All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present disclosure pertains generally, but not by way of limitation, to medical devices, and methods for manufacturing medical devices. The present invention relates generally to devices and systems that are inserted into the eye. More particularly, the present invention relates to devices that facilitate the transfer of fluid from within one area of the eye to another area of the eye. Additionally, the present disclosure relates to systems, devices and methods for injecting a viscoelastic material into Schlemm's canal open aqueous humor outflow pathways.
According to a draft report by The National Eye Institute (NEI) at The United States National Institutes of Health (NIH), glaucoma is now the leading cause of irreversible blindness worldwide and the second leading cause of blindness, behind cataract, in the world. Thus, the NEI draft report concludes, “it is critical that significant emphasis and resources continue to be devoted to determining the pathophysiology and management of this disease.” Glaucoma researchers have found a strong correlation between high intraocular pressure and glaucoma. For this reason, eye care professionals routinely screen patients for glaucoma by measuring intraocular pressure using a device known as a tonometer. Many modern tonometers make this measurement by blowing a sudden puff of air against the outer surface of the eye.
The eye can be conceptualized as a ball filled with fluid. There are two types of fluid inside the eye. The cavity behind the lens is filled with a viscous fluid known as vitreous humor. The cavities in front of the lens are filled with a fluid know as aqueous humor. Whenever a person views an object, he or she is viewing that object through both the vitreous humor and the aqueous humor.
Whenever a person views an object, he or she is also viewing that object through the cornea and the lens of the eye. In order to be transparent, the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor. A continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.
Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the anterior chamber of the eye through the trabecular meshwork and into Schlemm's canal as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the venous blood stream from Schlemm's canal and is carried along with the venous blood leaving the eye.
When the natural drainage mechanisms of the eye stop functioning properly, the pressure inside the eye begins to rise. Researchers have theorized prolonged exposure to high intraocular pressure causes damage to the optic nerve that transmits sensory information from the eye to the brain. This damage to the optic nerve results in loss of peripheral vision. As glaucoma progresses, more and more of the visual field is lost until the patient is completely blind.
The invention provides design, material, and methods of use for medical devices.
An illustrative method for reducing intraocular pressure in a patient may comprise administering a viscoelastic material into Schlemm's canal of an eye to open aqueous humor outflow pathways. In some embodiments, the viscoelastic can be administered prior to or after deploying an ocular implant into Schlemm's canal.
One aspect of the invention provides a method of treating an eye of a patient with an ocular system. In some embodiments, the method includes the steps of: inserting a distal end of a cannula of the ocular system into an anterior chamber of the eye; placing the cannula into fluid communication with Schlemm's canal, a conduit being disposed within the cannula; actuating a first control of the ocular system to advance the conduit from the cannula into Schlemm's canal; and actuating a second control of the ocular system to administer viscoelastic material from a viscoelastic delivery port of the conduit into Schlemm's canal without moving the conduit. In some embodiments, the method also includes the step of actuating the first control to retract the conduit within Schlemm's canal and into the cannula.
The method may include, in some embodiments, the step of pressurizing a volume of viscoelastic material within a viscoelastic module, wherein the step of actuating the second control comprises actuating the second control of the ocular system to administer viscoelastic material from the viscoelastic module into the conduit. In some such embodiments, the ocular system may have a handle, the cannula, the first control, and the second control each extending from, and supported by, the handle, with the viscoelastic module being disposed outside of the handle. In some embodiments, the step of pressurizing the volume of viscoelastic material may include the additional step of applying a spring to a plunger of a viscoelastic syringe disposed within the viscoelastic module.
In some embodiments, the step of pressurizing the volume of viscoelastic material includes the step of pressurizing a reservoir within the viscoelastic module. In some such embodiments, the step of pressurizing the reservoir includes the step of compressing a spring engaged with a wall of the reservoir, such as, e.g., by operating an actuator extending from the viscoelastic module.
Some embodiments include the additional step of filling the reservoir with viscoelastic material from a viscoelastic syringe. Some such embodiments include the additional step of advancing viscoelastic material from the viscoelastic syringe into the conduit, optionally before the step of filling the reservoir with viscoelastic material from the viscoelastic syringe.
Some embodiments have the additional step of providing tactile feedback while actuating the first control, the tactile feedback being correlated with a length of the conduit moving into or out of the cannula.
Some embodiments of the method also include the step of advancing an ocular implant into Schlemm's canal prior to the viscoelastic material being administered into Schlemm's canal. Some embodiments may also include the step of advancing an ocular implant into Schlemm's canal after the viscoelastic material is administered into Schlemm's canal.
Another aspect of the invention provides an ocular viscoelastic delivery system having a handle; a cannula defining a passageway extending from the handle to a distal cannula opening, the cannula being sized and configured to be advanced through an anterior chamber of a patient's eye to place the distal cannula opening in fluid communication with Schlemm's canal of the eye; a conduit slidably disposed within the cannula passageway, the conduit including a viscoelastic delivery port, at least a distal portion of the conduit being sized and configured to be advanced from the cannula into Schlemm's canal; a viscoelastic module in fluid communication with the conduit and the viscoelastic delivery port, the viscoelastic module being configured to contain a pressurized volume of viscoelastic material outside of the handle; a first control configured to adjust a position of the conduit and the viscoelastic delivery port relative to the cannula; and a second control configured to release pressurized viscoelastic material from the viscoelastic module through the conduit and viscoelastic delivery port into Schlemm's canal.
In some embodiments of the delivery system, the viscoelastic module also includes a cradle configured to receive a viscoelastic syringe and a force assembly configured to contact a plunger of the viscoelastic syringe, the force assembly being further configured to apply a constant force against the plunger. In some such embodiments, the force assembly also has an adjustment mechanism configured to adjust a position of the force assembly with respect to the plunger.
In some embodiments, the viscoelastic module force assembly has a reservoir and a spring configured to pressurize viscoelastic material in the reservoir. Some such embodiments also have an actuator extending from the viscoelastic module and configured to compress the spring to pressurize the reservoir.
In some embodiments, the viscoelastic module further has an inlet port adapted to engage with a viscoelastic syringe, the inlet port being fluid being fluidly communicable with the reservoir. In some such embodiments, the viscoelastic module also has a check valve disposed between the inlet port and the reservoir, the check valve being configured to open to permit pressurized viscoelastic material to flow from the viscoelastic syringe through the inlet port to the reservoir and to close to prevent viscoelastic material from the reservoir out of the inlet port.
In some embodiments, the first control and the second control are disposed on the handle. In some embodiments, a single actuation of the first control moves the conduit by a known distance, and in some embodiments a single actuation of the second control administers a known volume of viscoelastic material from the conduit and viscoelastic delivery port into Schlemm's canal. Some embodiments provide a cantilever spring engaged with the first control and adapted to provide tactile feedback of movement of the first control.
In some embodiments, the second control includes a toggle lever operable to be moved to a first position to open a valve to deliver viscoelastic material from the viscoelastic module into the conduit, the second control further comprising a spring operable to move the toggle to a second position to close the valve. Some such embodiments also have a toggle lock configured to hold the toggle lever in the first position. The toggle lock may be removably disposed on an exterior surface of the handle and engaged with the toggle lever.
In some embodiments, the delivery system also has tubing extending from the viscoelastic module to the handle, the tubing having a fluid lumen extending from an outlet of the viscoelastic module to an inlet control in the handle. The tubing may have a length of 3-4 inches.
Yet another aspect of the invention provides an ocular delivery system including a handle; a hub disposed at a distal end of the handle and being configured to be rotatable with respect to the handle; a cannula coupled to the hub and configured to be rotated with the hub, the cannula defining a passageway extending from the handle to a distal cannula opening, the cannula being sized and configured to be advanced through an anterior chamber of a patient's eye to place the distal cannula opening in fluid communication with Schlemm's canal of the eye, the cannula having a curved distal end; a cannula orientation marking rotatable with the hub and visible from outside of the delivery system, the marking being aligned with a radial direction in which the cannula curved distal end extends; and a stationary marking supported by the handle, the cannula orientation marking and the stationary marking together indicating an orientation of the cannula curved distal end with respect to an orientation of the handle.
In some embodiments, the system also has a conduit slidably disposed within the cannula passageway, the conduit including a viscoelastic delivery port, at least a distal portion of the conduit being sized and configured to be advanced from the cannula into Schlemm's canal, and a reservoir adapted to deliver viscoelastic material into the conduit. In some such embodiments, the system has a control configured to adjust a position of the conduit and the viscoelastic delivery port relative to the cannula. In some embodiments, the system has a control configured to release pressurized viscoelastic material from the reservoir through the conduit and viscoelastic delivery port into Schlemm's canal.
The above summary of some examples and embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Brief Description of the Drawings, and Detailed Description, which follow, more particularly exemplify these embodiments, but are also intended as exemplary and not limiting.
The disclosure may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
The following description should be read with reference to the drawings, which are not necessarily to scale, wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings are intended to illustrate but not limit the claimed invention. Those skilled in the art will recognize that the various elements described and/or shown may be arranged in various combinations and configurations without departing from the scope of the disclosure. The detailed description and drawings illustrate example embodiments of the claimed invention.
Definitions of certain terms are provided below and shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same or substantially the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure. Other uses of the term “about” (i.e., in a context other than numeric values) may be assumed to have their ordinary and customary definition(s), as understood from and consistent with the context of the specification, unless otherwise specified.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include or otherwise refer to singular as well as plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed to include “and/or,” unless the content clearly dictates otherwise.
It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it would be within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments, whether or not explicitly described, unless clearly stated to the contrary. That is, the various individual elements described below, even if not explicitly shown in a particular combination, are nevertheless contemplated as being combinable or able to be arranged with each other to form other additional embodiments or to complement and/or enrich the described embodiment(s), as would be understood by one of ordinary skill in the art.
The following detailed description should be read with reference to the drawings, in which similar elements in different drawings are identified with the same reference numbers. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.
Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the eye as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the blood stream and is carried away by venous blood leaving the eye.
In a healthy eye, aqueous humor flows out of the anterior chamber 30 through the trabecular meshwork 36 and into Schlemm's canal 38, located at the outer edge of the iris 42. Aqueous humor exits Schlemm's canal 38 by flowing through a number of outlets 40. After leaving Schlemm's canal 38, aqueous humor is absorbed into the venous blood stream.
During the procedure illustrated in
Methods in accordance with this detailed description may include the step of advancing the distal end of cannula 452 through the cornea of eye 400 so that a distal portion of cannula 452 is disposed in the anterior chamber of the eye. Cannula 452 may then be used to access Schlemm's canal of the eye, for example, by piercing the wall of Schlemm's canal with the distal end of cannula 452. Distal opening 454 of cannula 452 may be placed in fluid communication with a lumen defined by Schlemm's canal. A viscoelastic material may be administered from the cannula into Schlemm's canal to open aqueous humor outflow pathways. Delivery of a viscoelastic material into Schlemm's canal may facilitate the flow of aqueous humor out of the anterior chamber of the eye.
In the embodiment of
The viscoelastic material can be delivered into Schlemm's canal of the eye before or after delivering an ocular implant into the eye of the patient. In one embodiment, the delivery system can be connected to a visco module 460 that is remote from the main body or handle 453 of the delivery system 450. The visco module 460 can be configured to deliver the viscoelastic material through lumens or tubing into the conduit within the cannula of the delivery system. In one implementation, the delivery system can include a visco trigger 462 on handle 453 configured to release the viscoelastic material from the visco module 460 into the conduit of the delivery system.
The delivery system 450 can further include a conduit advancement wheel 464 configured to advance or retract the conduit within the cannula and within Schlemm's canal. For example, advancing the conduit advancement wheel 464 in the distal direction (e.g., towards the cannula) can advance the conduit towards a distal tip of the cannula and partially out of the cannula into Schlemm's canal of the patient's eye when the distal end of the cannula is in fluid communication with Schlemm's canal. Furthermore, moving the conduit advancement delivery wheel the in the proximal direction (e.g., towards the visco trigger 462) can move the conduit proximally within the cannula and to withdraw it within and from Schlemm's canal. The separate conduit advancement wheel 464 enables the conduit to be moved within Schlemm's canal without administering any viscoelastic material from the conduit. Likewise, the visco trigger 462 on the handle enables viscoelastic material to be administered from the conduit into Schlemm's canal without moving the conduit.
The visco module 560 can be adapted to receive or accommodate a variety of visco syringes 566. The visco syringe 566 can be connected to tubing 568 (via, e.g., a female luer connector) using a sterile technique to fluidly couple the viscoelastic material in the interior chamber of the visco syringe to the conduit within delivery system 550. In one embodiment, the visco module 560 can be configured to automatically pressurize the interior chamber of visco syringe 566 when the syringe is inserted into the module. Toggling the visco trigger 562 on the handle 552 delivery system 550 can allow a pressurized flow of viscoelastic material to flow from the visco syringe and visco module into the delivery system 550 and out of one or more ports of the conduit of the delivery system and into Schlemm's canal. As described above, the delivery system can also include a conduit advancement wheel 564 configured to advance and retract a conduit within the cannula of the delivery system, thereby advancing and retracting the conduit within Schlemm's canal. The separate conduit advancement wheel 564 enables the conduit to be moved within Schlemm's canal without administering any viscoelastic material from the conduit. Likewise, the visco trigger 562 on the handle enables viscoelastic material to be administered from the conduit into Schlemm's canal without moving the conduit.
The visco module 660 of
The visco module 760 is adapted to receive viscoelastic material from a visco syringe prior to use of the system to treat a patient. As shown in
A conduit advancement wheel 764 is configured to advance and retract the conduit within the cannula 754 of the delivery system. The separate conduit advancement wheel 764 enables the conduit to be moved within Schlemm's canal without administering any viscoelastic material from the conduit. Likewise, the visco trigger 762 on the handle enables viscoelastic material to be administered from the conduit into Schlemm's canal without moving the conduit.
The reservoir 1210 can be filled with a viscoelastic material (such as by connecting a visco syringe to the luer fitting 1202) to move piston 1222 within reservoir 1210 away from inlet 1204 to the position shown in
After toggling the delivery system's visco delivery trigger to the closed position, the viscoelastic material in the visco reservoir 1210 of visco module 1200 can be pressurized by turning compression knob 1220 so that hollow rod 1219 advances over rod 1216 into the housing 1208 (which has corresponding threads). With the visco delivery trigger in the closed position, viscoelastic material cannot flow out of reservoir 1210, and the piston 1222 stays in its withdrawn position as the rod 1219 advances, thereby compressing spring 1224 and pressurizing reservoir 1210, as shown in
In some embodiments, the gearing of the rack and pinion system can be optimized to advance the conduit by a set distance for every notch 1098 of the conduit advancement wheel 1064. For example, in one embodiment, the notches can be spaced apart by 3 mm, and 1:1 gearing can be used in the rack and pinion system such that advancement of the conduit advancement wheel by one notch will advance the conduit by 3 mm. In alternative embodiments, other gearing ratios can be used. For example, a 2:1 gearing ratio can be used to advance the conduit by 6 mm when there is a 3 mm spacing between notches.
As shown in
In some embodiments, the rack and pinion mechanism 1099 is configured to travel 24 mm. In the completely retracted configuration, 24 mm of the conduit 1053 resides within handle 1052, and the conduit resides within the straight portion of cannula 1054 proximal to the distal curved portion of the cannula. The conduit can be kept in this configuration during shipping and/or storage so that the conduit does not take on a curved set from the curved portion of the cannula. The 24 mm of rack movement to the most extended configuration will result in 20 mm of conduit being extended from the cannula.
Referring to
Referring to
Tubing 1012 extends from the valve outlet over a strain relief element 1002 on the side of toggle valve 1001. Tubing 1012 forms a loop within handle 1052 when the rack and pinion is in its most retracted position, as shown in
The visco trigger may be a simple lever, such as toggle lever 1062 in
The systems described herein provide a novel and unique viscoelastic delivery system. The delivery system itself includes separate triggers or mechanisms for deploying or administering viscoelastic material from the delivery system into the eye and for controlling the position from which the viscoelastic material is deployed (via the conduit). Methods of use can also be provided herein.
Referring to
At an operation 1102 of
At an operation 1104, the method can further include placing the distal end of the cannula into fluid communication with Schlemm's canal such that the cannula enters Schlemm's canal in a substantially tangential orientation.
At an operation 1106, the method can further include actuating a first control of the ocular system to advance a conduit out of the cannula and into Schlemm's canal. The first control can also further advance and retract the conduit within Schlemm's canal, and it can retract the conduit fully into the cannula. As described above, the delivery system can include a viscoelastic advancement wheel configured to move the conduit of the delivery system within the cannula. The conduit can be moved, for example, distally from the cannula to cause the conduit to partially extend beyond the distal opening of the cannula. Alternatively, the conduit can be moved proximally relative to the distal end of the cannula. Adjusting the position of the conduit relative to the cannula can be used to adjust the position of the viscoelastic delivery port of the conduit. In one example, the viscoelastic delivery port comprises an opening at a distal end of the conduit. The viscoelastic delivery port can be configured to administer a flow of viscoelastic material into tissue or a body structure. In some implementations, the first control can be a control wheel, lever, switch, button, or the like disposed on a handle of the ocular system. In other embodiments, the first control can be remote from a handle of the system (e.g., a foot switch). The first control can include physical features such as detents, notches, etc. to give a user tactile feedback on how far the conduit has been advanced or retracted.
At an operation 1108, the method can further include actuating a second control of the ocular system to administer a viscoelastic material into the conduit and into Schlemm's canal. In some implementations, the second control can be a control wheel, lever, switch, button, or the like disposed on the handle of the ocular system. The first control and the second control can be adjacent to another, or can be positioned on the handle to allow the user to manipulate both the first control and the second control. In some embodiments, the second control is remote from the handle (e.g., positioned on the viscoelastic module).
The second control can comprise an on/off switch, in which viscoelastic material flows out of the conduit in the on position and does not flow out of the conduit in the off position. In other embodiments, the second control can deposit a known volume of viscoelastic material into Schlemm's canal. The second control gives the user control over how much viscoelastic material is delivered into Schlemm's canal. In some examples, a consistent bolus or volume of viscoelastic material can be injected into Schlemm's canal each time the position of the viscoelastic delivery port is adjusted. In some embodiments, a larger volume of viscoelastic material can be administered when desired. The position of the conduit, and thus the viscoelastic delivery port, can be controlled separately by the user from the administration of viscoelastic material (e.g., via the first and second controls, respectively).
In some embodiments, the viscoelastic material can be administered prior to delivery of an ocular implant to open aqueous humor outflow pathways. In other embodiments, the viscoelastic material can be administered after an ocular implant is placed within Schlemm's canal.
It is to be understood that even though numerous characteristics of various embodiments have been set forth in the foregoing description, together with details of the structure and function of various embodiments, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts illustrated by the various embodiments to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
This application claims the benefit of priority of U.S. Provisional Application No. 63/136,148, filed Jan. 11, 2021, and U.S. Provisional Application No. 63/236,598, filed Aug. 24, 2021, each of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
703296 | Arnold | Jun 1902 | A |
1601709 | Windom | Oct 1926 | A |
2716983 | George et al. | Sep 1955 | A |
3071135 | Baldwin et al. | Jan 1963 | A |
3788327 | Donowitz et al. | Jan 1974 | A |
3811442 | Maroth | May 1974 | A |
3858577 | Bass et al. | Jan 1975 | A |
3884236 | Krasnov | May 1975 | A |
3948271 | Akiyama | Apr 1976 | A |
3982541 | L'Esperance | Sep 1976 | A |
4037604 | Newkirk | Jul 1977 | A |
4134405 | Smit | Jan 1979 | A |
4273109 | Enderby | Jun 1981 | A |
4391275 | Fankhauser et al. | Jul 1983 | A |
4428746 | Mendez | Jan 1984 | A |
4457757 | Molteno | Jul 1984 | A |
4461294 | Baron | Jul 1984 | A |
4470407 | Hussein | Sep 1984 | A |
4497319 | Sekine et al. | Feb 1985 | A |
4501274 | Skjaerpe | Feb 1985 | A |
4517973 | Sunago et al. | May 1985 | A |
4538608 | L'Esperance | Sep 1985 | A |
4548205 | Armeniades et al. | Oct 1985 | A |
4551129 | Coleman | Nov 1985 | A |
4558698 | O'Dell | Dec 1985 | A |
4559942 | Eisenberg | Dec 1985 | A |
4566438 | Liese et al. | Jan 1986 | A |
4580559 | L'Esperance | Apr 1986 | A |
4583539 | Karlin et al. | Apr 1986 | A |
4601713 | Fuquo | Jul 1986 | A |
4604087 | Joseph | Aug 1986 | A |
4633866 | Peyman et al. | Jan 1987 | A |
4658816 | Ector | Apr 1987 | A |
4660546 | Herrick et al. | Apr 1987 | A |
4671273 | Lindsey | Jun 1987 | A |
4689040 | Thompson | Aug 1987 | A |
4699140 | Holmes et al. | Oct 1987 | A |
4706669 | Schlegel | Nov 1987 | A |
4722350 | Armeniades et al. | Feb 1988 | A |
4722724 | Schocket | Feb 1988 | A |
4729373 | Peyman | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4750901 | Molteno | Jun 1988 | A |
4770654 | Rogers et al. | Sep 1988 | A |
4791927 | Menger | Dec 1988 | A |
4826478 | Schocket | May 1989 | A |
4846172 | Berlin | Jul 1989 | A |
4861341 | Woodburn | Aug 1989 | A |
4876250 | Clark | Oct 1989 | A |
4880000 | Holmes et al. | Nov 1989 | A |
4886488 | White | Dec 1989 | A |
4919130 | Stoy et al. | Apr 1990 | A |
4925299 | Meisberger et al. | May 1990 | A |
4934363 | Smith | Jun 1990 | A |
4934809 | Volk | Jun 1990 | A |
4936825 | Ungerleider | Jun 1990 | A |
4946436 | Smith | Aug 1990 | A |
4968296 | Ritch et al. | Nov 1990 | A |
4994060 | Rink et al. | Feb 1991 | A |
5034010 | Kittrell et al. | Jul 1991 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5123902 | Mullet et al. | Jun 1992 | A |
5127901 | Odrich | Jul 1992 | A |
5129895 | Vassiliadis et al. | Jul 1992 | A |
5178604 | Baerveldt et al. | Jan 1993 | A |
5180362 | Worst | Jan 1993 | A |
5190552 | Kelman | Mar 1993 | A |
5213569 | Davis | May 1993 | A |
5246452 | Sinnott | Sep 1993 | A |
5254112 | Sinofsky et al. | Oct 1993 | A |
5273056 | McLaughlin | Dec 1993 | A |
5290267 | Zimmermann | Mar 1994 | A |
5300020 | L'Esperance | Apr 1994 | A |
5359685 | Waynant et al. | Oct 1994 | A |
5360399 | Stegmann | Nov 1994 | A |
5371078 | Clark et al. | Dec 1994 | A |
5372577 | Ungerleider | Dec 1994 | A |
5445637 | Bretton | Aug 1995 | A |
5454796 | Krupin | Oct 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5501274 | Nguyen et al. | Mar 1996 | A |
5536259 | Utterberg | Jul 1996 | A |
5575780 | Saito | Nov 1996 | A |
5591223 | Lock et al. | Jan 1997 | A |
5607966 | Hellberg et al. | Mar 1997 | A |
5613972 | Lee et al. | Mar 1997 | A |
5626558 | Suson | May 1997 | A |
5643250 | O'Donnell | Jul 1997 | A |
5653753 | Brady et al. | Aug 1997 | A |
5657760 | Ying et al. | Aug 1997 | A |
5676669 | Colvard | Oct 1997 | A |
5704907 | Nordquist et al. | Jan 1998 | A |
5713844 | Peyman | Feb 1998 | A |
5722970 | Colvard et al. | Mar 1998 | A |
5738676 | Hammer | Apr 1998 | A |
5738677 | Colvard et al. | Apr 1998 | A |
5785658 | Benaron et al. | Jul 1998 | A |
5792099 | DeCamp et al. | Aug 1998 | A |
5792103 | Schwartz et al. | Aug 1998 | A |
5807302 | Wandel | Sep 1998 | A |
5811453 | Yanni et al. | Sep 1998 | A |
5865831 | Cozean et al. | Feb 1999 | A |
5868697 | Richter et al. | Feb 1999 | A |
5879319 | Pynson et al. | Mar 1999 | A |
5885279 | Bretton | Mar 1999 | A |
5893837 | Eagles et al. | Apr 1999 | A |
5895831 | Brasier et al. | Apr 1999 | A |
5919171 | Kira et al. | Jul 1999 | A |
5948427 | Yamamoto et al. | Sep 1999 | A |
5968058 | Richter et al. | Oct 1999 | A |
5990099 | Clark | Nov 1999 | A |
5993438 | Juhasz et al. | Nov 1999 | A |
5997531 | Loeb et al. | Dec 1999 | A |
6002480 | Izatt et al. | Dec 1999 | A |
6007511 | Prywes | Dec 1999 | A |
6050970 | Baerveldt | Apr 2000 | A |
6083193 | Kadziauskas et al. | Jul 2000 | A |
6099521 | Shaddock | Aug 2000 | A |
6102045 | Nordquist et al. | Aug 2000 | A |
6142990 | Burk | Nov 2000 | A |
6146375 | Juhasz et al. | Nov 2000 | A |
6177544 | Kanai et al. | Jan 2001 | B1 |
6186974 | Allan et al. | Feb 2001 | B1 |
6217584 | Nun | Apr 2001 | B1 |
6221078 | Bylsma | Apr 2001 | B1 |
6238409 | Hojeibane | May 2001 | B1 |
6241721 | Cozean et al. | Jun 2001 | B1 |
D444874 | Haffner et al. | Jul 2001 | S |
6297228 | Clark | Oct 2001 | B1 |
6319274 | Shadduck | Nov 2001 | B1 |
6328747 | Nun | Dec 2001 | B1 |
6375642 | Grieshaber et al. | Apr 2002 | B1 |
6398809 | Hoffmann et al. | Jun 2002 | B1 |
6409752 | Boatman et al. | Jun 2002 | B1 |
6450984 | Lynch et al. | Sep 2002 | B1 |
6464724 | Lynch et al. | Oct 2002 | B1 |
6471666 | Odrich | Oct 2002 | B1 |
6494857 | Neuhann | Dec 2002 | B1 |
6508779 | Suson | Jan 2003 | B1 |
6517523 | Kaneko et al. | Feb 2003 | B1 |
6524275 | Lynch et al. | Feb 2003 | B1 |
6533764 | Haffner et al. | Mar 2003 | B1 |
6533768 | Hill | Mar 2003 | B1 |
6544208 | Ethier et al. | Apr 2003 | B2 |
6544249 | Yu et al. | Apr 2003 | B1 |
6551289 | Higuchi et al. | Apr 2003 | B1 |
6626858 | Lynch et al. | Sep 2003 | B2 |
6638239 | Bergheim et al. | Oct 2003 | B1 |
6666841 | Gharib et al. | Dec 2003 | B2 |
6699210 | Williams et al. | Mar 2004 | B2 |
6699211 | Savage | Mar 2004 | B2 |
6702790 | Ross | Mar 2004 | B1 |
6726676 | Stegmann et al. | Apr 2004 | B2 |
D490152 | Myall et al. | May 2004 | S |
6730056 | Ghaem et al. | May 2004 | B1 |
6736791 | Tu et al. | May 2004 | B1 |
6780164 | Bergheim et al. | Aug 2004 | B2 |
6783544 | Lynch et al. | Aug 2004 | B2 |
6827699 | Lynch et al. | Dec 2004 | B2 |
6827700 | Lynch et al. | Dec 2004 | B2 |
6881198 | Brown | Apr 2005 | B2 |
6899717 | Weber et al. | May 2005 | B2 |
6939298 | Brown et al. | Sep 2005 | B2 |
6955656 | Bergheim et al. | Oct 2005 | B2 |
6962573 | Wilcox | Nov 2005 | B1 |
6981958 | Gharib et al. | Jan 2006 | B1 |
6989007 | Shadduck | Jan 2006 | B2 |
7018376 | Webb et al. | Mar 2006 | B2 |
7094225 | Tu et al. | Aug 2006 | B2 |
7125119 | Farberov | Oct 2006 | B2 |
7133137 | Shimmick | Nov 2006 | B2 |
7135009 | Tu et al. | Nov 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7163543 | Smedley et al. | Jan 2007 | B2 |
7186232 | Smedley et al. | Mar 2007 | B1 |
7192412 | Zhou et al. | Mar 2007 | B1 |
7207965 | Simon | Apr 2007 | B2 |
7207980 | Christian et al. | Apr 2007 | B2 |
7220238 | Lynch et al. | May 2007 | B2 |
7273475 | Tu et al. | Sep 2007 | B2 |
7297130 | Bergheim et al. | Nov 2007 | B2 |
7331984 | Tu et al. | Feb 2008 | B2 |
7488303 | Haffner et al. | Feb 2009 | B1 |
7699882 | Stamper et al. | Apr 2010 | B2 |
7740604 | Schieber et al. | Jun 2010 | B2 |
7931596 | Rachlin et al. | Apr 2011 | B2 |
7967772 | McKenzie et al. | Jun 2011 | B2 |
8012115 | Karageozian | Sep 2011 | B2 |
8123729 | Yamamoto et al. | Feb 2012 | B2 |
8172899 | Silvestrini et al. | May 2012 | B2 |
8267882 | Euteneuer et al. | Sep 2012 | B2 |
8282592 | Schieber et al. | Oct 2012 | B2 |
8308701 | Horvath et al. | Nov 2012 | B2 |
8337509 | Schieber et al. | Dec 2012 | B2 |
8372026 | Schieber et al. | Feb 2013 | B2 |
8414518 | Schieber et al. | Apr 2013 | B2 |
8425449 | Wardle et al. | Apr 2013 | B2 |
8475374 | Irazoqui et al. | Jul 2013 | B2 |
8512404 | Frion et al. | Aug 2013 | B2 |
8529494 | Euteneuer et al. | Sep 2013 | B2 |
8540659 | Berlin | Sep 2013 | B2 |
8551166 | Schieber et al. | Oct 2013 | B2 |
8629161 | Mizuno et al. | Jan 2014 | B2 |
8636647 | Silvestrini et al. | Jan 2014 | B2 |
8647659 | Robinson et al. | Feb 2014 | B2 |
8657776 | Wardle et al. | Feb 2014 | B2 |
8663150 | Wardle et al. | Mar 2014 | B2 |
8663303 | Horvath et al. | Mar 2014 | B2 |
8734377 | Schieber et al. | May 2014 | B2 |
8808222 | Schieber et al. | Aug 2014 | B2 |
8939906 | Huang et al. | Jan 2015 | B2 |
8939948 | De Juan, Jr. et al. | Jan 2015 | B2 |
8945038 | Yablonski | Feb 2015 | B2 |
8951221 | Stegmann et al. | Feb 2015 | B2 |
8961447 | Schieber et al. | Feb 2015 | B2 |
8974511 | Horvath et al. | Mar 2015 | B2 |
9039650 | Schieber et al. | May 2015 | B2 |
9050169 | Schieber et al. | Jun 2015 | B2 |
9066750 | Wardle et al. | Jun 2015 | B2 |
9066783 | Euteneuer et al. | Jun 2015 | B2 |
9155655 | Wardle et al. | Oct 2015 | B2 |
9211213 | Wardle et al. | Dec 2015 | B2 |
9226852 | Schieber et al. | Jan 2016 | B2 |
9301875 | Tu et al. | Apr 2016 | B2 |
9351874 | Schieber et al. | May 2016 | B2 |
9358156 | Wardle et al. | Jun 2016 | B2 |
9402767 | Schieber et al. | Aug 2016 | B2 |
9510973 | Wardle | Dec 2016 | B2 |
9579234 | Wardle et al. | Feb 2017 | B2 |
9603741 | Berlin | Mar 2017 | B2 |
9610196 | Schieber et al. | Apr 2017 | B2 |
9636254 | Yu et al. | May 2017 | B2 |
9642746 | Berlin | May 2017 | B2 |
9693899 | Wardle et al. | Jul 2017 | B2 |
9693901 | Horvath et al. | Jul 2017 | B2 |
9693902 | Euteneuer et al. | Jul 2017 | B2 |
9730638 | Haffner et al. | Aug 2017 | B2 |
9757276 | Penhasi | Sep 2017 | B2 |
9775729 | McClain et al. | Oct 2017 | B2 |
9782293 | Doci | Oct 2017 | B2 |
9788999 | Schaller | Oct 2017 | B2 |
9795503 | Perez Grossmann | Oct 2017 | B2 |
9808373 | Horvath et al. | Nov 2017 | B2 |
9820883 | Berlin | Nov 2017 | B2 |
9833357 | Berlin | Dec 2017 | B2 |
9931243 | Wardle et al. | Apr 2018 | B2 |
10159601 | Berlin | Dec 2018 | B2 |
10335314 | Berlin | Jul 2019 | B2 |
10363168 | Schieber et al. | Jul 2019 | B2 |
10390993 | Berlin | Aug 2019 | B1 |
10406025 | Wardle et al. | Sep 2019 | B2 |
10492949 | Wardle et al. | Dec 2019 | B2 |
10537474 | Euteneuer et al. | Jan 2020 | B2 |
10617558 | Schieber et al. | Apr 2020 | B2 |
10687978 | Berlin | Jun 2020 | B2 |
10709547 | Schieber | Jul 2020 | B2 |
11026836 | Wardle et al. | Jun 2021 | B2 |
11135088 | Wardle et al. | Oct 2021 | B2 |
11197779 | Van Meter et al. | Dec 2021 | B2 |
20010002438 | Sepetka et al. | May 2001 | A1 |
20020003546 | Mochimaru et al. | Jan 2002 | A1 |
20020013546 | Grieshaber et al. | Jan 2002 | A1 |
20020013572 | Berlin | Jan 2002 | A1 |
20020052653 | Durgin | May 2002 | A1 |
20020072673 | Yamamoto et al. | Jun 2002 | A1 |
20020082591 | Haefliger | Jun 2002 | A1 |
20020133168 | Smedley et al. | Sep 2002 | A1 |
20020143284 | Tu et al. | Oct 2002 | A1 |
20020165504 | Sharp et al. | Nov 2002 | A1 |
20020165522 | Holmen | Nov 2002 | A1 |
20020193805 | Ott et al. | Dec 2002 | A1 |
20030004457 | Andersson | Jan 2003 | A1 |
20030014092 | Neuhann | Jan 2003 | A1 |
20030040754 | Mitchell et al. | Feb 2003 | A1 |
20030055372 | Lynch et al. | Mar 2003 | A1 |
20030060748 | Baikoff | Mar 2003 | A1 |
20030060752 | Bergheim et al. | Mar 2003 | A1 |
20030060784 | Hilgers et al. | Mar 2003 | A1 |
20030093084 | Nissan et al. | May 2003 | A1 |
20030097151 | Smedley et al. | May 2003 | A1 |
20030105456 | Lin | Jun 2003 | A1 |
20030125351 | Azuma et al. | Jul 2003 | A1 |
20030175324 | Robinson et al. | Sep 2003 | A1 |
20030181848 | Bergheim et al. | Sep 2003 | A1 |
20030187384 | Bergheim et al. | Oct 2003 | A1 |
20030212387 | Kurtz et al. | Nov 2003 | A1 |
20030229303 | Haffner et al. | Dec 2003 | A1 |
20030236483 | Ren | Dec 2003 | A1 |
20030236484 | Lynch et al. | Dec 2003 | A1 |
20040024345 | Gharib et al. | Feb 2004 | A1 |
20040024453 | Castillejos | Feb 2004 | A1 |
20040030302 | Kamata et al. | Feb 2004 | A1 |
20040070761 | Horvath et al. | Apr 2004 | A1 |
20040082939 | Berlin | Apr 2004 | A1 |
20040088048 | Richter et al. | May 2004 | A1 |
20040092856 | Dahan | May 2004 | A1 |
20040098124 | Freeman et al. | May 2004 | A1 |
20040102729 | Haffner et al. | May 2004 | A1 |
20040106975 | Solovay et al. | Jun 2004 | A1 |
20040111050 | Smedley et al. | Jun 2004 | A1 |
20040116909 | Neuberger et al. | Jun 2004 | A1 |
20040122380 | Utterberg | Jun 2004 | A1 |
20040127843 | Tu et al. | Jul 2004 | A1 |
20040147870 | Burns et al. | Jul 2004 | A1 |
20040193095 | Shaddock | Sep 2004 | A1 |
20040193262 | Shadduck | Sep 2004 | A1 |
20040199149 | Myers et al. | Oct 2004 | A1 |
20040199171 | Akahoshi | Oct 2004 | A1 |
20040210181 | Vass et al. | Oct 2004 | A1 |
20040210185 | Tu et al. | Oct 2004 | A1 |
20040216749 | Tu | Nov 2004 | A1 |
20040225357 | Worst et al. | Nov 2004 | A1 |
20040228013 | Goldstein et al. | Nov 2004 | A1 |
20040249333 | Bergheim et al. | Dec 2004 | A1 |
20040254517 | Quiroz-Mercado et al. | Dec 2004 | A1 |
20040254519 | Tu et al. | Dec 2004 | A1 |
20040254520 | Porteous et al. | Dec 2004 | A1 |
20040260228 | Lynch et al. | Dec 2004 | A1 |
20050041200 | Rich | Feb 2005 | A1 |
20050043722 | Lin | Feb 2005 | A1 |
20050049578 | Tu et al. | Mar 2005 | A1 |
20050090806 | Lynch et al. | Apr 2005 | A1 |
20050090807 | Lynch et al. | Apr 2005 | A1 |
20050101967 | Weber et al. | May 2005 | A1 |
20050107734 | Coroneo | May 2005 | A1 |
20050119636 | Haffner et al. | Jun 2005 | A1 |
20050119661 | Lynch et al. | Jun 2005 | A1 |
20050125003 | Pinchuk et al. | Jun 2005 | A1 |
20050131514 | Hijlkema et al. | Jun 2005 | A1 |
20050149114 | Cartledge et al. | Jul 2005 | A1 |
20050154443 | Linder et al. | Jul 2005 | A1 |
20050165385 | Simon | Jul 2005 | A1 |
20050192527 | Gharib et al. | Sep 2005 | A1 |
20050197667 | Chan et al. | Sep 2005 | A1 |
20050203542 | Weber et al. | Sep 2005 | A1 |
20050209549 | Bergheim et al. | Sep 2005 | A1 |
20050209550 | Bergheim et al. | Sep 2005 | A1 |
20050240168 | Neuberger et al. | Oct 2005 | A1 |
20050244464 | Hughes | Nov 2005 | A1 |
20050245916 | Connor | Nov 2005 | A1 |
20050250788 | Tu et al. | Nov 2005 | A1 |
20050260186 | Bookbinder et al. | Nov 2005 | A1 |
20050266047 | Tu et al. | Dec 2005 | A1 |
20050271704 | Tu et al. | Dec 2005 | A1 |
20050273033 | Grahn et al. | Dec 2005 | A1 |
20050277864 | Haffner et al. | Dec 2005 | A1 |
20050279369 | Lin | Dec 2005 | A1 |
20050288619 | Gharib et al. | Dec 2005 | A1 |
20050288745 | Andersen et al. | Dec 2005 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060021623 | Miller et al. | Feb 2006 | A1 |
20060032507 | Tu | Feb 2006 | A1 |
20060052879 | Kolb | Mar 2006 | A1 |
20060069340 | Simon | Mar 2006 | A1 |
20060074375 | Bergheim et al. | Apr 2006 | A1 |
20060079828 | Brown | Apr 2006 | A1 |
20060084907 | Bergheim et al. | Apr 2006 | A1 |
20060084954 | Zadoyan et al. | Apr 2006 | A1 |
20060106370 | Baerveldt et al. | May 2006 | A1 |
20060110428 | deJuan et al. | May 2006 | A1 |
20060116626 | Smedley et al. | Jun 2006 | A1 |
20060129141 | Lin | Jun 2006 | A1 |
20060149194 | Conston et al. | Jul 2006 | A1 |
20060154981 | Klimko et al. | Jul 2006 | A1 |
20060155238 | Shields | Jul 2006 | A1 |
20060155265 | Juhasz et al. | Jul 2006 | A1 |
20060155300 | Stamper et al. | Jul 2006 | A1 |
20060167421 | Quinn | Jul 2006 | A1 |
20060167466 | Dusek | Jul 2006 | A1 |
20060173397 | Tu et al. | Aug 2006 | A1 |
20060173399 | Rodgers et al. | Aug 2006 | A1 |
20060178674 | McIntyre | Aug 2006 | A1 |
20060189915 | Camras et al. | Aug 2006 | A1 |
20060189916 | Bas et al. | Aug 2006 | A1 |
20060189917 | Mayr et al. | Aug 2006 | A1 |
20060195055 | Bergheim et al. | Aug 2006 | A1 |
20060195056 | Bergheim et al. | Aug 2006 | A1 |
20060195187 | Stegmann et al. | Aug 2006 | A1 |
20060200113 | Haffner et al. | Sep 2006 | A1 |
20060224146 | Lin | Oct 2006 | A1 |
20060241749 | Tu et al. | Oct 2006 | A1 |
20060259021 | Lin | Nov 2006 | A1 |
20060264971 | Akahoshi | Nov 2006 | A1 |
20060276759 | Kinast et al. | Dec 2006 | A1 |
20070010827 | Tu et al. | Jan 2007 | A1 |
20070021725 | Villette | Jan 2007 | A1 |
20070027452 | Varner et al. | Feb 2007 | A1 |
20070073275 | Conston et al. | Mar 2007 | A1 |
20070088432 | Solovay et al. | Apr 2007 | A1 |
20070093794 | Wang et al. | Apr 2007 | A1 |
20070093796 | Raksi et al. | Apr 2007 | A1 |
20070106200 | Levy | May 2007 | A1 |
20070106236 | Coroneo | May 2007 | A1 |
20070112292 | Tu et al. | May 2007 | A1 |
20070118147 | Smedley et al. | May 2007 | A1 |
20070121120 | Schachar | May 2007 | A1 |
20070135681 | Chin et al. | Jun 2007 | A1 |
20070173791 | Raksi | Jul 2007 | A1 |
20070179520 | West | Aug 2007 | A1 |
20070191863 | De Juan, Jr. et al. | Aug 2007 | A1 |
20070202186 | Yamamoto | Aug 2007 | A1 |
20070208325 | Kurtz | Sep 2007 | A1 |
20070219509 | Tashiro et al. | Sep 2007 | A1 |
20070219541 | Kurtz | Sep 2007 | A1 |
20070235543 | Zadoyan et al. | Oct 2007 | A1 |
20070236771 | Zadoyan et al. | Oct 2007 | A1 |
20070265582 | Kaplan et al. | Nov 2007 | A1 |
20070270945 | Kobayashi et al. | Nov 2007 | A1 |
20070276315 | Haffner et al. | Nov 2007 | A1 |
20070276316 | Haffner et al. | Nov 2007 | A1 |
20070282244 | Tu et al. | Dec 2007 | A1 |
20070282245 | Tu et al. | Dec 2007 | A1 |
20070293807 | Lynch et al. | Dec 2007 | A1 |
20070293872 | Peyman | Dec 2007 | A1 |
20070298068 | Badawi et al. | Dec 2007 | A1 |
20080015488 | Tu et al. | Jan 2008 | A1 |
20080027519 | Guerrero | Jan 2008 | A1 |
20080045878 | Bergheim et al. | Feb 2008 | A1 |
20080058704 | Hee et al. | Mar 2008 | A1 |
20080058777 | Kurtz et al. | Mar 2008 | A1 |
20080082088 | Kurtz et al. | Apr 2008 | A1 |
20080091224 | Griffis et al. | Apr 2008 | A1 |
20080119827 | Kurtz et al. | May 2008 | A1 |
20080228127 | Burns et al. | Sep 2008 | A1 |
20080278687 | Somani | Nov 2008 | A1 |
20080288082 | Deal | Nov 2008 | A1 |
20080312661 | Downer et al. | Dec 2008 | A1 |
20090005852 | Gittings et al. | Jan 2009 | A1 |
20090028953 | Yamamoto et al. | Jan 2009 | A1 |
20090030363 | Gellman | Jan 2009 | A1 |
20090030381 | Lind et al. | Jan 2009 | A1 |
20090036843 | Erskine | Feb 2009 | A1 |
20090043321 | Conston et al. | Feb 2009 | A1 |
20090054723 | Khairkhahan et al. | Feb 2009 | A1 |
20090069786 | Vesely et al. | Mar 2009 | A1 |
20090082862 | Schieber et al. | Mar 2009 | A1 |
20090104248 | Rapacki et al. | Apr 2009 | A1 |
20090118716 | Brownell | May 2009 | A1 |
20090118717 | Brownell et al. | May 2009 | A1 |
20090118718 | Raksi et al. | May 2009 | A1 |
20090131921 | Kurtz et al. | May 2009 | A1 |
20090137988 | Kurtz | May 2009 | A1 |
20090138081 | Bergheim et al. | May 2009 | A1 |
20090157062 | Hauger et al. | Jun 2009 | A1 |
20090171327 | Kurtz et al. | Jul 2009 | A1 |
20090182421 | Silvestrini et al. | Jul 2009 | A1 |
20090198248 | Yeung et al. | Aug 2009 | A1 |
20090204053 | Nissan et al. | Aug 2009 | A1 |
20090247955 | Yamamoto et al. | Oct 2009 | A1 |
20090259126 | Saal et al. | Oct 2009 | A1 |
20090281520 | Highley et al. | Nov 2009 | A1 |
20090281530 | Korn | Nov 2009 | A1 |
20090291423 | Hara | Nov 2009 | A1 |
20100004580 | Lynch et al. | Jan 2010 | A1 |
20100036488 | de Juan et al. | Feb 2010 | A1 |
20100057072 | Roman et al. | Mar 2010 | A1 |
20100114309 | de Juan et al. | May 2010 | A1 |
20100137981 | Silvestrini et al. | Jun 2010 | A1 |
20100173866 | Hee et al. | Jul 2010 | A1 |
20100191176 | Ho et al. | Jul 2010 | A1 |
20100191177 | Chang et al. | Jul 2010 | A1 |
20100234726 | Sirimanne et al. | Sep 2010 | A1 |
20100234790 | Tu et al. | Sep 2010 | A1 |
20100262174 | Sretavan et al. | Oct 2010 | A1 |
20100324543 | Kurtz et al. | Dec 2010 | A1 |
20100331858 | Simaan et al. | Dec 2010 | A1 |
20110028948 | Raksi et al. | Feb 2011 | A1 |
20110028949 | Raksi et al. | Feb 2011 | A1 |
20110028950 | Raksi et al. | Feb 2011 | A1 |
20110028951 | Raksi et al. | Feb 2011 | A1 |
20110028952 | Raksi et al. | Feb 2011 | A1 |
20110028953 | Raksi et al. | Feb 2011 | A1 |
20110028954 | Raksi et al. | Feb 2011 | A1 |
20110028955 | Raksi | Feb 2011 | A1 |
20110028957 | Raksi et al. | Feb 2011 | A1 |
20110028958 | Raksi et al. | Feb 2011 | A1 |
20110098809 | Wardle | Apr 2011 | A1 |
20110196487 | Badawi et al. | Aug 2011 | A1 |
20110218523 | Robl | Sep 2011 | A1 |
20110224597 | Stegmann et al. | Sep 2011 | A1 |
20120010702 | Stegmann et al. | Jan 2012 | A1 |
20120021397 | Van Dalen et al. | Jan 2012 | A1 |
20120022424 | Yamamoto et al. | Jan 2012 | A1 |
20120035524 | Silvestrini | Feb 2012 | A1 |
20120191064 | Conston et al. | Jul 2012 | A1 |
20120271272 | Hammack et al. | Oct 2012 | A1 |
20120283557 | Berlin | Nov 2012 | A1 |
20120302861 | Marshall et al. | Nov 2012 | A1 |
20130023837 | Becker | Jan 2013 | A1 |
20130182223 | Wardle et al. | Jul 2013 | A1 |
20130184631 | Pinchuk | Jul 2013 | A1 |
20130253402 | Badawi et al. | Sep 2013 | A1 |
20130253403 | Badawi et al. | Sep 2013 | A1 |
20130253437 | Badawi et al. | Sep 2013 | A1 |
20130253438 | Badawi et al. | Sep 2013 | A1 |
20130253528 | Haffner et al. | Sep 2013 | A1 |
20130267887 | Kahook et al. | Oct 2013 | A1 |
20130281908 | Schaller et al. | Oct 2013 | A1 |
20140018720 | Horvath et al. | Jan 2014 | A1 |
20140066821 | Freidland et al. | Mar 2014 | A1 |
20140066831 | Silvestrini et al. | Mar 2014 | A1 |
20140081195 | Clauson et al. | Mar 2014 | A1 |
20140309599 | Schaller | Oct 2014 | A1 |
20150018746 | Hattenbach | Jan 2015 | A1 |
20150022780 | John et al. | Jan 2015 | A1 |
20150038893 | Haffner et al. | Feb 2015 | A1 |
20150045714 | Horvath et al. | Feb 2015 | A1 |
20150057583 | Gunn et al. | Feb 2015 | A1 |
20150057591 | Horvath et al. | Feb 2015 | A1 |
20150065940 | Rangel-Friedman et al. | Mar 2015 | A1 |
20150148836 | Heeren | May 2015 | A1 |
20150305939 | Vera et al. | Oct 2015 | A1 |
20150305940 | Vera et al. | Oct 2015 | A1 |
20150313759 | Vera et al. | Nov 2015 | A1 |
20160063898 | Bernal | Mar 2016 | A1 |
20170127941 | Ostermeier et al. | May 2017 | A1 |
20170143541 | Badawi et al. | May 2017 | A1 |
20170164831 | Choo et al. | Jun 2017 | A1 |
20170172794 | Varner et al. | Jun 2017 | A1 |
20170172795 | Lerner | Jun 2017 | A1 |
20170172797 | Horvath et al. | Jun 2017 | A1 |
20170172798 | Horvath et al. | Jun 2017 | A1 |
20170172799 | Horvath | Jun 2017 | A1 |
20170172800 | Romoda et al. | Jun 2017 | A1 |
20170202708 | Berlin | Jul 2017 | A1 |
20170239272 | Ambati et al. | Aug 2017 | A1 |
20170251921 | Phan et al. | Sep 2017 | A1 |
20170252209 | Gooi | Sep 2017 | A1 |
20170280997 | Lai et al. | Oct 2017 | A1 |
20170281409 | Haffner et al. | Oct 2017 | A1 |
20170348150 | Horvath et al. | Dec 2017 | A1 |
20170360609 | Schieber et al. | Dec 2017 | A9 |
20180256395 | Escaf | Sep 2018 | A1 |
20180360655 | Berlin | Dec 2018 | A1 |
20180369017 | Schieber et al. | Dec 2018 | A1 |
20190142632 | Badawi et al. | May 2019 | A1 |
20190343679 | Wardle et al. | Nov 2019 | A1 |
20190380874 | Schieber et al. | Dec 2019 | A1 |
20200060876 | Wardle et al. | Feb 2020 | A1 |
20200085620 | Euteneuer et al. | Mar 2020 | A1 |
20200197221 | Schieber et al. | Jun 2020 | A1 |
20200222238 | Schieber et al. | Jul 2020 | A1 |
20200261266 | Bley | Aug 2020 | A1 |
20200261270 | Berlin | Aug 2020 | A1 |
20200305878 | Herrin | Oct 2020 | A1 |
20210030590 | Blanda et al. | Feb 2021 | A1 |
20210330499 | Wardle et al. | Oct 2021 | A1 |
20210361477 | Johnson et al. | Nov 2021 | A1 |
20210361479 | Wardle et al. | Nov 2021 | A1 |
20220054314 | Van Meter et al. | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
199876197 | Feb 1999 | AU |
4226476 | Aug 1993 | DE |
102012221350 | May 2014 | DE |
0168201 | Jun 1988 | EP |
0957949 | Nov 1996 | EP |
0766544 | May 1998 | EP |
1615604 | Aug 2009 | EP |
2193821 | Jun 2010 | EP |
1715827 | Dec 2010 | EP |
2380622 | Oct 2011 | EP |
2468327 | Jun 2012 | EP |
2471563 | Jul 2012 | EP |
1833440 | Aug 2012 | EP |
3164061 | May 2017 | EP |
2996648 | Jun 2017 | EP |
1732484 | Aug 2017 | EP |
1740153 | Aug 2017 | EP |
3076948 | Aug 2017 | EP |
3205333 | Aug 2017 | EP |
3060180 | Sep 2017 | EP |
3082570 | Sep 2017 | EP |
10504978 | May 1998 | JP |
11123205 | May 1999 | JP |
2002542872 | Dec 2002 | JP |
2006517848 | Aug 2006 | JP |
2006289075 | Oct 2006 | JP |
2009523545 | Jun 2009 | JP |
2010509003 | Mar 2010 | JP |
2011502649 | Jan 2011 | JP |
2012527318 | Nov 2012 | JP |
2015517836 | Jun 2015 | JP |
2017517363 | Jun 2017 | JP |
WO9620742 | Jul 1996 | WO |
WO9901063 | Jan 1999 | WO |
WO9945868 | Sep 1999 | WO |
WO0007525 | Feb 2000 | WO |
WO0064389 | Nov 2000 | WO |
WO0064393 | Nov 2000 | WO |
WO0067687 | Nov 2000 | WO |
WO0189437 | Nov 2001 | WO |
WO0197727 | Dec 2001 | WO |
WO0236052 | May 2002 | WO |
WO02074052 | Sep 2002 | WO |
WO02080811 | Oct 2002 | WO |
WO0301 5659 | Feb 2003 | WO |
WO03045290 | Jun 2003 | WO |
WO2004054643 | Jul 2004 | WO |
WO2004093761 | Nov 2004 | WO |
WO2005105197 | Nov 2005 | WO |
WO2006066103 | Jun 2006 | WO |
WO2007035356 | Mar 2007 | WO |
WO2007047744 | Apr 2007 | WO |
WO2007087061 | Aug 2007 | WO |
WO2008002377 | Jan 2008 | WO |
WO2008005873 | Jan 2008 | WO |
WO2009120960 | Oct 2009 | WO |
WO2011053512 | May 2011 | WO |
WO2011057283 | May 2011 | WO |
WO2011106781 | Sep 2011 | WO |
WO2011150045 | Dec 2011 | WO |
WO2012051575 | Apr 2012 | WO |
WO2012083143 | Jun 2012 | WO |
WO2013147978 | Oct 2013 | WO |
WO2016154066 | Sep 2016 | WO |
WO2017030902 | Feb 2017 | WO |
WO2017030917 | Feb 2017 | WO |
WO2017062347 | Apr 2017 | WO |
WO2017087713 | May 2017 | WO |
WO2017095825 | Jun 2017 | WO |
WO2017132418 | Aug 2017 | WO |
WO2017132647 | Aug 2017 | WO |
WO2017156530 | Sep 2017 | WO |
WO2019106803 | Jun 2019 | WO |
WO2021055751 | Mar 2021 | WO |
Entry |
---|
Bahler, et al.; Trabecular bypass stents decrease intraocular pressure in cultured human anterior segments; Amer. Journal of Ophthalmology; vol. 138, No. 6; pp. 988-994.e2; Dec. 2004. |
Cambridge Dictionary: Sensor (definition); 2 pages; retrived from the internet (http://dictionary.cambridge.org/define.asp?dict=CALD&key=71811 >) on Aug. 14, 2018. |
Camras et al.; A novel schlemm's canal scaffold increases outflow facility in a human anterior segment perfusion model; Invest. Opthalmol. Vis. Sci. , 53(10); pp. 6115-6121; Sep. 1, 2012. |
D'Ermo, et al.; Our results with the operation of ab externo trabeculotomy; Ophthalmologica; vol. 163; pp. 347-355; Feb. 1971. |
Dietlein et al.; Morphological variability of the trabecular meshwork in glaucoma patients: implications for non-perforating glaucoma surgery; British Journal of Ophthalmology: 84(12); pp. 1354-1359; Dec. 2000. |
Ellingsen et al.; Trabeculotomy and sinusotomy in enucleated human eyes; Investigative Ophthalmology; vol. 11; pp. 21-28; Jan. 1972. |
Gallab et al.; Development of a spherical model with a 3D microchannel: An application to glaucoma surgery; Micromachines; 10(5):297; pp. 1-12; May 1, 2019. |
Grant; Experimental aqueous perfusion in enucleated human eyes; Archives of Ophthalmology; vol. 69; pp. 783-801; Jun. 1963. |
Gulati et al; A novel 8-mm schlemm's canal scaffold reduces outflow resistance in a human anterior segment perfusion model; Invest. Ophthalmol. Vis. Sci.; 54(3); pp. 1698-1704; Mar. 5, 2013. |
Hays et al.; Improvement in outflow facility by two novel microinvasive glaucoma surgery implants; Invest. Ophthalmol. Vis. Sci.; 55(3); pp. 1893-1900; Mar. 1, 2014. |
Huang et al.; Optical coherence tomography; Science; 254(5035); pp. 1178-1181; 12 pages (Author Manuscript); Nov. 1991. |
Johnstone et al.; “Microsurgery of Schlemm's Canal and the Human Aqueous Outflow System;” American Journal of Ophthalmology, vol. 76 (6): 906-917; Dec. 1973. |
Johnstone et al.; Effects of a schiemm canal scaffold on collector channel ostia in human anterior segments; Exp. Eye. Res.; 119; pp. 70-76; Feb. 2014. |
Johnstone; Aqueous humor outflow system overview; Becker-Shaffer's Diagnosis and Therapy of the Glaucomas; Part 2 Aqueous Humor Dynamics; Chapter 3; pp. 25-46; Mosby Elseveir; 2009 (the year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date so that the particular month of publication is not in issue). |
Kirkness et al.; The Use of Silicone Drainage Tubing to Control Post-Keratoplasty Glaucoma; Eye; 2 (pt 5); pp. 583-590; Apr. 1988. |
Lee et al.; Aqueous-venous shunt and intraocular pressure. Preliminary report of animal studies; Investigative Ophthalmology; vol. 5; No. 1; pp. 59-64; Feb. 1966. |
Lee et al.; Short-pulsed neodymium-YAG laser trabeculotomy. An in vivo morphological study in the human eye; Investigative Ophthalmology and Visual Science; 29(11); pp. 1698-1707; Nov. 1988. |
Lynch, Mary G.: U.S. Appl. No. 60/131,030 entitled “Devices and methods for treating glaucoma by enhancing aqueous outflow through schlemm's canal and anterior chamber angle,” filed Apr. 26, 1999. |
Macmilla Online Dictionary; Detector (definition); Macmilla on Line Dictionary; 2 pages; retrived from the internet (https://www.macmillandictionary.com/dictionary/british/detector) on Aug. 14, 2018. |
Mäepea et al.; The pressures in the episcleral veins, schlemm's canal and the trabecular meshwork in monkeys: effects of changes in intraocular pressure; Exp. Eye Res.; vol. 49; pp. 645-663: Oct. 1989. |
Molteno et al.; Long Tube Implants in the Management of Glaucoma; SA Medical Journal; 26: pp. 1062-1066; Jun. 1976. |
Molteno; New implant for drainage in glaucoma; Brit. J. Ophthal; 53; pp. 606-615; Sep. 1969. |
Moses, Robert; The effect of intraocular pressure on resistance to outflow; Survey of Ophthalmology; vol. 22; No. 2; pp. 88-100; Sep.-Oct. 1977. |
Nakamura et al.; Femtosecond laser pholodisruption of primate trabecular meshwork: an ex vivo study; Investigative Ophthalmology and Visual Science; 50(3); pp. 1198-1204; Mar. 2009. |
Owen; A moving-mirror gonioscope for retinal surgery; British Journal of Ophthalmology; 61(3); pp. 246-247; Mar. 1977. |
Oxford Dictionaries; Detector (definition); 1 page; retrieved from the internet (https://en.oxforddictionaries.com/definition/detector) on Aug. 14, 2018. |
Oxford Dictionaries; Sensor (definition); 1 page; retrieved from te internet (http://www.askoxford.com/concise_oed/sensor?>) on Aug. 14, 2018. |
Radhakrishnan et al.; Real-time optical coherence tomography of the anterior segment at 1310 nm; Archives of Opthhalmology; 119(8); pp. 1179-1185; Aug. 2001. |
Rosenquist et al.; Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy; Current Eye Res.; vol. 8: No. 12; pp. 1233-1240; Dec. 1989. |
Savage, James; Gonioscopy in the management of glaucoma; Am. Academy of Ophthalmology; Focal Points; vol. XXIV; No. 3; pp. 1-14; Mar. 2006. |
Schocket et al.; Anterior Chamber tube Shunt to an Encircling Band in the Treatment of Neovascular Glaucoma and other Refractory Glaucomas; Ophthalmology; 92; pp. 553-562; Apr. 1985. |
Schultz, Jared; Canaloplasty procedure shows promise for open-angle glaucoma in European study; Ocular Surgery News; vol. 34; Mar. 1, 2007. |
Smit et al.; Effects of viscoelastic injection into schlemm's canal in primate and human eyes; J. Am. Academy of Ophthalmology; vol. 109; No. 4; pp. 786-792; Apr. 2002. |
Spiegel et al.; Schlemm's canal implant: a new method to lower intraocular pressure in patients with POAG?; Ophthalmic Surgery and Lasers; vol. 30; No. 6; pp. 492-494; Jun. 1999. |
Sugiyama et al.; Micro-Diaphragm Pressure Sensor; 1986 International Electron Devices Meeting; pp. 184-187; Dec. 7, 1986. |
Toyran et al.; Femtosecond laser photodisruption of human trabecular meshwork: an in vitro study; Experimental Eye Research; 81(3); pp. 298-305; Sep. 2005. |
Wilcox et al.; Hypothesis for Improving Accessory Filtration by Using Geometry; Journal of Glaucoma; 3; pp. 244-247; Fall 1994. |
Yuan et al.; Mathematical modeling of outflow facility increase with trabecular meshwork bypass and schlemm canal dilation; J. Glaucoma; 10 pgs.; Mar. 24, 2015 (Epub ahead of print). |
Wardle et al.; U.S. Appl. No. 17/548,212 entitled “Single operator device for delivering an ocular implant,” filed Dec. 10, 2021. |
Number | Date | Country | |
---|---|---|---|
20220218521 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
63236598 | Aug 2021 | US | |
63136148 | Jan 2021 | US |