This invention is related to connected mobile computing systems, methods, and configurations, and more specifically to mobile computing systems, methods, and configurations featuring at least one wearable component which may be utilized for virtual and/or augmented reality operation.
It is desirable that mixed reality, or augmented reality, near-eye displays be lightweight, low-cost, have a small form-factor, have a wide virtual image field of view, and be as transparent as possible. In addition, it is desirable to have configurations that present virtual image information in multiple focal planes (for example, two or more) in order to be practical for a wide variety of use-cases without exceeding an acceptable allowance for vergence-accommodation mismatch. Referring to
The present disclosure is generally directed to presenting information through a display of a mobile computing system. More specifically, the present disclosure describes, according to various embodiments, receiving information that is wirelessly transmitted to the mobile computing system by wireless devices that are proximal to a route being travelled by the mobile computing system, and presenting at least a portion of the received information through a display of the mobile computing system according to a computing experience determined for a user of the mobile computing system.
Embodiments of the present disclosure include a method performed by the mobile computing system, the method including the following operations: determining a computing experience for a user of the mobile computing system; establishing a wireless connection between the mobile computing system and each of a plurality of wireless devices, wherein each respective wireless device is in proximity to a travel route of the mobile computing system; receiving, over each respective wireless connection between the mobile computing system and a respective wireless device, location-based information that is associated with a location of the respective wireless device in proximity to the travel route; and presenting, through a display of the mobile computing system, the location-based information received from each of the plurality of wireless devices, wherein the location-based information is presented according to the determined computing experience.
Embodiments of the present disclosure can also optionally include one or more of the following aspects: determining the computing experience includes receiving a selection of the computing experience that is made by the user through the mobile computing system; determining the computing experience includes accessing at least one data source that stores a schedule of the user, and inferring the computing experience based at least partly on the schedule of the user; at least two of the plurality of wireless devices are at different locations in proximity to the travel route; the respective location-based information received from each of the at least two wireless devices is presented, through the display, during different periods of time; the computing experience includes at least one regulation that indicates at least: i) a first type of content to be displayed while the computing experience is employed, and ii) a second type of content to not be displayed while the computing experience is employed; presenting the location-based information includes presenting the first type of content and not presenting the second type of content; at least a portion of the location-based information that is associated with the location of the respective wireless device is stored locally on the respective wireless device; the mobile computing system is a wearable computing device; at least a portion of the location-based information that is associated with the location of the respective wireless device is communicated to the mobile computing system responsive to the mobile computing system scanning a beacon that is proximal to the location; at least the portion of the location-based information is communicated to the mobile computing system from a cloud-based storage system; the display of the mobile computing system is an augmented reality display or a mixed reality display; the location-based information sent from the respective wireless device includes geometric information associated with a feature in proximity to the location of the respective wireless device; and/or presenting the location-based information includes using the geometric information to present a virtual representation of the feature in the display.
Referring to
In some embodiments, the mobile computing system can be an augmented reality, or mixed reality, system as described, for example, in U.S. patent application Ser. Nos. 14/555,585, 14/690,401, 14/331,218, 15/481,255, and 62/518,539, each of which is incorporated by reference herein in its entirety.
In one embodiment, the mobile computing system may be configured such that the user selects certain aspects of his computing experience for the day. For example, through a graphical user interface, voice controls, and/or gestures, the user may input to the mobile computing system that he'll have a typical work day, usual route there, stopping at park for brief walk on the way home. Preferably the mobile computing system has certain artificial intelligence aspects so that it may use integration with his electronic calendar to provisionally understand his schedule, subject to quick confirmations. For example, as he is departing for work, the system may be configured to say or show: “headed to work; usual route and usual computing configuration”, and this usual route may be garnered from previous GPS and/or mobile triangulation data through his mobile computing system. The “usual computing configuration” may be customized by the user and subject to regulations; for example, the system may be configured to only present certain non-occlusive visuals, no advertisements, and no shopping or other information not pertinent to driving while the user is driving, and to provide an audio version of a news program or current favorite audiobook while the user is driving on his way to work. As the user navigates the drive on the way to work, he may leave connectivity with his home wireless device (40) and enter or maintain connectivity with other wireless devices (42, 44, 46, 48). Each of these wireless devices may be configured to provide the user's mobile computing system with information pertinent to the user's experience at relatively low latency (e.g., by storing locally certain information which may be pertinent to the user at that location).
For example, as the user travels from point A (80) to point B (82) to point C (84), a local wireless device (44) around point C (84) may be configured to pass to the user's mobile system geometric information which may be utilized on the user's mobile computing system for highlighting where a trench is being created at such location, so that the user clearly visualizes and/or understands the hazard while driving past, and this geometric information (which may feature a highlighted outline of the trench, for example; may also feature one or more photos or other non-geometric information) maybe locally stored on the local wireless device (44) so that it does not need to be pulled from more remote resources which may involve greater latency in getting the information to the driver. In addition to lowering latency, local storage also may function to decrease the overall compute load on the user's mobile computing system, because the mobile system may receive information that it otherwise would have had to generate or build itself based upon sensors, for example, which may comprise part of the locally mobile hardware.
Once the user arrives at the parking lot of his work (24), the system may, for example, be configured to detect walking velocity and to be configured by the user to review with the user his schedule for the day, via an integration with his computerized calendaring system, as he is walking up to the office. Certain additional information not resident on his locally mobile computing system may be pulled from local sources (48, 50, for example) which may feature certain storage capacity, to again facilitate smaller mobile overhead and lower latency versus direct cloud connectivity.
Referring to
Similarly, as the user navigates a walk (28) through the park (26), shown in magnified view in
Referring to
As described above, to decrease latency and generally increase useful access to pertinent location-based information, wireless devices with localized storage resources, such as those depicted in
In one embodiment, the mobile computing system may be customizable by the user to present information filtered on a time-domain basis, such as by how old or “stale” such information is. For example, the user may be able to configure the system to only provide traffic information while he is driving that is 10 minutes old or newer, etc. (e.g., the time domain aspect may be customized/configurable); or the user may be able to configure the system to only present architectural (e.g., position of walls within a building) that is one year old or newer etc. (e.g., the time domain aspect may be customized/configurable).
Various example embodiments of the invention are described herein. Reference is made to these examples in a non-limiting sense. They are provided to illustrate more broadly applicable aspects of the invention. Various changes may be made to the invention described and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. Further, as will be appreciated by those with skill in the art that each of the individual variations described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present inventions. All such modifications are intended to be within the scope of claims associated with this disclosure.
The invention includes methods that may be performed using the subject devices. The methods may comprise the act of providing such a suitable device. Such provision may be performed by the end user. In other words, the “providing” act merely requires the end user obtain, access, approach, position, set-up, activate, power-up or otherwise act to provide the requisite device in the subject method. Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as in the recited order of events.
Example aspects of the invention, together with details regarding material selection and manufacture have been set forth above. As for other details of the present invention, these may be appreciated in connection with the above-referenced patents and publications as well as generally known or appreciated by those with skill in the art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts as commonly or logically employed.
In addition, though the invention has been described in reference to several examples optionally incorporating various features, the invention is not to be limited to that which is described or indicated as contemplated with respect to each variation of the invention. Various changes may be made to the invention described and equivalents (whether recited herein or not included for the sake of some brevity) may be substituted without departing from the true spirit and scope of the invention. In addition, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention.
Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in claims associated hereto, the singular forms “a,” “an,” “said,” and “the” include plural referents unless the specifically stated otherwise. In other words, use of the articles allow for “at least one” of the subject item in the description above as well as claims associated with this disclosure. It is further noted that such claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
Without the use of such exclusive terminology, the term “comprising” in claims associated with this disclosure shall allow for the inclusion of any additional element—irrespective of whether a given number of elements are enumerated in such claims, or the addition of a feature could be regarded as transforming the nature of an element set forth in such claims. Except as specifically defined herein, all technical and scientific terms used herein are to be given as broad a commonly understood meaning as possible while maintaining claim validity.
The breadth of the present invention is not to be limited to the examples provided and/or the subject specification, but rather only by the scope of claim language associated with this disclosure.
The present disclosure is continuation of U.S. patent application Ser. No. 17/257,814, filed on Jan. 4, 2021, which is a national phase of International Patent Application No: PCT/US2019/040544, filed on Jul. 3, 2019, which claims benefit of priority under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/693,891, titled “Systems and Methods for Virtual and Augmented Reality,” which was filed on Jul. 3, 2018. The entire contents of these priority documents are incorporated by reference into the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4344092 | Miller | Aug 1982 | A |
4652930 | Crawford | Mar 1987 | A |
4810080 | Grendol et al. | Mar 1989 | A |
4997268 | Dauvergne | Mar 1991 | A |
5007727 | Kahaney et al. | Apr 1991 | A |
5074295 | Willis | Dec 1991 | A |
5240220 | Elberbaum | Aug 1993 | A |
5251635 | Dumoulin et al. | Oct 1993 | A |
5410763 | Bolle | May 1995 | A |
5455625 | Englander | Oct 1995 | A |
5495286 | Adair | Feb 1996 | A |
5497463 | Stein et al. | Mar 1996 | A |
5682255 | Friesem et al. | Oct 1997 | A |
5689669 | Lynch | Nov 1997 | A |
5826092 | Flannery | Oct 1998 | A |
5854872 | Tai | Dec 1998 | A |
5864365 | Sramek et al. | Jan 1999 | A |
5937202 | Crosetto | Aug 1999 | A |
6002853 | De Hond | Dec 1999 | A |
6012811 | Chao et al. | Jan 2000 | A |
6016160 | Coombs et al. | Jan 2000 | A |
6064749 | Hirota et al. | May 2000 | A |
6076927 | Owens | Jun 2000 | A |
6079982 | Meader | Jun 2000 | A |
6117923 | Amagai et al. | Sep 2000 | A |
6119147 | Toomey et al. | Sep 2000 | A |
6124977 | Takahashi | Sep 2000 | A |
6179619 | Tanaka | Jan 2001 | B1 |
6191809 | Hori et al. | Feb 2001 | B1 |
6219045 | Leahy et al. | Apr 2001 | B1 |
6243091 | Berstis | Jun 2001 | B1 |
6271843 | Lection et al. | Aug 2001 | B1 |
6362817 | Powers et al. | Mar 2002 | B1 |
6375369 | Schneider et al. | Apr 2002 | B1 |
6385735 | Wilson | May 2002 | B1 |
6396522 | Vu | May 2002 | B1 |
6414679 | Miodonski et al. | Jul 2002 | B1 |
6538655 | Kubota | Mar 2003 | B1 |
6541736 | Huang et al. | Apr 2003 | B1 |
6570563 | Honda | May 2003 | B1 |
6573903 | Gantt | Jun 2003 | B2 |
6590593 | Robertson et al. | Jul 2003 | B1 |
6621508 | Shiraishi et al. | Sep 2003 | B1 |
6690393 | Heron et al. | Feb 2004 | B2 |
6757068 | Foxlin | Jun 2004 | B2 |
6784901 | Harvfey et al. | Aug 2004 | B1 |
6961055 | Doak | Nov 2005 | B2 |
7046515 | Wyatt | May 2006 | B1 |
7051219 | Hwang | May 2006 | B2 |
7076674 | Cervantes | Jul 2006 | B2 |
7111290 | Yates, Jr. | Sep 2006 | B1 |
7119819 | Robertson et al. | Oct 2006 | B1 |
7219245 | Raghuvanshi | May 2007 | B1 |
7382288 | Wilson | Jun 2008 | B1 |
7414629 | Santodomingo | Aug 2008 | B2 |
7431453 | Hogan | Oct 2008 | B2 |
7467356 | Gettman et al. | Dec 2008 | B2 |
7542040 | Templeman | Jun 2009 | B2 |
7573640 | Nivon et al. | Aug 2009 | B2 |
7653877 | Matsuda | Jan 2010 | B2 |
7663625 | Chartier et al. | Feb 2010 | B2 |
7724980 | Shenzhi | May 2010 | B1 |
7746343 | Charaniya et al. | Jun 2010 | B1 |
7751662 | Kleemann | Jul 2010 | B2 |
7758185 | Lewis | Jul 2010 | B2 |
7788323 | Greenstein et al. | Aug 2010 | B2 |
7804507 | Yang et al. | Sep 2010 | B2 |
7814429 | Buffet et al. | Oct 2010 | B2 |
7817150 | Reichard et al. | Oct 2010 | B2 |
7844724 | Van Wie et al. | Nov 2010 | B2 |
8060759 | Arnan et al. | Nov 2011 | B1 |
8120851 | Iwasa | Feb 2012 | B2 |
8214660 | Capps, Jr. | Jul 2012 | B2 |
8246408 | Elliot | Aug 2012 | B2 |
8353594 | Lewis | Jan 2013 | B2 |
8360578 | Nummela et al. | Jan 2013 | B2 |
8508676 | Silverstein et al. | Aug 2013 | B2 |
8547638 | Levola | Oct 2013 | B2 |
8605764 | Rothaar et al. | Oct 2013 | B1 |
8619365 | Harris et al. | Dec 2013 | B2 |
8696113 | Lewis | Apr 2014 | B2 |
8698701 | Margulis | Apr 2014 | B2 |
8733927 | Lewis | May 2014 | B1 |
8736636 | Kang | May 2014 | B2 |
8759929 | Shiozawa et al. | Jun 2014 | B2 |
8793770 | Lim | Jul 2014 | B2 |
8823855 | Hwang | Sep 2014 | B2 |
8847988 | Geisner et al. | Sep 2014 | B2 |
8874673 | Kim | Oct 2014 | B2 |
9010929 | Lewis | Apr 2015 | B2 |
9015501 | Gee | Apr 2015 | B2 |
9086537 | Iwasa et al. | Jul 2015 | B2 |
9095437 | Boyden et al. | Aug 2015 | B2 |
9239473 | Lewis | Jan 2016 | B2 |
9244293 | Lewis | Jan 2016 | B2 |
9244533 | Friend et al. | Jan 2016 | B2 |
9383823 | Geisner et al. | Jul 2016 | B2 |
9489027 | Ogletree | Nov 2016 | B1 |
9519305 | Wolfe | Dec 2016 | B2 |
9581820 | Robbins | Feb 2017 | B2 |
9582060 | Balatsos | Feb 2017 | B2 |
9658473 | Lewis | May 2017 | B2 |
9671566 | Abovitz et al. | Jun 2017 | B2 |
9671615 | Vallius et al. | Jun 2017 | B1 |
9696795 | Marcolina et al. | Jul 2017 | B2 |
9798144 | Sako et al. | Oct 2017 | B2 |
9874664 | Stevens et al. | Jan 2018 | B2 |
9880441 | Osterhout | Jan 2018 | B1 |
9918058 | Takahasi et al. | Mar 2018 | B2 |
9955862 | Freeman et al. | May 2018 | B2 |
9978118 | Ozgumer et al. | May 2018 | B1 |
9996797 | Holz et al. | Jun 2018 | B1 |
10018844 | Levola et al. | Jul 2018 | B2 |
10082865 | Raynal et al. | Sep 2018 | B1 |
10151937 | Lewis | Dec 2018 | B2 |
10185147 | Lewis | Jan 2019 | B2 |
10218679 | Jawahar | Feb 2019 | B1 |
10241545 | Richards et al. | Mar 2019 | B1 |
10317680 | Richards et al. | Jun 2019 | B1 |
10436594 | Belt et al. | Oct 2019 | B2 |
10516853 | Gibson et al. | Dec 2019 | B1 |
10551879 | Richards et al. | Feb 2020 | B1 |
10578870 | Kimmel | Mar 2020 | B2 |
10698202 | Kimmel et al. | Jun 2020 | B2 |
10856107 | Mycek et al. | Oct 2020 | B2 |
10825424 | Zhang | Nov 2020 | B2 |
10987176 | Poltaretskyi et al. | Apr 2021 | B2 |
11190681 | Brook et al. | Nov 2021 | B1 |
11209656 | Choi et al. | Dec 2021 | B1 |
11236993 | Hall et al. | Feb 2022 | B1 |
20010010598 | Aritake et al. | Aug 2001 | A1 |
20010018667 | Kim | Aug 2001 | A1 |
20020007463 | Fung | Jan 2002 | A1 |
20020108064 | Nunally | Feb 2002 | A1 |
20020063913 | Nakamura et al. | May 2002 | A1 |
20020071050 | Homberg | Jun 2002 | A1 |
20020095463 | Matsuda | Jul 2002 | A1 |
20020113820 | Robinson et al. | Aug 2002 | A1 |
20020122648 | Mule'et al. | Sep 2002 | A1 |
20020140848 | Cooper et al. | Oct 2002 | A1 |
20030028816 | Bacon | Feb 2003 | A1 |
20030048456 | Hill | Mar 2003 | A1 |
20030067685 | Niv | Apr 2003 | A1 |
20030077458 | Korenaga et al. | Apr 2003 | A1 |
20030115494 | Cervantes | Jun 2003 | A1 |
20030218614 | Lavelle et al. | Nov 2003 | A1 |
20030219992 | Schaper | Nov 2003 | A1 |
20030226047 | Park | Dec 2003 | A1 |
20040001533 | Tran et al. | Jan 2004 | A1 |
20040021600 | Wittenberg | Feb 2004 | A1 |
20040025069 | Gary et al. | Feb 2004 | A1 |
20040042377 | Nikoloai et al. | Mar 2004 | A1 |
20040073822 | Greco | Apr 2004 | A1 |
20040073825 | Itoh | Apr 2004 | A1 |
20040111248 | Granny et al. | Jun 2004 | A1 |
20040113887 | Pair et al. | Jun 2004 | A1 |
20040174496 | Ji et al. | Sep 2004 | A1 |
20040186902 | Stewart | Sep 2004 | A1 |
20040193441 | Altieri | Sep 2004 | A1 |
20040201857 | Foxlin | Oct 2004 | A1 |
20040238732 | State et al. | Dec 2004 | A1 |
20040240072 | Schindler et al. | Dec 2004 | A1 |
20040246391 | Travis | Dec 2004 | A1 |
20040268159 | Aasheim et al. | Dec 2004 | A1 |
20050001977 | Zelman | Jan 2005 | A1 |
20050034002 | Flautner | Feb 2005 | A1 |
20050093719 | Okamoto et al. | May 2005 | A1 |
20050128212 | Edecker et al. | Jun 2005 | A1 |
20050157159 | Komiya et al. | Jul 2005 | A1 |
20050177385 | Hull | Aug 2005 | A1 |
20050231599 | Yamasaki | Oct 2005 | A1 |
20050273792 | Inohara et al. | Dec 2005 | A1 |
20060013435 | Rhoads | Jan 2006 | A1 |
20060015821 | Jacques Parker et al. | Jan 2006 | A1 |
20060019723 | Vorenkamp | Jan 2006 | A1 |
20060038880 | Starkweather et al. | Feb 2006 | A1 |
20060050224 | Smith | Mar 2006 | A1 |
20060090092 | Verhulst | Apr 2006 | A1 |
20060126181 | Levola | Jun 2006 | A1 |
20060129852 | Bonola | Jun 2006 | A1 |
20060132914 | Weiss et al. | Jun 2006 | A1 |
20060179329 | Terechko | Aug 2006 | A1 |
20060221448 | Nivon et al. | Oct 2006 | A1 |
20060228073 | Mukawa et al. | Oct 2006 | A1 |
20060250322 | Hall et al. | Nov 2006 | A1 |
20060259621 | Ranganathan | Nov 2006 | A1 |
20060268220 | Hogan | Nov 2006 | A1 |
20070058248 | Nguyen et al. | Mar 2007 | A1 |
20070103836 | Oh | May 2007 | A1 |
20070124730 | Pytel | May 2007 | A1 |
20070159673 | Freeman et al. | Jul 2007 | A1 |
20070188837 | Shimizu et al. | Aug 2007 | A1 |
20070198886 | Saito | Aug 2007 | A1 |
20070204672 | Huang et al. | Sep 2007 | A1 |
20070213952 | Cirelli | Sep 2007 | A1 |
20070283247 | Brenneman et al. | Dec 2007 | A1 |
20080002259 | Ishizawa et al. | Jan 2008 | A1 |
20080002260 | Arrouy et al. | Jan 2008 | A1 |
20080030429 | Hailpern | Feb 2008 | A1 |
20080043334 | Itzkovitch et al. | Feb 2008 | A1 |
20080046773 | Ham | Feb 2008 | A1 |
20080063802 | Maula et al. | Mar 2008 | A1 |
20080068557 | Menduni et al. | Mar 2008 | A1 |
20080125218 | Collins | May 2008 | A1 |
20080146942 | Dala-Krishna | Jun 2008 | A1 |
20080173036 | Willaims | Jul 2008 | A1 |
20080177506 | Kim | Jul 2008 | A1 |
20080205838 | Crippa et al. | Aug 2008 | A1 |
20080215907 | Wilson | Sep 2008 | A1 |
20080225393 | Rinko | Sep 2008 | A1 |
20080235570 | Sawada et al. | Sep 2008 | A1 |
20080246693 | Hailpern et al. | Oct 2008 | A1 |
20080316768 | Travis | Dec 2008 | A1 |
20090076791 | Rhoades et al. | Mar 2009 | A1 |
20090091583 | McCoy | Apr 2009 | A1 |
20090153797 | Allon et al. | Jun 2009 | A1 |
20090224416 | Laakkonen et al. | Sep 2009 | A1 |
20090245730 | Kleemann | Oct 2009 | A1 |
20090287728 | Martine et al. | Nov 2009 | A1 |
20090300528 | Stambaugh | Dec 2009 | A1 |
20090310633 | Ikegami | Dec 2009 | A1 |
20100005326 | Archer | Jan 2010 | A1 |
20100019962 | Fujita | Jan 2010 | A1 |
20100056274 | Uusitalo et al. | Mar 2010 | A1 |
20100063854 | Purvis et al. | Mar 2010 | A1 |
20100070378 | Trotman et al. | Mar 2010 | A1 |
20100079841 | Levola | Apr 2010 | A1 |
20100115428 | Shuping et al. | May 2010 | A1 |
20100153934 | Lachner | Jun 2010 | A1 |
20100194632 | Raento et al. | Aug 2010 | A1 |
20100205541 | Rappaport et al. | Aug 2010 | A1 |
20100214284 | Rieffel et al. | Aug 2010 | A1 |
20100232016 | Landa et al. | Sep 2010 | A1 |
20100232031 | Batchko et al. | Sep 2010 | A1 |
20100244168 | Shiozawa et al. | Sep 2010 | A1 |
20100274567 | Carlson et al. | Oct 2010 | A1 |
20100274627 | Carlson | Oct 2010 | A1 |
20100277803 | Pockett et al. | Nov 2010 | A1 |
20100284085 | Laakkonen | Nov 2010 | A1 |
20100296163 | Sarikko | Nov 2010 | A1 |
20110010636 | Hamilton, II et al. | Jan 2011 | A1 |
20110021263 | Anderson et al. | Jan 2011 | A1 |
20110022870 | Mcgrane | Jan 2011 | A1 |
20110041083 | Gabai et al. | Feb 2011 | A1 |
20110050640 | Lundback et al. | Mar 2011 | A1 |
20110050655 | Mukawa | Mar 2011 | A1 |
20110122240 | Becker | May 2011 | A1 |
20110145617 | Thomson et al. | Jun 2011 | A1 |
20110170801 | Lu et al. | Jul 2011 | A1 |
20110218733 | Hamza et al. | Sep 2011 | A1 |
20110286735 | Temblay | Nov 2011 | A1 |
20110291969 | Rashid et al. | Dec 2011 | A1 |
20120011389 | Driesen | Jan 2012 | A1 |
20120050535 | Densham et al. | Mar 2012 | A1 |
20120075501 | Oyagi et al. | Mar 2012 | A1 |
20120081392 | Arthur | Apr 2012 | A1 |
20120089854 | Breakstone | Apr 2012 | A1 |
20120113235 | Shintani | May 2012 | A1 |
20120127062 | Bar-Zeev et al. | May 2012 | A1 |
20120154557 | Perez et al. | Jun 2012 | A1 |
20120218301 | Miller | Aug 2012 | A1 |
20120246506 | Knight | Sep 2012 | A1 |
20120249416 | Maciocci et al. | Oct 2012 | A1 |
20120249741 | Maciocci et al. | Oct 2012 | A1 |
20120260083 | Andrews | Oct 2012 | A1 |
20120307075 | Margalitq | Dec 2012 | A1 |
20120307362 | Silverstein et al. | Dec 2012 | A1 |
20120314959 | White et al. | Dec 2012 | A1 |
20120320460 | Levola | Dec 2012 | A1 |
20120326948 | Crocco et al. | Dec 2012 | A1 |
20130021486 | Richardon | Jan 2013 | A1 |
20130050258 | Liu et al. | Feb 2013 | A1 |
20130050642 | Ewis et al. | Feb 2013 | A1 |
20130050833 | Lewis et al. | Feb 2013 | A1 |
20130051730 | Travers et al. | Feb 2013 | A1 |
20130061240 | Yan et al. | Mar 2013 | A1 |
20130077049 | Bohn | Mar 2013 | A1 |
20130077170 | Ukuda | Mar 2013 | A1 |
20130094148 | Sloane | Apr 2013 | A1 |
20130129282 | Li | May 2013 | A1 |
20130162940 | Kurtin et al. | Jun 2013 | A1 |
20130169923 | Schnoll et al. | Jul 2013 | A1 |
20130205126 | Kruglick | Aug 2013 | A1 |
20130222386 | Tannhauser et al. | Aug 2013 | A1 |
20130268257 | Hu | Oct 2013 | A1 |
20130278633 | Ahn et al. | Oct 2013 | A1 |
20130314789 | Saarikko et al. | Nov 2013 | A1 |
20130318276 | Dalal | Nov 2013 | A1 |
20130336138 | Venkatraman et al. | Dec 2013 | A1 |
20130342564 | Kinnebrew et al. | Dec 2013 | A1 |
20130342570 | Kinnebrew et al. | Dec 2013 | A1 |
20130342571 | Kinnebrew et al. | Dec 2013 | A1 |
20130343408 | Cook | Dec 2013 | A1 |
20140002329 | Nishimaki et al. | Jan 2014 | A1 |
20140013098 | Yeung | Jan 2014 | A1 |
20140016821 | Arth et al. | Jan 2014 | A1 |
20140022819 | Oh et al. | Jan 2014 | A1 |
20140078023 | Ikeda et al. | Mar 2014 | A1 |
20140082526 | Park et al. | Mar 2014 | A1 |
20140119598 | Ramachandran et al. | May 2014 | A1 |
20140126769 | Reitmayr et al. | May 2014 | A1 |
20140140653 | Brown et al. | May 2014 | A1 |
20140149573 | Tofighbakhsh et al. | May 2014 | A1 |
20140168260 | O'Brien et al. | Jun 2014 | A1 |
20140266987 | Magyari | Sep 2014 | A1 |
20140267419 | Ballard et al. | Sep 2014 | A1 |
20140274391 | Stafford | Sep 2014 | A1 |
20140282105 | Nordstrom | Sep 2014 | A1 |
20140313228 | Kasahara | Oct 2014 | A1 |
20140340449 | Plagemann et al. | Nov 2014 | A1 |
20140359589 | Kodsky et al. | Dec 2014 | A1 |
20140375680 | Ackerman et al. | Dec 2014 | A1 |
20150005785 | Olson | Jan 2015 | A1 |
20150009099 | Queen | Jan 2015 | A1 |
20150077312 | Wang | Mar 2015 | A1 |
20150097719 | Balachandreswaran et al. | Apr 2015 | A1 |
20150123966 | Newman | May 2015 | A1 |
20150130790 | Vazquez, II et al. | May 2015 | A1 |
20150134995 | Park et al. | May 2015 | A1 |
20150138248 | Schrader | May 2015 | A1 |
20150155939 | Oshima et al. | Jun 2015 | A1 |
20150168221 | Mao et al. | Jun 2015 | A1 |
20150205126 | Schowengerdt | Jul 2015 | A1 |
20150235427 | Nobori et al. | Aug 2015 | A1 |
20150235431 | Schowengerdt | Aug 2015 | A1 |
20150253651 | Russell et al. | Sep 2015 | A1 |
20150256484 | Cameron | Sep 2015 | A1 |
20150269784 | Miyawaki et al. | Sep 2015 | A1 |
20150294483 | Wells et al. | Oct 2015 | A1 |
20150301955 | Yakovenko et al. | Oct 2015 | A1 |
20150310657 | Eden | Oct 2015 | A1 |
20150338915 | Publicover et al. | Nov 2015 | A1 |
20150355481 | Hilkes et al. | Dec 2015 | A1 |
20160004102 | Nisper et al. | Jan 2016 | A1 |
20160015470 | Border | Jan 2016 | A1 |
20160027215 | Burns et al. | Jan 2016 | A1 |
20160033770 | Fujimaki et al. | Feb 2016 | A1 |
20160077338 | Robbins et al. | Mar 2016 | A1 |
20160085285 | Mangione-Smith | Mar 2016 | A1 |
20160085300 | Robbins et al. | Mar 2016 | A1 |
20160091720 | Stafford et al. | Mar 2016 | A1 |
20160093099 | Bridges | Mar 2016 | A1 |
20160093269 | Buckley et al. | Mar 2016 | A1 |
20160123745 | Cotier | May 2016 | A1 |
20160139402 | Lapstun | May 2016 | A1 |
20160139411 | Kang et al. | May 2016 | A1 |
20160155273 | Lyren et al. | Jun 2016 | A1 |
20160180596 | Gonzalez Del Rosario | Jun 2016 | A1 |
20160187654 | Border et al. | Jun 2016 | A1 |
20160191887 | Casas | Jun 2016 | A1 |
20160202496 | Billetz et al. | Jul 2016 | A1 |
20160217624 | Finn et al. | Jul 2016 | A1 |
20160266412 | Yoshida | Sep 2016 | A1 |
20160267708 | Nistico et al. | Sep 2016 | A1 |
20160274733 | Hasegawa et al. | Sep 2016 | A1 |
20160287337 | Aram et al. | Oct 2016 | A1 |
20160300388 | Stafford et al. | Oct 2016 | A1 |
20160321551 | Priness et al. | Nov 2016 | A1 |
20160327798 | Xiao et al. | Nov 2016 | A1 |
20160334279 | Mittleman et al. | Nov 2016 | A1 |
20160357255 | Lindh et al. | Dec 2016 | A1 |
20160370404 | Quadrat et al. | Dec 2016 | A1 |
20160370510 | Thomas | Dec 2016 | A1 |
20170038607 | Camara | Feb 2017 | A1 |
20170060225 | Zha et al. | Mar 2017 | A1 |
20170061696 | Li et al. | Mar 2017 | A1 |
20170064066 | Das et al. | Mar 2017 | A1 |
20170100664 | Osterhout et al. | Apr 2017 | A1 |
20170102544 | Vallius et al. | Apr 2017 | A1 |
20170115487 | Travis | Apr 2017 | A1 |
20170122725 | Yeoh et al. | May 2017 | A1 |
20170123526 | Trail et al. | May 2017 | A1 |
20170127295 | Black et al. | May 2017 | A1 |
20170131569 | Aschwanden et al. | May 2017 | A1 |
20170147066 | Katz et al. | May 2017 | A1 |
20170160518 | Lanman et al. | Jun 2017 | A1 |
20170161951 | Fix et al. | Jun 2017 | A1 |
20170185261 | Perez et al. | Jun 2017 | A1 |
20170192239 | Nakamura et al. | Jul 2017 | A1 |
20170201709 | Igarashi et al. | Jul 2017 | A1 |
20170205903 | Miller et al. | Jul 2017 | A1 |
20170206668 | Poulos et al. | Jul 2017 | A1 |
20170213388 | Margolis et al. | Jul 2017 | A1 |
20170214907 | Lapstun | Jul 2017 | A1 |
20170219841 | Popovich et al. | Aug 2017 | A1 |
20170232345 | Rofougaran et al. | Aug 2017 | A1 |
20170235126 | DiDomenico | Aug 2017 | A1 |
20170235129 | Kamakura | Aug 2017 | A1 |
20170235142 | Wall et al. | Aug 2017 | A1 |
20170235144 | Piskunov et al. | Aug 2017 | A1 |
20170235147 | Kamakura | Aug 2017 | A1 |
20170243403 | Daniels et al. | Aug 2017 | A1 |
20170246070 | Osterhout et al. | Aug 2017 | A1 |
20170254832 | Ho et al. | Sep 2017 | A1 |
20170256096 | Faaborg et al. | Sep 2017 | A1 |
20170258526 | Lang | Sep 2017 | A1 |
20170266529 | Reikmoto | Sep 2017 | A1 |
20170270712 | Tyson et al. | Sep 2017 | A1 |
20170281054 | Stever et al. | Oct 2017 | A1 |
20170287376 | Bakar et al. | Oct 2017 | A1 |
20170293141 | Schowengerdt et al. | Oct 2017 | A1 |
20170307886 | Stenberg et al. | Oct 2017 | A1 |
20170307891 | Bucknor et al. | Oct 2017 | A1 |
20170312032 | Amanatullah et al. | Nov 2017 | A1 |
20170322418 | Liu et al. | Nov 2017 | A1 |
20170322426 | Tervo | Nov 2017 | A1 |
20170329137 | Tervo | Nov 2017 | A1 |
20170332098 | Rusanovskyy et al. | Nov 2017 | A1 |
20170336636 | Amitai et al. | Nov 2017 | A1 |
20170357332 | Balan et al. | Dec 2017 | A1 |
20170363871 | Vallius | Dec 2017 | A1 |
20170371394 | Chan | Dec 2017 | A1 |
20170371661 | Sparling | Dec 2017 | A1 |
20180014266 | Chen | Jan 2018 | A1 |
20180024289 | Fattal | Jan 2018 | A1 |
20180044173 | Netzer | Feb 2018 | A1 |
20180052007 | Teskey et al. | Feb 2018 | A1 |
20180052501 | Jones, Jr. et al. | Feb 2018 | A1 |
20180059305 | Popovich et al. | Mar 2018 | A1 |
20180067779 | Pillalamarri et al. | Mar 2018 | A1 |
20180070855 | Eichler | Mar 2018 | A1 |
20180082480 | White et al. | Mar 2018 | A1 |
20180084245 | Lapstun | Mar 2018 | A1 |
20180088185 | Woods et al. | Mar 2018 | A1 |
20180102981 | Kurtzman et al. | Apr 2018 | A1 |
20180108179 | Tomlin et al. | Apr 2018 | A1 |
20180114298 | Malaika et al. | Apr 2018 | A1 |
20180129112 | Osterhout | May 2018 | A1 |
20180131907 | Schmirler et al. | May 2018 | A1 |
20180136466 | Ko | May 2018 | A1 |
20180144691 | Choi et al. | May 2018 | A1 |
20180150971 | Adachi et al. | May 2018 | A1 |
20180151796 | Akahane | May 2018 | A1 |
20180172995 | Lee et al. | Jun 2018 | A1 |
20180188115 | Hsu et al. | Jul 2018 | A1 |
20180189568 | Powderly et al. | Jul 2018 | A1 |
20180190017 | Mendez et al. | Jul 2018 | A1 |
20180191990 | Motoyama et al. | Jul 2018 | A1 |
20180218545 | Garcia et al. | Aug 2018 | A1 |
20180250589 | Cossairt et al. | Sep 2018 | A1 |
20180284877 | Klein | Oct 2018 | A1 |
20180292654 | Wall et al. | Oct 2018 | A1 |
20180299678 | Singer et al. | Oct 2018 | A1 |
20180357472 | Dreessen | Dec 2018 | A1 |
20190005069 | Filgueiras de Araujo et al. | Jan 2019 | A1 |
20190011691 | Peyman | Jan 2019 | A1 |
20190056591 | Tervo et al. | Feb 2019 | A1 |
20190087015 | Lam et al. | Mar 2019 | A1 |
20190101758 | Zhu et al. | Apr 2019 | A1 |
20190107723 | Lee et al. | Apr 2019 | A1 |
20190137788 | Suen | May 2019 | A1 |
20190155034 | Singer et al. | May 2019 | A1 |
20190155439 | Mukherjee et al. | May 2019 | A1 |
20190158926 | Kang et al. | May 2019 | A1 |
20190162950 | Lapstun | May 2019 | A1 |
20190167095 | Krueger | Jun 2019 | A1 |
20190172216 | Ninan et al. | Jun 2019 | A1 |
20190178654 | Hare | Jun 2019 | A1 |
20190182415 | Sivan | Jun 2019 | A1 |
20190196690 | Chong et al. | Jun 2019 | A1 |
20190206116 | Xu et al. | Jul 2019 | A1 |
20190219815 | Price et al. | Jul 2019 | A1 |
20190243123 | Bohn | Aug 2019 | A1 |
20190287270 | Nakamura et al. | Sep 2019 | A1 |
20190318502 | He et al. | Oct 2019 | A1 |
20190318540 | Piemonte et al. | Oct 2019 | A1 |
20190321728 | Imai et al. | Oct 2019 | A1 |
20190347853 | Chen et al. | Nov 2019 | A1 |
20190380792 | Poltaretskyi et al. | Dec 2019 | A1 |
20190388182 | Kumar et al. | Dec 2019 | A1 |
20200066045 | Stahl et al. | Feb 2020 | A1 |
20200098188 | Bar-Zeev et al. | Mar 2020 | A1 |
20200100057 | Galon | Mar 2020 | A1 |
20200110928 | Al Jazaery et al. | Apr 2020 | A1 |
20200117267 | Gibson et al. | Apr 2020 | A1 |
20200117270 | Gibson et al. | Apr 2020 | A1 |
20200184217 | Faulkner | Jun 2020 | A1 |
20200184653 | Faulker | Jun 2020 | A1 |
20200202759 | Ukai et al. | Jun 2020 | A1 |
20200242848 | Ambler et al. | Jul 2020 | A1 |
20200309944 | Thoresen et al. | Oct 2020 | A1 |
20200356161 | Wagner | Nov 2020 | A1 |
20200368616 | Delamont | Nov 2020 | A1 |
20200391115 | Leeper et al. | Dec 2020 | A1 |
20200409528 | Lee | Dec 2020 | A1 |
20210008413 | Asikainen et al. | Jan 2021 | A1 |
20210033871 | Jacoby et al. | Feb 2021 | A1 |
20210041951 | Gibson et al. | Feb 2021 | A1 |
20210053820 | Gurin et al. | Feb 2021 | A1 |
20210093391 | Poltaretskyi et al. | Apr 2021 | A1 |
20210093410 | Gaborit et al. | Apr 2021 | A1 |
20210093414 | Moore et al. | Apr 2021 | A1 |
20210097886 | Kuester et al. | Apr 2021 | A1 |
20210132380 | Wieczorek | May 2021 | A1 |
20210142582 | Jones et al. | May 2021 | A1 |
20210158627 | Cossairt et al. | May 2021 | A1 |
20210173480 | Osterhout et al. | Jun 2021 | A1 |
20220366598 | Azimi et al. | Nov 2022 | A1 |
Number | Date | Country |
---|---|---|
101449270 | Jun 2009 | CN |
104040410 | Sep 2014 | CN |
104603675 | May 2015 | CN |
106662754 | May 2017 | CN |
107683497 | Feb 2018 | CN |
105190427 | Nov 2019 | CN |
0504930 | Mar 1992 | EP |
0535402 | Apr 1993 | EP |
0632360 | Jan 1995 | EP |
1215522 | Jun 2002 | EP |
1494110 | Jan 2005 | EP |
1938141 | Jul 2008 | EP |
1943556 | Jul 2008 | EP |
2290428 | Mar 2011 | EP |
2350774 | Aug 2011 | EP |
1237067 | Jan 2016 | EP |
3139245 | Mar 2017 | EP |
3164776 | May 2017 | EP |
3236211 | Oct 2017 | EP |
2723240 | Aug 2018 | EP |
2896986 | Feb 2021 | EP |
2499635 | Aug 2013 | GB |
2542853 | Apr 2017 | GB |
938DEL2004 | Jun 2006 | IN |
H03-036974 | Apr 1991 | JP |
H10-333094 | Dec 1998 | JP |
2002-529806 | Sep 2002 | JP |
2003-029198 | Jan 2003 | JP |
2003-141574 | May 2003 | JP |
2003-228027 | Aug 2003 | JP |
2003-329873 | Nov 2003 | JP |
2005-303843 | Oct 2005 | JP |
2007-012530 | Jan 2007 | JP |
2007-86696 | Apr 2007 | JP |
2007-273733 | Oct 2007 | JP |
2008-257127 | Oct 2008 | JP |
2009-090689 | Apr 2009 | JP |
2009-244869 | Oct 2009 | JP |
2010-014443 | Jan 2010 | JP |
2010-139575 | Jun 2010 | JP |
2011-033993 | Feb 2011 | JP |
2011-257203 | Dec 2011 | JP |
2012-015774 | Jan 2012 | JP |
2012-235036 | Nov 2012 | JP |
2013-525872 | Jun 2013 | JP |
2014-500522 | Jan 2014 | JP |
2014-192550 | Oct 2014 | JP |
2015-191032 | Nov 2015 | JP |
2016-502120 | Jan 2016 | JP |
2016-85463 | May 2016 | JP |
2016-516227 | Jun 2016 | JP |
2017-015697 | Jan 2017 | JP |
2017-153498 | Sep 2017 | JP |
2017-531840 | Oct 2017 | JP |
6232763 | Nov 2017 | JP |
6333965 | May 2018 | JP |
2005-0010775 | Jan 2005 | KR |
10-2006-0059992 | Jun 2006 | KR |
10-1372623 | Mar 2014 | KR |
201219829 | May 2012 | TW |
201803289 | Jan 2018 | TW |
1991000565 | Jan 1991 | WO |
2000030368 | Jun 2000 | WO |
2002071315 | Sep 2002 | WO |
2004095248 | Nov 2004 | WO |
2006132614 | Dec 2006 | WO |
2007037089 | May 2007 | WO |
2007085682 | Aug 2007 | WO |
2007102144 | Sep 2007 | WO |
2008148927 | Dec 2008 | WO |
2009101238 | Aug 2009 | WO |
2014203440 | Dec 2010 | WO |
2012030787 | Mar 2012 | WO |
2013049012 | Apr 2013 | WO |
2013062701 | May 2013 | WO |
2014033306 | Mar 2014 | WO |
2015143641 | Oct 2015 | WO |
2015143641 | Oct 2015 | WO |
2016054092 | Apr 2016 | WO |
2017004695 | Jan 2017 | WO |
2017044761 | Mar 2017 | WO |
2017049163 | Mar 2017 | WO |
2017120475 | Jul 2017 | WO |
2017176861 | Oct 2017 | WO |
2017203201 | Nov 2017 | WO |
2018008232 | Jan 2018 | WO |
2018031261 | Feb 2018 | WO |
2018022523 | Feb 2018 | WO |
2018044537 | Mar 2018 | WO |
2018039273 | Mar 2018 | WO |
2018057564 | Mar 2018 | WO |
2018085287 | May 2018 | WO |
2018087408 | May 2018 | WO |
2018097831 | May 2018 | WO |
2018166921 | Sep 2018 | WO |
2019148154 | Aug 2019 | WO |
2020010226 | Jan 2020 | WO |
Entry |
---|
“Extended European Search Report dated Sep. 8, 2022”, European Patent Application No. 20798769.4, (13 pages). |
“First Office Action dated Sep. 16, 2022 with English translation”, Chinese Patent Application No. 201980063642.7, (7 pages). |
“FS_XR5G: Permanent document, v0.4.0”, Qualcomm Incorporated, 3GPP TSG-SA 4 Meeting 103 retrieved from the Internet: URL:http://www.3gpp.org/ftp/Meetings%5F3GP P%5FSYNC/SA4/Docs/S4%2DI90526%2Ezip [retrieved on Apr. 12, 2019], Apr. 12, 2019, (98 pages). |
“Notice of Reason for Rejection dated Oct. 28, 2022 with English translation”, Japanese Patent Application No. 2020-531452, (3 pages). |
“Extended European Search Report dated Aug. 24, 2022”, European Patent Application No. 20846338.0, (13 pages). |
“Non Final Office Action dated Sep. 19, 2022”, U.S. Appl. No. 17/263,001, (14 pages). |
Anonymous , “Koi Pond: Top iPhone App Store Paid App”, https://web.archive.org/web/20080904061233/https://www.iphoneincanada.ca/reviews /koi-pond-top-iphone-app-store-paid-app/—[retrieved on Aug. 9, 2022], (2 pages). |
“ARToolKit: Hardware”, https://web.archive.org/web/20051013062315/http://www.hitl.washington.edu:80/artoolkit/documentation/hardware.htm (downloaded Oct. 26, 2020), Oct. 13, 2015, (3 pages). |
“Communication according to Rule 164(1) EPC dated Feb. 23, 2022”, European Patent Application No. 20753144.3, (11 pages). |
“Communication Pursuant to Article 94(3) EPC dated Sep. 4, 2019”, European Patent Application No. 10793707.0, (4 pages). |
“Communication Pursuant to Article 94(3) EPC dated Apr. 25, 2022”, European Patent Application No. 18885707.2, (5 pages). |
“Communication Pursuant to Article 94(3) EPC dated Jan. 4, 2022”, European Patent Application No. 20154070.5, (8 pages). |
“Communication Pursuant to Article 94(3) EPC dated May 30, 2022”, European Patent Application No. 19768418.6, (6 pages). |
“Communication Pursuant to Article 94(3) EPC dated Oct. 21, 2021”, European Patent Application No. 16207441.3, (4 pages). |
“Communication Pursuant to Rule 164(1) EPC dated Jul. 27, 2021”, European Patent Application No. 19833664.6, (11 pages). |
“European Search Report dated Oct. 15, 2020”, European Patent Application No. 20180623.9, (10 pages). |
“Extended European Search Report dated Jul. 20, 2022”, European Patent Application No. 19885958.9, (9 pages). |
“Extended European Search Report dated May 20, 2020”, European Patent Application No. 20154070.5, (7 pages). |
“Extended European Search Report dated Jan. 22, 2021”, European Patent Application No. 18890390.0, (11 pages). |
“Extended European Search Report dated Nov. 3, 2020”, European Patent Application No. 18885707.2, (7 pages). |
“Extended European Search Report dated Jun. 30, 2021”, European Patent Application No. 19811971.1, (9 pages). |
“Extended European Search Report dated Mar. 4, 2021”, European Patent Application No. 19768418.6, (9 pages). |
“Extended European Search Report dated Nov. 4, 2020”, European Patent Application No. 20190980.1, (14 pages). |
“Extended European Search Report dated Aug. 8, 2022”, European Patent Application No. 19898874.3, (8 pages). |
“Extended European Search Report dated Jun. 12, 2017”, European Patent Application No. 16207441.3, (8 pages). |
“Extended European Search Report dated Jan. 28, 2022”, European Patent Application No. 19815876.8, (9 pages). |
“Extended European Search Report dated Jan. 4, 2022”, European Patent Application No. 19815085.6, (9 pages). |
“Extended European Search Report dated Jul. 16, 2021”, European Patent Application No. 19810142.0, (14 pages). |
“Extended European Search Report dated Jul. 30, 2021”, European Patent Application No. 19839970.1, (7 pages). |
“Extended European Search Report dated Jun. 19, 2020”, European Patent Application No. 20154750.2, (10 pages). |
“Extended European Search Report dated Mar. 22, 2022”, European Patent Application No. 19843487.0, (14 pages). |
“Extended European Search Report dated May 16, 2022”, European Patent Application No. 19871001.4, (9 pages). |
“Extended European Search Report dated May 30, 2022”, European Patent Application No. 20753144.3, (10 pages). |
“Extended European Search Report dated Oct. 27, 2021”, European Patent Application No. 19833664.6, (10 pages). |
“Extended European Search Report dated Sep. 20, 2021”, European Patent Application No. 19851373.1, (8 pages). |
“Extended European Search Report dated Sep. 28, 2021”, European Patent Application No. 19845418.3, (13 pages). |
“Final Office Action dated Aug. 10, 2020”, U.S. Appl. No. 16/225,961, (13 pages). |
“Final Office Action dated Dec. 4, 2019”, U.S. Appl. No. 15/564,517, (15 pages). |
“Final Office Action dated Feb. 19, 2020”, U.S. Appl. No. 15/552,897, (17 pages). |
“Final Office Action dated Feb. 23, 2022”, U.S. Appl. No. 16/748,193, (23 pages). |
“Final Office Action dated Feb. 3, 2022”, U.S. Appl. No. 16/864,721, (36 pages). |
“Final Office Action dated Jul. 13, 2022”, U.S. Appl. No. 17/262,991, (18 pages). |
“Final Office Action dated Jun. 15, 2021”, U.S. Appl. No. 16/928,313, (42 pages). |
“Final Office Action dated Mar. 1, 2021”, U.S. Appl. No. 16/214,575, (29 pages). |
“Final Office Action dated Mar. 19, 2021”, U.S. Appl. No. 16/530,776, (25 pages). |
“Final Office Action dated Nov. 24, 2020”, U.S. Appl. No. 16/435,933, (44 pages). |
“Final Office Action dated Sep. 17, 2021”, U.S. Appl. No. 16/938,782, (44 pages). |
“First Examination Report dated Jul. 27, 2022”, Chinese Patent Application No. 201980036675.2, (5 pages). |
“First Examination Report dated Jul. 28, 2022”, Indian Patent Application No. 202047024232, (6 pages). |
“First Examination Report dated May 13, 2022”, Indian Patent Application No. 202047026359, (8 pages). |
“First Office Action dated Feb. 11, 2022 with English translation”, Chinese Patent Application No. 201880089255.6, (17 pages). |
“First Office Action dated Mar. 14, 2022 with English translation”, Chinese Patent Application No. 201880079474.6, (11 pages). |
“International Search Report and Written Opinion dated Feb. 12, 2021”, International Application No. PCT/US20/60555, (25 pages). |
“International Search Report and Written Opinion dated Mar. 12, 2020”, International PCT Patent Application No. PCT/US19/67919, (14 pages). |
“International Search Report and Written Opinion dated Aug. 15, 2019”, International PCT Patent Application No. PCT/US19/33987, (20 pages). |
“International Search Report and Written Opinion dated Jun. 15, 2020”, International PCT Patent Application No. PCT/US2020/017023, (13 pages). |
“International Search Report and Written Opinion dated Oct. 16, 2019”, International PCT Patent Application No. PCT/US19/43097, (10 pages). |
“International Search Report and Written Opinion dated Oct. 16, 2019”, International PCT Patent Application No. PCT/US19/36275, (10 pages). |
“International Search Report and Written Opinion dated Oct. 16, 2019”, International PCT Patent Application No. PCT/US19/43099, (9 pages). |
“International Search Report and Written Opinion dated Jun. 17, 2016”, International PCT Patent Application No. PCT/FI2016/050172, (9 pages). |
“International Search Report and Written Opinion dated Feb. 2, 2021”, International PCT Patent Application No. PCT/US20/60550, (9 pages). |
“International Search Report and Written Opinion dated Oct. 22, 2019”, International PCT Patent Application No. PCT/US19/43751, (9 pages). |
“International Search Report and Written Opinion dated Dec. 23, 2019”, International PCT Patent Application No. PCT/US19/44953, (11 pages). |
“International Search Report and Written Opinion dated May 23, 2019”, International PCT Patent Application No. PCT/US18/66514, (17 pages). |
“International Search Report and Written Opinion dated Sep. 26, 2019”, International PCT Patent Application No. PCT/US19/40544, (12 pages). |
“International Search Report and Written Opinion dated Aug. 27, 2019”, International PCT Application No. PCT/US2019/035245, (8 pages). |
“International Search Report and Written Opinion dated Dec. 27, 2019”, International Application No. PCT/US19/47746, (16 pages). |
“International Search Report and Written Opinion dated Dec. 3, 2020”, International Patent Application No. PCT/US20/43596, (25 pages). |
“International Search Report and Written Opinion dated Sep. 30, 2019”, International Patent Application No. PCT/US19/40324, (7 pages). |
“International Search Report and Written Opinion dated Sep. 4, 2020”, International Patent Application No. PCT/US20/31036, (13 pages). |
“International Search Report and Written Opinion dated Jun. 5, 2020”, International Patent Application No. PCT/US20/19871, (9 pages). |
“International Search Report and Written Opinion dated Aug. 8, 2019”, International PCT Patent Application No. PCT/US2019/034763, (8 pages). |
“International Search Report and Written Opinion dated Oct. 8, 2019”, International PCT Patent Application No. PCT/US19/41151, (7 pages). |
“International Search Report and Written Opinion dated Jan. 9, 2020”, International Application No. PCT/US19/55185, (10 pages). |
“International Search Report and Written Opinion dated Feb. 28, 2019”, International Patent Application No. PCT/US18/64686, (8 pages). |
“International Search Report and Written Opinion dated Feb. 7, 2020”, International PCT Patent Application No. PCT/US2019/061265, (11 pages). |
“International Search Report and Written Opinion dated Jun. 11, 2019”, International PCT Application No. PCT/US19/22620, (7 pages). |
“Invitation to Pay Additional Fees dated Aug. 15, 2019”, International PCT Patent Application No. PCT/US19/36275, (2 pages). |
“Invitation to Pay Additional Fees dated Sep. 24, 2020”, International Patent Application No. PCT/US2020/043596, (3 pages). |
“Invitation to Pay Additional Fees dated Oct. 22, 2019”, International PCT Patent Application No. PCT/US19/47746, (2 pages). |
“Invitation to Pay Additional Fees dated Apr. 3, 2020”, International Patent Application No. PCT/US20/17023, (2 pages). |
“Invitation to Pay Additional Fees dated Oct. 17, 2019”, International PCT Patent Application No. PCT/US19/44953, (2 pages). |
“Multi-core processor”, Tech Target , 2013 , (1 page). |
“Non Final Office Action dated Nov. 19. 2019”, U.S. Appl. No. 16/355,611, (31 pages). |
“Non Final Office Action dated Apr. 1, 2022”, U.S. Appl. No. 17/256,961, (65 pages). |
“Non Final Office Action dated Apr. 11, 2022”, U.S. Appl. No. 16/938,782, (52 pages). |
“Non Final Office Action dated Apr. 12, 2022”, U.S. Appl. No. 17/262,991, (60 pages). |
“Non Final Office Action dated Aug. 21, 2019”, U.S. Appl. No. 15/564,517, (14 pages). |
“Non Final Office Action dated Aug. 4, 2021”, U.S. Appl. No. 16/864,721, (21 pages). |
“Non Final Office Action dated Feb. 2, 2022”, U.S. Appl. No. 16/783,866, (8 pages). |
“Non Final Office Action dated Jan. 26, 2021”, U.S. Appl. No. 16/928,313, (33 pages). |
“Non Final Office Action dated Jan. 27, 2021”, U.S. Appl. No. 16/225,961, (15 pages). |
“Non Final Office Action dated Jul. 26, 2022”, U.S. Appl. No. 17/098,059, (28 pages). |
“Non Final Office Action dated Jul. 27, 2020”, U.S. Appl. No. 16/435,933, (16 pages). |
“Non Final Office Action dated Jul. 9, 2021”, U.S. Appl. No. 17/002,663, (43 pages). |
“Non Final Office Action dated Jul. 9, 2021”, U.S. Appl. No. 16/833,093, (47 pages). |
“Non Final Office Action dated Jun. 10, 2021”, U.S. Appl. No. 16/938,782, (40 Pages). |
“Non Final Office Action dated Jun. 17, 2020”, U.S. Appl. No. 16/682,911, (22 pages). |
“Non Final Office Action dated Jun. 19, 2020”, U.S. Appl. No. 16/225,961, (35 pages). |
“Non Final Office Action dated Jun. 29, 2021”, U.S. Appl. No. 16/698,588, (58 pages). |
“Non Final Office Action dated Mar. 3, 2021”, U.S. Appl. No. 16/427,337, (41 pages). |
“Non Final Office Action dated Mar. 31, 2022”, U.S. Appl. No. 17/257,814, (60 pages). |
“Non Final Office Action dated Mar. 9, 2022”, U.S. Appl. No. 16/870,676, (57 pages). |
“Non Final Office Action dated May 10, 2022”, U.S. Appl. No. 17/140,921, (25 pages). |
“Non Final Office Action dated May 17, 2022”, U.S. Appl. No. 16/748,193, (11 pages). |
“Non Final Office Action dated May 26, 2021”, U.S. Appl. No. 16/214,575, (19 pages). |
“Non Final Office Action dated Nov. 5, 2020”, U.S. Appl. No. 16/530,776, (45 pages). |
“Non Final Office Action dated Oct. 22, 2019”, U.S. Appl. No. 15/859,277, (15 pages). |
“Non Final Office Action dated Sep. 1, 2020”, U.S. Appl. No. 16/214,575, (40 pages). |
“Non Final Office Action dated Sep. 20, 2021”, U.S. Appl. No. 17/105,848, (56 pages). |
“Non Final Office Action dated Sep. 29, 2021”, U.S. Appl. No. 16/748,193, (62 pages). |
“Notice of Allowance dated Mar. 25, 2020”, U.S. Appl. No. 15/564,517, (11 pages). |
“Notice of Allowance dated Oct. 5, 2020”, U.S. Appl. No. 16/682,911, (27 pages). |
“Notice of Reason of Refusal dated Sep. 11, 2020 with English translation”, Japanese Patent Application No. 2019-140435, (6 pages). |
“Phototourism Challenge”, CVPR 2019 Image Matching Workshop. https://image matching-workshop. github.io., (16 pages). |
“Second Office Action dated Jul. 13, 2022 with English Translation”, Chinese Patent Application No. 201880079474.6, (10 pages). |
“Second Office Action dated Jun. 20, 2022 with English Translation”, Chinese Patent Application No. 201880089255.6, (14 pages). |
“Summons to attend oral proceedings pursuant to Rule 115(1) EPC mailed on Jul. 15, 2019”, European Patent Application No. 15162521.7, (7 pages). |
Aarik, J. , et al. , “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition”, Thin Solid Films; Publication [online). May 19, 1998 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.sciencedirect.com/science/article/pii/S0040609097001351 ?via%3Dihub>; DOI: 10.1016/S0040-6090(97)00135-1; see entire document, (2 pages). |
Altwaijry , et al. , “Learning to Detect and Match Keypoints with Deep Architectures”, Proceedings of the British Machine Vision Conference (BMVC), BMVA Press, Sep. 2016, [retrieved on Jan. 8, 2021 (Jan. 8, 2021 )] < URL: http://www.bmva.org/bmvc/2016/papers/paper049/index.html >, en lire document, especially Abstract. |
Arandjelović, Relja , et al. , “Three things everyone should know to improve object retrieval”, CVPR, 2012, (8 pages). |
Azom, “Silica-Silicon Dioxide (SiO2)”, AZO Materials; Publication [Online]. Dec. 13, 2001 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.azom.com/article.aspx?Article1D=1114>. |
Azuma, Ronald T., “A Survey of Augmented Reality”, Presence: Teleoperators and Virtual Environments 6, 4 (Aug. 1997), 355-385; https://web.archive.org/web/20010604100006/http://www.cs.unc.edu/˜azuma/ARpresence.pdf (downloaded Oct. 26, 2020). |
Azuma, Ronald T., “Predictive Tracking for Augmented Reality”, Department of Computer Science, Chapel Hill NC; TR95-007, Feb. 1995, 262 pages. |
Battaglia, Peter W, et al. , “Relational inductive biases, deep learning, and graph networks”, arXiv:1806.01261, Oct. 17, 2018, pp. 1-40. |
Berg, Alexander C , et al. , “Shape matching and object recognition using low distortion correspondences”, In CVPR, 2005, (8 pages). |
Bian, Jiawang , et al. , “GMS: Grid-based motion statistics for fast, ultra-robust feature correspondence.”, In CVPR (Conference on Computer Vision and Pattern Recognition), 2017, (10 pages). |
Bimber, Oliver , et al. , “Spatial Augmented Reality: Merging Real and Virtual Worlds”, https://web.media.mit.edu/˜raskar/book/BimberRaskarAugmentedRealityBook.pdf; published by A K Peters/CRC Press (Jul. 31, 2005); eBook (3rd Edition, 2007), (393 pages). |
Brachmann, Eric , et al. , “Neural-Guided RANSAC: Learning Where to Sample Model Hypotheses”, In ICCV (International Conference on Computer Vision ), arXiv:1905.04132v2 [cs.CV] Jul. 31, 2019, (17 pages). |
Butail , et al. , “Putting the fish in the fish tank: Immersive VR for animal behavior experiments”, In: 2012 IEEE International Conference on Robotics and Automation. May 18, 2012 (May 18, 2012) Retrieved on Nov. 14, 2020 (Nov. 14, 2020) from <http:/lcdcl.umd.edu/papers/icra2012.pdf> entire document. |
Caetano, Tibério S , et al. , “Learning graph matching”, IEEE TPAMI, 31(6):1048-1058, 2009. |
Cech, Jan , et al. , “Efficient sequential correspondence selection by cosegmentation”, IEEE TPAMI, 32(9):1568-1581, Sep. 2010. |
Chittineni, C. , et al. , “Single filters for combined image geometric manipulation and enhancement”, Proceedings of SPIE vol. 1903, Image and Video Processing, Apr. 8, 1993, San Jose, CA. (Year: 1993), pp. 111-121. |
Cuturi, Marco, “Sinkhorn distances: Lightspeed computation of optimal transport”, NIPS, 2013, (9 pages). |
Dai, Angela , et al. , “ScanNet: Richly-annotated 3d reconstructions of indoor scenes”, In CVPR, arXiv:1702.04405v2 [cs.CV] Apr. 11, 2017, (22 pages). |
Deng, Haowen , et al. , “PPFnet: Global context aware local features for robust 3d point matching”, In CVPR, arXiv:1802.02669v2 [cs.CV] Mar. 1, 2018, (12 pages). |
Detone, Daniel , et al. , “Deep image homography estimation”, In RSS Work- shop: Limits and Potentials of Deep Learning in Robotics, arXiv:1606.03798v1 [cs.CV] Jun. 13, 2016, (6 pages). |
Detone, Daniel , et al. , “Self-improving visual odometry”, arXiv:1812.03245, Dec. 8, 2018, (9 pages). |
Detone, Daniel , et al. , “SuperPoint: Self-supervised interest point detection and description”, In CVPR Workshop on Deep Learning for Visual SLAM, arXiv:1712.07629v4 [cs.CV] Apr. 19, 2018, (13 pages). |
Dusmanu, Mihai , et al. , “D2-net: A trainable CNN for joint detection and description of local features”, CVPR, arXiv:1905.03561v1 [cs.CV] May 9, 2019, (16 pages). |
Ebel, Patrick , et al. , “Beyond cartesian representations for local descriptors”, ICCV, arXiv:1908.05547v1 [cs.CV] Aug. 15, 2019, (11 pages). |
Fischler, Martin A , et al. , “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”, Communications of the ACM, 24(6): 1981, pp. 381-395. |
Gilmer, Justin , et al. , “Neural message passing for quantum chemistry”, In ICML, arXiv:1704.01212v2 [cs.LG] Jun. 12, 2017, (14 pages). |
Giuseppe, Donato , et al. , “Stereoscopic helmet mounted system for real time 3D environment reconstruction and indoor ego—motion estimation”, Proc. SPIE 6955, Head- and Helmet-Mounted Displays XIII: Design and Applications, SPIE Defense and Security Symposium, 2008, Orlando, Florida, United States, 69550P. |
Goodfellow, “Titanium Dioxide-Titania (TiO2)”, AZO Materials; Publication [online]. Jan. 11, 2002 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.azom.com/article.aspx?Article1D=1179>. |
Hartley, Richard , et al. , “Multiple View Geometry in Computer Vision”, Cambridge University Press, 2003, pp. 1-673. |
Jacob, Robert J.K. , “Eye Tracking in Advanced Interface Design”, Human-Computer Interaction Lab, Naval Research Laboratory, Washington, D.C., date unknown. 2003, pp. 1-50. |
Lee , et al. , “Self-Attention Graph Pooling”, Cornell University Library/Computer Science/ Machine Learning, Apr. 17, 2019 [retrieved on Jan. 8, 2021 from the Internet< URL: https://arxiv.org/abs/1904.08082 >, entire document. |
Lee, Juho , et al. , “Set transformer: A frame-work for attention-based permutation-invariant neural networks”, ICML, arXiv:1810.00825v3 [cs.LG] May 26, 2019, (17 pages). |
Leordeanu, Marius , et al. , “A spectral technique for correspondence problems using pairwise constraints”, Proceedings of (ICCV) International Conference on Computer Vision, vol. 2, pp. 1482-1489, Oct. 2005, (8 pages). |
Levola, T., “Diffractive Optics for Virtual Reality Displays”, Journal of the SID Eurodisplay 14/05, 2005, XP008093627, chapters 2-3, Figures 2 and 10, pp. 467-475. |
Levola, Tapani, “Invited Paper: Novel Diffractive Optical Components for Near to Eye Displays—Nokia Research Center”, SID 2006 DIGEST, 2006 SID International Symposium, Society for Information Display, vol. XXXVII, May 24, 2005, chapters 1-3, figures 1 and 3, pp. 64-67. |
Li, Yujia , et al. , “Graph matching networks for learning the similarity of graph structured objects”, ICML, arXiv:1904.12787v2 [cs.LG] May 12, 2019, (18 pages). |
Li, Zhengqi , et al. , “Megadepth: Learning single-view depth prediction from internet photos”, In CVPR, fromarXiv: 1804.00607v4 [cs.CV] Nov. 28, 2018, (10 pages). |
Libovicky , et al. , “Input Combination Strategies for Multi-Source Transformer Decoder”, Proceedings of the Third Conference on Machine Translation (WMT). vol. 1: Research Papers, Belgium, Brussels, Oct. 31-Nov. 1, 2018; retrieved on Jan. 8, 2021 (Jan. 8, 2021 ) from < URL: https://doi.org/10.18653/v1/W18-64026 >, entire document. |
Loiola, Eliane Maria, et al. , “A survey for the quadratic assignment problem”, European journal of operational research, 176(2): 2007, pp. 657-690. |
Lowe, David G , “Distinctive image features from scale-invariant keypoints”, International Journal of Computer Vision, 60(2): 91-110, 2004, (28 pages). |
Luo, Zixin , et al. , “ContextDesc: Local descriptor augmentation with cross-modality context”, CVPR, arXiv:1904.04084v1 [cs.CV] Apr. 8, 2019, (14 pages). |
Memon, F. , et al. , “Synthesis, Characterization and Optical Constants of Silicon Oxycarbide”, EPJ Web of Conferences; Publication [online). Mar. 23, 2017 [retrieved Feb. 19, 2020) .<URL: https://www.epj-conferences.org/articles/epjconf/pdf/2017/08/epjconf_nanop2017_00002.pdf>; DOI: 10.1051/epjconf/201713900002, (8 pages). |
Molchanov, Pavlo , et al. , “Short-range FMCW monopulse radar for hand-gesture sensing”, 2015 IEEE Radar Conference (RadarCon) (2015), pp. 1491-1496. |
Mrad , et al. , “A framework for System Level Low Power Design Space Exploration”, 1991. |
Munkres, James, “Algorithms for the assignment and transportation problems”, Journal of the Society for Industrial and Applied Mathematics, 5(1): 1957, pp. 32-38. |
Ono, Yuki , et al. , “LF-Net: Learning local features from images”, 32nd Conference on Neural Information Processing Systems (NIPS 2018), arXiv:1805.09662v2 [cs.CV] Nov. 22, 2018, (13 pages). |
Paszke, Adam , et al. , “Automatic differentiation in Pytorch”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, (4 pages). |
Peyré, Gabriel , et al. , “Computational Optimal Transport”, Foundations and Trends in Machine Learning, 11(5-6):355-607, 2019; arXiv:1803.00567v4 [stat.ML] Mar. 18, 2020, (209 pages). |
Qi, Charles Ruizhongtai, et al., “Pointnet++: Deep hierarchical feature learning on point sets in a metric space.”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA., Jun. 7, 2017, (10 pages). |
Qi, Charles R , et al. , “Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR, arXiv:1612.00593v2 [cs.CV] Apr. 10, 2017, (19 pages). |
Radenović, Filip , et al. , “Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking”, CVPR, arXiv:1803.11285v1 [cs.CV] Mar. 29, 2018, (10 pages). |
Raguram, Rahul , et al. , “A comparative analysis of ransac techniques leading to adaptive real-time random sample consensus”, Computer Vision—ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, Oct. 12-18, 2008, Proceedings, Part I, (15 pages). |
Ranftl, René , et al. , “Deep fundamental matrix estimation”, European Conference on Computer Vision (ECCV), 2018, (17 pages). |
Revaud, Jerome , et al. , “R2D2: Repeatable and Reliable Detector and Descriptor”, In NeurIPS, arXiv:1906.06195v2 [cs.CV] Jun. 17, 2019, (12 pages). |
Rocco, Ignacio , et al. , “Neighbourhood Consensus Networks”, 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada, arXiv:1810.10510v2 [cs.CV] Nov. 29, 2018, (20 pages). |
Rublee, Ethan , et al. , “ORB: An efficient alternative to SIFT or SURF”, Proceedings of the IEEE International Conference on Computer Vision. 2564-2571. 2011; 10.1109/ICCV.2011.612654, (9 pages). |
Sarlin , et al. , “SuperGlue: Learning Feature Matching with Graph Neural Networks”, Cornell University Library/Computer Science/ Computer Vision and Pattern Recognition, Nov. 26, 2019 [retrieved on Jan. 8, 2021 from the Internet< URL: https://arxiv.org/abs/1911.11763 >, entire document. |
Sattler, Torsten , et al. , “SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter”, ICCV, 2009: 2090-2097., (8 pages). |
Schonberger, Johannes Lutz, et al. , “Pixelwise view selection for un-structured multi-view stereo”, Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, Oct. 11-14, 2016, Proceedings, Part III, pp. 501-518, 2016. |
Schonberger, Johannes Lutz, et al. , “Structure-from-motion revisited”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4104-4113, (11 pages). |
Sheng, Liu , et al. , “Time-multiplexed dual-focal plane head-mounted display with a liquid lens”, Optics Letters, Optical Society of Amer I Ca, US, vol. 34, No. 11, Jun. 1, 2009 (Jun. 1, 2009), XP001524475, ISSN: 0146-9592, pp. 1642-1644. |
Sinkhorn, Richard , et al. , “Concerning nonnegative matrices and doubly stochastic matrices.”, Pacific Journal of Mathematics, 1967, pp. 343-348. |
Spencer, T. , et al., “Decomposition of poly(propylene carbonate) with UV sensitive iodonium 11 salts”, Polymer Degradation and Stability; (online]. Dec. 24, 2010 (retrieved Feb. 19, 2020]., (17 pages). |
Tanriverdi, Vildan , et al. , “Interacting With Eye Movements in Virtual Environments”, Department of Electrical Engineering and Computer Science, Tufts University; Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 2000, pp. 1-8. |
Thomee, Bart , et al. , “YFCC100m: The new data in multimedia research”, Communications of the ACM, 59(2):64-73, 2016; arXiv:1503.01817v2 [cs.MM] Apr. 25, 2016, (8 pages). |
Torresani, Lorenzo , et al. , “Feature correspondence via graph matching: Models and global optimization”, Computer Vision—ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, Oct. 12-18, 2008, Proceedings, Part II, (15 pages). |
Tuytelaars, Tinne , et al. , “Wide baseline stereo matching based on local, affinely invariant regions”, BMVC, 2000, pp. 1-14. |
Ulyanov, Dmitry , et al. , “Instance normalization: The missing ingredient for fast stylization”, arXiv:1607.08022v3 [cs.CV] Nov. 6, 2017, (6 pages). |
Vaswani, Ashish , et al. , “Attention is all you need”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA; arXiv:1706.03762v5 [cs.CL] Dec. 6, 2017, (15 pages). |
Veli{hacek over (c)}kovi{hacek over (c)}, Petar , et al. , “Graph attention networks”, ICLR, arXiv:1710.10903v3 [stat.ML] Feb. 4, 2018, (12 pages). |
Villani, Cédric, “Optimal transport: old and new”, vol. 338. Springer Science & Business Media, Jun. 2008, pp. 1-998. |
Wang, Xiaolong , et al., “Non-local neural networks”, CVPR, arXiv:1711.07971v3 [cs.CV] Apr. 13, 2018, (10 pages). |
Wang, Yue , et al. , “Deep Closest Point: Learning representations for point cloud registration”, ICCV, arXiv:1905.03304v1 [cs.CV] May 8, 2019, (10 pages). |
Wang, Yue , et al. , “Dynamic Graph CNN for learning on point clouds”, ACM Transactions on Graphics, arXiv:1801.07829v2 [cs.CV] Jun. 11, 2019, (13 pages). |
Weissel , et al. , “Process cruise control: event-driven clock scaling for dynamic power management”, Proceedings of the 2002 international conference on Compilers, architecture, and synthesis for embedded systems. Oct. 11, 2002 (Oct. 11, 2002) Retrieved on May 16, 2020 (May 16, 2020) from <URL: https://dl.acm.org/doi/pdf/10.1145/581630.581668>. |
Yi, Kwang Moo, et al. , “Learning to find good correspondences”, CVPR, arXiv:1711.05971v2 [cs.CV] May 21, 2018, (13 pages). |
Yi, Kwang Moo , et al. , “Lift: Learned invariant feature transform”, ECCV, arXiv:1603.09114v2 [cs.CV] Jul. 29, 2016, (16 pages). |
Zaheer, Manzil , et al., “Deep Sets”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA; arXiv:1703.06114v3 [cs.LG] Apr. 14, 2018, (29 pages). |
Zhang, Jiahui , et al. , “Learning two-view correspondences and geometry using order-aware network”, ICCV; aarXiv:1908.04964v1 [cs.CV] Aug. 14, 2019, (11 pages). |
Zhang, Li , et al. , “Dual graph convolutional net-work for semantic segmentation”, BMVC, 2019; arXiv:1909.06121v3 [cs.CV] Aug. 26, 2020, (18 pages). |
“Extended European Search Report dated Nov. 3, 2022”, European Patent Application No. 20770244.0, (23 pages). |
“First Examination Report dated Dec. 8, 2022”, Australian Patent Application No. 2018392482, (3 pages). |
“Non Final Office Action dated Dec. 7, 2022”, U.S. Appl. No. 17/357,795, (63 pages). |
“Office Action dated Nov. 24, 2022 with English Translation”, Japanese Patent Application No. 2020-533730, (11 pages). |
“Communication Pursuant to Article 94(3) EPC dated Feb. 28, 2023”, European Patent Application No. 19845418.3, (6 Pages). |
“Communication Pursuant to Article 94(3) EPC dated May 23, 2023”, European Patent Application No. 18890390.0, (5 pages). |
“Decision of Rejection dated Jan. 5, 2023 with English translation”, Chinese Patent Application No. 201880079474.6, (10 pages). |
“Extended European Search Report dated Apr. 5, 2023”, European Patent Application No. 20888716.6, (11 pages). |
“Extended European Search Report dated Dec. 14, 2022”, European Patent Application No. 20886547.7, (8 pages). |
“Final Office Action dated Dec. 29, 2022”, U.S. Appl. No. 17/098,059, (32 pages). |
“Final Office Action dated Mar. 10, 2023”, U.S. Appl. No. 17/357,795, (15 pages). |
“First Office Action dated Apr. 21, 2023 with English translation”, Japanese Patent Application No. 2021-509779, (26 pages). |
“First Office Action dated Jul. 4, 2023 with English translation”, Japanese Patent Application No. 2021-505669, (6 pages). |
“First Office Action dated Apr. 13, 2023 with English Translation”, Japanese Patent Application No. 2020-567766, (7 pages). |
“First Office Action dated Dec. 22, 2022 with English translation”, Chinese Patent Application No. 201980061450.2, (11 pages). |
“First Office Action dated Jan. 24, 2023 with English translation”, Japanese Patent Application No. 2020-549034, (7 pages). |
“First Office Action dated Jan. 30, 2023 with English translation”, Chinese Patent Application No. 201980082951.9, (5 pages). |
“First Office Action dated Jun. 13, 2023 with English translation”, Japanese Patent Application No. 2020-567853, (7 pages). |
“First Office Action dated Mar. 27, 2023 with English translation”, Japanese Patent Application No. 2020-566617, (6 pages). |
“First Office Action dated Mar. 6, 2023 with English translation”, Korean Patent Application No. 10-2020-7019685, (7 pages). |
“First Office Action dated May 26, 2023 with English translation”, Japanese Patent Application No. 2021-500607, (6 pages). |
“First Office Action dated May 30, 2023 with English translation”, Japanese Patent Application No. 2021-519873, (8 pages). |
“Non Final Office Action dated Apr. 13, 2023”, U.S. Appl. No. 17/098,043, (7 pages). |
“Non Final Office Action dated Feb. 3, 2023”, U.S. Appl. No. 17/429,100, (16 pages). |
“Non Final Office Action dated Feb. 3, 2023”, U.S. Appl. No. 17/497,965, (32 pages). |
“Non Final Office Action dated Jan. 24, 2023”, U.S. Appl. No. 17/497,940, (10 pages). |
“Non Final Office Action dated Jul. 20, 2023”, U.S. Appl. No. 17/650,188, (11 pages). |
“Non Final Office Action dated Jun. 14, 2023”, U.S. Appl. No. 17/516,483, (10 pages). |
“Non Final Office Action dated Mar. 1, 2023”, U.S. Appl. No. 18/046,739, (34 pages). |
“Office Action dated Apr. 13, 2023 with English translation”, Japanese Patent Application No. 2020-533730, (13 pages). |
“Office Action dated Jun. 8, 2023 with English translation”, Japanese Patent Application No. 2021-503762, (6 pages). |
“Office Action dated Mar. 30, 2023 with English translation”, Japanese Patent Application No. 2020-566620, (10 pages). |
“Second Office Action dated May 2, 2023 with English Translation”, Japanese Patent Application No. 2020-549034, (6 pages). |
Li, Yujia , et al., “Graph Matching Networks for Learning the Similarity of Graph Structured Objects”, arxiv.org, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, XP081268608, Apr. 29, 2019. |
Luo, Zixin , et al., “ContextDesc: Local Descriptor Augmentation With Cross-Modality Context”, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, XP033686823, DOI: 10.1109/CVPR.2019.00263 [retrieved on Jan. 8, 2020], Jun. 15, 2019, pp. 2522-2531. |
Zhang, Zen , et al., “Deep Graphical Feature Learning for the Feature Matching Problem”, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, XP033723985, DOI: 10.1109/ ICCV.2019.00519 [retrieved on Feb. 24, 2020], Oct. 27, 2019, pp. 5086-5095. |
“First Examination Report dated Aug. 8, 2023”, Australian Patent Application No. 2018379105, (3 pages). |
“Non Final Office Action dated Aug. 2, 2023”, U.S. Appl. No. 17/807,600, (25 pages). |
“Notice of Allowance dated Jul. 27, 2023 with English translation”, Korean Patent Application No. 10-2020-7019685, (4 pages). |
“Office Action dated Jul. 20, 2023 with English translation”, Japanese Patent Application No. 2021-505884, (6 pages). |
“Communication Pursuant to Article 94(3) EPC dated Jul. 28, 2023”, European Patent Application No. 19843487.0, (15 pages). |
“Final Office Action dated Sep. 8, 2023 with English translation”, Japanese Patent Application No. 2020-566620, (18 pages). |
“Wikipedia Dioptre”, Jun. 22, 2018 (Jun. 22, 2018), XP093066995, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php? title=Dioptre&direction=next&oldid=846451540 [retrieved on Jul. 25, 2023], (3 pages). |
Number | Date | Country | |
---|---|---|---|
20220417703 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
62693691 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17257814 | US | |
Child | 17822279 | US |