In the field of telecommunications, there is a trend to reduce both the size and the expenses associated with infrastructure equipment. The result is a demand on telecommunications infrastructure equipment providers to manufacture smaller equipment that can be operated and maintained in a more cost effective manner, while retaining all the functionality of legacy equipment. The modularity of designs proposed for such equipment, along with the smaller sizes desired by system operators, has introduced new thermal management challenges for dissipating heat generated by telecommunications infrastructure equipment. For the reasons stated above and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the specification, there is a need in the art for improved systems and methods for thermal management of telecommunications infrastructure equipment.
The Embodiments of the present invention provide methods and systems for thermal management of telecommunications infrastructure equipment and will be understood by reading and studying the following specification.
In one embodiment, a cooling unit for an enclosure housing electronics is provided. The cooling unit comprises: a fan shroud having at least one electrical fan; and a Venturi chamber having a first inlet for receiving a heated airflow from a heatsink, a second inlet for receiving an airflow from a surrounding environment, and an outlet coupled to the fan shroud, the fan drawing air from the Venturi chamber via the outlet when the fan is on. The Venturi chamber comprises a wall for directing the airflow air from the surrounding environment in from the second inlet and across the heated airflow from the heatsink in a manner to as to draw the heated airflow through the heatsink using a Venturi effect, when the fan is on.
Embodiments of the present invention can be more easily understood and further advantages and uses thereof more readily apparent, when considered in view of the description of the preferred embodiments and the following figures in which:
In accordance with common practice, the various described features are not drawn to scale but are drawn to emphasize features relevant to the present invention. Reference characters denote like elements throughout figures and text.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of specific illustrative embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense.
This disclosure describes systems and methods for utilizing Venturi fan-assisted cooling of electrical equipment, such as but not limited to telecommunications equipment, housed inside an enclosure.
Enclosure 100 is shown in
As explained in greater detail in the '1040 Application, herein incorporated by reference, electrical components 120 are designed so that high powered internal electronics (that is, those electronics generating the most heat) (shown generally at 130) are located to maximize the conductive transfer of that heat to backplane 105 which thus acts as a heatsink for the high powered internal electronics 130. In contrast, low power internal electronics (that is, components generating relatively less heat) (shown at 135) are placed to conductively transfer the heat they generate to doors 110, when then doors 110 are in their closed positions as shown in
As shown in
Fan assisted cooling unit 210 further comprises a Venturi chamber 222 formed from a continuous wall 225 connected on each end to fan shroud 215. As shown in
As shown in
Fan 220 pulls in the hot buoyant air off the top of backplane 105 and at the same time air from the top of Venturi chamber 222. The air coming in from the top of Venturi chamber 222 is directed across the heated airflow from the heatsink by wall 225 and the draw of fan 222. The combination of drawing both the heated airflow 240 from backplane 105 and the ambient airflow 245 from above into Venturi chamber 222 and through fan 220 produces a Venturi effect. That is, the ambient airflow 245 flowing over the top of wall 225 generates an increased airflow in the heated airflow 240 coming from below—such as when air flows over the top of an open straw. With this configuration, cooling unit 210 works very efficiently as a pump to draw the hot air from the top openings of the convective openings 140 of backplane 105 which in turn draws in relatively cool ambient air in from the bottom openings of convective openings 140.
One of ordinary skill in the art, upon reading this specification, would be able to determine both the optimal volume of Venturi chamber 222 and the height of wall 225 using skills and knowledge they posses and based on the heat removal requirements of the particular application. For example, one of ordinary skill in the art upon reading this specification would recognize that every size of fan is rated to produce a given volumetric flow, and that the dimensions of Venturi chamber 222 can be adjusted to optimize the use of a particular fan and draw the desired volume of air through backplane 105 when the fan 220 is on. Further, the height of wall 225 should be limited to avoid unnecessarily impeding vertical airflow through the generation of air friction, which will decrease the Venturi effect pulling hot air from backplane 105. As shown in
Embodiments of the present invention, such as the cooling unit 210 described above, have distinct advantages over systems where a fan is placed directly over backplane 105. As illustrated in
In one embodiment, fan 220 is controlled to cycle on and off based on temperature thresholds. For example, in one embodiment when the temperature is less than a predetermined threshold (85 degrees Fahrenheit for example), the fan 220 turns off and natural convection flow through backplane 105 is utilized to remove heat from enclosure 100. When the temperature exceeds another predetermined threshold (90 degrees Fahrenheit for example), fan 220 is turned on to initiate forced air cooling as described above. As one of ordinary skill in the art upon reading this specification would appreciate, the upper and lower temperature thresholds can be set to avoid undue cycling of the fan. In alternate embodiments, the temperatures measured to determine when to operate the fan can include, but are not limited to, temperatures based on an ambient environmental air temperature, temperatures based on heat loads generated within enclosure 100, or a combination of both.
The method proceeds to 320 with drawing a first airflow across one or more convective openings of the heatsink and to 330 with drawing a second airflow of heated air from the one or more convective openings using a Venturi effect created by drawing the first airflow. As explained in greater detail above with respect to
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. For example, electrical enclosures having only a single door, or multiple doors having shaped different from those described above are contemplated as within the scope of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.
This application is related to the following commonly assigned co-pending U.S. patent applications, filed on even date herewith, each of which is incorporated herein by reference in its entirety, all of which are hereby incorporated herein by reference: U.S. patent application Ser. No. ______ (attorney docket number 100.1027US01 entitled “COMMUNICATION MODULES”) and which is referred to here as the '1027 Application; U.S. patent application Ser. No. ______ (attorney docket number 100.1028US01 entitled “APPARATUS FOR MOUNTING A MODULE AND ENABLING HEAT CONDUCTION FROM THE MODULE TO THE MOUNTING SURFACE”) and which is referred to here as the '1028 Application; U.S. patent application Ser. No. ______ (attorney docket number 100.1029USPR entitled “SUSPENSION METHOD FOR COMPLIANT THERMAL CONTACT OF ELECTRONICS MODULES”) and which is referred to here as the '1029 Application; U.S. patent application Ser. No. ______ (attorney docket number 100.1030US01 entitled “ANGLED DOORS WITH CONTINUOUS SEAL”) and which is referred to here as the '1030 Application; U.S. patent application Ser. No. ______ (attorney docket number 100.1031USPR entitled “L-SHAPED DOOR WITH 3-SURFACE SEAL FOR ENDPLATES”) and which is referred to here as the '1031 Application; U.S. patent application Ser. No. ______ (attorney docket number 100.1032USPR entitled “L-SHAPED DOORS WITH TRAPEZOIDAL SEAL”) and which is referred to here as the '1032 Application; U.S. patent application Ser. No. ______ (attorney docket number 100.1034USPR entitled “COMBINATION EXTRUDED AND CAST METAL OUTDOOR ELECTRONICS ENCLOSURE”) and which is referred to here as the '1034 Application; U.S. patent application Ser. No. ______ (attorney docket number 100.1035USPR, entitled “SYSTEMS AND METHODS FOR CABLE MANAGEMENT” and which is referred to here as the '1035 Application; U.S. patent application Ser. No. ______ (attorney docket number 100.1037USPR entitled “CAM SHAPED HINGES”) and which is referred to here as the '1037 Application; U.S. patent application Ser. No. ______ (attorney docket number 100.1038US01 entitled “SOLAR SHIELDS”) and which is referred to here as the '1038 Application; U.S. patent application Ser. No. ______ (attorney docket number 100.1039USPR entitled “APPARATUS AND METHOD FOR BLIND SLOTS FOR SELF DRILLING/SELF-TAPPING SCREWS”) and which is referred to here as the '1039 Application; U.S. patent application Ser. No. ______ (attorney docket number 100.1040USPR entitled “SYSTEMS AND METHODS FOR THERMAL MANAGEMENT”) and which is referred to here as the '1040 Application; U.S. patent application Ser. No. ______ (attorney docket number 100.1062USPR entitled “SERF BOARD COMPONENTS”) and which is referred to here as the '1062 Application; and U.S. patent application Ser. No. ______ (attorney docket number 100.1064US01 entitled “PULL-OUT SHELF FOR USE IN A CONFINED SPACE FORMED IN A STRUCTURE”) and which is referred to here as the '1064 Application.