This invention is related to connected mobile computing systems, methods, and configurations, and more specifically to mobile computing systems, methods, and configurations featuring at least one wearable component which may be utilized for virtual and/or augmented reality operation.
It is desirable that mixed reality, or augmented reality, near-eye displays be lightweight, low-cost, have a small form-factor, have a wide virtual image field of view, and be as transparent as possible. In addition, it is desirable to have configurations that present virtual image information in multiple focal planes (for example, two or more) in order to be practical for a wide variety of use-cases without exceeding an acceptable allowance for vergence-accommodation mismatch. Referring to
This document describes certain aspects of what may be termed “the deep middle-end matcher”, a neural network configured to match two sets of local features by jointly finding correspondences and rejecting non-matchable points. Such a neural network configuration may be utilized in association with spatial computing resources such as those illustrated in
The invention provides a computer system including a computer-readable medium, a processor connected to the computer-readable medium and a set of instructions on the computer-readable medium. The set of instructions may include a deep middle-end matcher architecture that may include an attentional graph neural network having a keypoint encoder to map keypoint positions p and their visual descriptors d into a single vector, and alternating self- and cross-attention layers that, based on the vector, repeated L times to create representations f; and an optimal matching layer that creates an M by N score matrix from the representations f and finds an optimal partial assignment based on the M by N score matrix.
The computer system may further include that in the keypoint encoder, an initial representation (0)xi for each keypoint i combines visual appearance and location, with the respective keypoint position embedded into a high-dimensional vector with a Multilayer Perceptron (MLP) as follows:
(0)xi=di+MLP(pi)
The computer system may further include the keypoint encoder allows the attentional graph neural network to reason about appearance and position jointly.
The computer system may further include in the keypoint encoder includes a multiplex graph neural network having a single complete graph with nodes that are the keypoints of two images.
The computer system may further include the graph is a multiplex graph that has two types of undirected edges, namely intra-image edges (self edges; Eself) that connect keypoints i to all other keypoints within the same image and inter-image edges (cross edges, Ecross) that connect keypoints i to all keypoints in the other image and uses a message passing formulation to propagate information along both types of edges, such that the resulting multiplex graph neural network starts with a high-dimensional state for each node and computes at each layer an updated representation by simultaneously aggregating messages across all given edges for all nodes.
The computer system may further include if (l)xAi is the intermediate representation for element i in image A at layer l, the message mE→i is the result of the aggregation from all keypoints {j:(i, j)∈E}, where E∈{Eself, Ecross}, and a residual message passing update for all i in A is:
(l+1)xiA=(l)xiA+MLP ([(l)xiA∥mε→i]).
where [.∥.] denotes concatenation.
The computer system may further include a fixed number of layers L with different parameters are chained and alternatively aggregate along the self and cross edges such that, starting from l=1, E=Eself if l is odd and E=Ecross if l is even.
The computer system may further include the alternating self- and cross-attention layers are computed with an attention mechanism computes the message mE→i and performs the aggregation, wherein the self edges are based on self-attention and the cross edges are based on cross-attention, wherein, for a representation of i, a query qi, retrieves values vj of some elements based on their attributes, the keys kj, and the message is computed as weighted average of the values:
The computer system may further include an attention mask αij is the Softmax over the key-query similarities:
αij=Softmaxj(qiTkj).
The computer system may further include the respective key, query, and value are computed as linear projections of deep features of the graph neural network, with a query keypoint i being in an image Q and all source keypoints are in image S, (Q, S)∈{A, B}2, in the equation:
The computer system may further include final matching descriptors of the alternating self- and cross-attention layers are linear projections:
The computer system may further include the optimal matching layer expresses a pairwise score for a set as the similarity of matching descriptors:
where <., .> is the inner product. As opposed to learned visual descriptors, the matching descriptors are not normalized, and their magnitude can change per feature and during training to reflect the prediction confidence.
The computer system may further include the optimal matching layer, for occlusion and visibility suppresses occluded keypoints and augments each set of keypoints with a dustbin score so that unmatched keypoints are explicitly assigned to dustbin scores.
The computer system may further include the score S is augmented to S by appending a new row and column, the point-to-bin and bin-to-bin scores, filled with a single learnable parameter:
The computer system may further include the optimal matching layer finds the optimal partial assignment based on the M by N score matrix using the Sinkhorn algorithm for T iterations.
The computer system may further include after T iterations, we the optimal matching layer drops the dustbin scores and recovers P=
P1N≤1M and PT1M≤1N.
is the original assignment and
Is the assignment with the dustbin scored augmented.
The invention also provides a computer-implemented method system that may include mapping, with a keypoint encoder of an attentional graph neural network of a deep middle-end matcher architecture, keypoint positions p and their visual descriptors d into a single vector; and executing, with alternating self- and cross-attention layers of an attentional graph neural network of the deep middle-end matcher architecture, based on the vector, for L repeated times, to create representations f, and executing an optimal matching layer, of the attentional graph neural network of the deep middle-end matcher architecture, to create an M by N score matrix from the representations f and finding an optimal partial assignment based on the M by N score matrix.
The invention is further described by way of example with reference to the accompanying drawings, wherein:
Finding correspondences between points in images is a vital step for computer vision tasks dealing with 3D reconstruction or visual localization, such as Simultaneous Localization and Mapping (SLAM) and Structure-from-Motion (SfM). These estimate the 3D structure and camera poses from such correspondences after matching local features, a process known as data association. Factors such as large viewpoint change, occlusion, blur, and lack of texture make 2D-to-2D data association particularly challenging.
In this description, we present a new way of thinking about the feature matching problem. Instead of learning better task-agnostic local features followed by simple matching heuristics and tricks, we propose to learn the matching process from pre-existing local features using a novel neural architecture called the deep middle-end matcher (DMEM). In the context of SLAM that typically decomposes the problem into the visual feature detection front-end and the bundle adjustment or pose estimation back-end, our network lies directly in the middle—the deep middle-end matcher is a learnable middle-end.
In this work, learning feature matching is viewed as finding the partial assignment between two sets of local features. We revisit the classical graph-based strategy of matching by solving a linear assignment problem, which, when relaxed to an optimal transport problem, can be solved differentiably [See references 50, 9, 31 below]. The cost function of this optimization is predicted by a Graph Neural Network (GNN). Inspired by the success of the Transformer [see reference 48 below], it uses self- (intra-image) and cross- (inter-image) attention to leverage both spatial relationships of the keypoints and their visual appearance. This formulation enforces the assignment structure of the predictions while enabling the cost to learn complex priors, elegantly handling occlusion and non-repeatable keypoints. Our method is trained end-to-end from images to correspondences—we learn priors for pose estimation from a large annotated dataset, enabling the deep middle-end matcher to reason about the 3D scene and the assignment. Our work can be applied to a variety of multiple-view geometry problems that require high-quality feature correspondences.
We show the superiority of the deep middle-end matcher compared to both handcrafted matchers and learned inlier classifiers.
Local feature matching is generally performed by i) detecting interest point, ii) computing visual descriptors, iii) matching these with a Nearest Neighbor (NN) search, iv) filtering incorrect matches, and finally v) estimating a geometric transformation. The classical pipeline developed in the 2000s is often based on SIFT [see reference 25 below], filters matches with Lowe's ratio test [see reference 25 below], the cross-check, and heuristics like neighborhood consensus [see references 46, 8, 5, 40 below], and finds a transformation with a robust solver like RANSAC [see references 17, 35 below].
Recent works on deep learning for matching often focus on learning better sparse detectors and local descriptors [see references 14, 15, 29, 37, 54 below] from data using Convolutional Neural Networks (CNNs). To improve their discriminativeness, some works explicitly look at a wider context using regional features [see reference 26 below] or log-polar patches [see reference 16 below]. Other approaches learn to filter matches by classifying them into inliers and outliers [see references 27, 36, 6, 56 below]. These operate on sets of matches, still estimated by NN search, and thus ignore the assignment structure and discard visual information. Works that actually learn to match have so far focused on dense matching [see reference 38 below] or 3D point clouds [see reference 52 below], and still exhibit such limitations. In contrast, our learnable middle-end simultaneously performs context aggregation, matching, and filtering in a single end-to-end architecture.
Graph matching problems are usually formulated as quadratic assignment problems, which are NP-hard, requiring expensive, complex, and thus impractical solvers [see reference 24 below]. For local features, the computer vision literature of the 2000s [see references 4, 21, 45 below] uses handcrafted costs with many heuristics, making it complex and fragile. Caetano et al. [see reference 7 below] learn the cost of the optimization for a simpler linear assignment, but only use a shallow model, while our deep middle-end matcher learns a flexible cost using a neural network. Related to graph matching is the problem of optimal transport [see reference 50 below]—it is a generalized linear assignment with an efficient yet simple approximate solution, the Sinkhorn algorithm [see references 43, 9, 31 below].
Deep Learning for sets such as point clouds aims at designing permutation equivariant or invariant functions by aggregating information across elements. Some works treat all of them equally, through global pooling [see references 55, 32, 11 below] or instance normalization [see references 47, 27, 26 below], while others focus on a local neighborhood in coordinate or feature space [see references 33, 53 below]. Attention [see references 48, 51, 49, 20 below] can perform both global and data-dependent local aggregation by focusing on specific elements and attributes, and is thus more flexible. Our work uses the fact that it can be seen as a particular instance of a Message Passing Graph Neural Network [see references 18, 3 below] on a complete graph. By applying attention to multi-edge, or multiplex, graphs, similar to [see references 22, 57 below], the deep middle-end matcher can learn complex reasoning about the two sets of local features.
Motivation: In the image matching problem, some regularities of the world could be leveraged: the 3D world is largely smooth and sometimes planar, all correspondences for a given image pair derive from a single epipolar transform if the scene is static, and some poses are more likely than others. In addition, 2D keypoints are usually projections of salient 3D points, like corners or blobs, thus correspondences across images must adhere to certain physical constraints: i) a keypoint can have at most a single correspondence in the other image; and ii) some keypoints will be unmatched due to occlusion and failure of the detector. An effective model for feature matching should aim at finding all correspondences between reprojections of the same 3D points and identifying keypoints that have no matches.
Formulation: Consider two images A and B, each with a set of keypoint positions p and associated visual descriptors d—we refer to them jointly (p, d) as the local features. Keypoints consist of x and y image coordinates as well as a detection confidence c, pi:=(x, y, c)i. Visual descriptors di∈RD can be those extracted by a CNN like SuperPoint or traditional descriptors like SIFT. Images A and B have M and N local features and their sets of keypoint indices are A:{1, . . . , M} and B:={1, . . . , N}, respectively.
Partial Assignment: Constraints i) and ii) mean that correspondences derive from a partial assignment between the two sets of keypoints. For the integration into downstream tasks and better interpretability, each possible correspondence should have a confidence value. We consequently define a partial soft assignment matrix P∈[0, 1]M×N as:
P1N≤1M and PT1M≤1N. (1)
Our goal is the following: design a neural network that predicts the assignment P from two sets of local features.
The first major block of the deep middle-end matcher (see Section 3a) is the attentional graph neural network whose job is the following: given initial local features, compute fi∈RD, the matching descriptors, by letting the features communicate with each other. Long-range feature communication is vital for robust matching and requires aggregation of information from within an image as well as across an image pair.
Intuitively, the distinctive information about a given keypoint depends on its visual appearance and its location, but also its spatial and visual relationship with respect to other co-visible keypoints, e.g. neighboring or salient ones. On the other hand, knowledge of keypoints in the second image can help to resolve ambiguities by comparing candidate matches or estimating the relative photometric or geometric transformation from global and unambiguous clues.
When asked to match a given ambiguous keypoint, humans look back-and-forth at both images: they sift for tentative matching keypoints, examine each of them, and look for contextual clues that help to disambiguate the true match from other self-similarities. This hints at an iterative process that can focus its attention on specific locations.
Keypoint Encoder: The initial representation (0)xi for each keypoint i combines visual appearance and location. We embed the keypoint position into a high-dimensional vector with a Multilayer Perceptron (MLP) as follows:
(0)xi=di+MLP(pi). (2)
The encoder allows the network to reason about both appearance and position jointly (this is especially powerful with an attention mechanism) and is an instance of the “positional encoder” introduced in the Transformer [see reference 48 below].
Multiplex Graph Neural Network: We consider a single complete graph whose nodes are the keypoints of both images. The graph has two types of undirected edges—it is a multiplex graph. Intra-image edges, or selfedges, Eself, connect keypoints i to all other keypoints within the same image. Inter-image edges, or cross edges, Ecross, connect keypoints i to all keypoints in the other image. We use the message passing formulation [see references 18, 3 below] to propagate information along both types of edges. The resulting Multiplex Graph Neural Network starts with a high-dimensional state for each node and computes at each layer an updated representation by simultaneously aggregating messages across all given edges for all nodes.
Let (l)xAi be the intermediate representation for element i in image A at layer l. The message mE→i is the result of the aggregation from all keypoints {j:(i, j)∈E}, where E∈{Eself, Ecross}. The residual message passing update for all i in A is:
(l+1)xiA=(l)xiA+MLP([(l)xiA∥m∈→i]). (3)
where [.∥.] denotes concatenation. A similar update can be simultaneously performed for all keypoints in image B. A fixed number of layers L with different parameters are chained and alternatively aggregate along the self and cross edges. As such, starting from l=1, E=Eself if l is odd and E=Ecross if l is even.
Attentional Aggregation: An attention mechanism computes the message mE→i and performs the aggregation. Self edges are based on self-attention [see reference 48 below] and cross edges are based on cross-attention. Akin to database retrieval, a representation of i, the query qi, retrieves the values vj of some elements based on their attributes, the keys kj. We compute the message as weighted average of the values:
where the attention mask αij is the Softmax over the key-query similarities:
The key, query, and value are computed as linear projections of deep features of the graph neural network. Considering that query keypoint i is in the image Q and all source keypoints are in image S, (Q, S)∈{A, B}2, we can write:
Each layer l has its own projection parameters, and they are shared for all keypoints of both images. In practice, we improve the expressivity with multi-headed attention [see reference 48 below].
Our formulation provides maximum flexibility as the network can learn to focus on a subset of key-points based on specific attributes. In
and similarly for keypoints in B.
The second major block of the deep middle-end matcher (see Section 3b) is the optimal matching layer, which produces a partial assignment matrix. As in the standard graph matching formulation, the assignment P can be obtained by computing a score matrix S∈RM×N for all possible matches and maximizing the total score Σi,j
Score Prediction: Building a separate representation for all (M+1)×(N+1) potential matches would be prohibitive. We instead express the pairwise score as the similarity of matching descriptors:
where <., .> is the inner product. As opposed to learned visual descriptors, the matching descriptors are not normalized, and their magnitude can change per feature and during training to reflect the prediction confidence.
Occlusion and Visibility: To let the network suppress occluded keypoints, we augment each set with a dustbin so that unmatched keypoints are explicitly assigned to it. This technique is common in graph matching, and dustbins have also been used by SuperPoint [see reference 14 below] to account for image cells that might not have a detection. We augment the score S to
While keypoints in A will be assigned to a single keypoint in B or the dustbin, each dustbin has as many matches as there are keypoints in the other set: N, M for dustbins in A, B respectively. We denote as a=[1MT N]T and b=[1NT M]T the number of expected matches for each keypoint and dustbin in A and B. The augmented assignment
Sinkhorn Algorithm: The solution of the above optimization problem corresponds to the optimal transport [see reference 31 below] between discrete distributions a and b with score
By design, both the graph neural network and the optimal matching layer are differentiable—this enables backpropagation from matches to visual descriptors. The deep middle-end matcher is trained in a supervised manner from ground truth matches M={(i, j)}⊂A×B. These are estimated from ground truth relative transformations—using poses and depth maps or homographies. This also lets us label some keypoints I⊆A and J⊆B as unmatched if they do not have any reprojection in their vicinity. Given the labels, we minimize the negative log-likelihood of the assignment
This supervision aims at simultaneously maximizing the precision and the recall of the matching.
The deep middle-end matcher vs. inlier classifiers [see references 27, 56 below]: the deep middle-end matcher benefits from a strong inductive bias by being entirely permutation equivariant with respect to both images and local features. It additionally embeds the commonly-used mutual check constraint directly into the training: any match with probability Pi,j greater than 0.5 is necessarily mutually consistent.
The deep middle-end matcher vs. Instance Normalization[see reference 47 below]: Attention, as used by the deep middle-end matcher, is a more flexible and powerful context aggregation mechanism than instance normalization, which treats all keypoints equally and is used by previous work on feature matching [see references 27, 56, 26 below].
The deep middle-end matcher vs. ContextDesc[see reference 26 below]: the deep middle-end matcher can jointly reason about appearance and position while ContextDesc processes them separately. Additionally, ContextDesc is a front-end that additionally requires a larger regional extractor, and a loss for keypoints scoring. The deep middle-end matcher only needs local features, learned or handcrafted, and can thus be a simple drop-in replacement of existing matchers.
The deep middle-end matcher vs. Transformer[see reference 48 below]: the deep middle-end matcher borrows the self-attention from the Transformer, but embeds it into a graph neural network, and additionally introduces the cross-attention, which is symmetric. This simplifies the architecture and results in better feature reuse across layers.
The deep middle-end matcher can be combined with any local feature detector and descriptor but works particularly well with SuperPoint [see reference 14 below], which produces repeatable and sparse keypoints—enabling very efficient matching. Visual descriptors are bilinearly sampled from the semi-dense feature map, which is differentiable. Both local feature extraction and subsequent “gluing” are directly performed on the GPU. At test time, in order to extract matches from the soft assignment, one can use the confidence threshold to retain some, or simply use all of them and their confidence in a subsequent step, such as weighted pose estimation.
Architecture details: All intermediate representations (key, query value, descriptors) have the same dimension D=256 as the SuperPoint descriptors. We use L=9 layers of alternating multi-head self- and cross-attentions with 4 heads each, and perform T=100 Sinkhorn iterations—in log-space for numerical stability. The model is implemented in PyTorch [see reference 30 below] and runs in real-time on a GPU: a forward pass takes on average 150 ms (7 FPS).
Training details: To allow for data augmentation, SuperPoint detect and describe steps are performed on-the-fly as batches during training. A number of random keypoints are further added for efficient batching and increased robustness. More details are provided in Appendix A.
We perform a large-scale homography estimation experiment using real images and synthetic homographies with both robust (RANSAC) and non-robust (DLT) estimators.
Dataset: We generate image pairs by sampling random homographies and applying random photometric distortions to real images, following a recipe similar to [see references 12, 14, 37, 36 below]. The underlying images come from the set of 1M distractor images in the Oxford and Paris dataset [see reference 34 below], split into training, validation, and test sets.
Baselines: We compare the deep middle-end matcher against several matchers applied to SuperPoint local features—the Nearest Neighbor (NN) matcher and various outlier rejectors: the mutual check (or cross-check), PointCN [see reference 27 below], and Order-Aware Network (OANet) [see reference 56 below]. All learned methods, including the deep middle-end matcher, are trained on ground-truth correspondences, found by projecting keypoints from one image to the other. We generate homographies and photometric distortions on-the-fly—an image pair is never seen twice during training.
Metrics: Match precision (P) and recall (R) are computed from the ground truth correspondences. Homography estimation is performed with both RANSAC and the Direct Linear Transformation [see reference 19 below] (DLT), which has a direct least-squares solution. We compute the mean reprojection error of the four corners of the image and report the area under the cumulative error curve (AUC) up to a value of 10 pixels.
Results: the deep middle-end matcher is sufficiently expressive to master homographies, achieving 98% recall and high precision. Table 1 shows Homography estimation for the deep middle-end matcher, DLT and RANSAC. The deep middle-end matcher recovers al-most all possible matches while suppressing most outliers. Because the deep middle-end matcher correspondences are high-quality, the Direct Linear Transform (DLT), a least-squares based solution with no robustness mechanism, outperforms RANSAC. The estimated correspondences are so good that a robust estimator is not required—the deep middle-end matcher works even better with DLT than RANSAC. Outlier rejection methods like PointCN and OANet cannot predict more correct matches than the NN matcher itself, overly relying on the initial descriptors.
Indoor image matching is very challenging due to the lack of texture, the abundance of self-similarities, the complex 3D geometry of scenes, and large viewpoint changes. As we show in the following, the deep middle-end matcher can effectively learn priors to overcome these challenges.
Dataset: We use ScanNet [see reference 10 below], a large-scale indoor dataset composed of monocular sequences with ground truth poses and depth images as well as well-defined training, validation, and test splits corresponding to different scenes. Past works select training and evaluation pairs based on time difference [see references 29, 13 below] or SfM co-visibility [see references 27, 56, 6 below], usually computed using SIFT. We argue that this limits the difficulty of the pairs, and instead select these based on an overlap score computed for all possible image pairs in a given sequence using only ground truth poses and depth. This results in significantly wider-baseline pairs, which corresponds to the current frontier for real-world indoor image matching. Discarding pairs with too small or too large overlap, we obtain 230M training pairs and sample 1500 test pairs. More details are provided in Appendix A.
Metrics: As in previous work [see references 27, 56, 6 below], we report the AUC of the pose error at the thresholds (5°, 10°, 20°), where the pose error is the maximum of the angular errors in rotation and translation. Relative pose is obtained from essential matrix estimation with RANSAC. We also report the match precision and the matching score [see references 14, 54 below], where a match is deemed correct based on its epipolar distance.
Baselines: We evaluate the deep middle-end matcher and various baseline matchers using both root-normalized SIFT [see references 25, 2 below] and SuperPoint [see reference 14 below] features. The deep middle-end matcher is trained with correspondences and unmatched keypoints derived from ground-truth poses and depth. All baselines are based on the Nearest Neighbor (NN) matcher and potentially an outlier rejection method. In the “Handcrafted” category, we consider the simple cross-check (mutual), ratio test [see reference 25 below], descriptor distance threshold, and the more complex GMS [see reference 5 below]. Methods in the “Learned” category are PointCN [see reference 27 below], and its follow-ups OANet [see reference 56 below] and NG-RANSAC [see reference 6 below]. We retrain PointCN and OANet on ScanNet for both SuperPoint and SIFT with the classification loss using the above-defined correctness criterion and their respective regression losses. For NG-RANSAC, we use the original trained model. We do not include any graph matching methods as they are orders of magnitude too slow for the number of keypoints that we consider. We report other local features as reference: ORB [see reference 39 below] with GMS, D2-Net [see reference 15 below], and ContextDesc [see reference 26 below] using the publicly available trained models.
Results: the deep middle-end matcher enables significantly higher pose accuracy compared to both handcrafted and learned matchers. Table 2 shows wide-baseline indoor pose estimation on Scan-Net. We report the AUC of the pose error, the matching score (MS) and precision (P), all in Pose estimation AUC percents. The deep middle-end matcher outperforms all handcrafted and learned matchers when applied to both SIFT and SuperPoint. These benefits are substantial when applied to both SIFT and SuperPoint.
In
As outdoor image sequences present their own set of challenges (e.g., lighting changes and occlusion), we train and evaluate the deep middle-end matcher for pose estimation in an outdoor setting. We use the same evaluation metrics and baseline methods as in the indoor pose estimation task.
Dataset: We evaluate on the PhotoTourism dataset, which is part of the CVPR'19 Image Matching Challenge [see reference 1 below]. It is a subset of the YFCC100M dataset [see reference 44 below] and has ground truth poses and sparse 3D models obtained from an off-the-shelf SfM tool [see references 29, 41, 42 below]. For training, we use the MegaDepth dataset [see reference 23 below], which also has clean depth maps computed with multi-view stereo. Scenes that are in the PhotoTourism test set are removed from the training set.
Results: Table 3 shows outdoor pose estimation on the PhotoTourism dataset. Matching SuperPoint and SIFT features with the deep middle-end matcher results in significantly higher pose accuracy (AUC), precision (P), and matching score (MS) than with handcrafted or other learned methods. The deep middle-end matcher outperforms all baselines, at all relative pose thresholds, when applied to both SuperPoint and SIFT. Most notably, the precision of the resulting matching is very high (84.9%), reinforcing the analogy that the deep middle-end matcher “glues” together local features.
Ablation Study: To evaluate our design decisions, we repeated the indoor ScanNet experiments, but this time focusing on different the deep middle-end matcher variants. Table 4 shows Ablation of the deep middle-end matcher on ScanNet with Super-Point local features. that all the deep middle-end matcher blocks are useful and bring substantial performance gains. Differences with respect to the full model are shown. While the optimal matching layer alone improves over the baseline Nearest Neighbor matcher, the GNN ex-plains the majority of the gains brought by the deep middle-end matcher. Both cross-attention and positional encoding are critical for strong gluing, and a deeper net further improves precision.
Visualizing Attention: An understanding of the proposed technique would not be complete without an attempt to visualize the deep middle-end matcher's attention patterns throughout matching. The extensive diversity of self- and cross-attention patterns is shown in
In this disclosure, we described what we refer to as “the deep middle-end matcher”—an attentional graph neural network inspired by the Trans-former's success in NLP—for local feature matching. We believe that the data association component of the 3D reconstruction pipeline has not received adequate attention from the research community, and powerful learning-based middle-ends are our solution. The deep middle-end matcher boosts the receptive field of local features and downplays features whose correspondences are missing, effectively performing the roles of both ContextDesc and inlier classification. Importantly, the inner-workings of the deep middle-end matcher are learned entirely from real-world data. Our results on 2D-to-2D feature matching show significant improvement over the existing state-of-the-art.
Our description herein makes a strong case for the use of learnable middle-ends in the feature matching pipeline as a modern, deep learning-based, alternative to hand-designed heuristics. Some of our future work will focus on evaluating the deep middle-end matcher inside a complete 3D reconstruction pipeline.
Various example embodiments of the invention are described herein. Reference is made to these examples in a non-limiting sense. They are provided to illustrate more broadly applicable aspects of the invention. Various changes may be made to the invention described and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. Further, as will be appreciated by those with skill in the art that each of the individual variations described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present inventions. All such modifications are intended to be within the scope of claims associated with this disclosure.
The invention includes methods that may be performed using the subject devices. The methods may comprise the act of providing such a suitable device. Such provision may be performed by the end user. In other words, the “providing” act merely requires the end user obtain, access, approach, position, set-up, activate, power-up or otherwise act to provide the requisite device in the subject method. Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as in the recited order of events.
Example aspects of the invention, together with details regarding material selection and manufacture have been set forth above. As for other details of the present invention, these may be appreciated in connection with the above-referenced patents and publications as well as generally known or appreciated by those with skill in the art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts as commonly or logically employed.
In addition, though the invention has been described in reference to several examples optionally incorporating various features, the invention is not to be limited to that which is described or indicated as contemplated with respect to each variation of the invention. Various changes may be made to the invention described and equivalents (whether recited herein or not included for the sake of some brevity) may be substituted without departing from the true spirit and scope of the invention. In addition, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention.
Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in claims associated hereto, the singular forms “a,” “an,” “said,” and “the” include plural referents unless the specifically stated otherwise. In other words, use of the articles allow for “at least one” of the subject item in the description above as well as claims associated with this disclosure. It is further noted that such claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
Without the use of such exclusive terminology, the term “comprising” in claims associated with this disclosure shall allow for the inclusion of any additional element—irrespective of whether a given number of elements are enumerated in such claims, or the addition of a feature could be regarded as transforming the nature of an element set forth in such claims. Except as specifically defined herein, all technical and scientific terms used herein are to be given as broad a commonly understood meaning as possible while maintaining claim validity.
The breadth of the present invention is not to be limited to the examples provided and/or the subject specification, but rather only by the scope of claim language associated with this disclosure.
Homography Estimation:
The test set contains 1024 pairs of 640×480 images. Homographies are generated by applying random perspective, scaling, rotation, and translation to the original full-sized images, to avoid bordering artifacts. We evaluate with the 512 top-scoring keypoints detected by SuperPoint with a Non-Maximum Suppression (NMS) radius of 4 pixels. Correspondences are deemed correct if they have a reprojection error lower than 3 pixels. When estimating the homography with RANSAC, we use the OpenCV function findHomography with 3000 iterations and an inlier threshold of 3 pixels.
Indoor Pose Estimation:
The overlap score between two images A and B is the average ratio of pixels in A that are visible in B (and vice versa), after accounting for missing depth values and occlusion (by checking for consistency in the depth using relative errors). We train and evaluate with an overlap range of 0.4 to 0.8. For training, we sample at each epoch 200 pairs per scene, similarly as in [15]. The test set is generated by subsampling the sequences by 15 and subsequently sampling 15 pairs for each of the 300 sequences. We resize all ScanNet images and depth maps to VGA 640×480. We detect up to 1024 SuperPoint keypoints (using the publicly available trained model with NMS radius of 4) and 2048 SIFT keypoints (using OpenCV's implementation). When computing the precision and matching score, we use an epipolar threshold of 5.10e-4. Poses are computed by first estimating the essential matrix with OpenCV's findEssentialMat and RANSAC with an inlier threshold of 1 pixel divided by the average focal length, followed by recoverPose. In contrast with previous works [28, 59, 6], we compute a more accurate AUC using explicit integration rather than coarse histograms.
Outdoor Pose Estimation:
For training on Megadepth, the overlap score is the ratio of triangulated keypoints that are visible in the two images, as in [15]. We sample pairs with an overlap score in [0.1, 0.7] at each epoch. For the evaluation on the PhotoTourism dataset, we use all 11 scenes and the overlap score computed by Ono [30], with a selection range of [0.1, 0.4]. Images are resized so that their longest edge is smaller than 1600 pixels. We detect 2048 keypoints for both SIFT and SuperPoint (with an NMS radius of 3). Other evaluation parameters are identical to the ones used in the indoor evaluation.
Training of the Deep Middle-End Matcher:
For training on homography/indoor/outdoor data, we use the Adam optimizer with an initial constant learning rate of 10e-4 for the first 200k/100k/50k iterations, followed by an exponential decay of 0.999998/0.999992/0.999992 until iteration 900k. When using SuperPoint features, we employ batches with 32/64/16 image pairs and a fixed number of 512/400/1024 keypoints per image. When using SIFT features we use 1024 keypoints and 24 pairs. Because of the limited number of training scenes, the outdoor model is initialized with the homography model. Prior to the keypoint encoding, keypoints are normalized by the largest edge of the image.
Ground truth correspondences M and unmatched sets I and J are generated by first computing the M×N re-projection matrix between all detected keypoints using the ground truth homography or pose and depth map. Correspondences are cells that have a reprojection error that is a minimum along both rows and columns, and that is lower than a given threshold: 3, 5, and 3 pixels for homographies, indoor, and outdoor matching respectively. For homographies, unmatched keypoints are simply the ones that do not appear in M. For indoor and outdoor matching, because of errors in the depth and the pose, unmatched keypoints must additionally have a minimum reprojection error larger than 15 and 5 pixels, respectively. This allows to ignore labels for keypoints whose correspondences are ambiguous, while still providing some supervision through the Sinkhorn normalization.
Each of the following references is incorporated by reference herein in its entirety, and referenced in the above description:
This application claims priority from U.S. Provisional Patent Application No. 62/935,597, filed on Nov. 14, 2019, all of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4344092 | Miller | Aug 1982 | A |
4652930 | Crawford | Mar 1987 | A |
4810080 | Grendol et al. | Mar 1989 | A |
4997268 | Dauvergne | Mar 1991 | A |
5007727 | Kahaney et al. | Apr 1991 | A |
5074295 | Willis | Dec 1991 | A |
5240220 | Elberbaum | Aug 1993 | A |
5251635 | Dumoulin et al. | Oct 1993 | A |
5410763 | Bolle | May 1995 | A |
5455625 | Englander | Oct 1995 | A |
5495286 | Adair | Feb 1996 | A |
5497463 | Stein et al. | Mar 1996 | A |
5659701 | Amit et al. | Aug 1997 | A |
5682255 | Friesem et al. | Oct 1997 | A |
5689669 | Lynch | Nov 1997 | A |
5689835 | Chao | Nov 1997 | A |
5826092 | Flannery | Oct 1998 | A |
5854872 | Tai | Dec 1998 | A |
5864365 | Sramek et al. | Jan 1999 | A |
5937202 | Crosetto | Aug 1999 | A |
6002853 | de Hond | Dec 1999 | A |
6012811 | Chao et al. | Jan 2000 | A |
6016160 | Coombs et al. | Jan 2000 | A |
6064749 | Hirota et al. | May 2000 | A |
6076927 | Owens | Jun 2000 | A |
6079982 | Meader | Jun 2000 | A |
6117923 | Amagai et al. | Sep 2000 | A |
6119147 | Toomey et al. | Sep 2000 | A |
6124977 | Takahashi | Sep 2000 | A |
6179619 | Tanaka | Jan 2001 | B1 |
6191809 | Hori et al. | Feb 2001 | B1 |
6219045 | Leahy et al. | Apr 2001 | B1 |
6243091 | Berstis | Jun 2001 | B1 |
6271843 | Lection et al. | Aug 2001 | B1 |
6362817 | Powers et al. | Mar 2002 | B1 |
6375369 | Schneider et al. | Apr 2002 | B1 |
6385735 | Wilson | May 2002 | B1 |
6396522 | Vu | May 2002 | B1 |
6414679 | Miodonski et al. | Jul 2002 | B1 |
6538655 | Kubota | Mar 2003 | B1 |
6541736 | Huang et al. | Apr 2003 | B1 |
6570563 | Honda | May 2003 | B1 |
6573903 | Gantt | Jun 2003 | B2 |
6590593 | Robertson et al. | Jul 2003 | B1 |
6621508 | Shiraishi et al. | Sep 2003 | B1 |
6690393 | Heron et al. | Feb 2004 | B2 |
6757068 | Foxlin | Jun 2004 | B2 |
6784901 | Harvfey et al. | Aug 2004 | B1 |
6961055 | Doak | Nov 2005 | B2 |
7046515 | Wyatt | May 2006 | B1 |
7051219 | Hwang | May 2006 | B2 |
7076674 | Cervantes | Jul 2006 | B2 |
7111290 | Yates, Jr. | Sep 2006 | B1 |
7119819 | Robertson et al. | Oct 2006 | B1 |
7219245 | Raghuvanshi | May 2007 | B1 |
7382288 | Wilson | Jun 2008 | B1 |
7414629 | Santodomingo | Aug 2008 | B2 |
7431453 | Hogan | Oct 2008 | B2 |
7467356 | Gettman et al. | Dec 2008 | B2 |
7542040 | Templeman | Jun 2009 | B2 |
7573640 | Nivon et al. | Aug 2009 | B2 |
7653877 | Matsuda | Jan 2010 | B2 |
7663625 | Chartier et al. | Feb 2010 | B2 |
7724980 | Shenzhi | May 2010 | B1 |
7746343 | Charaniya et al. | Jun 2010 | B1 |
7751662 | Kleemann | Jul 2010 | B2 |
7758185 | Lewis | Jul 2010 | B2 |
7788323 | Greenstein et al. | Aug 2010 | B2 |
7804507 | Yang et al. | Sep 2010 | B2 |
7814429 | Buffet et al. | Oct 2010 | B2 |
7817150 | Reichard et al. | Oct 2010 | B2 |
7844724 | Van Wie et al. | Nov 2010 | B2 |
8060759 | Arnan et al. | Nov 2011 | B1 |
8120851 | Iwasa | Feb 2012 | B2 |
8214660 | Capps, Jr. | Jul 2012 | B2 |
8246408 | Elliot | Aug 2012 | B2 |
8353594 | Lewis | Jan 2013 | B2 |
8360578 | Nummela et al. | Jan 2013 | B2 |
8408696 | Hsieh | Apr 2013 | B2 |
8508676 | Silverstein et al. | Aug 2013 | B2 |
8547638 | Levola | Oct 2013 | B2 |
8605764 | Rothaar et al. | Oct 2013 | B1 |
8619365 | Harris et al. | Dec 2013 | B2 |
8696113 | Lewis | Apr 2014 | B2 |
8698701 | Margulis | Apr 2014 | B2 |
8733927 | Lewis | May 2014 | B1 |
8736636 | Kang | May 2014 | B2 |
8759929 | Shiozawa et al. | Jun 2014 | B2 |
8793770 | Lim | Jul 2014 | B2 |
8823855 | Hwang | Sep 2014 | B2 |
8847988 | Geisner et al. | Sep 2014 | B2 |
8874673 | Kim | Oct 2014 | B2 |
9010929 | Lewis | Apr 2015 | B2 |
9015501 | Gee | Apr 2015 | B2 |
9086537 | Iwasa et al. | Jul 2015 | B2 |
9095437 | Boyden et al. | Aug 2015 | B2 |
9239473 | Lewis | Jan 2016 | B2 |
9244293 | Lewis | Jan 2016 | B2 |
9244533 | Friend et al. | Jan 2016 | B2 |
9383823 | Geisner et al. | Jul 2016 | B2 |
9489027 | Ogletree | Nov 2016 | B1 |
9519305 | Wolfe | Dec 2016 | B2 |
9581820 | Robbins | Feb 2017 | B2 |
9582060 | Balatsos | Feb 2017 | B2 |
9658473 | Lewis | May 2017 | B2 |
9671566 | Abovitz et al. | Jun 2017 | B2 |
9671615 | Vallius et al. | Jun 2017 | B1 |
9696795 | Marcolina et al. | Jul 2017 | B2 |
9798144 | Sako et al. | Oct 2017 | B2 |
9874664 | Stevens et al. | Jan 2018 | B2 |
9880441 | Osterhout | Jan 2018 | B1 |
9918058 | Takahasi et al. | Mar 2018 | B2 |
9955862 | Freeman et al. | May 2018 | B2 |
9978118 | Ozgumer et al. | May 2018 | B1 |
9996797 | Holz et al. | Jun 2018 | B1 |
10018844 | Levola et al. | Jul 2018 | B2 |
10082865 | Raynal et al. | Sep 2018 | B1 |
10151937 | Lewis | Dec 2018 | B2 |
10185147 | Lewis | Jan 2019 | B2 |
10218679 | Jawahar | Feb 2019 | B1 |
10241545 | Richards et al. | Mar 2019 | B1 |
10317680 | Richards et al. | Jun 2019 | B1 |
10436594 | Belt et al. | Oct 2019 | B2 |
10516853 | Gibson et al. | Dec 2019 | B1 |
10551879 | Richards et al. | Feb 2020 | B1 |
10578870 | Kimmel | Mar 2020 | B2 |
10698202 | Kimmel et al. | Jun 2020 | B2 |
10856107 | Mycek et al. | Oct 2020 | B2 |
10825424 | Zhang | Nov 2020 | B2 |
10987176 | Poltaretskyi et al. | Apr 2021 | B2 |
11190681 | Brook et al. | Nov 2021 | B1 |
11209656 | Choi et al. | Dec 2021 | B1 |
11236993 | Hall et al. | Feb 2022 | B1 |
20010010598 | Aritake et al. | Aug 2001 | A1 |
20010018667 | Kim | Aug 2001 | A1 |
20020007463 | Fung | Jan 2002 | A1 |
20020108064 | Nunally | Feb 2002 | A1 |
20020063913 | Nakamura et al. | May 2002 | A1 |
20020071050 | Homberg | Jun 2002 | A1 |
20020095463 | Matsuda | Jul 2002 | A1 |
20020113820 | Robinson et al. | Aug 2002 | A1 |
20020122648 | Mule' et al. | Sep 2002 | A1 |
20020140848 | Cooper et al. | Oct 2002 | A1 |
20030028816 | Bacon | Feb 2003 | A1 |
20030048456 | Hill | Mar 2003 | A1 |
20030067685 | Niv | Apr 2003 | A1 |
20030077458 | Korenaga et al. | Apr 2003 | A1 |
20030080976 | Satoh et al. | May 2003 | A1 |
20030115494 | Cervantes | Jun 2003 | A1 |
20030218614 | Lavelle et al. | Nov 2003 | A1 |
20030219992 | Schaper | Nov 2003 | A1 |
20030226047 | Park | Dec 2003 | A1 |
20040001533 | Tran et al. | Jan 2004 | A1 |
20040021600 | Wittenberg | Feb 2004 | A1 |
20040025069 | Gary et al. | Feb 2004 | A1 |
20040042377 | Nikoloai et al. | Mar 2004 | A1 |
20040073822 | Greco | Apr 2004 | A1 |
20040073825 | Itoh | Apr 2004 | A1 |
20040111248 | Granny et al. | Jun 2004 | A1 |
20040113887 | Pair et al. | Jun 2004 | A1 |
20040174496 | Ji et al. | Sep 2004 | A1 |
20040186902 | Stewart | Sep 2004 | A1 |
20040193441 | Altieri | Sep 2004 | A1 |
20040201857 | Foxlin | Oct 2004 | A1 |
20040238732 | State et al. | Dec 2004 | A1 |
20040240072 | Schindler et al. | Dec 2004 | A1 |
20040246391 | Travis | Dec 2004 | A1 |
20040268159 | Aasheim et al. | Dec 2004 | A1 |
20050001977 | Zelman | Jan 2005 | A1 |
20050034002 | Flautner | Feb 2005 | A1 |
20050093719 | Okamoto et al. | May 2005 | A1 |
20050128212 | Edecker et al. | Jun 2005 | A1 |
20050157159 | Komiya et al. | Jul 2005 | A1 |
20050177385 | Hull | Aug 2005 | A1 |
20050231599 | Yamasaki | Oct 2005 | A1 |
20050273792 | Inohara et al. | Dec 2005 | A1 |
20060013435 | Rhoads | Jan 2006 | A1 |
20060015821 | Jacques Parker et al. | Jan 2006 | A1 |
20060019723 | Vorenkamp | Jan 2006 | A1 |
20060038880 | Starkweather et al. | Feb 2006 | A1 |
20060050224 | Smith | Mar 2006 | A1 |
20060090092 | Verhulst | Apr 2006 | A1 |
20060126181 | Levola | Jun 2006 | A1 |
20060129852 | Bonola | Jun 2006 | A1 |
20060132914 | Weiss et al. | Jun 2006 | A1 |
20060179329 | Terechko | Aug 2006 | A1 |
20060221448 | Nivon et al. | Oct 2006 | A1 |
20060228073 | Mukawa et al. | Oct 2006 | A1 |
20060250322 | Hall et al. | Nov 2006 | A1 |
20060259621 | Ranganathan | Nov 2006 | A1 |
20060268220 | Hogan | Nov 2006 | A1 |
20070058248 | Nguyen et al. | Mar 2007 | A1 |
20070103836 | Oh | May 2007 | A1 |
20070124730 | Pytel | May 2007 | A1 |
20070159673 | Freeman et al. | Jul 2007 | A1 |
20070188837 | Shimizu et al. | Aug 2007 | A1 |
20070198886 | Saito | Aug 2007 | A1 |
20070204672 | Huang et al. | Sep 2007 | A1 |
20070213952 | Cirelli | Sep 2007 | A1 |
20070283247 | Brenneman et al. | Dec 2007 | A1 |
20080002259 | Ishizawa et al. | Jan 2008 | A1 |
20080002260 | Arrouy et al. | Jan 2008 | A1 |
20080030429 | Hailpern | Feb 2008 | A1 |
20080043334 | Itzkovitch et al. | Feb 2008 | A1 |
20080046773 | Ham | Feb 2008 | A1 |
20080063802 | Maula et al. | Mar 2008 | A1 |
20080068557 | Menduni et al. | Mar 2008 | A1 |
20080084533 | Jannard et al. | Apr 2008 | A1 |
20080125218 | Collins | May 2008 | A1 |
20080146942 | Dala-Krishna | Jun 2008 | A1 |
20080173036 | Willaims | Jul 2008 | A1 |
20080177506 | Kim | Jul 2008 | A1 |
20080183190 | Adcox et al. | Jul 2008 | A1 |
20080205838 | Crippa et al. | Aug 2008 | A1 |
20080215907 | Wilson | Sep 2008 | A1 |
20080225393 | Rinko | Sep 2008 | A1 |
20080235570 | Sawada et al. | Sep 2008 | A1 |
20080246693 | Hailpern et al. | Oct 2008 | A1 |
20080316768 | Travis | Dec 2008 | A1 |
20090076791 | Rhoades et al. | Mar 2009 | A1 |
20090091583 | McCoy | Apr 2009 | A1 |
20090153797 | Allon et al. | Jun 2009 | A1 |
20090224416 | Laakkonen et al. | Sep 2009 | A1 |
20090245730 | Kleemann | Oct 2009 | A1 |
20090287728 | Martine et al. | Nov 2009 | A1 |
20090300528 | Stambaugh | Dec 2009 | A1 |
20090310633 | Ikegami | Dec 2009 | A1 |
20100005326 | Archer | Jan 2010 | A1 |
20100019962 | Fujita | Jan 2010 | A1 |
20100056274 | Uusitalo et al. | Mar 2010 | A1 |
20100063854 | Purvis et al. | Mar 2010 | A1 |
20100070378 | Trotman et al. | Mar 2010 | A1 |
20100079841 | Levola | Apr 2010 | A1 |
20100115428 | Shuping et al. | May 2010 | A1 |
20100153934 | Lachner | Jun 2010 | A1 |
20100194632 | Raento et al. | Aug 2010 | A1 |
20100205541 | Rappaport et al. | Aug 2010 | A1 |
20100214284 | Rieffel et al. | Aug 2010 | A1 |
20100232016 | Landa et al. | Sep 2010 | A1 |
20100232031 | Batchko et al. | Sep 2010 | A1 |
20100244168 | Shiozawa et al. | Sep 2010 | A1 |
20100274567 | Carlson et al. | Oct 2010 | A1 |
20100274627 | Carlson | Oct 2010 | A1 |
20100277803 | Pockett et al. | Nov 2010 | A1 |
20100284085 | Laakkonen | Nov 2010 | A1 |
20100287485 | Bertolami et al. | Nov 2010 | A1 |
20100296163 | Sarikko | Nov 2010 | A1 |
20100309687 | Sampsell et al. | Dec 2010 | A1 |
20110010636 | Hamilton, II et al. | Jan 2011 | A1 |
20110021263 | Anderson et al. | Jan 2011 | A1 |
20110022870 | Mcgrane | Jan 2011 | A1 |
20110041083 | Gabai et al. | Feb 2011 | A1 |
20110050640 | Lundback et al. | Mar 2011 | A1 |
20110050655 | Mukawa | Mar 2011 | A1 |
20110064268 | Cobb | Mar 2011 | A1 |
20110122240 | Becker | May 2011 | A1 |
20110145617 | Thomson et al. | Jun 2011 | A1 |
20110170801 | Lu et al. | Jul 2011 | A1 |
20110218733 | Hamza et al. | Sep 2011 | A1 |
20110286735 | Temblay | Nov 2011 | A1 |
20110291969 | Rashid et al. | Dec 2011 | A1 |
20120011389 | Driesen | Jan 2012 | A1 |
20120050535 | Densham et al. | Mar 2012 | A1 |
20120075501 | Oyagi et al. | Mar 2012 | A1 |
20120081392 | Arthur | Apr 2012 | A1 |
20120089854 | Breakstone | Apr 2012 | A1 |
20120113235 | Shintani | May 2012 | A1 |
20120127062 | Bar-Zeev et al. | May 2012 | A1 |
20120154557 | Perez et al. | Jun 2012 | A1 |
20120215094 | Rahimian et al. | Aug 2012 | A1 |
20120218301 | Miller | Aug 2012 | A1 |
20120246506 | Knight | Sep 2012 | A1 |
20120249416 | Maciocci et al. | Oct 2012 | A1 |
20120249741 | Maciocci et al. | Oct 2012 | A1 |
20120260083 | Andrews | Oct 2012 | A1 |
20120307075 | Margalitq | Dec 2012 | A1 |
20120307362 | Silverstein et al. | Dec 2012 | A1 |
20120314959 | White et al. | Dec 2012 | A1 |
20120320460 | Levola | Dec 2012 | A1 |
20120326948 | Crocco et al. | Dec 2012 | A1 |
20130021486 | Richardon | Jan 2013 | A1 |
20130050258 | Liu et al. | Feb 2013 | A1 |
20130050642 | Lewis et al. | Feb 2013 | A1 |
20130050833 | Lewis et al. | Feb 2013 | A1 |
20130051730 | Travers et al. | Feb 2013 | A1 |
20130061240 | Yan et al. | Mar 2013 | A1 |
20130077049 | Bohn | Mar 2013 | A1 |
20130077170 | Ukuda | Mar 2013 | A1 |
20130094148 | Sloane | Apr 2013 | A1 |
20130129282 | Li | May 2013 | A1 |
20130162940 | Kurtin et al. | Jun 2013 | A1 |
20130169923 | Schnoll et al. | Jul 2013 | A1 |
20130205126 | Kruglick | Aug 2013 | A1 |
20130222386 | Tannhauser et al. | Aug 2013 | A1 |
20130268257 | Hu | Oct 2013 | A1 |
20130278633 | Ahn et al. | Oct 2013 | A1 |
20130314789 | Saarikko et al. | Nov 2013 | A1 |
20130318276 | Dalal | Nov 2013 | A1 |
20130336138 | Venkatraman et al. | Dec 2013 | A1 |
20130342564 | Kinnebrew et al. | Dec 2013 | A1 |
20130342570 | Kinnebrew et al. | Dec 2013 | A1 |
20130342571 | Kinnebrew et al. | Dec 2013 | A1 |
20130343408 | Cook | Dec 2013 | A1 |
20140002329 | Nishimaki et al. | Jan 2014 | A1 |
20140013098 | Yeung | Jan 2014 | A1 |
20140016821 | Arth et al. | Jan 2014 | A1 |
20140022819 | Oh et al. | Jan 2014 | A1 |
20140078023 | Ikeda et al. | Mar 2014 | A1 |
20140082526 | Park et al. | Mar 2014 | A1 |
20140119598 | Ramachandran et al. | May 2014 | A1 |
20140126769 | Reitmayr et al. | May 2014 | A1 |
20140140653 | Brown et al. | May 2014 | A1 |
20140149573 | Tofighbakhsh et al. | May 2014 | A1 |
20140168260 | O'Brien et al. | Jun 2014 | A1 |
20140244983 | McDonald et al. | Aug 2014 | A1 |
20140266987 | Magyari | Sep 2014 | A1 |
20140267419 | Ballard et al. | Sep 2014 | A1 |
20140274391 | Stafford | Sep 2014 | A1 |
20140282105 | Nordstrom | Sep 2014 | A1 |
20140292645 | Tsurumi et al. | Oct 2014 | A1 |
20140313228 | Kasahara | Oct 2014 | A1 |
20140340449 | Plagemann et al. | Nov 2014 | A1 |
20140359589 | Kodsky et al. | Dec 2014 | A1 |
20140375680 | Ackerman et al. | Dec 2014 | A1 |
20150005785 | Olson | Jan 2015 | A1 |
20150009099 | Queen | Jan 2015 | A1 |
20150015842 | Chen | Jan 2015 | A1 |
20150077312 | Wang | Mar 2015 | A1 |
20150097719 | Balachandreswaran et al. | Apr 2015 | A1 |
20150123966 | Newman | May 2015 | A1 |
20150130790 | Vazquez, II et al. | May 2015 | A1 |
20150134995 | Park et al. | May 2015 | A1 |
20150138248 | Schrader | May 2015 | A1 |
20150155939 | Oshima et al. | Jun 2015 | A1 |
20150168221 | Mao et al. | Jun 2015 | A1 |
20150205126 | Schowengerdt | Jul 2015 | A1 |
20150235427 | Nobori et al. | Aug 2015 | A1 |
20150235431 | Schowengerdt | Aug 2015 | A1 |
20150253651 | Russell et al. | Sep 2015 | A1 |
20150256484 | Cameron | Sep 2015 | A1 |
20150269784 | Miyawaki et al. | Sep 2015 | A1 |
20150294483 | Wells et al. | Oct 2015 | A1 |
20150301955 | Yakovenko et al. | Oct 2015 | A1 |
20150310657 | Eden | Oct 2015 | A1 |
20150338915 | Publicover et al. | Nov 2015 | A1 |
20150355481 | Hilkes et al. | Dec 2015 | A1 |
20160004102 | Nisper et al. | Jan 2016 | A1 |
20160015470 | Border | Jan 2016 | A1 |
20160027215 | Burns et al. | Jan 2016 | A1 |
20160033770 | Fujimaki et al. | Feb 2016 | A1 |
20160051217 | Douglas et al. | Feb 2016 | A1 |
20160077338 | Robbins et al. | Mar 2016 | A1 |
20160085285 | Mangione-Smith | Mar 2016 | A1 |
20160085300 | Robbins et al. | Mar 2016 | A1 |
20160091720 | Stafford et al. | Mar 2016 | A1 |
20160093099 | Bridges | Mar 2016 | A1 |
20160093269 | Buckley et al. | Mar 2016 | A1 |
20160103326 | Kimura et al. | Apr 2016 | A1 |
20160123745 | Cotier et al. | May 2016 | A1 |
20160139402 | Lapstun | May 2016 | A1 |
20160139411 | Kang et al. | May 2016 | A1 |
20160155273 | Lyren et al. | Jun 2016 | A1 |
20160180596 | Gonzalez del Rosario | Jun 2016 | A1 |
20160187654 | Border et al. | Jun 2016 | A1 |
20160191887 | Casas | Jun 2016 | A1 |
20160202496 | Billetz et al. | Jul 2016 | A1 |
20160217624 | Finn et al. | Jul 2016 | A1 |
20160266412 | Yoshida | Sep 2016 | A1 |
20160267708 | Nistico et al. | Sep 2016 | A1 |
20160274733 | Hasegawa et al. | Sep 2016 | A1 |
20160287337 | Aram et al. | Oct 2016 | A1 |
20160300388 | Stafford et al. | Oct 2016 | A1 |
20160321551 | Priness et al. | Nov 2016 | A1 |
20160327798 | Xiao et al. | Nov 2016 | A1 |
20160334279 | Mittleman et al. | Nov 2016 | A1 |
20160357255 | Lindh et al. | Dec 2016 | A1 |
20160370404 | Quadrat et al. | Dec 2016 | A1 |
20160370510 | Thomas | Dec 2016 | A1 |
20170038607 | Camara | Feb 2017 | A1 |
20170060225 | Zha et al. | Mar 2017 | A1 |
20170061696 | Li et al. | Mar 2017 | A1 |
20170064066 | Das et al. | Mar 2017 | A1 |
20170100664 | Osterhout et al. | Apr 2017 | A1 |
20170102544 | Vallius et al. | Apr 2017 | A1 |
20170115487 | Travis | Apr 2017 | A1 |
20170122725 | Yeoh et al. | May 2017 | A1 |
20170123526 | Trail et al. | May 2017 | A1 |
20170127295 | Black et al. | May 2017 | A1 |
20170131569 | Aschwanden et al. | May 2017 | A1 |
20170147066 | Katz et al. | May 2017 | A1 |
20170160518 | Lanman et al. | Jun 2017 | A1 |
20170161951 | Fix et al. | Jun 2017 | A1 |
20170185261 | Perez et al. | Jun 2017 | A1 |
20170192239 | Nakamura et al. | Jul 2017 | A1 |
20170201709 | Igarashi et al. | Jul 2017 | A1 |
20170205903 | Miller et al. | Jul 2017 | A1 |
20170206668 | Poulos et al. | Jul 2017 | A1 |
20170213388 | Margolis et al. | Jul 2017 | A1 |
20170214907 | Lapstun | Jul 2017 | A1 |
20170219841 | Popovich et al. | Aug 2017 | A1 |
20170232345 | Rofougaran et al. | Aug 2017 | A1 |
20170235126 | DiDomenico | Aug 2017 | A1 |
20170235129 | Kamakura | Aug 2017 | A1 |
20170235142 | Wall et al. | Aug 2017 | A1 |
20170235144 | Piskunov et al. | Aug 2017 | A1 |
20170235147 | Kamakura | Aug 2017 | A1 |
20170243403 | Daniels et al. | Aug 2017 | A1 |
20170246070 | Osterhout et al. | Aug 2017 | A1 |
20170254832 | Ho et al. | Sep 2017 | A1 |
20170256096 | Faaborg et al. | Sep 2017 | A1 |
20170258526 | Lang | Sep 2017 | A1 |
20170266529 | Reikmoto | Sep 2017 | A1 |
20170270712 | Tyson et al. | Sep 2017 | A1 |
20170281054 | Stever et al. | Oct 2017 | A1 |
20170287376 | Bakar et al. | Oct 2017 | A1 |
20170293141 | Schowengerdt et al. | Oct 2017 | A1 |
20170307886 | Stenberg et al. | Oct 2017 | A1 |
20170307891 | Bucknor et al. | Oct 2017 | A1 |
20170312032 | Amanatullah et al. | Nov 2017 | A1 |
20170322418 | Liu et al. | Nov 2017 | A1 |
20170322426 | Tervo | Nov 2017 | A1 |
20170329137 | Tervo | Nov 2017 | A1 |
20170332098 | Rusanovskyy et al. | Nov 2017 | A1 |
20170336636 | Amitai et al. | Nov 2017 | A1 |
20170357332 | Balan et al. | Dec 2017 | A1 |
20170363871 | Vallius | Dec 2017 | A1 |
20170371394 | Chan | Dec 2017 | A1 |
20170371661 | Sparling | Dec 2017 | A1 |
20180014266 | Chen | Jan 2018 | A1 |
20180024289 | Fattal | Jan 2018 | A1 |
20180044173 | Netzer | Feb 2018 | A1 |
20180052007 | Teskey et al. | Feb 2018 | A1 |
20180052501 | Jones, Jr. et al. | Feb 2018 | A1 |
20180059305 | Popovich et al. | Mar 2018 | A1 |
20180067779 | Pillalamarri et al. | Mar 2018 | A1 |
20180070855 | Eichler | Mar 2018 | A1 |
20180082480 | White et al. | Mar 2018 | A1 |
20180084245 | Lapstun | Mar 2018 | A1 |
20180088185 | Woods et al. | Mar 2018 | A1 |
20180102981 | Kurtzman et al. | Apr 2018 | A1 |
20180108179 | Tomlin et al. | Apr 2018 | A1 |
20180114298 | Malaika et al. | Apr 2018 | A1 |
20180129112 | Osterhout | May 2018 | A1 |
20180131907 | Schmirler et al. | May 2018 | A1 |
20180136466 | Ko | May 2018 | A1 |
20180144691 | Choi et al. | May 2018 | A1 |
20180150971 | Adachi | May 2018 | A1 |
20180151796 | Akahane | May 2018 | A1 |
20180172995 | Lee et al. | Jun 2018 | A1 |
20180188115 | Hsu et al. | Jul 2018 | A1 |
20180189568 | Powderly et al. | Jul 2018 | A1 |
20180190017 | Mendez et al. | Jul 2018 | A1 |
20180191990 | Motoyama et al. | Jul 2018 | A1 |
20180217395 | Lin et al. | Aug 2018 | A1 |
20180218545 | Garcia et al. | Aug 2018 | A1 |
20180250589 | Cossairt et al. | Sep 2018 | A1 |
20180260218 | Gopal | Sep 2018 | A1 |
20180284877 | Klein | Oct 2018 | A1 |
20180292654 | Wall et al. | Oct 2018 | A1 |
20180299678 | Singer et al. | Oct 2018 | A1 |
20180357472 | Dreessen | Dec 2018 | A1 |
20190005069 | Filgueiras de Araujo et al. | Jan 2019 | A1 |
20190011691 | Peyman | Jan 2019 | A1 |
20190056591 | Tervo et al. | Feb 2019 | A1 |
20190087015 | Lam et al. | Mar 2019 | A1 |
20190101758 | Zhu et al. | Apr 2019 | A1 |
20190107723 | Lee et al. | Apr 2019 | A1 |
20190137788 | Suen | May 2019 | A1 |
20190155034 | Singer et al. | May 2019 | A1 |
20190155439 | Mukherjee et al. | May 2019 | A1 |
20190158926 | Kang et al. | May 2019 | A1 |
20190162950 | Lapstun | May 2019 | A1 |
20190167095 | Krueger | Jun 2019 | A1 |
20190172216 | Ninan et al. | Jun 2019 | A1 |
20190178654 | Hare | Jun 2019 | A1 |
20190182415 | Sivan | Jun 2019 | A1 |
20190196690 | Chong et al. | Jun 2019 | A1 |
20190206116 | Xu | Jul 2019 | A1 |
20190219815 | Price et al. | Jul 2019 | A1 |
20190243123 | Bohn | Aug 2019 | A1 |
20190287270 | Nakamura et al. | Sep 2019 | A1 |
20190318502 | He | Oct 2019 | A1 |
20190318540 | Piemonte et al. | Oct 2019 | A1 |
20190321728 | Imai et al. | Oct 2019 | A1 |
20190347853 | Chen et al. | Nov 2019 | A1 |
20190380792 | Poltaretskyi et al. | Dec 2019 | A1 |
20190388182 | Kumar | Dec 2019 | A1 |
20200066045 | Stahl et al. | Feb 2020 | A1 |
20200098188 | Bar-Zeev et al. | Mar 2020 | A1 |
20200100057 | Galon et al. | Mar 2020 | A1 |
20200110928 | Al Jazaery et al. | Apr 2020 | A1 |
20200117267 | Gibson et al. | Apr 2020 | A1 |
20200117270 | Gibson et al. | Apr 2020 | A1 |
20200184217 | Faulkner | Jun 2020 | A1 |
20200184653 | Faulker | Jun 2020 | A1 |
20200202759 | Ukai et al. | Jun 2020 | A1 |
20200242848 | Ambler et al. | Jul 2020 | A1 |
20200309944 | Thoresen et al. | Oct 2020 | A1 |
20200356161 | Wagner | Nov 2020 | A1 |
20200368616 | Delamont | Nov 2020 | A1 |
20200391115 | Leeper et al. | Dec 2020 | A1 |
20200409528 | Lee | Dec 2020 | A1 |
20210008413 | Asikainen et al. | Jan 2021 | A1 |
20210033871 | Jacoby et al. | Feb 2021 | A1 |
20210041951 | Gibson et al. | Feb 2021 | A1 |
20210053820 | Gurin et al. | Feb 2021 | A1 |
20210093391 | Poltaretskyi et al. | Apr 2021 | A1 |
20210093410 | Gaborit et al. | Apr 2021 | A1 |
20210093414 | Moore et al. | Apr 2021 | A1 |
20210097886 | Kuester et al. | Apr 2021 | A1 |
20210124901 | Liu | Apr 2021 | A1 |
20210132380 | Wieczorek | May 2021 | A1 |
20210141225 | Meynen et al. | May 2021 | A1 |
20210142582 | Jones et al. | May 2021 | A1 |
20210158023 | Fu | May 2021 | A1 |
20210158627 | Cossairt et al. | May 2021 | A1 |
20210173480 | Osterhout et al. | Jun 2021 | A1 |
20220366598 | Azimi et al. | Nov 2022 | A1 |
Number | Date | Country |
---|---|---|
100416340 | Sep 2008 | CN |
101449270 | Jun 2009 | CN |
103460255 | Dec 2013 | CN |
104040410 | Sep 2014 | CN |
104603675 | May 2015 | CN |
105938426 | Sep 2016 | CN |
106662754 | May 2017 | CN |
107683497 | Feb 2018 | CN |
109223121 | Jan 2019 | CN |
105190427 | Nov 2019 | CN |
0504930 | Mar 1992 | EP |
0535402 | Apr 1993 | EP |
0632360 | Jan 1995 | EP |
1215522 | Jun 2002 | EP |
1494110 | Jan 2005 | EP |
1938141 | Jul 2008 | EP |
1943556 | Jul 2008 | EP |
2290428 | Mar 2011 | EP |
2350774 | Aug 2011 | EP |
1237067 | Jan 2016 | EP |
3139245 | Mar 2017 | EP |
3164776 | May 2017 | EP |
3236211 | Oct 2017 | EP |
2723240 | Aug 2018 | EP |
2896986 | Feb 2021 | EP |
2499635 | Aug 2013 | GB |
2542853 | Apr 2017 | GB |
938DEL2004 | Jun 2006 | IN |
H03-036974 | Apr 1991 | JP |
H10-333094 | Dec 1998 | JP |
2002-529806 | Sep 2002 | JP |
2003-029198 | Jan 2003 | JP |
2003-141574 | May 2003 | JP |
2003-228027 | Aug 2003 | JP |
2003-329873 | Nov 2003 | JP |
2005-303843 | Oct 2005 | JP |
2007-012530 | Jan 2007 | JP |
2007-86696 | Apr 2007 | JP |
2007-273733 | Oct 2007 | JP |
2008-257127 | Oct 2008 | JP |
2009-090689 | Apr 2009 | JP |
2009-244869 | Oct 2009 | JP |
2010-014443 | Jan 2010 | JP |
2010-139575 | Jun 2010 | JP |
2011-033993 | Feb 2011 | JP |
2011-257203 | Dec 2011 | JP |
2011-530131 | Dec 2011 | JP |
2012-015774 | Jan 2012 | JP |
2012-235036 | Nov 2012 | JP |
2013-525872 | Jun 2013 | JP |
2013-206322 | Oct 2013 | JP |
2014-500522 | Jan 2014 | JP |
2014-192550 | Oct 2014 | JP |
2015-191032 | Nov 2015 | JP |
2016-502120 | Jan 2016 | JP |
2016-85463 | May 2016 | JP |
2016-516227 | Jun 2016 | JP |
2016-126134 | Jul 2016 | JP |
2017-015697 | Jan 2017 | JP |
2017-153498 | Sep 2017 | JP |
2017-531840 | Oct 2017 | JP |
2017-535825 | Nov 2017 | JP |
6232763 | Nov 2017 | JP |
6333965 | May 2018 | JP |
2005-0010775 | Jan 2005 | KR |
10-2006-0059992 | Jun 2006 | KR |
10-2011-0006408 | Jan 2011 | KR |
10-1372623 | Mar 2014 | KR |
10-2017-0017243 | Feb 2017 | KR |
201219829 | May 2012 | TW |
201803289 | Jan 2018 | TW |
1991000565 | Jan 1991 | WO |
2000030368 | Jun 2000 | WO |
2002071315 | Sep 2002 | WO |
2004095248 | Nov 2004 | WO |
2006132614 | Dec 2006 | WO |
2007041678 | Apr 2007 | WO |
2007037089 | May 2007 | WO |
2007085682 | Aug 2007 | WO |
2007102144 | Sep 2007 | WO |
2008148927 | Dec 2008 | WO |
2009101238 | Aug 2009 | WO |
2010015807 | Feb 2010 | WO |
2014203440 | Dec 2010 | WO |
2012030787 | Mar 2012 | WO |
2013049012 | Apr 2013 | WO |
2013062701 | May 2013 | WO |
2013145536 | Oct 2013 | WO |
2014033306 | Mar 2014 | WO |
2015079610 | Jun 2015 | WO |
2015143641 | Oct 2015 | WO |
2015143641 | Oct 2015 | WO |
2015194597 | Dec 2015 | WO |
2016054092 | Apr 2016 | WO |
2017004695 | Jan 2017 | WO |
2017044761 | Mar 2017 | WO |
2017049163 | Mar 2017 | WO |
2017051595 | Mar 2017 | WO |
2017120475 | Jul 2017 | WO |
2017176861 | Oct 2017 | WO |
2017203201 | Nov 2017 | WO |
2017203201 | Nov 2017 | WO |
2018008232 | Jan 2018 | WO |
2018031261 | Feb 2018 | WO |
2018022523 | Feb 2018 | WO |
2018044537 | Mar 2018 | WO |
2018039273 | Mar 2018 | WO |
2018057564 | Mar 2018 | WO |
2018085287 | May 2018 | WO |
2018087408 | May 2018 | WO |
2018097831 | May 2018 | WO |
2018166921 | Sep 2018 | WO |
2018166921 | Sep 2018 | WO |
2018236587 | Dec 2018 | WO |
2019040493 | Feb 2019 | WO |
2019148154 | Aug 2019 | WO |
2020010226 | Jan 2020 | WO |
Entry |
---|
Communication according to Rule 164(1) EPC mailed on Feb. 23, 2022, European Patent Application No. 20753144.3, (11 pages). |
Extended European Search Report mailed on Jun. 19, 2020, European Patent Application No. 20154750.2, (10 pages). |
Extended European Search Report mailed on Mar. 22, 2022, European Patent Application No. 19843487.0, (14 pages). |
Final Office Action mailed on Feb. 23, 2022, U.S. Appl. No. 16/748,193, (23 pages). |
First Office Action mailed on Mar. 14, 2022 with English translation, Chinese Patent Application No. 201880079474.6, (11 pages). |
Non Final Office Action mailed on Apr. 1, 2022, U.S. Appl. No. 17/256,961, (65 pages). |
Non Final Office Action mailed on Apr. 11, 2022, U.S. Appl. No. 16/938,782, (52 pages). |
Non Final Office Action mailed on Apr. 12, 2022, U.S. Appl. No. 17/262,991, (60 pages). |
Non Final Office Action mailed on Mar. 31, 2022, U.S. Appl. No. 17/257,814, (60 pages). |
Non Final Office Action mailed on Mar. 9, 2022, U.S. Appl. No. 16/870,676, (57 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Apr. 25, 2022”, European Patent Application No. 18885707.2, (5 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on May 30, 2022”, European Patent Application No. 19768418.6, (6 pages). |
“Extended European Search Report issued on Jul. 20, 2022”, European Patent Application No. 19885958.9, (9 pages). |
“Extended European Search Report issued on Aug. 8, 2022”, European Patent Application No. 19898874.3, (8 pages). |
“Extended European Search Report mailed on May 16, 2022”, European Patent Application No. 19871001.4, (9 pages). |
“Extended European Search Report mailed on May 30, 2022”, European Patent Application No. 20753144.3, (10 pages). |
“Final Office Action mailed on Jul. 13, 2022”, U.S. Appl. No. 17/262,991, (18 pages). |
“First Examination Report Mailed on Jul. 27, 2022”, Chinese Patent Application No. 201980036675.2, (5 pages). |
“First Examination Report Mailed on Jul. 28, 2022”, Indian Patent Application No. 202047024232, (6 pages). |
“First Examination Report Mailed on May 13, 2022”, Indian Patent Application No. 202047026359, (8 pages). |
“Non Final Office Action mailed on Jul. 26, 2022”, U.S. Appl. No. 17/098,059, (28 pages). |
“Non Final Office Action mailed on May 10, 2022”, U.S. Appl. No. 17/140,921, (25 pages). |
“Non Final Office Action mailed on May 17, 2022”, U.S. Appl. No. 16/748,193, (11 pages). |
“Second Office Action mailed on Jul. 13, 2022 with English Translation”, Chinese Patent Application No. 201880079474.6, (10 pages). |
Chittineni, C. , et al., “Single filters for combined image geometric manipulation and enhancement”, Proceedings of SPIE vol. 1903, Image and Video Processing, Apr. 8, 1993, San Jose, CA. (Year: 1993), pp. 111-121. |
“Extended European Search Report issued on Aug. 24, 2022”, European Patent Application No. 20846338.0, (13 pages). |
“Extended European Search Report issued on Sep. 8, 2022”, European Patent Application No. 20798769.4, (13 pages). |
“FS_XR5G: Permanent document, v0.4.0”, Qualcomm Incorporated, 3GPP TSG-SA 4 Meeting 103 retrieved from the Internet: URL:http://www.3gpp.org/ftp/Meetings%5F3GP P%5FSYNC/SA4/Docs/S4%2DI90526%2Ezip [retrieved on Apr. 12, 2019], Apr. 12, 2019, (98 pages). |
“Non Final Office Action mailed on Sep. 19, 2022”, U.S. Appl. No. 17/263,001, (14 pages). |
“Second Office Action mailed on Jun. 20, 2022 with English Translation”, Chinese Patent Application No. 201880089255.6, (14 pages). |
Anonymous , “Koi Pond: Top iPhone App Store Paid App”, https://web.archive.org/web/20080904061233/https://www.iphoneincanada.ca/reviews /koi-pond-top-iphone-app-store-paid-app/—[retrieved on Aug. 9, 2022], (2 pages). |
“Extended European Search Report mailed on Nov. 3, 2022”, European Patent Application No. 20770244.0, (23 pages). |
“First Examination Report Mailed on Dec. 8, 2022”, Australian Patent Application No. 2018392482, (3 pages). |
“First Office Action mailed on Sep. 16, 2022 with English translation”, Chinese Patent Application No. 201980063642.7, (7 pages). |
“Non Final Office Action mailed on Dec. 7, 2022”, U.S. Appl. No. 17/357,795, (63 pages). |
“Notice of Reason for Rejection mailed on Oct. 28, 2022 with English translation”, Japanese Patent Application No. 2020-531452, (3 pages). |
“Office Action mailed on Nov. 24, 2022 with English Translation”, Japanese Patent Application No. 2020-533730, (11 pages). |
“Extended European Search Report issued on Dec. 14, 2022”, European Patent Application No. 20886547.7, (8 pages). |
“Final Office Action mailed on Dec. 29, 2022”, U.S. Appl. No. 17/098,059, (32 pages). |
“Non Final Office Action mailed on Feb. 3, 2023”, U.S. Appl. No. 17/429,100, (16 pages). |
“Non Final Office Action mailed on Feb. 3, 2023”, U.S. Appl. No. 17/497,965, (32 pages). |
“Non Final Office Action mailed on Jan. 24, 2023”, U.S. Appl. No. 17/497,940, (10 pages). |
European Search Report mailed on Oct. 15, 2020, European Patent Application No. 20180623.9, (10 pages). |
Extended European Search Report issued on Jan. 22, 2021, European Patent Application No. 18890390.0, (11 pages). |
Extended European Search Report issued on Nov. 3, 2020, European Patent Application No. 18885707.2, (7 pages). |
Extended European Search Report issued on Nov. 4, 2020, European Patent Application No. 20190980.1, (14 pages). |
Final Office Action mailed on Nov. 24, 2020, U.S. Appl. No. 16/435,933, (44 pages). |
International Search Report and Written Opinion mailed on Feb. 12, 2021, International Application No. PCT/US20/60555, (25 pages). |
International Search Report and Written Opinion mailed on Feb. 2, 2021, International PCT Patent Application No. PCT/US20/60550, (9 pages). |
International Search Report and Written Opinion mailed on Dec. 3, 2020, International Patent Application No. PCT/US20/43596, (25 pages). |
Non Final Office Action mailed on Jan. 26, 2021, U.S. Appl. No. 16/928,313, (33 pages). |
Non Final Office Action mailed on Jan. 27, 2021, U.S. Appl. No. 16/225,961, (15 pages). |
Non Final Office Action mailed on Mar. 3, 2021, U.S. Appl. No. 16/427,337, (41 pages). |
Altwaijry, et al., “Learning to Detect and Match Keypoints with Deep Architectures”, Proceedings of the British Machine Vision Conference (BMVC), BMVA Press, Sep. 2016, [retrieved on Jan. 8, 2021 (Jan. 8, 2021 )] < URL: http://www.bmva.org/bmvc/2016/papers/paper049/index.html >, en lire document, especially Abstract, pp. 1-6 and 9. |
Butail, et al., “Putting the fish in the fish tank: Immersive VR for animal behavior experiments”, In: 2012 IEEE International Conference on Robotics and Automation. May 18, 2012 (May 18, 2012) Retrieved on Nov. 14, 2020 (Nov. 14, 2020) from <http:/lcdcl.umd.edu/papers/icra2012.pdf> entire document, (8 pages). |
Lee, et al., “Self-Attention Graph Pooling”, Cornell University Library/Computer Science/ Machine Learning, Apr. 17, 2019 [retrieved on Jan. 8, 2021 from the Internet< URL: https://arxiv.org/abs/1904.08082 >, entire document. |
Libovicky, et al., “Input Combination Strategies for Multi-Source Transformer Decoder”, Proceedings of the Third Conference on Machine Translation (WMT). vol. 1: Research Papers, Belgium, Brussels, Oct. 31-Nov. 1, 2018; retrieved on Jan. 8, 2021 (Jan. 8, 2021 ) from < URL: https://doi.org/10.18653/v1/W18-64026 >, entire document, pp. 253-260. |
Sarlin, et al., “SuperGlue: Learning Feature Matching with Graph Neural Networks”, Cornell University Library/Computer Science/Computer Vision and Pattern Recognition, Nov. 26, 2019 [retrieved on Jan. 8, 2021 from the Internet< URL: https://arxiv.org/abs/1911.11763 >, entire document, especially. |
Communication Pursuant to Article 94(3) EPC mailed on Jan. 4, 2022, European Patent Application No. 20154070.5, (8 pages). |
Communication Pursuant to Article 94(3) EPC mailed on Oct. 21, 2021, European Patent Application No. 16207441.3, (4 pages). |
Communication Pursuant to Rule 164(1) EPC mailed on Jul. 27, 2021, European Patent Application No. 19833664.6, (11 pages). |
Extended European Search Report issued on Jun. 30, 2021, European Patent Application No. 19811971.1, (9 pages). |
Extended European Search Report issued on Mar. 4, 2021, European Patent Application No. 19768418.6, (9 pages). |
Extended European Search Report mailed on Jan. 28, 2022, European Patent Application No. 19815876.8, (9 pages). |
Extended European Search Report mailed on Jan. 4, 2022, European Patent Application No. 19815085.6, (9 pages). |
Extended European Search Report mailed on Jul. 16, 2021, European Patent Application No. 19810142.0, (14 pages). |
Extended European Search Report mailed on Jul. 30, 2021, European Patent Application No. 19839970.1, (7 pages). |
Extended European Search Report mailed on Oct. 27, 2021, European Patent Application No. 19833664.6, (10 pages). |
Extended European Search Report mailed on Sep. 20, 2021, European Patent Application No. 19851373.1, (8 pages). |
Extended European Search Report mailed on Sep. 28, 2021, European Patent Application No. 19845418.3, (13 pages). |
Final Office Action mailed on Feb. 3, 2022, U.S. Appl. No. 16/864,721, (36 pages). |
Final Office Action mailed on Jun. 15, 2021, U.S. Appl. No. 16/928,313, (42 pages). |
Final Office Action mailed on Mar. 1, 2021, U.S. Appl. No. 16/214,575, (29 pages). |
Final Office Action mailed on Mar. 19, 2021, U.S. Appl. No. 16/530,776, (25 pages). |
Final Office Action mailed on Sep. 17, 2021, U.S. Appl. No. 16/938,782, (44 pages). |
“Multi-core processor”, TechTarget, 2013, (1 page). |
Non Final Office Action mailed on Aug. 4, 2021, U.S. Appl. No. 16/864,721, (51 pages). |
Non Final Office Action mailed on Feb. 2, 2022, U.S. Appl. No. 16/783,866, (8 pages). |
Non Final Office Action mailed on Jul. 9, 2021, U.S. Appl. No. 17/002,663, (43 pages). |
Non Final Office Action mailed on Jul. 9, 2021, U.S. Appl. No. 16/833,093, (47 pages). |
Non Final Office Action mailed on Jun. 10, 2021, U.S. Appl. No. 16/938,782, (40 Pages). |
Non Final Office Action mailed on Jun. 29, 2021, U.S. Appl. No. 16/698,588, (58 pages). |
Non Final Office Action mailed on May 26, 2021, U.S. Appl. No. 16/214,575, (19 pages). |
Non Final Office Action mailed on Sep. 20, 2021, U.S. Appl. No. 17/105,848, (56 pages). |
Non Final Office Action mailed on Sep. 29, 2021, U.S. Appl. No. 16/748,193, (62 pages). |
Giuseppe, Donato, et al., “Stereoscopic helmet mounted system for real time 3D environment reconstruction and indoor ego-motion estimation”, Proc. SPIE 6955, Head- and Helmet-Mounted Displays XIII: Design and Applications, 69550P. |
Molchanov, Pavlo, et al., “Short-range FMCW monopulse radar for hand-gesture sensing”, 2015 IEEE Radar Conference (RadarCon) (2015), pp. 1491-1496. |
Mrad, et al., “A framework for System Level Low Power Design Space Exploration”, 1991. |
Sheng, Liu, et al., “Time-multiplexed dual-focal plane head-mounted display with a liquid lens”, Optics Letters, Optical Society of Amer I Ca, US, vol. 34, No. 11, Jun. 1, 2009 (Jun. 1, 2009), XP001524475, ISSN: 0146-9592, pp. 1642-1644. |
“ARToolKit: Hardware”, https://web.archive.org/web/20051013062315/http://www.hitl.washington.edu:80/artoolkit/documentation/hardware.htm (downloaded Oct. 26, 2020), Oct. 13, 2015, (3 pages). |
Communication Pursuant to Article 94(3) EPC mailed on Sep. 4, 2019, European Patent Application No. 10793707.0, (4 pages). |
Examination Report mailed on Jun. 19, 2020, European Patent Application No. 20154750.2, (10 pages). |
Extended European Search Report issued on May 20, 2020, European Patent Application No. 20154070.5, (7 pages). |
Extended European Search Report mailed on Jun. 12, 2017, European Patent Application No. 16207441.3, (8 pages). |
Final Office Action mailed on Aug. 10, 2020, U.S. Appl. No. 16/225,961, (13 pages). |
Final Office Action mailed on Dec. 4, 2019, U.S. Appl. No. 15/564,517, (15 pages). |
Final Office Action mailed on Feb. 19, 2020, U.S. Appl. No. 15/552,897, (17 pages). |
International Search Report and Written Opinion mailed on Mar. 12, 2020, International PCT Patent Application No. PCT/US19/67919, (14 pages). |
International Search Report and Written Opinion mailed on Aug. 15, 2019, International PCT Patent Application No. PCT/US19/33987, (20 pages). |
International Search Report and Written Opinion mailed on Jun. 15, 2020, International PCT Patent Application No. PCT/US2020/017023, (13 pages). |
International Search Report and Written Opinion mailed on Oct. 16, 2019, International PCT Patent Application No. PCT/US19/43097, (10 pages). |
International Search Report and Written Opinion mailed on Oct. 16, 2019, International PCT Patent Application No. PCT/US19/36275, (10 pages). |
International Search Report and Written Opinion mailed on Oct. 16, 2019, International PCT Patent Application No. PCT/US19/43099, (9 pages). |
International Search Report and Written Opinion mailed on Jun. 17, 2016, International PCT Patent Application No. PCT/FI2016/050172, (9 pages). |
International Search Report and Written Opinion mailed on Oct. 22, 2019, International PCT Patent Application No. PCT/US19/43751, (9 pages). |
International Search Report and Written Opinion mailed on Dec. 23, 2019, International PCT Patent Application No. PCT/US19/44953, (11 pages). |
International Search Report and Written Opinion mailed on May 23, 2019, International PCT Patent Application No. PCT/US18/66514, (17 pages). |
International Search Report and Written Opinion mailed on Sep. 26, 2019, International PCT Patent Application No. PCT/US19/40544, (12 pages). |
International Search Report and Written Opinion mailed on Aug. 27, 2019, International PCT Application No. PCT/US2019/035245, (8 pages). |
International Search Report and Written Opinion mailed on Dec. 27, 2019, International Application No. PCT/US19/47746, (16 pages). |
International Search Report and Written Opinion mailed on Sep. 30, 2019, International Patent Application No. PCT/US19/40324, (7 pages). |
International Search Report and Written Opinion mailed on Sep. 4, 2020, International Patent Application No. PCT/US20/31036, (13 pages). |
International Search Report and Written Opinion mailed on Jun. 5, 2020, International Patent Application No. PCT/US20/19871, (9 pages). |
International Search Report and Written Opinion mailed on Aug. 8, 2019, International PCT Patent Application No. PCT/US2019/034763, (8 pages). |
International Search Report and Written Opinion mailed on Oct. 8, 2019, International PCT Patent Application No. PCT/US19/41151, (7 pages). |
International Search Report and Written Opinion mailed on Jan. 9, 2020, International Application No. PCT/US19/55185, (10 pages). |
International Search Report and Written Opinion mailed on Feb. 28, 2019, International Patent Application No. PCT/US18/64686, (8 pages). |
International Search Report and Written Opinion mailed on Feb. 7, 2020, International PCT Patent Application No. PCT/US2019/061265, (11 pages). |
International Search Report and Written Opinion mailed on Jun. 11, 2019, International PCT Application No. PCT/US19/22620, (7 pages). |
Invitation to Pay Additional Fees mailed Aug. 15, 2019, International PCT Patent Application No. PCT/US19/36275, (2 pages). |
Invitation to Pay Additional Fees mailed Sep. 24, 2020, International Patent Application No. PCT/US2020/043596, (3 pages). |
Invitation to Pay Additional Fees mailed on Oct. 22, 2019, International PCT Patent Application No. PCT/US19/47746, (2 pages). |
Invitation to Pay Additional Fees mailed on Apr. 3, 2020, International Patent Application No. PCT/US20/17023, (2 pages). |
Invitation to Pay Additional Fees mailed on Oct. 17, 2019, International PCT Patent Application No. PCT/US19/44953, (2 pages). |
Non Final Office Action mailed Nov. 19. 2019, U.S. Appl. No. 16/355,611, (31 pages). |
Non Final Office Action mailed on Aug. 21, 2019, U.S. Appl. No. 15/564,517, (14 pages). |
Non Final Office Action mailed on Jul. 27, 2020, U.S. Appl. No. 16/435,933, (16 pages). |
Non Final Office Action mailed on Jun. 17, 2020, U.S. Appl. No. 16/682,911, (22 pages). |
Non Final Office Action mailed on Jun. 19, 2020, U.S. Appl. No. 16/225,961, (35 pages). |
Non Final Office Action mailed on Nov. 19, 2019, U.S. Appl. No. 16/355,611, (31 pages). |
Non Final Office Action mailed on Nov. 5, 2020, U.S. Appl. No. 16/530,776, (45 pages). |
Non Final Office Action mailed on Oct. 22, 2019, U.S. Appl. No. 15/859,277, (15 pages). |
Non Final Office Action mailed on Sep. 1, 2020, U.S. Appl. No. 16/214,575, (40 pages). |
Notice of Allowance mailed on Mar. 25, 2020, U.S. Appl. No. 15/564,517, (11 pages). |
Notice of Allowance mailed on Oct. 5, 2020, U.S. Appl. No. 16/682,911, (27 pages). |
Notice of Reason of Refusal mailed on Sep. 11, 2020 with English translation, Japanese Patent Application No. 2019-140435, (6 pages). |
“Phototourism Challenge”, CVPR 2019 Image Matching Workshop. https://image matching-workshop. github.io., (16 pages). |
Summons to attend oral proceedings pursuant to Rule 115(1) EPC mailed on Jul. 15, 2019, European Patent Application No. 15162521.7, (7 pages). |
Aarik, J. et al., “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition”, Thin Solid Films; Publication [online). May 19, 1998 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.sciencedirect.com/science/article/pii/S0040609097001351?via%3Dihub>; DOI: 10.1016/S0040-6090(97)00135-1; see entire document, (2 pages). |
Arandjelović, Relja et al., “Three things everyone should know to improve object retrieval”, CVPR, 2012, (8 pages). |
Azom, “Silica—Silicon Dioxide (SiO2)”, AZO Materials; Publication [Online]. Dec. 13, 2001 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.azom.com/article.aspx?Article1D=1114>, (6 pages). |
Azuma, Ronald T. , “A Survey of Augmented Reality”, Presence: Teleoperators and Virtual Environments 6, 4 (Aug. 1997), 355-385; https://web.archive.org/web/20010604100006/http://www.cs.unc.edu/˜azuma/ARpresence.pdf (downloaded Oct. 26, 2020). |
Azuma, Ronald T. , “Predictive Tracking for Augmented Reality”, Department of Computer Science, Chapel Hill NC; TR95-007, Feb. 1995, 262 pages. |
Battaglia, Peter W. et al., “Relational inductive biases, deep learning, and graph networks”, arXiv: 1806.01261, Oct. 17, 2018, pp. 1-40. |
Berg, Alexander C et al., “Shape matching and object recognition using low distortion correspondences”, In CVPR, 2005, (8 pages). |
Bian, Jiawang et al., “GMS: Grid-based motion statistics for fast, ultra-robust feature correspondence.”, In CVPR (Conference on Computer Vision and Pattern Recognition), 2017, (10 pages). |
Bimber, Oliver et al., “Spatial Augmented Reality: Merging Real and Virtual Worlds”, https://web.media.mit.edu/˜raskar/book/BimberRaskarAugmentedReality Book.pdf; published by A K Peters/CRC Press (Jul. 31, 2005); eBook (3rd Edition, 2007), (393 pages). |
Brachmann, Eric et al., “Neural-Guided RANSAC: Learning Where to Sample Model Hypotheses”, In ICCV (International Conference on Computer Vision ), arXiv: 1905.04132v2 [cs.CV] Jul. 31, 2019, (17 pages). |
Caetano, Tibério S et al., “Learning graph matching”, IEEE TPAMI, 31(6):1048-1058, 2009. |
Cech, Jan et al., “Efficient sequential correspondence selection by cosegmentation”, IEEE TPAMI, 32(9):1568-1581, Sep. 2010. |
Cuturi, Marco , “Sinkhorn distances: Lightspeed computation of optimal transport”, NIPS, 2013, (9 pages). |
Dai, Angela et al., “ScanNet: Richly-annotated 3d reconstructions of indoor scenes”, In CVPR, arXiv:1702.04405v2 [cs.CV] Apr. 11, 2017, (22 pages). |
Deng, Haowen et al., “PPFnet: Global context aware local features for robust 3d point matching”, In CVPR, arXiv:1802.02669v2 [cs.CV] Mar. 1, 2018, (12 pages). |
Detone, Daniel et al., “Deep image homography estimation”, In RSS Work-shop: Limits and Potentials of Deep Learning in Robotics, arXiv:1606.03798v1 [cs.CV] Jun. 13, 2016, (6 pages). |
Detone, Daniel et al., “Self-improving visual odometry”, arXiv:1812.03245, Dec. 8, 2018, (9 pages). |
Detone, Daniel et al., “SuperPoint: Self-supervised interest point detection and description”, In CVPR Workshop on Deep Learning for Visual SLAM, arXiv:1712.07629v4 [cs.CV] Apr. 19, 2018, (13 pages). |
Dusmanu, Mihai et al., “D2-net: A trainable CNN for joint detection and description of local features”, CVPR, arXiv:1905.03561v1 [cs.CV] May 9, 2019, (16 pages). |
Ebel, Patrick et al., “Beyond cartesian representations for local descriptors”, ICCV, arXiv:1908.05547v1 [cs.CV] Aug. 15, 2019, (11 pages). |
Fischler, Martin A et al., “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”, Communications of the ACM, 24(6): 1981, pp. 381-395. |
Gilmer, Justin et al., “Neural message passing for quantum chemistry”, In ICML, arXiv:1704.01212v2 [cs.LG] Jun. 12, 2017, (14 pages). |
Goodfellow, , “Titanium Dioxide—Titania (TiO2)”, AZO Materials; Publication [online]. Jan. 11, 2002 [retrieved Feb. 19, 2020]. Retrieved from the Internet: <URL: https://www.azom.com/article.aspx?Article1D=1179>, (9 pages). |
Hartley, Richard et al., “Multiple View Geometry in Computer Vision”, Cambridge University Press, 2003, pp. 1-673. |
Jacob, Robert J. , “Eye Tracking in Advanced Interface Design”, Human-Computer Interaction Lab, Naval Research Laboratory, Washington, D.C., date unknown. 2003, pp. 1-50. |
Lee, Juho et al., “Set transformer: A frame-work for attention-based permutation-invariant neural networks”, ICML, arXiv:1810.00825v3 [cs.LG] May 26, 2019, (17 pages). |
Leordeanu, Marius et al., “A spectral technique for correspondence problems using pairwise constraints”, Proceedings of (ICCV) International Conference on Computer Vision, vol. 2, pp. 1482-1489, Oct. 2005, (8 pages). |
Levola, T. , “Diffractive Optics for Virtual Reality Displays”, Journal of the SID Eurodisplay 14/05, 2005, XP008093627, chapters 2-3, Figures 2 and 10, pp. 467-475. |
Levola, Tapani , “Invited Paper: Novel Diffractive Optical Components for Near to Eye Displays—Nokia Research Center”, SID 2006 Digest, 2006 SID International Symposium, Society for Information Display, vol. XXXVII, May 24, 2005, chapters 1-3, figures 1 and 3, pp. 64-67. |
Li, Yujia et al., “Graph matching networks for learning the similarity of graph structured objects”, ICML, arXiv:1904.12787v2 [cs.LG] May 12, 2019, (18 pages). |
Li, Zhengqi et al., “Megadepth: Learning single-view depth prediction from internet photos”, In CVPR, fromarXiv: 1804.00607v4 [cs.CV] Nov. 28, 2018, (10 pages). |
Loiola, Eliane M et al., “A survey for the quadratic assignment problem”, European journal of operational research, 176(2): 2007, pp. 657-690. |
Lowe, David G. , “Distinctive image features from scale-invariant keypoints”, International Journal of Computer Vision, 60(2): 91-110, 2004, (28 pages). |
Luo, Zixin et al., “ContextDesc: Local descriptor augmentation with cross-modality context”, CVPR, arXiv:1904.04084v1 [cs.CV] Apr. 8, 2019, (14 pages). |
Memon, F. et al., “Synthesis, Characterization and Optical Constants of Silicon Oxycarbide”, EPJ Web of Conferences; Publication [online). Mar. 23, 2017 [retrieved Feb. 19, 2020).<URL: https://www.epj-conferences.org/articles/epjconf/pdf/2017/08/epjconf_nanop2017_00002.pdf>; DOI: 10.1051/epjconf/201713900002, (8 pages). |
Munkres, James , “Algorithms for the assignment and transportation problems”, Journal of the Society for Industrial and Applied Mathematics, 5(1): 1957, pp. 32-38. |
Ono, Yuki et al., “LF-Net: Learning local features from images”, 32nd Conference on Neural Information Processing Systems (NIPS 2018), arXiv:1805.09662v2 [cs.CV] Nov. 22, 2018, (13 pages). |
Paszke, Adam et al., “Automatic differentiation in Pytorch”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, (4 pages). |
Peyré, Gabriel et al., “Computational Optimal Transport”, Foundations and Trends in Machine Learning, 11(5-6):355-607, 2019; arXiv:1803.00567v4 [stat.ML] Mar. 18, 2020, (209 pages). |
Qi, Charles R. et al., “Pointnet++: Deep hierarchical feature learning on point sets in a metric space.”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA., (10 pages). |
Qi, Charles R et al., “Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR, arXiv:1612.00593v2 [cs.CV] Apr. 10, 201, (19 pages). |
Radenović, Filip et al., “Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking”, CVPR, arXiv:1803.11285v1 [cs.CV] Mar. 29, 2018, (10 pages). |
Raguram, Rahul et al., “A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus”, Computer Vision—ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, Oct. 12-18, 2008, Proceedings, Part I, (15 pages). |
Ranftl, René et al., “Deep fundamental matrix estimation”, European Conference on Computer Vision (ECCV), 2018, (17 pages). |
Revaud, Jerome et al., “R2D2: Repeatable and Reliable Detector and Descriptor”, In NeurIPS, arXiv:1906.06195v2 [cs.CV] Jun. 17, 2019, (12 pages). |
Rocco, Ignacio et al., “Neighbourhood Consensus Networks”, 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada, arXiv:1810.10510v2 [cs.CV] Nov. 29, 2018, (20 pages). |
Rublee, Ethan et al., “ORB: An efficient alternative to SIFT or SURF”, Proceedings of the IEEE International Conference on Computer Vision. 2564-2571. 2011; 10.1109/ICCV.2011.612654, (9 pages). |
Sattler, Torsten et al., “SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter”, ICCV, 2009: 2090-2097., (8 pages). |
Schonberger, Johannes L. et al., “Pixelwise view selection for un-structured multi-view stereo, Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, Oct. 11-14, 2016, Proceedings, Part III”, pp. 501-518, 2016. |
Schonberger, Johannes L. et al., “Structure-from-motion revisited”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4104-4113, (11 pages). |
Sinkhorn, Richard et al., “Concerning nonnegative matrices and doubly stochastic matrices.”, Pacific Journal of Mathematics, 1967, pp. 343-348. |
Spencer, T. et al., “Decomposition of poly(propylene carbonate) with UV sensitive iodonium 11 salts”, Polymer Degradation and Stability; (online]. Dec. 24, 2010 (retrieved Feb. 19, 2020]., <URL: http:/fkohl.chbe.gatech.edu/sites/default/files/linked_files/publications/2011Decomposition%20of%20poly(propylene%20carbonate)%20with%20UV%20sensitive%20iodonium%20salts,pdf>; DOI: 10, 1016/j.polymdegradstab.2010, 12.003, (17 pages). |
Tanriverdi, Vildan et al., “Interacting With Eye Movements in Virtual Environments”, Department of Electrical Engineering and Computer Science, Tufts University; Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 2000, pp. 1-8. |
Thomee, Bart et al., “YFCC100m: The new data in multimedia research”, Communications of the ACM, 59(2):64-73, 2016; arXiv:1503.01817v2 [cs.MM] Apr. 25, 2016, (8 pages). |
Torresani, Lorenzo et al., “Feature correspondence via graph matching: Models and global optimization”, Computer Vision—ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, Oct. 12-18, 2008, Proceedings, Part II, (15 pages). |
Tuytelaars, Tinne et al., “Wide baseline stereo matching based on local, affinely invariant regions”, BMVC, 2000, pp. 1-14. |
Ulyanov, Dmitry et al., “Instance normalization: The missing ingredient for fast stylization”, arXiv:1607.08022v3 [cs.CV] Nov. 6, 2017, (6 pages). |
Vaswani, Ashish et al., “Attention is all you need”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA; arXiv:1706.03762v5 [cs.CL] Dec. 6, 2017, (15 pages). |
Veli{hacek over (c)}kovi{hacek over (c)}, Petar et al., “Graph attention networks”, ICLR, arXiv:1710.10903v3 [stat.ML] Feb. 4, 2018, (12 pages). |
Mllani, Cédric , “Optimal transport: old and new”, vol. 338. Springer Science & Business Media, Jun. 2008, pp. 1-998. |
Wang, Xiaolong et al., “Non-local neural networks”, CVPR, arXiv:1711.07971v3 [cs.CV] Apr. 13, 2018, (10 pages). |
Wang, Yue et al., “Deep Closest Point: Learning representations for point cloud registration”, ICCV, arXiv:1905.03304v1 [cs.CV] May 8, 2019, (10 pages). |
Wang, Yue et al., “Dynamic Graph CNN for learning on point clouds”, ACM Transactions on Graphics, arXiv:1801.07829v2 [cs.CV] Jun. 11, 2019, (13 pages). |
Weissel, et al., “Process cruise control: event-driven clock scaling for dynamic power management”, Proceedings of the 2002 international conference on Compilers, architecture, and synthesis for embedded systems. Oct. 11, 2002 (Oct. 11, 2002) Retrieved on May 16, 2020 (May 16, 2020) from <URL: https://dl.acm.org/doi/pdf/10.1145/581630.581668>, p. 238-246. |
Yi, Kwang M. et al., “Learning to find good correspondences”, CVPR, arXiv:1711.05971v2 [cs.CV] May 21, 2018, (13 pages). |
Yi, Kwang Moo et al., “Lift: Learned invariant feature transform”, ECCV, arXiv:1603.09114v2 [cs.CV] Jul. 29, 2016, (16 pages). |
Zaheer, Manzil et al., “Deep Sets”, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA; arXiv:1703.06114v3 [cs.LG] Apr. 14, 2018, (29 pages). |
Zhang, Jiahui et al., “Learning two-view correspondences and geometry using order-aware network”, ICCV; aarXiv:1908.04964v1 [cs.CV] Aug. 14, 2019, (11 pages). |
Zhang, Li et al., “Dual graph convolutional net-work for semantic segmentation”, BMVC, 2019; arXiv:1909.06121v3 [cs.CV] Aug. 26, 2020, (18 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Feb. 28, 2023”, European Patent Application No. 19845418.3, (6 Pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Jul. 28, 2023”, European Patent Application No. 19843487.0, (15 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on May 23, 2023”, European Patent Application No. 18890390.0, (5 pages). |
“Communication Pursuant to Rule 164(1) EPC mailed on Feb. 23, 2022”, European Patent Application No. 20753144.3, (11 pages). |
“Decision of Rejection mailed on Jan. 5, 2023 with English translation”, Chinese Patent Application No. 201880079474.6, (10 pages). |
“Extended European Search Report issued on Apr. 5, 2023”, European Patent Application No. 20888716.6, (11 pages). |
“Final Office Action mailed on Dec. 1, 2023”, U.S. Appl. No. 17/357,795, (18 pages). |
“Final Office Action mailed on Mar. 10, 2023”, U.S. Appl. No. 17/357,795, (15 pages). |
“Final Office Action mailed on Sep. 8, 2023 with English translation”, Japanese Patent Application No. 2020-566620, (18 pages). |
“First Examination Report Mailed on Aug. 8, 2023”, Australian Patent Application No. 2018379105, (3 pages). |
“First Office Action mailed Apr. 21, 2023 with English translation”, Japanese Patent Application No. 2021-509779, (26 pages). |
“First Office Action mailed Jul. 4, 2023 with English translation”, Japanese Patent Application No. 2021-505669, (6 pages). |
“First Office Action mailed on Apr. 13, 2023 with English Translation”, Japanese Patent Application No. 2020-567766, (7 pages). |
“First Office Action mailed on Dec. 22, 2022 with English translation”, Chinese Patent Application No. 201980061450.2, (11 pages). |
“First Office Action mailed on Jan. 24, 2023 with English translation”, Japanese Patent Application No. 2020-549034, (7 pages). |
“First Office Action mailed on Jan. 30, 2023 with English translation”, Chinese Patent Application No. 201980082951.9, (5 pages). |
“First Office Action mailed on Jun. 13, 2023 with English translation”, Japanese Patent Application No. 2020-567853, (7 pages). |
“First Office Action mailed on Mar. 27, 2023 with English translation”, Japanese Patent Application No. 2020-566617, (6 pages). |
“First Office Action mailed on Mar. 6, 2023 with English translation”, Korean Patent Application No. 10-2020-7019685, (7 pages). |
“First Office Action mailed on May 26, 2023 with English translation”, Japanese Patent Application No. 2021-500607, (6 pages). |
“First Office Action mailed on May 30, 2023 with English translation”, Japanese Patent Application No. 2021-519873, (8 pages). |
“First Office Action mailed Sep. 29, 2023 with English translation”, Japanese Patent Application No. 2023-10887, (5 pages). |
“Non Final Office Action mailed on Aug. 2, 2023”, U.S. Appl. No. 17/807,600, (25 pages). |
“Non Final Office Action mailed on Jul. 20, 2023”, U.S. Appl. No. 17/650,188, (11 pages). |
“Non Final Office Action mailed on Jun. 14, 2023”, U.S. Appl. No. 17/516,483, (10 pages). |
“Non Final Office Action mailed on Mar. 1, 2023”, U.S. Appl. No. 18/046,739, (34 pages). |
“Non Final Office Action mailed on May 11, 2023”, U.S. Appl. No. 17/822,279, (24 pages). |
“Non Final Office Action mailed on Nov. 22, 2023”, U.S. Appl. No. 17/268,376, (8 pages). |
“Non Final Office Action mailed on Nov. 3, 2023”, U.S. Appl. No. 17/416,248, (17 pages). |
“Non Final Office Action mailed on Oct. 11, 2023”, U.S. Appl. No. 17/357,795, (14 pages). |
“Non Final Office Action mailed on Oct. 24, 2023”, U.S. Appl. No. 17/259,020, (21 pages). |
“Notice of Allowance mailed on Jul. 27, 2023 with English translation”, Korean Patent Application No. 10-2020-7019685, (4 pages). |
“Office Action mailed on Apr. 13, 2023 with English translation”, Japanese Patent Application No. 2020-533730, (13 pages). |
“Office Action mailed on Jul. 20, 2023 with English translation”, Japanese Patent Application No. 2021-505884, (6 pages). |
“Office Action mailed on Jun. 8, 2023 with English translation”, Japanese Patent Application No. 2021-503762, (6 pages). |
“Office Action mailed on Mar. 30, 2023 with English translation”, Japanese Patent Application No. 2020-566620, (10 pages). |
“Office Action mailed on Nov. 7, 2023 with English translation”, Korean Patent Application No. 10-2023-7036734, (5 pages). |
“Penultimate Office Action mailed on Oct. 19, 2023 with English translation”, Japanese Patent Application No. 2021-509779, (5 pages). |
“Second Office Action mailed on May 2, 2023 with English Translation”, Japanese Patent Application No. 2020-549034, (6 pages). |
“Second Office Action mailed on Sep. 25, 2023 with English translation”, Japanese Patent Application No. 2020-567853, (8 pages). |
“Wikipedia Dioptre”, Jun. 22, 2018 (Jun. 22, 2018), XP093066995, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php? title=Dioptre&direction=next&oldid=846451540 [retrieved on Jul. 25, 2023], (3 pages). |
Li, Yujia, et al., “Graph Matching Networks for Learning the Similarity of Graph Structured Objects”, arxiv.org, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, XP081268608, Apr. 29, 2019. |
Luo, Zixin , et al., “ContextDesc: Local Descriptor Augmentation With Cross-Modality Context”, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, XP033686823, DOI: 10.1109/CVPR.2019.00263 [retrieved on Jan. 8, 2020], Jun. 15, 2019, pp. 2522-2531. |
Zhang, Zen , et al., “Deep Graphical Feature Learning for the Feature Matching Problem”, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, XP033723985, DOI: 10.1109/ICCV.2019.00519 [retrieved on Feb. 24, 2020], Oct. 27, 2019, pp. 5086-5095. |
“Communication Pursuant to Article 94(3) EPC mailed on Oct. 6, 2023”, European Patent Application No. 19851373.1, (6 pages). |
“Extended European Search Report issued on Jan. 8, 2024”, European Patent Application No. 23195266.4, (8 pages). |
“First Office Action mailed Dec. 12, 2023 with English translation”, Japanese Patent Application No. 2021-545712, (8 pages). |
“First Office Action mailed on Dec. 11, 2023”, Chinese Patent Application No. 201980032005.3, (10 pages). |
“Office Action mailed Nov. 21, 2023 with English Translation”, Japanese Patent Application No. 2021-535716, (15 pages). |
“Office Action mailed on Dec. 14, 2023 with English translation”, Japanese Patent Application No. 2021-526564, (13 pages). |
“Office Action mailed on Nov. 8, 2023 with English translation”, Chinese Patent Application No. 201980060018.1, (12 pages). |
“First Office Action mailed Dec. 20, 2023 with English translation”, Chinese Patent Application No. 201980050600.X, (21 pages). |
“First Office Action mailed Dec. 27, 2023 with English translation”, Chinese Patent Application No. 201980075942.7, (7 pages). |
“First Office Action mailed on Dec. 25, 2023 with English translation”, Chinese Patent Application No. 2019800046303.8, (13 pages). |
“Non Final Office Action mailed on Feb. 26, 2024”, U.S. Appl. No. 18/046,739, (48 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Feb. 21, 2024”, European Patent Application No. 20770244.0, (8 pages). |
“Communication Pursuant to Article 94(3) EPC mailed on Mar. 11, 2024”, European Patent Application No. 20798769.4, (12 pages). |
“Extended European Search Report issued on Apr. 25, 2024”, European Patent Application No. 23208907.8, (9 pages). |
“First Office Action mailed Mar. 1, 2024 with English translation”, Japanese Patent Application No. 2021-553297, (5 pages). |
“Office Action mailed on Feb. 19, 2024 with English translation”, Korean Patent Application No. 10-2020-7020552, (18 pages). |
“Office Action mailed on Feb. 26, 2024 with English translation”, Chinese Patent Application No. 201980069194.1, (11 pages). |
“Office Action mailed on Mar. 6, 2024 with English translation”, Chinese Patent Application No. 201980053016.X, (7 pages). |
“Non Final Office Action mailed on May 16, 2024”, U.S. Appl. No. 18/361,546, (11 pages). |
Number | Date | Country | |
---|---|---|---|
20210150252 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62935597 | Nov 2019 | US |