly add, change, or remove cross connections at a patch panel. Any “intelligence” included in or coupled to the patch panel is typically only designed to facilitate making accurate cross connections at the patch panel and troubleshooting related problems (for example, by detecting whether a patch cord is inserted into a given port and/or by determining which ports are coupled to one another using a patch cord).
Moreover, any information that such PLM systems collect is typically only used within the PLM systems. In other words, the collections of information that such PLM systems maintain are logical “islands” that are not used at the application-layer level by other systems. Though such PLM systems are sometimes connected to other networks (for example, connected to local area networks or the Internet), such network connections are typically only used to enable a user to remotely access the PLM systems. That is, a user remotely accesses the PLM-related application-layer functionality that resides in the PLM system itself using the external network connection but external systems or networks typically do not themselves include any application-layer functionality that makes use of any of the physical-layer-related information that resides in the PLM system.
One exemplary embodiment is directed to a segment of physical communication media. The segment comprises a physical communication medium, a connector attached to the physical communication medium, and a storage device configured to store information therein using a self-defining variable length data field scheme (such as a key-length-value triplet).
Each segment of physical communication media is attached to a respective port 104. Each port 104 is used to connect two or more segments of physical communication media to one another (for example, to implement a portion of a logical communication link). Examples of connector assemblies 102 include, for example, rack-mounted connector assemblies (such as patch panels, distribution units, and media converters for fiber and copper physical communication media), wall-mounted connector assemblies (such as boxes, jacks, outlets, and media converters for fiber and copper physical communication media), and inter-networking devices (such as switches, routers, hubs, repeaters, gateways, and access points).
At least some of the connector assemblies 102 are designed for use with segments of physical communication media that have identifier and attribute information stored in or on them. The identifier and attribute information is stored in or on the segment of physical communication media in a manner that enables the stored information, when the segment is attached to a port 104, to be read by a programmable processor 106 associated with the connector assembly 102. Examples of information that can be stored in or on a segment of physical communication media include, without limitation, an identifier that uniquely identifies that particular segment of physical communication media (similar to an ETHERNET Media Access Control (MAC) address but associated with the physical communication media and/or connector attached to the physical communication media), a part number, a plug or other connector type, a cable or fiber type and length, a serial number, a cable polarity, a date of manufacture, a manufacturing lot number, information about one or more visual attributes of physical communication media or a connector attached to the physical communication media (such as information about the color or shape of the physical communication media or connector or an image of the physical communication media or connector), and other information used by an Enterprise Resource Planning (ERP) system or inventory control system. In other embodiments, alternate or additional data is stored in or on the media segments. For example, testing, media quality, or performance information can be stored in or on the segment of physical communication media. The testing, media quality, or performance information, for example, can be the results of testing that is performed when a particular segment of media is manufactured.
Also, as noted below, in some embodiments, the information stored in or on the segment of physical communication media can be updated. For example, the information stored in or on the segment of physical communication media can be updated to include the results of testing that is performed when a segment of physical media is installed or otherwise checked. In another example, such testing information is supplied to an aggregation point 120 and stored in a data store maintained by the aggregation point 120 (both of which are described below). In another example, the information stored in or on the segment of physical communication media includes a count of the number of times that a connector (not shown) attached to a segment of physical communication media has been inserted into port 104. In such an example, the count stored in or on the segment of physical communication media is updated each time the connector is inserted into port 104. This insertion count value can be used, for example, for warranty purposes (for example, to determine if the connector has been inserted more than the number of times specified in the warranty) or for security purposes (for example, to detect unauthorized insertions of the physical communication media).
In the particular embodiment shown in
In the particular embodiment shown in
In the second type of connector assembly configuration 112, a group of connector assemblies 102 are physically located near each other (for example, in a bay or equipment closet). Each of the connector assemblies 102 in the group includes its own respective programmable processor 106. However, in the second connector assembly configuration 112, some of the connector assemblies 102 (referred to here as “interfaced connector assemblies”) include their own respective network interfaces 116 while some of the connector assemblies 102 (referred to here as “non-interfaced connector assemblies”) do not. The non-interfaced connector assemblies 102 are communicatively coupled to one or more of the interfaced connector assemblies 102 in the group via local connections. In this way, the non-interfaced connector assemblies 102 are communicatively coupled to the IP network 118 via the network interface 116 included in one or more of the interfaced connector assemblies 102 in the group. In the second type of connector assembly configuration 112, the total number of network interfaces 116 used to couple the connector assemblies 102 to the IP network 118 can be reduced. Moreover, in the particular embodiment shown in
In the third type of connector assembly configuration 114, a group of connector assemblies 102 are physically located near each other (for example, within a bay or equipment closet). Some of the connector assemblies 102 in the group (also referred to here as “master” connector assemblies 102) include both their own programmable processors 106 and network interfaces 116, while some of the connector assemblies 102 (also referred to here as “slave” connector assemblies 102) do not include their own programmable processors 106 or network interfaces 116. Each of the slave connector assemblies 102 is communicatively coupled to one or more of the master connector assemblies 102 in the group via one or more local connections. The programmable processor 106 in each of the master connector assemblies 102 is able to carry out the processing described below for both the master connector assembly 102 of which it is a part and any slave connector assemblies 102 to which the master connector assembly 102 is connected via the local connections. As a result, the cost associated with the slave connector assemblies 102 can be reduced. In the particular embodiment shown in
Each programmable processor 106 is configured to execute software or firmware 190 (shown in
As shown in
In the fourth type of connector assembly configuration 115, a group of connector assemblies 102 are housed within a common chassis or other enclosure. Each of the connector assemblies 102 in the configuration 115 includes their own programmable processors 106. In the context of this configuration 115, the programmable processors 106 in each of the connector assemblies are “slave” processors 106. Each of the slave programmable processor 106 is also communicatively coupled to a common “master” programmable processor 117 (for example, over a backplane included in the chassis or enclosure). The master programmable processor 117 is coupled to a network interface 116 that is used to communicatively couple the master programmable processor 117 to the IP network 118. In this configuration 115, each slave programmable processor 106 is configured to determine if physical communication media segments are attached to its port 104 and to read the identifier and attribute information stored in or on the attached physical communication media segments (if the attached segments have such information stored therein or thereon) using the associated media interfaces 108. This information is communicated from the slave programmable processor 106 in each of the connector assemblies 102 in the chassis to the master processor 117. The master processor 117 is configured to handle the processing associated with communicating the physical layer information read from by the slave processors 106 to devices that are coupled to the IP network 118.
The system 100 includes functionality that enables the physical layer information that the connector assemblies 102 capture to be used by application-layer functionality outside of the traditional physical-layer management application domain. That is, the physical layer information is not retained in a PLM “island” used only for PLM purposes but is instead made available to other applications. In the particular embodiment shown in
The aggregation point 120 includes functionality that obtains physical layer information from the connector assemblies 102 (and other devices) and stores the physical layer information in a data store.
The aggregation point 120 can be used to receive physical layer information from various types of connector assemblies 106 that have functionality for automatically reading information stored in or on the segment of physical communication media. Examples of such connector assemblies 106 are noted above. Also, the aggregation point 120 and aggregation functionality 124 can also be used to receive physical layer information from other types of devices that have functionality for automatically reading information stored in or on the segment of physical communication media. Examples of such devices include end-user devices—such as computers, peripherals (such as printers, copiers, storage devices, and scanners), and IP telephones—that include functionality for automatically reading information stored in or on the segment of physical communication media.
The aggregation point 120 can also be used to obtain other types of physical layer information. For example, in this embodiment, the aggregation point 120 also obtains information about physical communication media segments that is not otherwise automatically communicated to an aggregation point 120. One example of such information is information about non-connectorized physical communication media segments that do not otherwise have information stored in or on them that are attached to a connector assembly (including, for example, information indicating which ports of the devices are connected to which ports of other devices in the network as well as media information about the segment). Another example of such information is information about physical communication media segments that are connected to devices that are not able to read media information that is stored in or on the media segments that are attached to their ports and/or that are not able to communicate such information to the aggregation point 120 (for example, because such devices do not include such functionality, because such devices are used with media segments that do not have media information stored in or on them, and/or because bandwidth is not available for communicating such information to the aggregation point 120). In this example, the information can include, for example, information about the devices themselves (such as the devices' MAC addresses and IP addresses if assigned to such devices), information indicating which ports of the devices are connected to which ports of other devices in the network (for example, other connector assemblies), and information about the physical media attached to the ports of the devices. This information can be provided to the aggregation point 120, for example, by manually entering such information into a file (such as a spreadsheet) and then uploading the file to the aggregation point 120 (for example, using a web browser) in connection with the initial installation of each of the various items. Such information can also, for example, be directly entered using a user interface provided by the aggregation point 120 (for example, using a web browser).
The aggregation point 120 can also obtain information about the layout of the building or buildings in which the network is deployed, as well as information indicating where each connector assembly 102, physical media segment, and inter-networking device is located within the building. This information can be, for example, manually entered and verified (for example, using a web browser) in connection with the initial installation of each of the various items. In one implementation, such location information includes an X, Y, and Z location for each port or other termination point for each physical communication media segment (for example, X, Y, and Z location information of the type specified in the ANSI/TIA/EIA 606-A Standard (Administration Standard For The Commercial Telecommunications Infrastructure)).
The aggregation point 120 can obtain and maintain testing, media quality, or performance information relating to the various segments of physical communication media that exist in the network. The testing, media quality, or performance information, for example, can be results of testing that is performed when a particular segment of media is manufactured and/or when testing is performed when a particular segment of media is installed or otherwise checked.
The aggregation point 120 also includes functionality that provides an interface for external devices or entities to access the physical layer information maintained by the aggregation point 120. This access can include retrieving information from the aggregation point 120 as well as supplying information to the aggregation point 120. In this embodiment, the aggregation point 120 is implemented as “middleware” that is able to provide such external devices and entities with transparent and convenient access to the PLI maintained by the access point 120. Because the aggregation point 120 aggregates PLI from the relevant devices on the IP network 118 and provides external devices and entities with access to such PLI, the external devices and entities do not need to individually interact with all of the devices in the IP network 118 that provide PLI, nor do such devices need to have the capacity to respond to requests from such external devices and entities.
The aggregation point 120, in the embodiment shown in
For example, as shown in
As shown in
In the embodiment shown in
The PLI functionality 140 included in the inter-networking device 138 can also be used to capture physical layer information associated with the inter-network device 138 and the physical communication media attached to it and communicate the captured physical layer information to the aggregation point 120. Such information can be provided to the aggregation point 120 using the API or by using the protocols that are used to communicate with the connector assemblies 102.
The aggregation point 120 can be implemented on a standalone network node (for example, a standalone computer running appropriate software) or can be integrated along with other network functionality (for example, integrated with an element management system or network management system or other network server or network element). Moreover, the functionality of the aggregation point 120 can be distributed across many nodes and devices in the network and/or implemented, for example, in a hierarchical manner (for example, with many levels of aggregation points).
Moreover, the aggregation point 120 and the connector assemblies 102 are configured so that the aggregation point 120 can automatically discover and connect with devices that provide PLI to an aggregation point 120 (such as the connector assemblies 102 and inter-network device 138) that are on the network 118. In this way, when devices that are able to provide PLI to an aggregation point 120 (such as a connector assembly 102 or an inter-networking device 138) are coupled to the IP network 118, an aggregation point 120 is able to automatically discover the connector assembly 102 and start aggregating physical layer information for that connector assembly 102 without requiring the person installing the connector assembly 102 to have knowledge of the aggregation points 120 that are on the IP network 118. Similarly, when an aggregation point 120 is coupled to the IP network 118, the aggregation point 120 is able to automatically discover and interact with devices that are capable of providing PLI to an aggregation point without requiring the person installing the aggregation point 120 to have knowledge of the devices that are on the IP network 118. Thus, the physical-layer information resources described here can be easily integrated into the IP network 118.
The IP network 118 can include one or more local area networks and/or wide area networks (including for example the Internet). As a result, the aggregation point 120, NMS 130, and computer 136 need not be located at the same site as each other or at the same site as the connector assemblies 102 or the inter-networking devices 138.
Various conventional IP networking techniques can be used in deploying the system 100 of
In one implementation of the embodiment shown in
Also, power can be supplied to the connector assemblies 102 using conventional “Power over Ethernet” techniques specified in the IEEE 802.3af standard, which is hereby incorporated herein by reference. In such an implementation, a power hub 142 or other power supplying device (located near or incorporated into an inter-networking device that is coupled to each connector assembly 102) injects DC power onto one or more of the wires (also referred to here as the “power wires”) included in the copper twisted-pair cable used to connect each connector assembly 102 to the associated inter-networking device. The interface 116 in the connector assembly 102 picks the injected DC power off of the power wires and uses the picked-off power to power the active components of that connector assembly 102. In the second and third connector assembly configurations 112 and 114, some of the connector assemblies 102 are not directly connected to the IP network 118 and, therefore, are unable to receive power directly from the power wires. These connector assemblies 102 receive power from the connector assemblies 102 that are directly connected to the IP network 118 via the local connections that communicatively couple such connector assemblies 102 to one another. In the fourth configuration 115, the interface 116 picks the injected DC power off of the power wires and supplies power to the master processor 117 and each of the slave processors 106 over the backplane.
In the particular embodiment shown in
The PLM functionality included in the system 100 can also support conventional techniques for guiding the technician in carrying out a MAC (for example, by illuminating one or more light emitting diodes (LEDs) to direct a technician to a particular connector assembly 102 and/or to a particular port 104 or by displaying messages on a liquid crystal display (LCD) included on or near the connector assemblies 102.
Other PLM functions include keeping historical logs about the media connected to the connector assembly. In the embodiment shown in
The IP network 118 is typically implemented using one or more inter-networking devices. As noted above, an inter-networking device is a type of connector assembly (and a particular implementation of an inter-networking device 138 is referenced separately in
In addition to connector assemblies 102, the techniques described here for reading media information stored in or on a segment of physical communication media can be used in one or more end nodes of the IP network 118. For example, computers (such as, laptops, servers, desktop computers, or special-purpose computing devices such as IP telephones, IP multi-media appliances, and storage devices) can be configured to read media information that is stored in or on the segments of physical communication media that are attached to their ports and to communicate the media information they read from the attached segments of media (as well as information about the devices themselves) to an aggregation point 120 as described here.
In one implementation of the system 100 shown in
Each port 104 comprises a first attachment point 206 and a second attachment point 208. The first attachment point 206 is used to attach a first segment of physical communication media 210 to the port 104, and the second attachment point 208 is used to attach a second segment of physical communication media 212 to the port 104.
In the particular embodiment shown in
In the embodiment shown in
Each port 104 communicatively couples the respective rear attachment point 206 to the respective front attachment point 208. As a result, a rear media segment 210 attached to the respective rear attachment point 206 is communicatively coupled to any front media segment 212 attached to the respective front attachment point 208. In one implementation, each port 104 is designed for use with a rear media segment 210 and a front media segment 212 that comprise the same type of physical communication media, in which case each port 104 communicatively couples any rear media segment 210 attached to the respective rear attachment point 206 to any front media segment 212 attached to the respective front attachment point 208 at the physical layer level without any media conversion. In other implementations, each port 104 communicatively couples any rear media segment 210 attached to the respective rear attachment point 206 to any front media segment 212 attached to the respective front attachment point 208 in other ways (for example, using a media converter if the rear media segment 210 and the front media segment 212 comprise different types of physical communication media).
In the exemplary embodiment shown in
In some implementations, at least some of the information stored in the storage device 216 can be updated in the field (for example, by having an associated programmable processor 106 cause additional information to be written to the storage device 216 or changing or deleting information that was previously stored in the storage device 216). For example, in some implementations, some of the information stored in the storage device 216 cannot be changed in the field (for example, identifier information or manufacturing information) while some of the other information stored in the storage device 216 can be changed in the field (for example, testing, media quality, or performance information). In other implementations, none of the information stored in the storage device 216 can be updated in the field.
Also, the storage device 216 may also include a processor or micro-controller, in addition to storage for the media information. In which case, the micro-controller included in the storage device 216 can be used to execute software or firmware that, for example, controls one or more LEDs attached to the storage device 216. In another example, the micro-controller executes software or firmware that performs an integrity test on the front media segment 212 (for example, by performing a capacitance or impedance test on the sheathing or insulator that surrounds the front physical communication media segment 212 (which may include a metallic foil or metallic filler for such purposes)). In the event that a problem with the integrity of the front media segment 212 is detected, the micro-controller can communicate that fact to the programmable processor 106 associated with the port 104 using the storage device interface 218. The micro-controller can also be used for other functions.
The port 104, connector 214, storage device 216, and media interface 108 are configured so that the information stored in the storage device 216 can be read without affecting the communication signals that pass through the media segments 210 and 212.
Further details regarding system 100 and the port 104 can be found in the following United States patent applications, all of which are hereby incorporated herein by reference: U.S. Provisional Patent Application Ser. No. 61/152,624, filed on Feb. 13, 2009, titled “MANAGED CONNECTIVITY SYSTEMS AND METHODS” (also referred to here as the “'624 Application”); U.S. patent application Ser. No. 12/705,497, filed on Feb. 12, 2010, titled “AGGREGATION OF PHYSICAL LAYER INFORMATION RELATED TO A NETWORK” (is also referred to here as the '497 Application); U.S. patent application Ser. No. 12/705,501, filed on Feb. 12, 2010, titled “INTER-NETWORKING DEVICES FOR USE WITH PHYSICAL LAYER INFORMATION” (also referred to here as the '501 Application); U.S. patent application Ser. No. 12/705,506, filed on Feb. 12, 2010, titled “NETWORK MANAGEMENT SYSTEMS FOR USE WITH PHYSICAL LAYER INFORMATION” (also referred to here as the '506 Application); U.S. patent application Ser. No. 12/705,514, filed on Feb. 12, 2010, titled “MANAGED CONNECTIVITY DEVICES, SYSTEMS, AND METHODS” (also referred to here as the '514 Application); U.S. Provisional Patent Application Ser. No. 61/252,395, filed on Oct. 16, 2009, titled “MANAGED CONNECTIVITY IN ELECTRICAL SYSTEMS AND METHODS THEREOF” (also referred to here as the “'395 Application”); U.S. Provisional Patent Application Ser. No. 61/253,208, filed on Oct. 20, 2009, titled “ELECTRICAL PLUG FOR MANAGED CONNECTIVITY SYSTEMS” (also referred to here as the “'208 Application”); U.S. Provisional Patent Application Ser. No. 61/252,964, filed on Oct. 19, 2009, titled “ELECTRICAL PLUG FOR MANAGED CONNECTIVITY SYSTEMS” (also referred to here as the “'964 Application”); U.S. Provisional Patent Application Ser. No. 61/252,386, filed on Oct. 16, 2009, titled “MANAGED CONNECTIVITY IN FIBER OPTIC SYSTEMS AND METHODS THEREOF” (also referred to here as the “'386 Application”); U.S. Provisional Patent Application Ser. No. 61/303,961, filed on Feb. 12, 2010, titled “FIBER PLUGS AND ADAPTERS FOR MANAGED CONNECTIVITY” (the “'961 Application”); and U.S. Provisional Patent Application Ser. No. 61/303,948, filed on Feb. 12, 2010, titled “BLADED COMMUNICATIONS SYSTEM” (the “'948 Application”).
Each plug 314 also comprises (or is attached to) a storage device 392 (for example, an Electrically Erasable Programmable Read-Only Memory (EEPROM) or other non-volatile memory device). The media information described above for the patch cord 312 is stored in the storage device 392. The storage device 392 includes sufficient storage capacity to store such information. Each storage device 392 also includes a storage device interface 394 that, when the corresponding plug 314 is inserted into a front connector of a port 304, communicatively couples the storage device 392 to the corresponding media interface so that the programmable processor 320 in the corresponding patch panel 302 can read the information stored in the storage device 392.
Examples of such a patch cord 312 and plug 314 are described in the '395 Application, the '208 Application, and the '964 Application.
Each LC connector 314′ also comprises (or is attached to) a storage device 392′ (for example, an Electrically Erasable Programmable Read-Only Memory (EEPROM) or other non-volatile memory device). The media information described above for the patch cord 312 is stored in the storage device 392′. The storage device 392′ includes sufficient storage capacity to store such information. Each storage device 392′ also includes a storage device interface 394′ that, when the corresponding LC connector 314′ is inserted into a front connector of a port, communicatively couples the storage device 392′ to the corresponding media interface so that the programmable processor in the corresponding fiber patch panel can read the information stored in the storage device 392′.
In some implementations of the patch cords 312 and 312′, the storage devices 392 and 392′ are implemented using a surface-mount EEPROM or other non-volatile memory device. In such implementations, the storage device interfaces and media interfaces each comprise four leads—a power lead, a ground lead, a data lead, and an extra lead that is reserved for future use. In one such implementation, an EEPROM that supports a serial protocol is used, where the serial protocol is used for communicating over the signal data lead. The four leads of the storage device interfaces come into electrical contact with four corresponding leads of the media interface when the corresponding plug or connector is inserted in the corresponding front connector of a port 304. Each storage device interface and media interface are arranged and configured so that they do not interfere with data communicated over the patch cord. In other embodiments, other types of interfaces are used. For example, in one such alternative embodiment, a two-line interface is used with a simple charge pump. In other embodiments, additional lines are provided (for example, for potential future applications).
Examples of such fiber patch cords 312′ and connectors 314′ are described in U.S. Provisional Patent Application Ser. No. 61/252,386, filed on Oct. 16, 2009, titled “MANAGED CONNECTIVITY IN FIBER OPTIC SYSTEMS AND METHODS THEREOF” (also referred to here as the “'386 Application”), U.S. Provisional Patent Application Ser. No. 61/303,961, filed on Feb. 12, 2010, titled “FIBER PLUGS AND ADAPTERS FOR MANAGED CONNECTIVITY” (the “'961 Application”), and U.S. Provisional Patent Application Ser. No. 61/303,948, filed on Feb. 12, 2010, titled “BLADED COMMUNICATIONS SYSTEM” (the “'948 Application”). The '386 Application, the '961 Application, and the '948 Application are hereby incorporated herein by reference.
In some implementations of the patch cords 312 and 312′, each plug 314 or connector 314′ itself houses the respective storage device and storage device interface. In implementations, each storage device and corresponding storage device interface are housed within a housing that is separate from the corresponding plug or connector. In such implementations, the housing is configured so that it can be snapped onto (or otherwise attached to) the cable or the plug or connector, with the storage device interface positioned relative to the plug or connector so that the storage device interface will properly mate with the relevant media interface when the plug or connector is inserted into the front connector of the corresponding port.
For ease of explanation, certain processing relating to one or more connector assemblies 102 is described here as being performed by the programmable processor 106 and the software 190 executing on programmable processor 106. However, it is to be understood that all or part of the processing described here as being performed by processor 106 and the software 190 could also be performed by other processors and software associated with each connector assembly 102. For example, all or some of such processing can (but need not) be performed by a “master” processor 117 (and the software executing thereon) where a master-slave configuration 115 is used. Also, a particular connector assembly 102 can also include more than one processor 106 (for example, where required by the port density of the connector assembly 102).
Moreover, functionality described here as being implemented in software executing on a programmable processor can be implemented in other ways. For example, such functionality can be implemented in hardware using discrete hardware, application-specific integrated circuits (ASICS)), programmable devices (such as field-programmable gate arrays (FPGAs) or complex programmable logic devices (CPLDs)), and/or combinations of one or more of the foregoing, and/or combinations of one or more of the foregoing along with software executing on one or more programmable processors. For example, the detection of the insertion of a connector 214 into a port 104 of a connector assembly 102 and/or the reading of information from any storage device 216 attached to the connector 214 can be implemented in hardware (for example, using one or more programmable devices and/or an ASIC) in addition to or instead of being implemented as software.
Referring back to the embodiment shown in
For example, in one implementation of the embodiment of
Each item of information to be stored on storage device 216 is assigned a key that identifies that item of information. This key is stored in the key field 502 of the key-length-value triplet 500 that is used to store that item of information. In one example, for a given segment of physical media 212, a key-length-value triplet with a key of “001” indicates that the triplet stores a serial number (or other unique identifier), a key of “002” indicates a triplet that stores a date of manufacture, a key of “022” indicates a triplet that stores an insertion count value, and so on for each item of information stored on the storage device 216. The length of the key field 502 itself (for example, 8 or 16 bits) is fixed and would be established a priori and known by the various entities in the system 100 that make use of the key-length-value triplets.
Following the triplet's key field 502 is the length field 504. The length field 504 indicates the number of bits, bytes, or other units of data that make up the value field 506 portion of the key-length-value triplet 500. The value field 506 follows the length field 504.
In the exemplary embodiment shown in
In the exemplary embodiment shown in
Various bit-level encoding formats can be used to encode the lengths in the remaining portion 512 of the fixed portion 508 of the length field and in the variable portion 514 of the length field (for example, a form of n-bit encoding or another format such as the Basic Encoding Rules (BER) format).
As shown in
Another benefit of using key-length-value triplets to store information is that the information no longer needs to be stored in a particular sequence. That is, a triplet's key field does not necessarily indicate the sequence in which the associated item of information needs to be stored on storage device 216, just what type of item of information a particular triplet holds. Triplets can be stored in any order. As such, it is not necessary for storage device 216 to store a triplet for every potentially predefined key in order to keep the software 190 in sync when parsing the data read from the storage device 216. For example, if the key value of “abc” has been defined to identify a triplet that stores the results of a particular factory quality test, and that test is not applicable for a given segment of physical media 212, then no key-length-value triplet with a key of “abc” needs to be stored on the corresponding storage device 216 just to maintain a certain sequence. Conversely, the software 190 does not need to be programmed with knowledge of every potentially predefined key in order parse the information it needs from the values stored on each storage device 216. For example, a newly manufactured segment of physical media 212 can store one or more items of information having key values not recognized (and not needed or used by) by a connector assembly 102 to which it will be attached. In some implementations, all triplets that are read from a storage device 216 are forwarded onto the aggregation point 120, even if the software 190 executing in connector 102 is not able to recognize some of the keys in the triplets.
The read-only data 602 contains multiple key-length-value triplets 610 and 612. In this example, the first key-length-value triplet 610 in the read-only data 602 contains a predetermined value in its key field. The first key-length-value triplet 610 indicates that this triplet is indeed the first triplet 610 and indicates that this data is the read-only data 602. The length field of the first key-length triplet 610 encodes the length of the value field of the first key-length-value triplet 610 in the manner described above in connection with
Likewise, each of the copies of the read-write data 604 contains multiple key-length-value triplets 620 and 622. In this example, the first key-length-value triplet 620 in each of the copies of the read-write data 604 contains a predetermined value in its key field. The first key-length-value triplet 620 indicates that this triplet is indeed the first triplet 620 and indicates that this copy of data is a copy of the read-write data 604. The length field of the first key-length triplet 620 encodes the length of the value field of the first key-length-value triplet 620 in the manner described above in connection with
In the exemplary embodiment described here in connection with
When the connector 214 on which the storage device 216 is mounted is inserted into a port 104 of a connector assembly 102, the software 190 executing on the programmable processor 106 learns of that fact and reads all of the data 600 stored on the storage device 216. Then, in this exemplary embodiment, the fixed locations 630 and 632 are used to locate the beginning of the read-only data 602 and each copy of the read-write data 604, respectively. Then, the length of the read-only data 602 stored in the value field of the first key-length-value triplet 610 of the read-only data 602 can be used to access the checksum 606, and the length of the read-write data 604 stored in the value field of the first key-length-value triplet 620 in each copy of the read-write data 604 can be used to access the checksums 608. For example, the checksum 606 for the read-only data 602 can be accessed by using the length stored in the value field of the first triplet 610 included in the read-only data 602 as an offset from the fixed location 630 where the read-only data 602 starts.
The start of the first copy of the read-write data 604 is located at the respective fixed location 632. The checksum 608 for the first copy of the read-write data 604 can be accessed by using the length stored in the value field of the first triplet 620 included in the first copy of the read-write data 604 as an offset from start of the first copy of the read-write data 604 (that is, from the respective fixed location 632).
Likewise, the start of the second copy of the read-write data 604 is located at the respective fixed location 632. The checksum 608 for the second copy of the read-write data 604 can be accessed by using the length stored in the value field of the first triplet 620 included in the second copy of the read-write data 604 as an offset from start of the second copy of the read-write data 604 (that is, from the respective fixed location 632).
As just described, the respective fixed locations 630 and 632 can be used to access the start of the read-only data 602 and each copy of the read-write data 604. Each of the key-length-value triplets 610, 612, 620, and 622 in the read-only data 602 and each copy of read-write data 604 can be accessed using the length values stored in each of the length fields of the triplets 610, 612, 620, and 622. Each first key-length-value triplet 610 and 620 is the first item in, and is located at the start of, the read-only data 602 and each copy of the read-write data 604, respectively. The start of the second key-length-value triplet 612 and 622 in the read-only data 602 and each copy of the read-write data 604, respectively, can be accessed by using the length stored in the length field of the respective first key-length-value triplet 612 or 622 as an offset from the beginning of the read-only data 602 or the copy of read-write data 604, respectively. The start of each successive key-length-value triplet 612 or 622 can be accessed by using the length stored in the length field of the respective preceding key-length-value triplet 612 or 622 as offset from the beginning of the start of that preceding key-length-value triplet 612 or 622.
In this way, if the software 190 needs access to a particular item of information for local processing at the connector assembly 102, the software 190 finds the triplet having the corresponding key and decodes the payload information from the value field of that triplet. Triplets having key field values unknown to or unused by the software 190 executing at the connector assembly 102 are ignored by the software 190 in connection with its local processing and are forwarded to the aggregation point 120 along with all of the triplets read from the storage device 216. Such an implementation would have the advantage of only needing to update the software executing on the aggregation point 120 when use of newly defined types of items of information is desired, rather than needing to update the software 190 associated with all of the connector assemblies 102 in the system 100.
As another benefit of using key-length-value triplets as described herein, it is not necessary for the length of the value field used for a particular item of information to remain static once established. For example, if key “0xx” is currently stored in storage device 216 in a key-length-value triplet using a 48-bit long value field, when an update to that item of information is written back to storage device 216, a different length value field (36-bit, or 64-bit, for example) can be used as long as the length field in the key-length-value triplet is modified accordingly to reflect the new value field length.
In other embodiments, other flexible and variable length storage schemes are used instead of using key-length-value triplets. In some other implementations of the embodiment shown in
For implementations where storage device 216 is divided into a protected “read-only” area and a “writable” area, only information stored in the “writable” area is updated by the software 190. In one implementation, the “read-only” area and “writable” area each have their own respective field size keys. Accordingly, having a field size key for the “writable” area that is encoded in a header stored in the “writable” area provides for a scheme where the connector assembly 102 can store information back to storage device 216 using a data field length of “c” bits that is different from the “b” bits format initially used when the connector 214 was plugged into a port 104.
Further details, embodiments, and implementations can be found in the following United States patent applications, all of which are hereby incorporated herein by reference: U.S. Provisional Patent Application Ser. No. 61/252,964, filed on Oct. 19, 2009, titled “ELECTRICAL PLUG FOR MANAGED CONNECTIVITY”, Attorney Docket No. 02316.3045USP1; U.S. Provisional Patent Application Ser. No. 61/253,208, filed on Oct. 20, 2009, titled “ELECTRICAL PLUG FOR MANAGED CONNECTIVITY”, Attorney Docket No. 02316.3045USP2; U.S. patent application Ser. No. 12/907,724, filed on Oct. 19, 2010, titled “MANAGED ELECTRICAL CONNECTIVITY SYSTEMS”, Attorney Docket No. 02316.3045USU1; U.S. Provisional Patent Application Ser. No. 61/303,948, filed on Feb. 12, 2010, titled “PANEL INCLUDING BLADE FEATURE FOR MANAGED CONNECTIVITY”, Attorney Docket No. 02316.3069USP1; U.S. Provisional Patent Application Ser. No. 61/413,844, filed on Nov. 15, 2010, titled “COMMUNICATIONS BLADED PANEL SYSTEMS”, Attorney Docket No. 02316.3069USP2; U.S. Provisional Patent Application Ser. No. 61/439,693, filed on Feb. 4, 2011, titled “COMMUNICATIONS BLADED PANEL SYSTEMS”, Attorney Docket No. 02316.3069USP3; U.S. patent application Ser. No. 13/025,730, filed on Feb. 11, 2011, titled “COMMUNICATIONS BLADED PANEL SYSTEMS”, Attorney Docket No. 02316.3069USU1; U.S. patent application Ser. No. 13/025,737, filed on Feb. 11, 2011, titled “COMMUNICATIONS BLADED PANEL SYSTEMS”, Attorney Docket No. 02316.3069USU2; U.S. patent application Ser. No. 13/025,743, filed on Feb. 11, 2011, titled “COMMUNICATIONS BLADED PANEL SYSTEMS”, Attorney Docket No. 02316.3069USU3; U.S. patent application Ser. No. 13/025,750, filed on Feb. 11, 2011, titled “COMMUNICATIONS BLADED PANEL SYSTEMS”, Attorney Docket No. 02316.3069USU4; U.S. Provisional Patent Application Ser. No. 61/303,961; filed on Feb. 12, 2010, titled “Fiber Plug And Adapter For Managed Connectivity”, Attorney Docket No. 02316.3071USP1; U.S. Provisional Patent Application Ser. No. 61/413,828, filed on Nov. 15, 2010, titled “Fiber Plugs And Adapters For Managed Connectivity”, Attorney Docket No. 02316.3071USP2; U.S. Provisional Patent Application Ser. No. 61/437,504, filed on Jan. 28, 2011, titled “Fiber Plugs And Adapters For Managed Connectivity”, Attorney Docket No. 02316.3071USP3; U.S. patent application Ser. No. 13/025,784, filed on Feb. 11, 2011, titled “Managed Fiber Connectivity Systems”, Attorney Docket No. 02316.3071USU1; U.S. patent application Ser. No. 13/025,788, filed on Feb. 11, 2011, titled “Managed Fiber Connectivity Systems”, Attorney Docket No 02316.3071USU2; U.S. patent application Ser. No. 13/025,797, filed on Feb. 11, 2011, titled “Managed Fiber Connectivity Systems”, Attorney Docket No. 02316.3071USU3; U.S. patent application Ser. No. 13/025,841, filed on Feb. 11, 2011, titled “Managed Fiber Connectivity Systems”, Attorney Docket No. 02316.3071USU4; U.S. Provisional Patent Application Ser. No. 61/413,856, filed on Nov. 15, 2010, titled “CABLE MANAGEMENT IN RACK SYSTEMS”, Attorney Docket No. 02316.3090USP1; U.S. Provisional Patent Application Ser. No. 61/466,696, filed on Mar. 23, 2011, titled “CABLE MANAGEMENT IN RACK SYSTEMS”, Attorney Docket No. 02316.3090USP2; U.S. Provisional Patent Application Ser. No. 61/252,395, filed on Oct. 16, 2009, titled “MANAGED CONNECTIVITY IN ELECTRICAL SYSTEMS”, Attorney Docket No. 02316.3021USP1; U.S. patent application Ser. No. 12/905,689, filed on Oct. 15, 2010, titled “MANAGED CONNECTIVITY IN ELECTRICAL SYSTEMS”, Attorney Docket No. 02316.3021USU1; U.S. Provisional Patent Application Ser. No. 61/252,386, filed on Oct. 16, 2009, titled “MANAGED CONNECTIVITY IN FIBER OPTIC SYSTEMS”, Attorney Docket No. 02316.3020USP1; and U.S. patent application Ser. No. 12/905,658, filed on Oct. 15, 2010, titled “MANAGED CONNECTIVITY IN FIBER OPTIC SYSTEMS”, Attorney Docket No. 02316.3020USU1.
A number of embodiments of the invention defined by the following claims have been described. Nevertheless, it will be understood that various modifications to the described embodiments may be made without departing from the spirit and scope of the claimed invention. Accordingly, other embodiments are within the scope of the following claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/467,736, filed on Mar. 25, 2011, which is hereby incorporated herein by reference. This application is related to the following: U.S. Provisional Patent Application Ser. No. 61/467,715, filed on Mar. 25, 2011, titled “DOUBLE-BUFFER INSERTION COUNT STORED IN A DEVICE ATTACHED TO A PHYSICAL LAYER MEDIUM”, which is hereby incorporated herein by reference; U.S. patent application Ser. No. ______, Attorney Docket No. 100.1176US01, filed on even date herewith, titled “DOUBLE-BUFFER INSERTION COUNT STORED IN A DEVICE ATTACHED TO A PHYSICAL LAYER MEDIUM”, which is hereby incorporated herein by reference; U.S. Provisional Patent Application Ser. No. 61/467,725, filed on Mar. 25, 2011, titled “DYNAMICALLY DETECTING A DEFECTIVE CONNECTOR AT A PORT”, which is hereby incorporated herein by reference; U.S. patent application Ser. No. ______, Attorney Docket No. 100.1177US01, filed on even date herewith, titled “DYNAMICALLY DETECTING A DEFECTIVE CONNECTOR AT A PORT”, which is hereby incorporated herein by reference; U.S. Provisional Patent Application Ser. No. 61/467,729, filed on Mar. 25, 2011, titled “IDENTIFIER ENCODING SCHEME FOR USE WITH MULTI-PATH CONNECTORS”, which is hereby incorporated herein by reference; U.S. patent application Ser. No. ______, Attorney Docket No. 100.1178US01, filed on even date herewith, titled “IDENTIFIER ENCODING SCHEME FOR USE WITH MULTI-PATH CONNECTORS”, which is hereby incorporated herein by reference; U.S. Provisional Patent Application Ser. No. 61/467,743, filed on Mar. 25, 2011, titled “EVENT-MONITORING IN A SYSTEM FOR AUTOMATICALLY OBTAINING AND MANAGING PHYSICAL LAYER INFORMATION USING A RELIABLE PACKET-BASED COMMUNICATION”, which is hereby incorporated herein by reference; and U.S. patent application Ser. No. ______, Attorney Docket No. 100.1181US01, filed on even date herewith, titled “EVENT-MONITORING IN A SYSTEM FOR AUTOMATICALLY OBTAINING AND MANAGING PHYSICAL LAYER INFORMATION USING A RELIABLE PACKET-BASED COMMUNICATION”, which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61467736 | Mar 2011 | US | |
61467715 | Mar 2011 | US | |
61467725 | Mar 2011 | US | |
61467729 | Mar 2011 | US | |
61467743 | Mar 2011 | US |