This Invention is related to the field of networking, and more specifically, to broadcasting, discovery, and virtualization techniques in packet-switched networks.
The prior art includes legacy protocols for broadcasting, discovery, and virtualization on a packet-switched network. One such example is ES-IS, an OSI protocol that allows communication between terminals or hosts on a network (referred to in the protocol as “End Systems,” or “ESs”) and routers within the network or coupling networks (referred to in the protocol as Intermediate Systems (ISs)). ES-IS is specified by the OSI standard 9542. ES-IS acts as a discovery protocol similar to the Internet's ARP (Address Resolution Protocol), and allows End Systems to take part in internetwork routing.
During the discovery process, the ESs and ISs locate one another. At regular intervals, ESs generate ES Hello messages (ESHs) and send them to routers on the network. Likewise, ISs generate IS Hello messages (ISHs) and send them to hosts on their attached subnetworks. The messages transmit OSI network layer and OSI subnetwork addresses.
Legacy protocols such as ES-IS and IS-IS include techniques for supporting virtual broadcast subnetworks, which were supported later in the IP protocol through techniques such as the Virtual Router Redundancy Protocol, or VRRP. There is a need to extend legacy protocols, such as ES-IS, as well as to allow translation of these legacy protocols into similar IP protocols. These and other objects of the invention are described further herein.
This invention extends the ES-IS protocol to include virtual nodes and virtual sub-network identifiers. In some such embodiments, multiple ISs may share a single address, thereby comprising a virtual node. Such embodiments include techniques for selecting a physical IS forwarder amongst multiple candidates in a virtual node. Some such embodiments include tie-breaking mechanisms for selecting physical IS forwarders amongst several candidates for a virtual node. Some such embodiments associate pre-emption values with the physical forwarders to facilitate such tie-breaking.
Embodiments of the invention also allow integration between ES-IS based broadcast networks supporting the Internet Protocol, or IP, with the Virtual Router Redundancy Protocol, or VRRP. In some embodiments, this integration is accomplished in part by translating packet data units between ES-IS and versions of VRRP. In some such embodiments, nodes on an internetwork maintain concurrent state tables for ES-IS and VRRP. These and other embodiments of the invention are described in further detail herein.
This invention extends the ES-IS protocol to include virtual nodes (ES and IS) and virtual sub-network identifiers. In some such embodiments, multiple ISs may share a single address, thereby comprising a virtual node. Such embodiments include techniques for selecting a physical IS forwarder amongst multiple candidates in a virtual node. In some embodiments of the invention, ES-IS is extended with an election sequence which includes a pre-emption value. In some such embodiments, the election sequence elects a physical IS (also referred to as a “forwarder”) amongst several associated with a Virtual IS. Some such election sequences may include a tie-breaking mechanism such as the following:
Other election sequences and tie-breaking mechanisms employing a pre-empt value shall be apparent to those skilled in the art.
To support many virtual local area networks (VLANs) on the broadcast sub-network, embodiments at the invention include two identifiers: a virtual broadcast-sub-network identifier and a pseudo-node identifier. A single IS may participate in several virtual broadcast sub-networks (Virtual broadcast sub-networks are also denoted in literature as virtual local area networks or VLANs). An IS may be also represented as a virtual IS comprised of several physical IS on a single virtual LAN. A virtual IS identifier denotes the virtual IS a physical node is associated with. Addresses may be associated with any particular virtual-IS.
Extensions to ES-IS Packets
Embodiments of the invention allow the ISH packets to include new options including but not limited to: a Source Address option, Pseudo-Node identifier option, Virtual-IS identifier option, an Extended Connection Timer option, and an extended SNPA option.
In embodiments of the invention the pseudo-node identifier can be passed in the IS and the ES packet in a “reserved” byte (byte 4) or as an option in the packet. In some embodiments, if an implementation does not set the pseudo-node identifier in byte 4, the byte may be set to a value of “0xFF”. Other bytes in which the pseudo-node identifier may be included shall be apparent to those skilled in the art.
In embodiments of the invention, an association flag 104 may have two states:
The Connection Timer option 240 may also include Timer flags, which as a non-limiting example may have 6 bits for 6 types of timers, with “0x01” indicating a configuration timer. As a non-limiting example, a configuration timer default may be set at 1 second. A hold timer default is 3 multiplied by the configuration timer for virtual LANs.
The Extended SNPA option 250 allows flexible matching of Sub-network points of attachments with the IP addresses in a virtual router.
Integration of ES-IS Extensions with IP
To provide integration with IP embodiments of this invention support interaction between ES-IS and existing link-layer protocols such as: ARP (host, gratuitous ARP, Proxy ARP), and Redirects. Embodiments also support integration with IPv6. In some such embodiments, the invention integrates ES-IS with the Neighbor Advertisement feature of IPv6.
In embodiments of the invention, the integration of ES-IS with IP operates as follows:
In embodiments of the invention, as illustrated in
Translation Between VRRP and ES-IS
Embodiments of the invention enable interaction between ES-IS for VLANs and VRRP versions 1-3 by:
To allow interaction between ES-IS and VRRP, in embodiments of the invention the packet data units (PDUs) are translated between the protocols, and state machines for each protocol are run in parallel. As a non-limiting example, the state machines may be coordinated as follows, with reference to the timer comparisons between ES-IS timers 600 and VRRP timers 602 illustrated in
The embodiments and examples presented herein are for illustrative purposes only. Many alternatives and equivalents shall be readily apparent to those skilled in the art.
This application claims priority to U.S. Provisional Application No. 60/544,100, entitled VIRTUAL BROADCAST SUBNETWORKS, filed Feb. 11, 2004, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60544100 | Feb 2004 | US |