Systems and methods for visualizing and directing stimulation of neural elements

Information

  • Patent Grant
  • 10350404
  • Patent Number
    10,350,404
  • Date Filed
    Tuesday, August 29, 2017
    6 years ago
  • Date Issued
    Tuesday, July 16, 2019
    4 years ago
Abstract
Method and systems for determining a set of stimulation parameters for an implantable stimulation device include receiving a set of stimulation parameters including at least one electrode for delivery of stimulation and a stimulation amplitude for each electrode; determining, using the set of stimulation parameters, an axial stimulation field for neural elements oriented axially with respect to a longitudinal axis of the lead; and outputting the first axial stimulation field for viewing by a user; receiving, by the computer processor. The methods and systems can be used to model other neural elements oriented non-orthogonally with respect to the longitudinal axis of the lead and determine a non-orthogonal stimulation field.
Description
FIELD

The invention is directed to the area of electrical stimulation systems. The present invention is also directed to systems and methods for visualizing and directing electrical stimulation of neural elements, as well as methods of making and using systems.


BACKGROUND

Electrical stimulation can be useful for treating a variety of conditions. Deep brain stimulation can be useful for treating, for example, Parkinson's disease, dystonia, essential tremor, chronic pain, Huntington's disease, levodopa-induced dyskinesias and rigidity, bradykinesia, epilepsy and seizures, eating disorders, and mood disorders. Typically, a lead with a stimulating electrode at or near a tip of the lead provides the stimulation to target neurons in the brain. Magnetic resonance imaging (“MRI”) or computerized tomography (“CT”) scans can provide a starting point for determining where the stimulating electrode should be positioned to provide the desired stimulus to the target neurons.


After the lead is implanted into a patient's brain, electrical stimulus current can be delivered through selected electrodes on the lead to stimulate target neurons in the brain. The electrodes can be formed into rings or segments disposed on a distal portion of the lead. The stimulus current projects from the electrodes. Using segmented electrodes can provide directionality to the stimulus current and permit a clinician to steer the current to a desired direction and stimulation field.


BRIEF SUMMARY

One embodiment is a computer-implemented method for determining a set of stimulation parameters for an electrical stimulation lead. The method includes receiving, by a computer processor, a set of stimulation parameters including at least one electrode for delivery of stimulation and a stimulation amplitude for each electrode; determining, by the computer processor and using the set of stimulation parameters, a first axial stimulation field for neural elements oriented axially with respect to a longitudinal axis of the lead; and outputting, by the computer processor, the first axial stimulation field for viewing by a user. The method may also include receiving, by the computer processor, a modification of the set of stimulation parameters; determining, by the computer processor and using the modified set of stimulation parameters, a second axial stimulation field for neural elements oriented axially with respect to a longitudinal axis of the lead; outputting, by the computer processor, the second axial stimulation field for viewing by a user; receiving, by the computer processor, a selection of either the set of stimulation parameters or the modified set of stimulation parameters as a selected set of stimulation parameters; and outputting, by the computer processor, the selected set of stimulation parameters to be received by an electrical stimulation device for delivery of electrical stimulation to a patient via an electrical stimulation lead.


Another embodiment is a system for determining a set of stimulation parameters for an electrical stimulation lead. The system includes a display; and a computer processor coupled to the display and configured and arranged to perform the following actions: receiving a set of stimulation parameters including at least one electrode for delivery of stimulation and a stimulation amplitude for each electrode; determining, using the set of stimulation parameters, a first axial stimulation field for neural elements oriented axially with respect to a longitudinal axis of the lead; and outputting the first axial stimulation field for viewing by a user on the display. The actions may also include receiving a modification of the set of stimulation parameters; determining, using the modified set of stimulation parameters, a second axial stimulation field for neural elements oriented axially with respect to a longitudinal axis of the lead; outputting the second axial stimulation field for viewing by a user on the display; receiving a selection of either the set of stimulation parameters or the modified set of stimulation parameters as a selected set of stimulation parameters; and outputting the selected set of stimulation parameters to be received by an electrical stimulation device for delivery of electrical stimulation to a patient via an electrical stimulation lead. The system optionally includes an implantable lead and an implantable control module coupleable to the lead and configured and arranged to receive the set of stimulation parameters from the computer processor and to deliver electrical stimulation to a patient using the lead according to the set of stimulation parameters.


Yet another embodiment is a non-transitory computer-readable medium having processor-executable instructions for determining a set of stimulation parameters, the processor-executable instructions when installed onto a device enable the device to perform actions, including: receiving a set of stimulation parameters including at least one electrode for delivery of stimulation and a stimulation amplitude for each electrode; determining, using the set of stimulation parameters, a first axial stimulation field for neural elements oriented axially with respect to a longitudinal axis of the lead; and outputting the first axial stimulation field for viewing by a user. The actions may also include receiving a modification of the set of stimulation parameters; determining, using the modified set of stimulation parameters, a second axial stimulation field for neural elements oriented axially with respect to a longitudinal axis of the lead; outputting the second axial stimulation field for viewing by a user; receiving a selection of either the set of stimulation parameters or the modified set of stimulation parameters as a selected set of stimulation parameters; and outputting the selected set of stimulation parameters to be received by an electrical stimulation device for delivery of electrical stimulation to a patient via an electrical stimulation lead.


A further embodiment is a modification of the methods, systems, and computer-readable media described above where, instead of first and second axial stimulation fields for neural elements oriented axially with respect to a longitudinal axis of the lead, the methods, systems, and computer-readable media determine and output first and second non-orthogonal stimulation fields for neural elements oriented non-orthogonally with respect to a longitudinal axis of the lead at a specified non-orthogonal angle or over a specified range of non-orthogonal angles.


In at least some embodiments, determining a first axial or non-orthogonal stimulation field includes selecting a plurality of planes orthogonal to the lead; modeling the neural elements as fixed length elements that intersect only one of the planes; and determining, for each plane and using the stimulation parameters, which of the fixed length elements intersecting the plane are activated using the stimulation parameters.


In at least some embodiments, determining a first axial or non-orthogonal stimulation field includes modeling the neural elements as extending axially or non-orthogonally relative to the lead; and determining, using the stimulation parameters, which of the neural elements are activated using the stimulation parameters. In at least some embodiments, the method, system, or computer-readable mediums further includes determining, by the computer processor, a time sequence of activation along the neural elements that are activated using the stimulation parameters and outputting, by the computer processor, the first axial or non-orthogonal stimulation field indicating different states of the first axial or non-orthogonal stimulation field over time based on the time sequence. In at least some embodiments, the method, system, or computer-readable mediums further includes receiving, by the computer processor, a time selection and outputting, by the computer processor, the first axial or non-orthogonal stimulation field at the time selection based on the time sequence.


In at least some embodiments, determining a first axial or non-orthogonal stimulation field includes modeling the neural elements as extending axially or non-orthogonally relative to the lead; and determining, using the stimulation parameters, which of the neural elements are activated using the stimulation parameters and at what point along each of the neural elements that that neural element is first activated.


In at least some embodiments, the method, system, or computer-readable mediums further includes determining, by the computer processor and using the set of stimulation parameters, a first transverse stimulation field for neural elements oriented orthogonal with respect to a longitudinal axis of the lead; and outputting, by the computer processor, the first transverse stimulation field for viewing by a user. In at least some embodiments, outputting the first axial or non-orthogonal stimulation field and outputting the first transverse stimulation field includes outputting the first axial or non-orthogonal stimulation field and first transverse stimulation field simultaneously. In at least some embodiments, the method, system, or computer-readable mediums further includes receiving, by the computer processor, a user command to toggle either the first axial or non-orthogonal stimulation field or first transverse stimulation field either on or off.


In at least some embodiments, receiving a modification of the set of stimulation parameters includes receiving a modified stimulation amplitude. In at least some embodiments, receiving a modification of the set of stimulation parameters includes receiving a modified selection of the at least one electrode for delivery of stimulation.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified.


For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying drawings, wherein:



FIG. 1 is a schematic side view of one embodiment of a device for brain stimulation, according to the invention;



FIG. 2 is a schematic diagram of radial current steering along various electrode levels along the length of a lead, according to the invention;



FIG. 3A is a perspective view of an embodiment of a portion of a lead having a plurality of segmented electrodes, according to the invention;



FIG. 3B is a perspective view of a second embodiment of a portion of a lead having a plurality of segmented electrodes, according to the invention;



FIG. 3C is a perspective view of a third embodiment of a portion of a lead having a plurality of segmented electrodes, according to the invention;



FIG. 3D is a perspective view of a fourth embodiment of a portion of a lead having a plurality of segmented electrodes, according to the invention;



FIG. 3E is a perspective view of a fifth embodiment of a portion of a lead having a plurality of segmented electrodes, according to the invention;



FIG. 3F is a perspective view of a sixth embodiment of a portion of a lead having a plurality of segmented electrodes, according to the invention;



FIG. 3G is a perspective view of a seventh embodiment of a portion of a lead having a plurality of segmented electrodes, according to the invention;



FIG. 3H is a perspective view of an eighth embodiment of a portion of a lead having a plurality of segmented electrodes, according to the invention;



FIG. 4 is a schematic flowchart of one embodiment of a method of determining a set of stimulation parameters, according to the invention;



FIG. 5 is a schematic flowchart of another embodiment of a method of determining a set of stimulation parameters, according to the invention;



FIG. 6A is a schematic illustration of one embodiment of a model for determining a stimulation field for neural elements arranged parallel to the lead, according to the invention;



FIG. 6B is a schematic illustration of the stimulation field for the model of FIG. 6A, according to the invention;



FIG. 7A is a schematic illustration of one embodiment of another model for determining a stimulation field for neural elements arranged parallel to the lead, according to the invention;



FIG. 7B is a schematic illustration of the stimulation field for the model of FIG. 7A, according to the invention;



FIG. 8 is a schematic illustration of the stimulation field for the model of FIG. 7A showing the propagation of the stimulation field over time, according to the invention;



FIG. 9A is a schematic illustration of one embodiment of a third model for determining a stimulation field for neural elements arranged parallel to the lead, according to the invention;



FIG. 9B is a schematic illustration of the stimulation field for the model of FIG. 9A, according to the invention; and



FIG. 10 is a schematic illustration of one embodiment of a system for practicing the invention.





DETAILED DESCRIPTION

The invention is directed to the field of electrical stimulation systems. The present invention is also directed to systems and methods for visualizing and directing electrical stimulation of neural elements, as well as methods of making and using systems.


A lead for electrical stimulation can includes one or more stimulation electrodes. In at least some embodiments, one or more of the stimulation electrodes are provided in the form of segmented electrodes that extend only partially around the circumference of the lead. These segmented electrodes can be provided in sets of electrodes, with each set having electrodes radially distributed about the lead at a particular longitudinal position. For illustrative purposes, the leads are described herein relative to use for deep brain stimulation, but it will be understood that any of the leads can be used for applications other than deep brain stimulation, including spinal cord stimulation, peripheral nerve stimulation, dorsal root ganglia stimulation, vagal nerve stimulation, basoreceptor stimulation, or stimulation of other nerves, organs, or tissues.


Suitable implantable electrical stimulation systems include, but are not limited to, at least one lead with one or more electrodes disposed on a distal end of the lead and one or more terminals disposed on one or more proximal ends of the lead. Leads include, for example, percutaneous leads. Examples of electrical stimulation systems with leads are found in, for example, U.S. Pat. Nos. 6,181,969; 6,516,227; 6,609,029; 6,609,032; 6,741,892; 7,244,150; 7,450,997; 7,672,734; 7,761,165; 7,783,359; 7,792,590; 7,809,446; 7,949,395; 7,974,706; 8,175,710; 8,224,450; 8,271,094; 8,295,944; 8,364,278; 8,391,985; and 8,688,235; and U.S. Patent Applications Publication Nos. 2007/0150036; 2009/0187222; 2009/0276021; 2010/0076535; 2010/0268298; 2011/0005069; 2011/0004267; 2011/0078900; 2011/0130817; 2011/0130818; 2011/0238129; 2011/0313500; 2012/0016378; 2012/0046710; 2012/0071949; 2012/0165911; 2012/0197375; 2012/0203316; 2012/0203320; 2012/0203321; 2012/0316615; 2013/0105071; and 2013/0197602, all of which are incorporated by reference.


In at least some embodiments, a practitioner may determine the position of the target neurons using recording electrode(s) and then position the stimulation electrode(s) accordingly. In some embodiments, the same electrodes can be used for both recording and stimulation. In some embodiments, separate leads can be used; one with recording electrodes which identify target neurons, and a second lead with stimulation electrodes that replaces the first after target neuron identification. In some embodiments, the same lead can include both recording electrodes and stimulation electrodes or electrodes can be used for both recording and stimulation.



FIG. 1 illustrates one embodiment of a device 100 for electrical stimulation (for example, brain or spinal cord stimulation). The device includes a lead 110, a plurality of electrodes 125 disposed at least partially about a circumference of the lead 110, a plurality of terminals 135, a connector 132 for connection of the electrodes to a control module, and a stylet 140 for assisting in insertion and positioning of the lead in the patient's brain. The stylet 140 can be made of a rigid material. Examples of suitable materials for the stylet include, but are not limited to, tungsten, stainless steel, and plastic. The stylet 140 may have a handle 150 to assist insertion into the lead 110, as well as rotation of the stylet 140 and lead 110. The connector 132 fits over a proximal end of the lead 110, preferably after removal of the stylet 140. The connector 132 can be part of a control module or can be part of an optional lead extension that is coupled to the control module.


The control module (for example, control module 1014 of FIG. 10) can be an implantable pulse generator that can be implanted into a patient's body, for example, below the patient's clavicle area. The control module can have eight stimulation channels which may be independently programmable to control the magnitude of the current stimulus from each channel. In some cases, the control module can have more or fewer than eight stimulation channels (e.g., 4-, 6-, 16-, 32-, or more stimulation channels). The control module can have one, two, three, four, or more connector ports, for receiving the plurality of terminals 135 at the proximal end of the lead 110. Examples of control modules are described in the references cited above.


In one example of operation, access to the desired position in the brain can be accomplished by drilling a hole in the patient's skull or cranium with a cranial drill (commonly referred to as a burr), and coagulating and incising the dura mater, or brain covering. The lead 110 can be inserted into the cranium and brain tissue with the assistance of the stylet 140. The lead 110 can be guided to the target location within the brain using, for example, a stereotactic frame and a microdrive motor system. In some embodiments, the microdrive motor system can be fully or partially automatic. The microdrive motor system may be configured to perform one or more the following actions (alone or in combination): insert the lead 110, retract the lead 110, or rotate the lead 110.


In some embodiments, measurement devices coupled to the muscles or other tissues stimulated by the target neurons, or a unit responsive to the patient or clinician, can be coupled to the control module or microdrive motor system. The measurement device, user, or clinician can indicate a response by the target muscles or other tissues to the stimulation or recording electrode(s) to further identify the target neurons and facilitate positioning of the stimulation electrode(s). For example, if the target neurons are directed to a muscle experiencing tremors, a measurement device can be used to observe the muscle and indicate changes in tremor frequency or amplitude in response to stimulation of neurons. Alternatively, the patient or clinician can observe the muscle and provide feedback.


The lead 110 for deep brain stimulation can include stimulation electrodes, recording electrodes, or both. In at least some embodiments, the lead 110 is rotatable so that the stimulation electrodes can be aligned with the target neurons after the neurons have been located using the recording electrodes.


Stimulation electrodes may be disposed on the circumference of the lead 110 to stimulate the target neurons. Stimulation electrodes may be ring-shaped so that current projects from each electrode equally in every direction from the position of the electrode along a length of the lead 110. Ring electrodes typically do not enable stimulus current to be directed from only a limited angular range around of the lead. Segmented electrodes, however, can be used to direct stimulation energy to a selected angular range around the lead. When segmented electrodes are used in conjunction with an implantable control module that delivers constant current stimulus, current steering can be achieved to more precisely deliver the stimulus to a position around an axis of the lead (i.e., radial positioning around the axis of the lead).


To achieve current steering, segmented electrodes can be utilized in addition to, or as an alternative to, ring electrodes. Though the following description discusses stimulation electrodes, it will be understood that all configurations of the stimulation electrodes discussed may be utilized in arranging recording electrodes as well. A lead that includes segmented electrodes can be referred to as a directional lead because the segmented electrodes can be used to direct stimulation along a particular direction or range of directions.


The lead 100 includes a lead body 110, one or more optional ring electrodes 120, and a plurality of sets of segmented electrodes 130. The lead body 110 can be formed of a biocompatible, non-conducting material such as, for example, a polymeric material. Suitable polymeric materials include, but are not limited to, silicone, polyurethane, polyurea, polyurethane-urea, polyethylene, or the like. Once implanted in the body, the lead 100 may be in contact with body tissue for extended periods of time. In at least some embodiments, the lead 100 has a cross-sectional diameter of no more than 1.5 mm and may be in the range of 0.5 to 1.5 mm. In at least some embodiments, the lead 100 has a length of at least 10 cm and the length of the lead 100 may be in the range of 10 to 70 cm.


The electrodes can be made using a metal, alloy, conductive oxide, or any other suitable conductive biocompatible material. Examples of suitable materials include, but are not limited to, platinum, platinum iridium alloy, iridium, titanium, tungsten, palladium, palladium rhodium, or the like. Preferably, the electrodes are made of a material that is biocompatible and does not substantially corrode under expected operating conditions in the operating environment for the expected duration of use.


Each of the electrodes can either be used or unused (OFF). When the electrode is used, the electrode can be used as an anode or cathode and carry anodic or cathodic current. In some instances, an electrode might be an anode for a period of time and a cathode for a period of time.


Stimulation electrodes in the form of ring electrodes 120 can be disposed on any part of the lead body 110, usually near a distal end of the lead 100. In FIG. 1, the lead 100 includes two ring electrodes 120. Any number of ring electrodes 120 can be disposed along the length of the lead body 110 including, for example, one, two three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen or more ring electrodes 120. It will be understood that any number of ring electrodes can be disposed along the length of the lead body 110. In some embodiments, the ring electrodes 120 are substantially cylindrical and wrap around the entire circumference of the lead body 110. In some embodiments, the outer diameters of the ring electrodes 120 are substantially equal to the outer diameter of the lead body 110. The length of the ring electrodes 120 may vary according to the desired treatment and the location of the target neurons. In some embodiments the length of the ring electrodes 120 are less than or equal to the diameters of the ring electrodes 120. In other embodiments, the lengths of the ring electrodes 120 are greater than the diameters of the ring electrodes 120. The distal-most ring electrode 120 may be a tip electrode (see, e.g., tip electrode 320a of FIG. 3E) which covers most, or all, of the distal tip of the lead.


Deep brain stimulation leads may include one or more sets of segmented electrodes. Segmented electrodes may provide for superior current steering than ring electrodes because target structures in deep brain stimulation are not typically symmetric about the axis of the distal electrode array. Instead, a target may be located on one side of a plane running through the axis of the lead. Through the use of a radially segmented electrode array, current steering can be performed not only along a length of the lead but also around a circumference of the lead. This provides precise three-dimensional targeting and delivery of the current stimulus to neural target tissue, while potentially avoiding stimulation of other tissue. Examples of leads with segmented electrodes include U.S. Patent Applications Publication Nos. 2010/0268298; 2011/0005069; 2011/0078900; 2011/0130803; 2011/0130816; 2011/0130817; 2011/0130818; 2011/0078900; 2011/0238129; 2011/0313500; 2012/0016378; 2012/0046710; 2012/0071949; 2012/0165911; 2012/197375; 2012/0203316; 2012/0203320; 2012/0203321; 2013/0197602; 2013/0261684; 2013/0325091; 2013/0317587; 2014/0039587; 2014/0353001; 2014/0358209; 2014/0358210; 2015/0018915; 2015/0021817; 2015/0045864; 2015/0021817; 2015/0066120; 2013/0197424; 2015/0151113; 2014/0358207; and U.S. Pat. No. 8,483,237, all of which are incorporated herein by reference in their entireties. Examples of leads with tip electrodes include at least some of the previously cited references, as well as U.S. Patent Applications Publication Nos. 2014/0296953 and 2014/0343647, all of which are incorporated herein by reference in their entireties.


The lead 100 is shown having a plurality of segmented electrodes 130. Any number of segmented electrodes 130 may be disposed on the lead body 110 including, for example, one, two three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen or more segmented electrodes 130. It will be understood that any number of segmented electrodes 130 may be disposed along the length of the lead body 110. A segmented electrode 130 typically extends only 75%, 67%, 60%, 50%, 40%, 33%, 25%, 20%, 17%, 15%, or less around the circumference of the lead.


The segmented electrodes 130 may be grouped into sets of segmented electrodes, where each set is disposed around a circumference of the lead 100 at a particular longitudinal portion of the lead 100. The lead 100 may have any number segmented electrodes 130 in a given set of segmented electrodes. The lead 100 may have one, two, three, four, five, six, seven, eight, or more segmented electrodes 130 in a given set. In at least some embodiments, each set of segmented electrodes 130 of the lead 100 contains the same number of segmented electrodes 130. The segmented electrodes 130 disposed on the lead 100 may include a different number of electrodes than at least one other set of segmented electrodes 130 disposed on the lead 100.


The segmented electrodes 130 may vary in size and shape. In some embodiments, the segmented electrodes 130 are all of the same size, shape, diameter, width or area or any combination thereof. In some embodiments, the segmented electrodes 130 of each circumferential set (or even all segmented electrodes disposed on the lead 100) may be identical in size and shape.


Each set of segmented electrodes 130 may be disposed around the circumference of the lead body 110 to form a substantially cylindrical shape around the lead body 110. The spacing between individual electrodes of a given set of the segmented electrodes may be the same, or different from, the spacing between individual electrodes of another set of segmented electrodes on the lead 100. In at least some embodiments, equal spaces, gaps or cutouts are disposed between each segmented electrode 130 around the circumference of the lead body 110. In other embodiments, the spaces, gaps or cutouts between the segmented electrodes 130 may differ in size or shape. In other embodiments, the spaces, gaps, or cutouts between segmented electrodes 130 may be uniform for a particular set of the segmented electrodes 130, or for all sets of the segmented electrodes 130. The sets of segmented electrodes 130 may be positioned in irregular or regular intervals along a length the lead body 110.


Conductor wires that attach to the ring electrodes 120 or segmented electrodes 130 extend along the lead body 110. These conductor wires may extend through the material of the lead 100 or along one or more lumens defined by the lead 100, or both. The conductor wires couple the electrodes 120, 130 to the terminals 135.


When the lead 100 includes both ring electrodes 120 and segmented electrodes 130, the ring electrodes 120 and the segmented electrodes 130 may be arranged in any suitable configuration. For example, when the lead 100 includes two ring electrodes 120 and two sets of segmented electrodes 130, the ring electrodes 120 can flank the two sets of segmented electrodes 130 (see e.g., FIGS. 1, 3A, and 3E-3H—ring electrodes 320 and segmented electrode 330, 330a, 330b, 330c, 330d). Alternately, the two sets of ring electrodes 120 can be disposed proximal to the two sets of segmented electrodes 130 (see e.g., FIG. 3C—ring electrodes 320 and segmented electrode 330), or the two sets of ring electrodes 120 can be disposed distal to the two sets of segmented electrodes 130 (see e.g., FIG. 3D—ring electrodes 320 and segmented electrode 330). One of the ring electrodes can be a tip electrode (see, tip electrode 320a of FIGS. 3E and 3G). It will be understood that other configurations are possible as well (e.g., alternating ring and segmented electrodes, or the like).


By varying the location of the segmented electrodes 130, different coverage of the target neurons may be selected. For example, the electrode arrangement of FIG. 3C may be useful if the physician anticipates that the neural target will be closer to a distal tip of the lead body 110, while the electrode arrangement of FIG. 3D may be useful if the physician anticipates that the neural target will be closer to a proximal end of the lead body 110.


Any combination of ring electrodes 120 and segmented electrodes 130 may be disposed on the lead 100. For example, the lead may include a first ring electrode 120, two sets of segmented electrodes; each set formed of four segmented electrodes 130, and a final ring electrode 120 at the end of the lead. This configuration may simply be referred to as a 1-4-4-1 configuration (FIGS. 3A and 3E—ring electrodes 320 and segmented electrode 330). It may be useful to refer to the electrodes with this shorthand notation. Thus, the embodiment of FIG. 3C may be referred to as a 1-1-4-4 configuration, while the embodiment of FIG. 3D may be referred to as a 4-4-1-1 configuration. The embodiments of FIGS. 3F, 3G, and 3H can be referred to as a 1-3-3-1 configuration. Other electrode configurations include, for example, a 2-2-2-2 configuration, where four sets of segmented electrodes are disposed on the lead, and a 4-4 configuration, where two sets of segmented electrodes, each having four segmented electrodes 130 are disposed on the lead. The 1-3-3-1 electrode configuration of FIGS. 3F, 3G, and 3H has two sets of segmented electrodes, each set containing three electrodes disposed around the circumference of the lead, flanked by two ring electrodes (FIGS. 3F and 3H) or a ring electrode and a tip electrode (FIG. 3G). In some embodiments, the lead includes 16 electrodes. Possible configurations for a 16-electrode lead include, but are not limited to 4-4-4-4; 8-8; 3-3-3-3-3-1 (and all rearrangements of this configuration); and 2-2-2-2-2-2-2-2.



FIG. 2 is a schematic diagram to illustrate radial current steering along various electrode levels along the length of the lead 200. While conventional lead configurations with ring electrodes are only able to steer current along the length of the lead (the z-axis), the segmented electrode configuration is capable of steering current in the x-axis, y-axis as well as the z-axis. Thus, the centroid of stimulation may be steered in any direction in the three-dimensional space surrounding the lead 200. In some embodiments, the radial distance, r, and the angle θ around the circumference of the lead 200 may be dictated by the percentage of anodic current (recognizing that stimulation predominantly occurs near the cathode, although strong anodes may cause stimulation as well) introduced to each electrode. In at least some embodiments, the configuration of anodes and cathodes along the segmented electrodes allows the centroid of stimulation to be shifted to a variety of different locations along the lead 200.


As can be appreciated from FIG. 2, the stimulation can be shifted at each level along the length L of the lead 200. The use of multiple sets of segmented electrodes at different levels along the length of the lead allows for three-dimensional current steering. In some embodiments, the sets of segmented electrodes are shifted collectively (i.e., the centroid of simulation is similar at each level along the length of the lead). In at least some other embodiments, each set of segmented electrodes is controlled independently. Each set of segmented electrodes may contain two, three, four, five, six, seven, eight or more segmented electrodes. It will be understood that different stimulation profiles may be produced by varying the number of segmented electrodes at each level. For example, when each set of segmented electrodes includes only two segmented electrodes, uniformly distributed gaps (inability to stimulate selectively) may be formed in the stimulation profile. In some embodiments, at least three segmented electrodes in a set are utilized to allow for true 360° selectivity.


Turning to FIGS. 3A-3H, when the lead 300 includes a plurality of sets of segmented electrodes 330, it may be desirable to form the lead 300 such that corresponding electrodes of different sets of segmented electrodes 330 are radially aligned with one another along the length of the lead 300 (see e.g., the segmented electrodes 330 shown in FIGS. 3A and 3C-3G). Radial alignment between corresponding electrodes of different sets of segmented electrodes 330 along the length of the lead 300 may reduce uncertainty as to the location or orientation between corresponding segmented electrodes of different sets of segmented electrodes. Accordingly, it may be beneficial to form electrode arrays such that corresponding electrodes of different sets of segmented electrodes along the length of the lead 300 are radially aligned with one another and do not radially shift in relation to one another during manufacturing of the lead 300.


In other embodiments, individual electrodes in the two sets of segmented electrodes 330 are staggered (see, FIG. 3H) relative to one another along the length of the lead body 310. In some cases, the staggered positioning of corresponding electrodes of different sets of segmented electrodes along the length of the lead 300 may be designed for a specific application.


Segmented electrodes can be used to tailor the stimulation region so that, instead of stimulating tissue around the circumference of the lead as would be achieved using a ring electrode, the stimulation region can be directionally targeted. In some instances, it is desirable to target a parallelepiped (or slab) region 250 that contains the electrodes of the lead 200, as illustrated in FIG. 2. One arrangement for directing a stimulation field into a parallelepiped region uses segmented electrodes disposed on opposite sides of a lead.



FIGS. 3A-3H illustrate leads 300 with segmented electrodes 330, optional ring electrodes 320 or tip electrodes 320a, and a lead body 310. The sets of segmented electrodes 330 each include either two (FIG. 3B), three (FIGS. 3E-3H), or four (FIGS. 3A, 3C, and 3D) or any other number of segmented electrodes including, for example, three, five, six, or more. The sets of segmented electrodes 330 can be aligned with each other (FIGS. 3A-3G) or staggered (FIG. 3H)


Any other suitable arrangements of segmented electrodes can be used. As an example, arrangements in which segmented electrodes are arranged helically with respect to each other. One embodiment includes a double helix.


In at least some instances, a treating physician may wish to tailor the stimulation parameters (such as which one or more of the stimulating electrode contacts to use, the stimulation pulse amplitude (such as current or voltage amplitude depending on the stimulator being used) the stimulation pulse width, the stimulation frequency, or the like or any combination thereof) for a particular patient to improve the effectiveness of the therapy. Electrical stimulation systems can provide an interface that facilitates parameter selections. Examples of such systems and interfaces can be found in, for example, U.S. patent application Ser. Nos. 12/454,330; 12/454,312; 12/454,340; 12/454,343; and 12/454,314 and U.S. Patent Application Publication No. 2014/0277284, all of which are incorporated herein by reference in their entireties.


Conventional electrical stimulation (such as deep brain or spinal cord stimulation) can include a programming procedure that is often performed in an initial session and, in at least some instances, at later sessions. The procedure can involve, for example, testing different sets of stimulation parameters (which can include variations in the electrodes that are selected as well as different electrical parameters such as amplitude, duration, pulse frequency, and the like) and annotating when there is a beneficial therapeutic effect or an unwanted side effect. In at least some embodiments, the clinician performs a monopolar review testing each electrode individually and recording therapeutic/beneficial effects and side effects for each electrode on the lead corresponding to different values of the stimulation amplitude or other stimulation parameters. The clinician may also perform bipolar or multipolar reviews using two or more electrodes.


In contrast to these conventional methods, stimulation region visualization systems and methods can be used to predict or estimate a region of stimulation for a given set of stimulation parameters. In at least some embodiments, the systems and methods further permit a user to modify stimulation parameters and visually observe how such modifications can change the predicted or estimated stimulation region. Such algorithms and systems may provide greater ease of use and flexibility and may enable or enhance stimulation therapy. The terms “stimulation field map” (SFM) and “volume of activation” (VOA) are often used to designate an estimated region of tissue that will be stimulated for a particular set of stimulation parameters. Any suitable method for determining the VOA/SFM can be used including those described in, for example, U.S. Pat. Nos. 8,326,433; 8,675,945; 8,831,731; 8,849,632; and 8,958,615; U.S. Patent Application Publications Nos. 2009/0287272; 2009/0287273; 2012/0314924; 2013/0116744; 2014/0122379; and 2015/0066111; and U.S. Provisional Patent Application Ser. No. 62/030,655, all of which are incorporated herein by reference.


Neural elements (e.g., neural fibers, axons, or the like) can be arranged at any angle with respect to the lead including, but not limited to, both perpendicular or parallel to the longitudinal axis of the lead. At least some visualization methods and systems only determine the activation of neural elements that are transverse (i.e., perpendicular or orthogonal) to the longitudinal axis of the lead. Neural elements, such as axons or presynaptic terminals, are referred to in the discussion below, but it will be recognized that other anatomic features, such as cell bodies or the like can be featured in place of the neural elements.


One example of an activating function that can be employed to approximate the neural element response to electrical stimulation is a second difference of the extracellular potential distribution along a neural element (for example, ∂2V/∂x2 or approximations of this quantity for neural elements such as axons), where V represents the potential along the neural element and x represents a position along the neural element. The second difference provides a quantitative estimate of the polarization of the axon in response to an applied electric field. Another example of a neural element is a presynaptic terminal where likelihood of activation, at least in some instances, is proportional to ∂V/∂x (e.g., the first derivative of voltage along a direction of propagation in the parent axon) or approximations of this quantity. Combinations of these two quantities or other parameters may be used as well.


The methods and systems described herein, however, are directed to determining the stimulation region for neural elements that are arranged parallel to the longitudinal axis of the lead or at a non-orthogonal angle (for example, an angle less than 90 degrees or an angle in a range of 0 to 80 degrees or 0 to 75 degrees or 0 to 45 degrees or 45 to 80 degrees) relative to the longitudinal axis. In particular, in at least some embodiments, the present methods and systems utilize one of several models to represent such neural elements.



FIG. 4 illustrates one embodiment of a method for determining an axial stimulation field and for providing stimulation parameters to a stimulation device to treat a patient. In step 402, a set of stimulation parameters is received. Examples of stimulation parameters that can be received include, but are not limited to, selection of one or more electrodes of a lead to provide the stimulation, a stimulation amplitude for each of the selected electrodes (or a total stimulation amplitude or uniform stimulation amplitude), pulse duration, pulse width, pulse pattern, and the like. In at least some embodiments, the set of stimulation parameters include an identification of at least one electrode for stimulation and a stimulation amplitude for each of the electrodes. The stimulation amplitude may also indicate the polarity of the electrode (e.g., whether the electrode is an anode or cathode) to the polarity may be provided separately. The set of stimulation parameters can be received from a user, such as a clinician or patient; or can be generated by, for example, an electrical stimulation system, clinician programmer, patient programmer, or other device; or can be received from a database or other source of stimulation parameters. Any other suitable method or arrangement for receiving the set of stimulation parameters can also be used.


In step 404, an axial stimulation field is determined. The axial stimulation field is the region around the electrodes where axially oriented neural elements (i.e., neural elements oriented parallel to the longitudinal axis of the lead) are activated using the received stimulation parameters. A number of models for the axially oriented neural elements are presented below to facilitate the determination. In addition, any suitable method can be used for determining the potential or electrical field generated around the lead using the received stimulation parameters. The selected model and the determined potential or electrical field can then be used to determine the region in which axially oriented neural elements will be activated using the received stimulation parameters. For example, the stimulation field can be determined using SFM or VOA techniques. Alternatively or additionally, a stimulation field for neural elements at another non-orthogonal angle or a range of angles can be determined; in which case, reference to the “axial stimulation field” in the description of the remainder of the steps should be replace with this determined stimulation field.


In step 406, the axial stimulation field is output for viewing by the user. For example, the axial stimulation field can be displayed with a model of the distal portion of the lead. In at least some embodiments, the electrode(s) that are to be used for stimulation (or all of the electrodes) are also displayed on the model. As described in more detail below, the display may also include at least some of the stimulation parameters and may also include controls for changing one or more of the stimulation parameters or for modifying the axial stimulation field. In addition, as described in more detail below, the display may also display a transverse stimulation field that is determined, using the stimulation parameters, for neural elements oriented transversely (e.g., perpendicularly) to the longitudinal axis of the lead. Alternatively or additionally, the display may also display one or more non-orthogonal stimulation fields for neural elements oriented at one or more different non-orthogonal angles (or angle ranges) relative to the longitudinal axis of the lead.


In optional step 408, the user may select the stimulation parameters for stimulating a patient. In optional step 410, those stimulation parameters may be output to a stimulation device, such as the control module described above, using, for example, wired or wireless communication. In optional step 412, the stimulation device can stimulate the patient using an attached lead with electrodes and the selected stimulation parameters.



FIG. 5 illustrates another embodiment of a method for determining an axial stimulation field and for providing stimulation parameters to a stimulation device to treat a patient. In step 502, a set of stimulation parameters is received. Examples of stimulation parameters that can be received include, but are not limited to, selection of one or more electrodes of a lead to provide the stimulation, a stimulation amplitude for each of the selected electrodes (or a total stimulation amplitude or uniform stimulation amplitude), pulse duration, pulse width, pulse pattern, and the like. In at least some embodiments, the set of stimulation parameters include an identification of at least one electrode for stimulation and a stimulation amplitude for each of the electrodes. The stimulation amplitude may also indicate the polarity of the electrode (e.g., whether the electrode is an anode or cathode) to the polarity may be provided separately. The set of stimulation parameters can be received from a user, such as a clinician or patient; or can be generated by, for example, an electrical stimulation system, clinician programmer, patient programmer, or other device; or can be received from a database or other source of stimulation parameters. Any other suitable method or arrangement for receiving the set of stimulation parameters can also be used.


In step 504, a first axial stimulation field is determined. The first axial stimulation field is the region around the electrodes where axially oriented neural elements (i.e., neural elements oriented parallel to the longitudinal axis of the lead) are activated using the received stimulation parameters. A number of models for the axially oriented neural elements are presented below to facilitate the determination. In addition, any suitable method can be used for determining the potential or electrical field generated around the lead using the received stimulation parameters. The selected model and the determined potential or electrical field can then be used to determine the region in which axially oriented neural elements will be activated using the received stimulation parameters. Alternatively or additionally, a first stimulation field for neural elements at another non-orthogonal angle or a range of angles can be determined; in which case, reference to the “first axial stimulation field” in the description of the remainder of the steps should be replace with this determined first stimulation field.


Optionally, in step 504, the first axial stimulation field is output for viewing by the user. For example, the first axial stimulation field can be displayed with a model of the distal portion of the lead. In at least some embodiments, the electrode(s) that are to be used for stimulation (or all of the electrodes) are also displayed on the model. As described in more detail below, the display may also include at least some of the stimulation parameters and may also include controls for changing one or more of the stimulation parameters or for modifying the first axial stimulation field. In addition, as described in more detail below, the display may also display a transverse stimulation field that is determined, using the stimulation parameters, for neural elements oriented transversely (e.g., perpendicularly) to the longitudinal axis of the lead. Alternatively or additionally, the display may also display one or more non-orthogonal stimulation fields for neural elements oriented at one or more different non-orthogonal angles (or angle ranges) relative to the longitudinal axis of the lead.


In step 506, a modification of the stimulation parameters is received. For example, a user may modify one or more of the stimulation parameters through a user interface or the system may automatically or, when requested, modify one or more of the stimulation parameters. In some embodiments, the user can input a new value for one or more stimulation parameters or may use sliders, buttons (for example, increasing or decreasing buttons), or other controls on the user interface to modify or otherwise alter one or more stimulation parameters. For example, the user may increase or decrease a stimulation amplitude, pulse duration, pulse pattern, or the like or select one or more different electrodes for providing the stimulation or any other suitable change to the stimulation parameters.


In step 508, a second axial stimulation field is determined using the modified stimulation parameters. Optionally, in step 508, the second axial stimulation field is output for viewing by the user. In some embodiments, the second axial stimulation field is displayed simultaneously with the first axial stimulation field in separate display regions or overlaid in the same display region. Alternatively or additionally, a second stimulation field for neural elements at another non-orthogonal angle or a range of angles can be determined; in which case, reference to the “second axial stimulation field” in the description of the remainder of the steps should be replace with this determined second stimulation field.


Steps 506 and 508 can be performed multiple times to produce additional axial stimulation fields. In optional step 510, the user can select one of the sets of stimulation parameters. Alternatively, the system can select set of stimulation parameters automatically based on one or more criteria, such as, for example, a fit to a target stimulation region. In optional step 512, the selected stimulation parameters may be output to a stimulation device, such as the control module described above, using, for example, wired or wireless communication. In optional step 512, the stimulation device can stimulate the patient using an attached lead with electrodes and the selected stimulation parameters.


It will be understood that the methods described with respect to FIGS. 4 and 5 can be performed multiple times to produce multiple axial stimulation fields. In some embodiments, a user may select from among the multiple axial stimulation fields and corresponding sets of stimulation parameters to obtain a set of stimulation parameters to output to the stimulation device to stimulate the patient.


In order to determine the axial stimulation field, a model of the axial neural elements is constructed. FIG. 6A illustrates a model of the distal end of a lead 600 with a stimulating electrode 625. The neural elements 650 are modeled as short cylinders that are each fixed on one of multiple slices 652 orthogonal to the lead 600. In some embodiments, the neural elements 650 are centered on the respective slices 652. In at least some embodiments, each neural element 650 intersects only one slice 652.


In at least some embodiments, to determine which neural elements 650 are activated, the stimulation parameters are used to determine the electric field. The electric field at the region 654 for each neural element 650 that intersects the corresponding slice 652 is investigated along the neural element to determine whether that particular neural element is activated or not. As an example, the second difference of the extracellular potential distribution (for example, ∂2V/∂x2, ∂V/∂x, or approximations or any combinations of these quantities, where V represents the potential along the neural element and x represents positions along the neural element) of the neural element 650 can be determined along the neural element and, if it meets or exceeds a threshold value, the neural element 650 is activated; if not, the neural element is not activated.


The composite activated neural elements 650 from each slice 652 are then used to form the axial stimulation field 656, as illustrated in FIG. 6B, where the regions 654 of the neural elements 650 within the axial stimulation field 656 are activated and those outside the axial stimulation field 656 are not activated. FIG. 6B also illustrates one embodiment of a control 658 (in this case, up and down areas and a box containing the parameter value) for altering a stimulation parameter, such as the stimulation amplitude, pulse width, pulse frequency, or the like. As described above, when the stimulation parameter is modified, the illustrated axial stimulation field 656 can be updated in view of the modified stimulation parameter.



FIG. 7A illustrates the distal end of a lead 700 with a stimulating electrode 725. In this embodiment, the neural elements 750 are modeled as long cylinders orthogonal to the lead 700. In at least some embodiments, to determine which neural elements 750 are activated, the stimulation parameters are used to determine the electric field along neural elements 750. As an example, the second difference of the extracellular potential distribution (for example, ∂2V/∂x2, ∂V/∂x, or approximations or any combinations of these quantities, where V represents the potential along the neural element and x represents positions along the neural element) of the neural element 750 can be determined and, if it meets or exceeds a threshold value, the neural element 750 is activated; if not, the neural element is not activated.


The composite activated neural elements 750 are then used to form the axial stimulation field 756, as illustrated in FIG. 7B, where the neural elements 750 within the axial stimulation field 756 are activated and those outside the axial stimulation field 756 are not activated. FIG. 7B also illustrates one embodiment of a control 758 (in this case, up and down areas and a box containing the parameter value) for altering a stimulation parameter, such as the stimulation amplitude, pulse width, pulse frequency, or the like. As described above, when the stimulation parameter is modified, the illustrated axial stimulation field 756 can be updated in view of the modified stimulation parameter. FIG. 7B also illustrates that a transverse stimulation field 760 can be determined, using, for example, conventional SFM or VOA calculations for transverse neural elements, and displayed together with the axial stimulation field 756. It will be understood that the transverse stimulation field can also be determined and displayed for the embodiment illustrated in FIG. 6B.


It will be understood that the stimulation fields illustrated in FIGS. 6B and 7B are actually two-dimensional cross-sections of the stimulation fields. In other embodiments, an interface may display a representation that portrays a three-dimensional stimulation field or allow for selection of different two-dimensional cross-sections of the stimulation field.


In some embodiments, the user interface may also permit the user to switch between displaying both the axial and transverse stimulation field; only the axial stimulation field; or only the transverse stimulation field. The user interface may also present or allow the user to select a display that is a combination (e.g., union) or intersection of the axial and transverse stimulation fields. Color, shading, or the like may be used to distinguish between different stimulation fields. In some embodiments, the interface may also, or alternatively, display one or more additional non-orthogonal stimulation fields and, optionally, any combinations or intersections of the displayed or determined axial, transverse, or non-orthogonal stimulation fields.



FIG. 8 illustrates another display that utilizes the model described with respect to FIG. 7A and adds a temporal dimension by considering the time of propagation of the action potential along the neural element 750 from the region 754 of initial activation. FIG. 8 illustrates the axial stimulation field at three different times corresponding to axial stimulation fields 856a, 856b, 856c, respectively. In at least some embodiments, the higher the electrical field at the activation region 764, the faster the neural element 750 will activate and the action potential will propagate. In at least some embodiments, the higher the electrical field at the activation region 754, the longer the portion of the neural element 750 that will be activated. FIG. 8 also illustrates a control 862 that may be used to select a time after initiation of stimulation for display of the corresponding axial propagation field 856. In some embodiments, the user interface may also include a control that the user can operate to view a time progression of the axial stimulation field 856. In some embodiments, the user interface may permit the user to select multiple times and the user will display the axial stimulation fields 856a, 856b, 856c at those different times in the same display region or different display regions. In some embodiments, the time that can be selected represents the time between firing of adjacent nodes of the neural elements.



FIG. 9A illustrates the distal end of a lead 900 with a stimulating electrode 925. In this embodiment, the neural elements 950 are modeled as long cylinders that are orthogonal to the lead 900. In at least some embodiments, to determine which neural elements 950 are activated, the stimulation parameters are used to determine the electric field in the region adjacent to the lead 900. Each neural element 950 is investigated to determine at what point that particular neural element is first activated, as represented by an “x” 955. As an example, the second difference of the extracellular potential distribution (for example, ∂2V/∂x2, ∂V/∂x, or approximations or any combinations of these quantities, where V represents the potential along the neural element and x represents positions along the neural element) of the neural element 950 can be determined in the region adjacent the lead 900 and, if it meets or exceeds a threshold value, along that region the neural element 950 is activated; if not, the neural element is not activated. In at least some embodiments, the time evolution of the electric field, based on the stimulation parameters, is used to determine the first point 955 at which each neural element 950 is activated.


In at least some embodiments, when an axon is activated, some nodes are activated by the stimulation pulse, and others are activated by the normal course of the activation moving along the axon. Analysis of the difference in the activation times of adjacent nodes can, at least in some instances, produce a determination whether a particular node was activated as a direct result of the stimulation pulse, or if it was activated by the normal course of activation progressing along the axon. In at least some embodiments, when the times of activation of the nodes are determined, a volume of activation can be constructed by using the nodes for which the time difference in activation shows that the activation is the result of stimulation. In at least some embodiments, an activation threshold is defined as the amplitude at which the nearest node fires after the test node has fired with a time difference of less than the propagation delay.


The composite activated neural elements 950 are then used to form the axial stimulation field 956, as illustrated in FIG. 9B, where the regions 954 of the neural elements 950 within the axial stimulation field 956 are activated and those outside the axial stimulation field 956 are not activated. In at least some embodiments, the user interface may also include a control for altering a stimulation parameter, such as the stimulation amplitude, or altering a time during or after the stimulation. As described above, when the stimulation parameter or time is modified, the illustrated axial stimulation field 956 can be updated in view of the modified stimulation parameter. In some embodiments, the time progression of the axial stimulation field can be illustrated as described above with respect to FIG. 8.


The models illustrated above in FIGS. 6A-9B have been described relative to modeling axial neural elements and axial stimulation fields. It will be recognized that these same models can be modified using non-orthogonal neural elements to determine non-orthogonal stimulation fields.



FIG. 10 illustrates one embodiment of a system for practicing the invention. The system can include a computer 1000 or any other similar device that includes a processor 1002 and a memory 1004, a display 1006, an input device 1008, and, optionally, the electrical stimulation system 1012.


The computer 1000 can be a laptop computer, desktop computer, tablet, mobile device, smartphone or other devices that can run applications or programs, or any other suitable device for processing information and for presenting a user interface (such as the user interfaces of FIGS. 5A, 5B, 6A-6C, 9, and 10). The computer can be, for example, a clinician programmer, patient programmer, or remote programmer for the electrical stimulation system 1012. The computer 1000 can be local to the user or can include components that are non-local to the user including one or both of the processor 1002 or memory 1004 (or portions thereof). For example, in some embodiments, the user may operate a terminal that is connected to a non-local computer. In other embodiments, the memory can be non-local to the user.


The computer 1000 can utilize any suitable processor 1002 including one or more hardware processors that may be local to the user or non-local to the user or other components of the computer. The processor 1002 is configured to execute instructions provided to the processor, as described below.


Any suitable memory 1004 can be used for the computer 1002. The memory 1004 illustrates a type of computer-readable media, namely computer-readable storage media. Computer-readable storage media may include, but is not limited to, nonvolatile, non-transitory, removable, and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. Examples of computer-readable storage media include RAM, ROM, EEPROM, flash memory, or other memory technology, CD-ROM, digital versatile disks (“DVD”) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computer.


Communication methods provide another type of computer readable media; namely communication media. Communication media typically embodies computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, data signal, or other transport mechanism and include any information delivery media. The terms “modulated data signal,” and “carrier-wave signal” includes a signal that has one or more of its characteristics set or changed in such a manner as to encode information, instructions, data, and the like, in the signal. By way of example, communication media includes wired media such as twisted pair, coaxial cable, fiber optics, wave guides, and other wired media and wireless media such as acoustic, RF, infrared, and other wireless media.


The display 1006 can be any suitable display device, such as a monitor, screen, display, or the like, and can include a printer. The input device 1008 can be, for example, a keyboard, mouse, touch screen, track ball, joystick, voice recognition system, or any combination thereof, or the like and can be used by the user to interact with a user interface or clinical effects map.


The electrical stimulation system 1012 can include, for example, a control module 1014 (for example, an implantable pulse generator) and a lead 1016 (for example, the lead illustrated in FIG. 1.) The electrical stimulation system 1012 may communicate with the computer 1000 through a wired or wireless connection or, alternatively or additionally, a user can provide information between the electrical stimulation system 1012 and the computer 1000 using a computer-readable medium or by some other mechanism. In some embodiments, the computer 1000 may include part of the electrical stimulation system.


The methods and systems described herein may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Accordingly, the methods and systems described herein may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Systems referenced herein typically include memory and typically include methods for communication with other devices including mobile devices. Methods of communication can include both wired and wireless (e.g., RF, optical, or infrared) communications methods and such methods provide another type of computer readable media; namely communication media. Wired communication can include communication over a twisted pair, coaxial cable, fiber optics, wave guides, or the like, or any combination thereof. Wireless communication can include RF, infrared, acoustic, near field communication, Bluetooth™, or the like, or any combination thereof.


It will be understood that each block of the flowchart illustrations, and combinations of blocks in the flowchart illustrations and methods disclosed herein, can be implemented by computer program instructions. These program instructions may be provided to a processor to produce a machine, such that the instructions, which execute on the processor, create means for implementing the actions specified in the flowchart block or blocks disclosed herein. The computer program instructions may be executed by a processor to cause a series of operational steps to be performed by the processor to produce a computer implemented process. The computer program instructions may also cause at least some of the operational steps to be performed in parallel. Moreover, some of the steps may also be performed across more than one processor, such as might arise in a multi-processor computer system. In addition, one or more processes may also be performed concurrently with other processes, or even in a different sequence than illustrated without departing from the scope or spirit of the invention.


The computer program instructions can be stored on any suitable computer-readable medium including, but not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (“DVD”) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computer.


The above specification and examples data provide a description of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.

Claims
  • 1. A computer-implemented method for determining a set of stimulation parameters for an electrical stimulation lead, the method comprising: receiving, by a computer processor, a set of stimulation parameters comprising at least one electrode for delivery of stimulation and a stimulation amplitude for each of the at least one electrode;determining, by the computer processor and using the set of stimulation parameters, a first axial stimulation field for neural elements oriented axially with respect to a longitudinal axis of the lead;outputting, by the computer processor, the first axial stimulation field for viewing by a user;receiving, by the computer processor, a modification of the set of stimulation parameters;determining, by the computer processor and using the modified set of stimulation parameters, a second axial stimulation field for the neural elements oriented axially with respect to a longitudinal axis of the lead;outputting, by the computer processor, the second axial stimulation field for viewing by a user;receiving, by the computer processor, a user selection, in response to the output of the first axial stimulation field and the second axial stimulation field, of either the set of stimulation parameters, from which the first axial stimulation field was determined, or the modified set of stimulation parameters, from which the second axial stimulation field was determined, as a selected set of stimulation parameters; andoutputting, by the computer processor, the selected set of stimulation parameters to be received by an electrical stimulation device for delivery of electrical stimulation to a patient via an electrical stimulation lead.
  • 2. The method of claim 1, wherein determining a first axial stimulation field comprises selecting a plurality of planes orthogonal to the lead; modeling the neural elements as fixed length elements that intersect only one of the planes; and determining, for each plane and using the stimulation parameters, which of the fixed length elements intersecting the plane are activated using the stimulation parameters.
  • 3. The method of claim 1, wherein determining a first axial stimulation field comprises modeling the neural elements as extending axially relative to the lead; and determining, using the stimulation parameters, which of the neural elements are activated using the stimulation parameters.
  • 4. The method of claim 3, further comprising determining, by the computer processor, a time sequence of activation along the neural elements that are activated using the stimulation parameters and outputting, by the computer processor, the first axial stimulation field indicating different states of the first axial stimulation field over time based on the time sequence.
  • 5. The method of claim 4, further comprising receiving, by the computer processor, a time selection and outputting, by the computer processor, the first axial stimulation field at the time selection based on the time sequence.
  • 6. The method of claim 1, wherein determining a first axial stimulation field comprises modeling the neural elements as extending axially relative to the lead; and determining, using the stimulation parameters, which of the neural elements are activated using the stimulation parameters and at what point along each of the neural elements that that neural element is first activated.
  • 7. The method of claim 1, further comprising determining, by the computer processor and using the set of stimulation parameters, a first transverse stimulation field for neural elements oriented orthogonal with respect to a longitudinal axis of the lead; and outputting, by the computer processor, the first transverse stimulation field for viewing by a user.
  • 8. The method of claim 7, wherein outputting the first axial stimulation field and outputting the first transverse stimulation field comprises outputting the first axial stimulation field and first transverse stimulation field simultaneously.
  • 9. The method of claim 8, further comprising receiving, by the computer processor, a user command to toggle either the first axial stimulation field or first transverse stimulation field either on or off.
  • 10. The method of claim 1, wherein receiving a modification of the set of stimulation parameters comprises receiving a modified stimulation amplitude.
  • 11. The method of claim 1, wherein receiving a modification of the set of stimulation parameters comprises receiving a modified selection of the at least one electrode for delivery of stimulation.
  • 12. A system for determining a set of stimulation parameters for an electrical stimulation lead, the system comprising: a display; anda computer processor coupled to the display and configured and arranged to perform the method of claim 1.
  • 13. The system of claim 12, further comprising an implantable lead and an implantable control module coupleable to the lead and configured and arranged to receive the set of stimulation parameters from the computer processor and to deliver electrical stimulation to a patient using the lead according to the set of stimulation parameters.
  • 14. A non-transitory computer-readable medium having processor-executable instructions for determining a set of stimulation parameters, the processor-executable instructions when installed onto a device enable the device to perform actions, including: receiving a set of stimulation parameters comprising at least one electrode for delivery of stimulation and a stimulation amplitude for each of the at least one electrode;determining, using the set of stimulation parameters, a first axial stimulation field for neural elements oriented axially with respect to a longitudinal axis of the lead;outputting the first axial stimulation field for viewing by a user;receiving a modification of the set of stimulation parameters;determining, using the modified set of stimulation parameters, a second axial stimulation field for the neural elements oriented axially with respect to a longitudinal axis of the lead;outputting the second axial stimulation field for viewing by a user;receiving a user selection, in response to the output of the first axial stimulation field and the second axial stimulation field, of either the set of stimulation parameters, from which the first axial stimulation field was determined, or the modified set of stimulation parameters, from which the second axial stimulation field was determined, as a selected set of stimulation parameters; andoutputting the selected set of stimulation parameters to be received by an electrical stimulation device for delivery of electrical stimulation to a patient via an electrical stimulation lead.
  • 15. The non-transitory computer-readable medium of claim 14, wherein determining a first axial stimulation field comprises selecting a plurality of planes orthogonal to the lead; modeling the neural elements as fixed length elements that intersect only one of the planes; and determining, for each plane and using the stimulation parameters, which of the fixed length elements intersecting the plane are activated using the stimulation parameters.
  • 16. The non-transitory computer-readable medium of claim 14, wherein determining a first axial stimulation field comprises modeling the neural elements as extending axially relative to the lead; and determining, using the stimulation parameters, which of the neural elements are activated using the stimulation parameters.
  • 17. A computer-implemented method for determining a set of stimulation parameters for an electrical stimulation lead, the method comprising: receiving, by a computer processor, a set of stimulation parameters comprising at least one electrode for delivery of stimulation and a stimulation amplitude for each of the at least one electrode;determining, by the computer processor and using the set of stimulation parameters, a first non-orthogonal stimulation field for neural elements oriented non-orthogonally with respect to a longitudinal axis of the lead at a specified non-orthogonal angle or over a specified range of non-orthogonal angles;outputting, by the computer processor, the first non-orthogonal stimulation field for viewing by a user;receiving, by the computer processor, a modification of the set of stimulation parameters;determining, by the computer processor and using the modified set of stimulation parameters, a second non-orthogonal stimulation field for the neural elements oriented non-orthogonally with respect to a longitudinal axis of the lead;outputting, by the computer processor, the second non-orthogonal stimulation field for viewing by a user;receiving, by the computer processor, a user selection, in response to the output of the first non-orthogonal stimulation field and the second non-orthogonal stimulation field, of either the set of stimulation parameters, from which the first non-orthogonal stimulation field was determined, or the modified set of stimulation parameters, from which the second non-orthogonal stimulation field was determined, as a selected set of stimulation parameters; andoutputting, by the computer processor, the selected set of stimulation parameters to be received by an electrical stimulation device for delivery of electrical stimulation to a patient via an electrical stimulation lead.
  • 18. The method of claim 17, wherein determining a first non-orthogonal stimulation field comprises selecting a plurality of planes orthogonal to the lead; modeling the neural elements as fixed length elements that intersect only one of the planes; and determining, for each plane and using the stimulation parameters, which of the fixed length elements intersecting the plane are activated using the stimulation parameters.
  • 19. The method of claim 17, wherein determining a first non-orthogonal stimulation field comprises modeling the neural elements as extending non-orthogonally relative to the lead; and determining, using the stimulation parameters, which of the neural elements are activated using the stimulation parameters.
  • 20. The method of claim 19, further comprising determining, by the computer processor, a time sequence of activation along the neural elements that are activated using the stimulation parameters and outputting, by the computer processor, the first non-orthogonal stimulation field indicating different states of the first non-orthogonal stimulation field over time based on the time sequence.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/383,200, filed Sep. 2, 2016, which is incorporated herein by reference.

US Referenced Citations (499)
Number Name Date Kind
3999555 Person Dec 1976 A
4144889 Tyers et al. Mar 1979 A
4177818 De Pedro Dec 1979 A
4341221 Testerman Jul 1982 A
4378797 Osterholm Apr 1983 A
4445500 Osterholm May 1984 A
4735208 Wyler et al. Apr 1988 A
4765341 Mower et al. Aug 1988 A
4841973 Stecker Jun 1989 A
5067495 Brehm Nov 1991 A
5099846 Hardy Mar 1992 A
5222494 Baker, Jr. Jun 1993 A
5255693 Dutcher Oct 1993 A
5259387 dePinto Nov 1993 A
5304206 Baker, Jr. et al. Apr 1994 A
5344438 Testerman et al. Sep 1994 A
5361763 Kao et al. Nov 1994 A
5452407 Crook Sep 1995 A
5560360 Filler et al. Oct 1996 A
5565949 Kasha, Jr. Oct 1996 A
5593427 Gliner et al. Jan 1997 A
5601612 Gliner et al. Feb 1997 A
5607454 Cameron et al. Mar 1997 A
5620470 Gliner et al. Apr 1997 A
5651767 Schulmann Jul 1997 A
5711316 Elsberry et al. Jan 1998 A
5713922 King Feb 1998 A
5716377 Rise et al. Feb 1998 A
5724985 Snell et al. Mar 1998 A
5749904 Gliner et al. May 1998 A
5749905 Gliner et al. May 1998 A
5776170 MacDonald et al. Jul 1998 A
5782762 Vining Jul 1998 A
5843148 Gijsbers et al. Dec 1998 A
5859922 Hoffmann Jan 1999 A
5868740 LeVeen et al. Feb 1999 A
5897583 Meyer et al. Apr 1999 A
5910804 Fortenbery et al. Jun 1999 A
5925070 King et al. Jul 1999 A
5938688 Schiff Aug 1999 A
5938690 Law et al. Aug 1999 A
5978713 Prutchi et al. Nov 1999 A
6016449 Fischell et al. Jan 2000 A
6029090 Herbst Feb 2000 A
6029091 de la Rama et al. Feb 2000 A
6050992 Nichols Apr 2000 A
6058331 King May 2000 A
6066163 John May 2000 A
6083162 Vining Jul 2000 A
6094598 Elsberry et al. Jul 2000 A
6096756 Crain et al. Aug 2000 A
6106460 Panescu et al. Aug 2000 A
6109269 Rise et al. Aug 2000 A
6128538 Fischell et al. Oct 2000 A
6129685 Howard, III Oct 2000 A
6146390 Heilbrun et al. Nov 2000 A
6161044 Silverstone Dec 2000 A
6167311 Rezai Dec 2000 A
6181969 Gord Jan 2001 B1
6192266 Dupree et al. Feb 2001 B1
6205361 Kuzma Mar 2001 B1
6208881 Champeau Mar 2001 B1
6240308 Hardy et al. May 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6253109 Gielen Jun 2001 B1
6289239 Panescu et al. Sep 2001 B1
6301492 Zonenshayn Oct 2001 B1
6310619 Rice Oct 2001 B1
6319241 King Nov 2001 B1
6336899 Yamazaki Jan 2002 B1
6343226 Sunde et al. Jan 2002 B1
6351675 Tholen et al. Feb 2002 B1
6353762 Baudino et al. Mar 2002 B1
6366813 Dilorenzo Apr 2002 B1
6368331 Front et al. Apr 2002 B1
6389311 Whayne et al. May 2002 B1
6393325 Mann et al. May 2002 B1
6421566 Holsheimer Jul 2002 B1
6435878 Reynolds et al. Aug 2002 B1
6442432 Lee Aug 2002 B2
6463328 John Oct 2002 B1
6491699 Henderson et al. Dec 2002 B1
6494831 Koritzinsky Dec 2002 B1
6507759 Prutchi et al. Jan 2003 B1
6510347 Borkan Jan 2003 B2
6516227 Meadows et al. Feb 2003 B1
6517480 Krass Feb 2003 B1
6539263 Schiff Mar 2003 B1
6560490 Grill et al. May 2003 B2
6579280 Kovach et al. Jun 2003 B1
6600956 Maschino et al. Jul 2003 B2
6606523 Jenkins Aug 2003 B1
6609029 Mann et al. Aug 2003 B1
6609031 Law et al. Aug 2003 B1
6609032 Woods et al. Aug 2003 B1
6622048 Mann et al. Sep 2003 B1
6631297 Mo Oct 2003 B1
6654642 North et al. Nov 2003 B2
6662053 Borkan Dec 2003 B2
6675046 Holsheimer Jan 2004 B2
6684106 Herbst Jan 2004 B2
6687392 Touzawa et al. Feb 2004 B1
6690972 Conley et al. Feb 2004 B2
6690974 Archer et al. Feb 2004 B2
6692315 Soumillion et al. Feb 2004 B1
6694162 Hartlep Feb 2004 B2
6694163 Vining Feb 2004 B1
6708096 Frei et al. Mar 2004 B1
6741892 Meadows et al. May 2004 B1
6748098 Rosenfeld Jun 2004 B1
6748276 Daignault, Jr. et al. Jun 2004 B1
6778846 Martinez et al. Aug 2004 B1
6788969 Dupree et al. Sep 2004 B2
6795737 Gielen et al. Sep 2004 B2
6827681 Tanner et al. Dec 2004 B2
6830544 Tanner Dec 2004 B2
6845267 Harrison et al. Jan 2005 B2
6850802 Holsheimer Feb 2005 B2
6895280 Meadows et al. May 2005 B2
6909913 Vining Jun 2005 B2
6937891 Leinders et al. Aug 2005 B2
6937903 Schuler et al. Aug 2005 B2
6944497 Stypulkowski Sep 2005 B2
6944501 Pless Sep 2005 B1
6950707 Whitehurst Sep 2005 B2
6969388 Goldman et al. Nov 2005 B2
7003349 Andersson et al. Feb 2006 B1
7003352 Whitehurst Feb 2006 B1
7008370 Tanner et al. Mar 2006 B2
7008413 Kovach et al. Mar 2006 B2
7035690 Goetz Apr 2006 B2
7043293 Baura May 2006 B1
7047082 Schrom et al. May 2006 B1
7047084 Erickson et al. May 2006 B2
7050857 Samuelsson et al. May 2006 B2
7054692 Whitehurst et al. May 2006 B1
7136518 Griffin et al. May 2006 B2
7058446 Schuler et al. Jun 2006 B2
7082333 Bauhahn et al. Jul 2006 B1
7107102 Daignault et al. Sep 2006 B2
7126000 Ogawa et al. Oct 2006 B2
7127297 Law et al. Oct 2006 B2
7136695 Pless et al. Nov 2006 B2
7142923 North et al. Nov 2006 B2
7146219 Sieracki et al. Dec 2006 B2
7146223 King Dec 2006 B1
7151961 Whitehurst Dec 2006 B1
7155279 Whitehurst Dec 2006 B2
7167760 Dawant et al. Jan 2007 B2
7177674 Echauz et al. Feb 2007 B2
7181286 Sieracki et al. Feb 2007 B2
7184837 Goetz Feb 2007 B2
7191014 Kobayashi et al. Mar 2007 B2
7209787 Dilorenzo Apr 2007 B2
7211050 Caplygin May 2007 B1
7216000 Sieracki et al. May 2007 B2
7217276 Henderson May 2007 B2
7218968 Condie et al. May 2007 B2
7228179 Campen et al. Jun 2007 B2
7231254 DiLorenzo Jun 2007 B2
7236830 Gliner Jun 2007 B2
7239910 Tanner Jul 2007 B2
7239916 Thompson et al. Jul 2007 B2
7239926 Goetz Jul 2007 B2
7242984 DiLorenzo Jul 2007 B2
7244150 Brase et al. Jul 2007 B1
7252090 Goetz Aug 2007 B2
7254445 Law et al. Aug 2007 B2
7254446 Erickson Aug 2007 B1
7257447 Cates et al. Aug 2007 B2
7266412 Stypulkowski Sep 2007 B2
7294107 Simon et al. Nov 2007 B2
7295876 Erickson Nov 2007 B1
7299096 Balzer et al. Nov 2007 B2
7308302 Schuler et al. Dec 2007 B1
7313430 Urquhart Dec 2007 B2
7324851 DiLorenzo Jan 2008 B1
7346382 McIntyre et al. Mar 2008 B2
7388974 Yanagita Jun 2008 B2
7450997 Pianca et al. Nov 2008 B1
7463928 Lee et al. Dec 2008 B2
7499048 Sieracki et al. Mar 2009 B2
7505815 Lee et al. Mar 2009 B2
7548786 Lee et al. Jun 2009 B2
7565199 Sheffield et al. Jul 2009 B2
7603177 Sieracki et al. Oct 2009 B2
7617002 Goetz Nov 2009 B2
7623918 Goetz Nov 2009 B2
7650184 Walter Jan 2010 B2
7657319 Goetz et al. Feb 2010 B2
7672734 Anderson et al. Mar 2010 B2
7676273 Goetz et al. Mar 2010 B2
7680526 McIntyre et al. Mar 2010 B2
7734340 De Ridder Jun 2010 B2
7761165 He et al. Jul 2010 B1
7783359 Meadows Aug 2010 B2
7792590 Pianca et al. Sep 2010 B1
7809446 Meadows Oct 2010 B2
7826902 Stone et al. Nov 2010 B2
7848802 Goetz et al. Dec 2010 B2
7860548 McIntyre et al. Dec 2010 B2
7904134 McIntyre et al. Mar 2011 B2
7945105 Jaenisch May 2011 B1
7949395 Kuzma May 2011 B2
7974706 Moffitt et al. Jul 2011 B2
8000794 Lozano Aug 2011 B2
8019439 Kuzma et al. Sep 2011 B2
8175710 He May 2012 B2
8180601 Butson et al. May 2012 B2
8195300 Gliner et al. Jun 2012 B2
8224450 Brase Jul 2012 B2
8257684 Covalin et al. Sep 2012 B2
8262714 Hulvershorn et al. Sep 2012 B2
8271094 Moffitt et al. Sep 2012 B1
8280514 Lozano et al. Oct 2012 B2
8295944 Howard et al. Oct 2012 B2
8326433 Blum et al. Dec 2012 B2
8364278 Pianca et al. Jan 2013 B2
8391985 McDonald Mar 2013 B2
8429174 Ramani et al. Apr 2013 B2
8452415 Goetz et al. May 2013 B2
8473061 Moffitt et al. Jun 2013 B2
8483237 Zimmermann et al. Jul 2013 B2
8543189 Paitel et al. Sep 2013 B2
8571665 Moffitt et al. Oct 2013 B2
8606360 Butson et al. Dec 2013 B2
8620452 King et al. Dec 2013 B2
8675945 Barnhorst et al. Mar 2014 B2
8688235 Pianca et al. Apr 2014 B1
8792993 Pianca et al. Jul 2014 B2
8831731 Blum et al. Sep 2014 B2
8849632 Sparks et al. Sep 2014 B2
8958615 Blum et al. Feb 2015 B2
9248272 Romero Feb 2016 B2
20010031071 Nichols et al. Oct 2001 A1
20020032375 Bauch et al. Mar 2002 A1
20020062143 Baudino et al. May 2002 A1
20020087201 Firlik et al. Jul 2002 A1
20020099295 Gil et al. Jul 2002 A1
20020115603 Whitehouse Aug 2002 A1
20020116030 Rezei Aug 2002 A1
20020123780 Grill et al. Sep 2002 A1
20020128694 Holsheimer Sep 2002 A1
20020151939 Rezai Oct 2002 A1
20020183607 Bauch et al. Dec 2002 A1
20020183740 Edwards et al. Dec 2002 A1
20020183817 Van Venrooij et al. Dec 2002 A1
20030097159 Schiff et al. May 2003 A1
20030149450 Mayberg Aug 2003 A1
20030171791 KenKnight et al. Sep 2003 A1
20030212439 Schuler et al. Nov 2003 A1
20040034394 Woods et al. Feb 2004 A1
20040044279 Lewin et al. Mar 2004 A1
20040044378 Holsheimer Mar 2004 A1
20040044379 Holsheimer Mar 2004 A1
20040054297 Wingeier et al. Mar 2004 A1
20040059395 North et al. Mar 2004 A1
20040106916 Quaid et al. Jun 2004 A1
20040133248 Frei et al. Jul 2004 A1
20040152957 Stivoric et al. Aug 2004 A1
20040181262 Bauhahn Sep 2004 A1
20040186532 Tadlock Sep 2004 A1
20040199216 Lee et al. Oct 2004 A1
20040267330 Lee et al. Dec 2004 A1
20050021090 Schuler et al. Jan 2005 A1
20050033380 Tanner et al. Feb 2005 A1
20050049649 Luders et al. Mar 2005 A1
20050060001 Singhal et al. Mar 2005 A1
20050060009 Goetz Mar 2005 A1
20050070781 Dawant et al. Mar 2005 A1
20050075689 Toy et al. Apr 2005 A1
20050085714 Foley et al. Apr 2005 A1
20050165294 Weiss Jul 2005 A1
20050171587 Daglow et al. Aug 2005 A1
20050228250 Bitter et al. Oct 2005 A1
20050251061 Schuler et al. Nov 2005 A1
20050261061 Nguyen et al. Nov 2005 A1
20050261601 Schuler et al. Nov 2005 A1
20050261747 Schuler et al. Nov 2005 A1
20050267347 Oster Dec 2005 A1
20050288732 Schuler et al. Dec 2005 A1
20060004422 De Ridder Jan 2006 A1
20060017749 McIntyre et al. Jan 2006 A1
20060020292 Goetz et al. Jan 2006 A1
20060069415 Cameron et al. Mar 2006 A1
20060094951 Dean et al. May 2006 A1
20060095088 De Riddler May 2006 A1
20060155340 Schuler et al. Jul 2006 A1
20060206169 Schuler Sep 2006 A1
20060218007 Bjorner et al. Sep 2006 A1
20060224189 Schuler et al. Oct 2006 A1
20060235472 Goetz et al. Oct 2006 A1
20060259079 King Nov 2006 A1
20060259099 Goetz et al. Nov 2006 A1
20070000372 Rezai et al. Jan 2007 A1
20070017749 Dold et al. Jan 2007 A1
20070027514 Gerber Feb 2007 A1
20070043268 Russell Feb 2007 A1
20070049817 Preiss et al. Mar 2007 A1
20070067003 Sanchez et al. Mar 2007 A1
20070078498 Rezai et al. Apr 2007 A1
20070083104 Butson et al. Apr 2007 A1
20070123953 Lee et al. May 2007 A1
20070129769 Bourget et al. Jun 2007 A1
20070135855 Foshee et al. Jun 2007 A1
20070150036 Anderson Jun 2007 A1
20070156186 Lee et al. Jul 2007 A1
20070162086 DiLorenzo Jul 2007 A1
20070162235 Zhan et al. Jul 2007 A1
20070168004 Walter Jul 2007 A1
20070168007 Kuzma et al. Jul 2007 A1
20070185544 Dawant et al. Aug 2007 A1
20070191887 Schuler et al. Aug 2007 A1
20070191912 Ficher et al. Aug 2007 A1
20070197891 Shachar et al. Aug 2007 A1
20070203450 Berry Aug 2007 A1
20070203532 Tass et al. Aug 2007 A1
20070203537 Goetz et al. Aug 2007 A1
20070203538 Stone et al. Aug 2007 A1
20070203539 Stone et al. Aug 2007 A1
20070203540 Goetz et al. Aug 2007 A1
20070203541 Goetz et al. Aug 2007 A1
20070203543 Stone et al. Aug 2007 A1
20070203544 Goetz et al. Aug 2007 A1
20070203545 Stone Aug 2007 A1
20070203546 Stone et al. Aug 2007 A1
20070213789 Nolan et al. Sep 2007 A1
20070213790 Nolan et al. Sep 2007 A1
20070244519 Keacher et al. Oct 2007 A1
20070245318 Goetz et al. Oct 2007 A1
20070255321 Gerber et al. Nov 2007 A1
20070255322 Gerber et al. Nov 2007 A1
20070265664 Gerber et al. Nov 2007 A1
20070276441 Goetz Nov 2007 A1
20070282189 Dan et al. Dec 2007 A1
20070288064 Butson et al. Dec 2007 A1
20080027514 DeMulling et al. Jan 2008 A1
20080039895 Fowler et al. Feb 2008 A1
20080071150 Miesel et al. Mar 2008 A1
20080081982 Simon et al. Apr 2008 A1
20080086451 Torres et al. Apr 2008 A1
20080103533 Patel et al. May 2008 A1
20080114233 McIntyre et al. May 2008 A1
20080114579 McIntyre et al. May 2008 A1
20080123922 Gielen et al. May 2008 A1
20080123923 Gielen et al. May 2008 A1
20080133141 Frost Jun 2008 A1
20080141217 Goetz et al. Jun 2008 A1
20080154340 Goetz et al. Jun 2008 A1
20080154341 McIntyre et al. Jun 2008 A1
20080163097 Goetz et al. Jul 2008 A1
20080183256 Keacher Jul 2008 A1
20080188734 Suryanarayanan et al. Aug 2008 A1
20080215118 Goetz et al. Sep 2008 A1
20080227139 Deisseroth et al. Sep 2008 A1
20080242950 Jung et al. Oct 2008 A1
20080261165 Steingart et al. Oct 2008 A1
20080269588 Csavoy et al. Oct 2008 A1
20080300654 Lambert et al. Dec 2008 A1
20080300797 Tabibiazar et al. Dec 2008 A1
20090016491 Li Jan 2009 A1
20090054950 Stephens Feb 2009 A1
20090082640 Kovach et al. Mar 2009 A1
20090082829 Panken et al. Mar 2009 A1
20090112289 Lee et al. Apr 2009 A1
20090118635 Lujan et al. May 2009 A1
20090118786 Meadows et al. May 2009 A1
20090149917 Whitehurst et al. Jun 2009 A1
20090187222 Barker Jul 2009 A1
20090196471 Goetz et al. Aug 2009 A1
20090196472 Goetz et al. Aug 2009 A1
20090198306 Goetz et al. Aug 2009 A1
20090198354 Wilson Aug 2009 A1
20090204192 Carlton et al. Aug 2009 A1
20090208073 McIntyre et al. Aug 2009 A1
20090210208 McIntyre et al. Aug 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090276008 Lee et al. Nov 2009 A1
20090276021 Meadows et al. Nov 2009 A1
20090281595 King et al. Nov 2009 A1
20090281596 King et al. Nov 2009 A1
20090287271 Blum et al. Nov 2009 A1
20090287272 Kokones et al. Nov 2009 A1
20090287273 Carlton et al. Nov 2009 A1
20090287467 Sparks et al. Nov 2009 A1
20090299164 Singhal et al. Dec 2009 A1
20090299165 Singhal et al. Dec 2009 A1
20090299380 Singhal et al. Dec 2009 A1
20100010566 Thacker et al. Jan 2010 A1
20100010646 Drew et al. Jan 2010 A1
20100023103 Elborno Jan 2010 A1
20100023130 Henry et al. Jan 2010 A1
20100030312 Shen Feb 2010 A1
20100049276 Blum et al. Feb 2010 A1
20100049280 Goetz Feb 2010 A1
20100064249 Groetken Mar 2010 A1
20100076535 Pianca et al. Mar 2010 A1
20100113959 Pascual-Leone et al. May 2010 A1
20100121409 Kothandaraman et al. May 2010 A1
20100135553 Joglekar Jun 2010 A1
20100137944 Zhu Jun 2010 A1
20100152604 Kuala et al. Jun 2010 A1
20100179562 Linker et al. Jul 2010 A1
20100268298 Moffitt Oct 2010 A1
20100324410 Paek et al. Dec 2010 A1
20100331883 Schmitz et al. Dec 2010 A1
20110004267 Meadows Jan 2011 A1
20110005069 Pianca Jan 2011 A1
20110040351 Butson et al. Feb 2011 A1
20110066407 Butson et al. Mar 2011 A1
20110078900 Pianca et al. Apr 2011 A1
20110130803 McDonald Jun 2011 A1
20110130816 Howard et al. Jun 2011 A1
20110130817 Chen Jun 2011 A1
20110130818 Chen Jun 2011 A1
20110172737 Davis et al. Jul 2011 A1
20110184487 Alberts et al. Jul 2011 A1
20110191275 Lujan et al. Aug 2011 A1
20110196253 McIntyre et al. Aug 2011 A1
20110213440 Fowler et al. Sep 2011 A1
20110238129 Moffitt Sep 2011 A1
20110306845 Osorio Dec 2011 A1
20110306846 Osorio Dec 2011 A1
20110307032 Goetz et al. Dec 2011 A1
20110313268 Kokones Dec 2011 A1
20110313500 Barker et al. Dec 2011 A1
20120016378 Pianca et al. Jan 2012 A1
20120027272 Akinyemi et al. Feb 2012 A1
20120046710 Digiore et al. Feb 2012 A1
20120046715 Moffitt et al. Feb 2012 A1
20120071949 Pianca et al. Mar 2012 A1
20120078106 Dentinger et al. Mar 2012 A1
20120089205 Boyden et al. Apr 2012 A1
20120101552 Lazarewicz et al. Apr 2012 A1
20120116476 Kothandaraman May 2012 A1
20120165898 Moffitt Jun 2012 A1
20120165901 Zhu et al. Jun 2012 A1
20120165911 Pianca Jun 2012 A1
20120197375 Pianca et al. Aug 2012 A1
20120203316 Moffitt et al. Aug 2012 A1
20120203320 Digiore et al. Aug 2012 A1
20120203321 Moffitt et al. Aug 2012 A1
20120207378 Gupta et al. Aug 2012 A1
20120226138 DeSalles et al. Sep 2012 A1
20120229468 Lee et al. Sep 2012 A1
20120265262 Osorio Oct 2012 A1
20120265268 Blum et al. Oct 2012 A1
20120302912 Moffitt et al. Nov 2012 A1
20120303087 Moffitt et al. Nov 2012 A1
20120314924 Carlton et al. Dec 2012 A1
20120316615 Digiore et al. Dec 2012 A1
20120316619 Goetz et al. Dec 2012 A1
20120330622 Butson et al. Dec 2012 A1
20130039550 Blum et al. Feb 2013 A1
20130060305 Bokil Mar 2013 A1
20130105071 Digiore et al. May 2013 A1
20130116744 Blum et al. May 2013 A1
20130116748 Bokil et al. May 2013 A1
20130116749 Carlton et al. May 2013 A1
20130116929 Carlton et al. May 2013 A1
20130150922 Butson et al. Jun 2013 A1
20130197424 Bedenbaugh Aug 2013 A1
20130197602 Pianca et al. Aug 2013 A1
20130261684 Howard Oct 2013 A1
20130289380 Molnar Oct 2013 A1
20130317587 Barker Nov 2013 A1
20130325091 Pianca et al. Dec 2013 A1
20140039587 Romero Feb 2014 A1
20140066999 Carcieri et al. Mar 2014 A1
20140067018 Carcieri et al. Mar 2014 A1
20140067022 Carcieri et al. Mar 2014 A1
20140122379 Moffitt et al. May 2014 A1
20140277284 Chen et al. Sep 2014 A1
20140296953 Pianca et al. Oct 2014 A1
20140343647 Romero et al. Nov 2014 A1
20140353001 Romero et al. Dec 2014 A1
20140358207 Romero Dec 2014 A1
20140358208 Howard et al. Dec 2014 A1
20140358209 Romero et al. Dec 2014 A1
20140358210 Howard et al. Dec 2014 A1
20150018915 Leven Jan 2015 A1
20150021817 Romero et al. Jan 2015 A1
20150045864 Howard Feb 2015 A1
20150051681 Hershey Feb 2015 A1
20150066111 Blum et al. Mar 2015 A1
20150066120 Govea Mar 2015 A1
20150134031 Moffitt et al. May 2015 A1
20150151113 Govea et al. Jun 2015 A1
20160022995 Kothandaraman et al. Jan 2016 A1
20160023008 Kothandaraman Jan 2016 A1
20160030749 Carcieri et al. Feb 2016 A1
20160096025 Moffitt et al. Apr 2016 A1
20160136429 Massoumi et al. May 2016 A1
20160136443 Kothandaraman et al. May 2016 A1
20160256693 Parramon Sep 2016 A1
20160375248 Carcieri et al. Dec 2016 A1
20160375258 Steinke Dec 2016 A1
20170100593 Zottola Apr 2017 A1
20170252570 Serrano Carmona et al. Sep 2017 A1
Foreign Referenced Citations (27)
Number Date Country
1048320 Nov 2000 EP
1166819 Jan 2002 EP
1372780 Jan 2004 EP
1559369 Aug 2005 EP
9739797 Oct 1997 WO
9848880 Nov 1998 WO
0190876 Nov 2001 WO
0226314 Apr 2002 WO
0228473 Apr 2002 WO
02065896 Aug 2002 WO
02072192 Sep 2002 WO
03086185 Oct 2003 WO
2004019799 Mar 2004 WO
2004041080 May 2005 WO
2006017053 Feb 2006 WO
2006113305 Oct 2006 WO
20071097859 Aug 2007 WO
20071097861 Aug 2007 WO
2007100427 Sep 2007 WO
2007100428 Sep 2007 WO
2007112061 Oct 2007 WO
2009097224 Aug 2009 WO
2010120823 Oct 2010 WO
2011025965 Mar 2011 WO
2011139779 Nov 2011 WO
2011159688 Dec 2011 WO
2012088482 Jun 2012 WO
Non-Patent Literature Citations (270)
Entry
Pulliam CL, Heldman DA, Orcutt TH, Mera TO, Giuffrida JP, Vitek JL. Motion sensor strategies for automated optimization of deep brain stimulation in Parkinson's disease. Parkinsonism Relat Disord. Apr. 2015; 21(4):378-82.
International Search Report and Written Opinion for PCT Application No. PCT/US2017/049105 dated Dec. 1, 2017.
Nowinski, W. L., et al., “Statistical analysis of 168 bilateral subthalamic nucleus implantations by means of the probabilistic functional atlas.”, Neurosurgery 57(4 Suppl) (Oct. 2005),319-30.
Obeso, J. A., et al., “Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease.”, N Engl J Med., 345{13l. The Deep-Brain Stimulation for Parkinson's Disease Study Group, (Sep. 27, 2001 ),956-63.
Butson et al.. “Current Steering to control the volume of tissue activated during deep brain stimulation,” vol. 1, No. 1, Dec. 3, 2007, pp. 7-15.
Patrick, S. K., et al., “Quantification of the UPDRS rigidity scale”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, [see also IEEE Trans. on Rehabilitation Engineering 9(1). (2001),31-41.
Phillips, M. D., et al., “Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus—initial experience”, Radiology 239(1). (Apr. 2006),209-16.
Ericsson, A. et al., “Construction of a patient-specific atlas of the brain: Application to normal aging,” Biomedical Imaging: From Nano to Macro, ISBI 2008; 5th IEEE International Symposium, May 14, 2008, pp. 480-483.
Kaikai Shen et al., “Atlas selection strategy using least angle regression in multi-atlas segmentation propagation,” Biomedical Imaging: From Nano to Macro, 2011, 8th IEEE International Symposium, ISBI 2011, Mar. 30, 2011, pp. 1746-1749.
Liliane Ramus et al., “Assessing selection methods in the cotnext of multi-atlas based segmentation,” Biomedical Imaging: From Nano to Macro, 2010, IEEE International Symposium, Apr. 14, 2010, pp. 1321-1324.
Olivier Commowick et al., “Using Frankenstein's Creature Paradigm to Build a Patient Specific Atlas,” Sep. 20, 2009, Medical Image Computing and Computer-Assisted Intervention, pp. 993-1000.
Lotjonen J.M.P. et al., “Fast and robust multi-atlas segmentation of brain magnetic resonance images,” NeuroImage, Academic Press, vol. 49, No. 3, Feb. 1, 2010, pp. 2352-2365.
McIntyre, C. C., et al., “How does deep brain stimulation work? Present understanding and future questions.”, J Clin Neurophysiol. 21 (1 ). (Jan.-Feb. 2004 ),40-50.
Sanchez Castro et al., “A cross validation study of deep brain stimulation targeting: From experts to Atlas-Based, Segmentation-Based and Automatic Registration Algorithms,” IEEE Transactions on Medical Imaging, vol. 25, No. 11, Nov. 1, 2006, pp. 1440-1450.
Plaha, P., et al., “Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism.”, Brain 129{Pt 7) (Jul. 2006), 1732-4 7.
Rattay, F, “Analysis of models for external stimulation of axons”, IEEE Trans. Biomed. Eng. vol. 33 (1986),974-977.
Rattay, F., “Analysis of the electrical excitation of CNS neurons”, IEEE Transactions on Biomedical Engineering 45 (6). (Jun. 1998),766-772.
Rose, T. L., et al., “Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses [neuronal application]”, IEEE Transactions on Biomedical Engineering, 37(11 }, (Nov. 1990), 1118-1120.
Rubinstein, J. T., et al., “Signal coding in cochlear implants: exploiting stochastic effects of electrical stimulation”, Ann Otol Rhinol Laryngol Suppl.. 191, (Sep. 2003), 14-9.
Schwan, H.P., et al., “The conductivity of living tissues.”, Ann NY Acad Sci., 65(6). (AUQ., 1957),1007-13.
Taylor, R. S., et al., “Spinal cord stimulation for chronic back and leg pain and failed back surgery syndrome: a systematic review and analysis of prognostic factors”, Spine 30(1 ). (Jan. 1, 2005), 152-60.
Siegel, Ralph M. et al., “Spatiotemporal dynamics of the functional architecture for gain fields in inferior parietal lobule of behaving monkey,” Cerebral Cortex, New York, NY, vol. 17, No. 2, Feb. 2007, pp. 378-390.
Klein, A. et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration,” NeuroImage, Academic Press, Orlando, FL, vol. 46, No. 3, Jul. 2009, pp. 786-802.
Geddes, L. A., et al., “The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist.”, Med Biol Ena. 5(3), (May 1967),271-93.
Gimsa, J., et al., “Choosing electrodes for deep brain stimulation experiments—electrochemical considerations.”, J Neurosci Methods, 142(2), (Mar. 30, 2005),251-65.
Vidailhet, M. , et al., “Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia”, N Engl J Med. 352(5) (Feb. 3, 2005),459-67.
Izad, Oliver, “Computationally Efficient Method in Predicating Axonal Excitation,” Dissertation for Master Degree, Department of Biomedical Engineering, Case Western Reserve University, May 2009.
Jaccard, Paul, “Elude comparative de la distribution florale dans une portion odes Aples et des Jura,” Bulletin de la Societe Vaudoise des Sciences Naturelles (1901), 37:547-579.
Dice, Lee R., “Measures of the Amount of Ecologic Association Between Species,” Ecology 26(3) (1945): 297-302. doi: 10.2307/ 1932409, http://jstor.org/stable/1932409.
Rand, WM., “Objective criteria for the evaluation cf clustering methods,” Journal of the American Statistical Association (American Statistical Association) 66 (336) (1971 ): 846-850, doi:10.2307/2284239, http://jstor.org/stable/2284239.
Hubert, Lawrence et al., “Comparing partitions,” Journal of Classification 2(1) (1985): 193-218, doi:10.1007/ BF01908075.
Cover, T.M. et al., “Elements of information theory,” (1991) John Wiley & Sons, New York, NY.
Meila, Marina, “Comparing Clusterings by the Variation of Information,” Learning Theory and Kernel Machines (2003): 173-187.
Viola, P., et al., “Alignment by maximization of mutual information”, International Journal of Com outer Vision 24(2). ( 1997), 137-154.
Butson et al. “StimExplorer: Deep Brain Stimulation Parameter Selection Software System,” Acta Neurochirugica, Jan. 1, 2007, vol. 97, No. 2, pp. 569-574.
Butson et al. “Role of Electrode Design on the Volume of Tissue Activated During Deep Brain Stimulation,” Journal of Neural Engineering, Mar. 1, 2006, vol. 3, No. 1, pp. 1-8.
Volkmann et al., Indroduction to the Programming of Deep Brain Stimulators, Movement Disorders, vol. 17, Suppl. 3, pp. S181-S187 (2002).
Miocinovic et al. “Cicerone: Stereotactic Neurophysiological Recording and Deep Brain Stimulation Electrode Placement Software System,” Acta Neurochirurgica Suppl., Jan. 1, 2007, vol. 97, No. 2, pp. 561-567.
Schmidt et al. “Sketching and Composing Widgets for 3D Manipulation,” Eurographics, Apr. 2008, vol. 27, No. 2, pp. 301-310.
Volkmann, J. , et al., “Basic algorithms for the programming of deep brain stimulation in Parkinson's disease”, Mov Disord., 21 Suppl 14. (Jun. 2006),S284-9.
Walter, B. L., et al., “Surgical treatment for Parkinson's disease”, Lancet Neural. 3(12). (Dec. 2004),719-28.
Wei, X. F., et al., “Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes”, J Neural Eng .. 2(4). (Dec. 2005), 139-47.
Zonenshayn, M. et al., “Location of the active contact within the subthalamic nucleus (STN) in the treatment of idiopathic Parkinson's disease.”, Surg Neurol., 62(3) (Sep. 2004),216-25
Da Silva et al (A primer on diffusion tensor imaging of anatomical substructures, Neurosurg Focus 15(1): p. 1-4, Article 4, 2003.).
Micheli-Tzanakou, E., et al., “Computational Intelligence for target assesment in Parkinson's disease”, Proceedings of SPIE vol. 4479. Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation IV,(2001),54-69.
Grill, W. M., “Stimulus waveforms for selective neural stimulation”, IEEE Engineering in Medicine and Biology Magazine, 14(4}, (Jul.-Aug. 1995), 375-385.
Miocinovic, S., et al., “Sensitivity of temporal excitation properties to the neuronal element activated by extracellular stimulation”, J Neurosci Methods. 132(1). (Jan. 15, 2004), 91-9.
Hunka, K. et al., Nursing Time to Program and Assess Deep Brain Stimulators in Movement Disorder Patients, J. Neursci Nurs., 37: 204-10 (Aug. 2005).
Moss, J. , et al., “Electron microscopy of tissue adherent to explanted electrodes in dystonia and Parkinson's disease”, Brain, 127{Pt 12). (Dec. 2004 ),2755-63.
Montgomery, E. B., et al., “Mechanisms of deep brain stimulation and future technical developments.”, Neurol Res. 22(3). (Apr. 2000),259-66.
Merrill, D. R., et al., “Electrical stimulation of excitable tissue: design of efficacious and safe protocols”, J Neurosci Methods. 141(2), (Feb. 15, 2005), 171-98.
Fisekovic et al., “New Controller for Functional Electrical Stimulation Systems”, Med. Eng. Phys. 2001; 23:391-399.
Zhang, Y., et al., “Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy,” Neuroimage 52(4) (2010), pp. 1289-1301.
““BioPSE” The Biomedical Problem Solving Environment”, htt12://www.sci.utah.edu/cibc/software/index.html, MCRR Center for Integrative Biomedical Computing,(2004).
Andrews, R. J., “Neuroprotection trek—the next generation: neuromodulation I. Techniques—deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation.”, Ann NY Acad Sci. 993. (May 2003),1-13.
Carnevale, N.T. et al., “The Neuron Book,” Cambridge, UK: Cambridge University Press (2006), 480 pages.
Chaturvedi: “Development of Accurate Computational Models for Patient-Specific Deep Brain Stimulation,” Electronic Thesis or Dissertation, Jan. 2012, 162 pages.
Chaturvedi, A. et al.: “Patient-specific models of deep brain stimulation: Influence of field model complexity on neural activation predictions.” Brain Stimulation, Elsevier, Amsterdam, NL, vol. 3, No. 2 Apr. 2010, pp. 65-77.
Frankemolle, et al., “Reversing cognitive-motor impairments in Parkinson's disease patients using a computational modeling approach to deep brain stimulation programming,” Brian 133 (2010), pp 746-761.
McIntyre, C.C., et al., “Modeling the excitablitity of mammalian nerve fibers: influence of afterpotentials on the recovery cycle,” J Neurophysiol, 87(2) (Feb. 2002), pp. 995-1006.
Peterson, et al., “Predicting myelinated axon activation using spatial characteristics of the extracellular field,” Journal of Neural Engineering, 8 (2011), 12 pages.
Warman, et al., “Modeling the Effects of Electric Fields on nerver Fibers; Dermination of Excitation Thresholds,” IEEE Transactions on Biomedical Engineering, vol. 39, No. 12 (Dec. 1992), pp. 1244-1254.
Wesselink, et al., “Analysis of Current Density and Related Parameters in Spinal Cord Stimulation,” IEEE Transactions on Rehabilitation Engineering, vol. 6, No. 2 Jun. 1998, pp. 200-207.
Andrews, R. J., “Neuroprotection trek—the next generation: neuromodulation II. Applications—epilepsy, nerve regeneration, neurotrophins.”, Ann NY Acad Sci. 993 (May 2003), 14-24.
Astrom, M. , et al., “The effect of cystic cavities on deep brain stimulation in the basal ganglia: a simulation-based study”, J Neural Eng., 3(2), (Jun. 2006).132-8.
Bazin et al., “Free Software Tools for Atlas-based Volumetric Neuroimage Analysis”, Proc. SPIE 5747, Medical Imaging 2005: Image Processing, 1824 May 5, 2005.
Back, C. , et al., “Postoperative Monitoring of the Electrical Properties of Tissue and Electrodes in Deep Brain Stimulaton”, Neuromodulation, 6(4), (Oct. 2003 ),248-253.
Baker, K. B., et al., “Evaluation of specific absorption rate as a dosimeter of MRI-related impiant heating”, J Magn Reson Imaging., 20(2), (Aug. 2004),315-20.
Brown, J. “Motor Cortex Stimulation,” Neurosurgical Focus ( Sep. 15, 2001) 11(3):E5.
Budai et al., “Endogenous Opioid Peptides Acting at m-Opioid Receptors in the Dorsal Horn Contribute to Midbrain Modulation of Spinal Nociceptive Neurons,” Journal of Neurophysiology (1998) 79(2): 677-687.
Cesselin, F. “Opioid and anti-opioid peptides,” Fundamental and Clinical Pharmacology (1995) 9(5): 409-33 (Abstract only).
Rezai et al., “Deep Brain Stimulation for Chronic Pain” Surgical Management of Pain, Chapter 44 pp. 565-576 (2002).
Xu, MD., Shi-Ang, article entitled “Comparison of Half-Band and Full-Band Electrodes for Intracochlear Electrical Stimulation”, Annals of Otology, Rhinology & Laryngology (Annals of Head & Neck Medicine & Surgery), vol. 102 (5) pp. 363-367 May 1993.
Bedard, C. , et al., “Modeling extracellular field potentials and the frequency-filtering properties of extracellular space”, Biophys J .. 86(3). (Mar. 2004),1829-42.
Benabid, A. L., et al., “Future prospects of brain stimulation”, Neurol Res.;22(3), (Apr. 2000),237-46.
Brummer, S. B., et al., “Electrical Stimulation with Pt Electrodes: II—Estimation of Maximum Surface Redox (Theoretical Non-Gassing) Limits”, IEEE Transactions on Biomedical Engineering, vol. BME-24, Issue 5, (Sep. 1977),440-443.
Butson, Christopher R., et al., “Deep Brain Stimulation of the Subthalamic Nucleus: Model-Based Analysis of the Effects of Electrode Capacitance on the Volume of Activation”, Proceedings of the 2nd International IEEE EMBS, (Mar. 16-19, 2005),196-197.
Mcintyre, Cameron C., et al., “Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition,” J Neurophysiol, 91(4) (Apr. 2004), pp. 1457-1469.
Chaturvedi, A., et al., “Subthalamic Nucleus Deep Brain Stimulation: Accurate Axonal Threshold Prediction with Diffusion Tensor Based Electric Field Models”, Engineering in Medicine and Biology Society, 2006. EMBS ' 06 28th Annual International Conference of the IEEE, IEEE, Piscataway, NJ USA, Aug. 30, 2006.
Butson, Christopher et al., “Predicting the Effects of Deep Brain Stimulation with Diffusion Tensor Based Electric Field Models” Jan. 1, 2001, Medical Image Computing and Computer-Assisted Intervention—Mic CAI 2006 Lecture Notes in Computer Science; LNCS, Springer, Berlin, DE.
Butson, C. R., et al., “Deep brainstimulation interactive visualization system”, Society for Neuroscience vol. 898.7 (2005).
Hodaie, M., et al., “Chronic anterior thalamus stimulation for intractable epilepsy,” Epilepsia, 43(6) (Jun. 2002), pp. 603-608.
Hoekema, R., et al., “Multigrid solution of the potential field in modeling electrical nerve stimulation,” Comput Biomed Res., 31(5) (Oct. 1998), pp. 348-362.
Holsheimer, J., et al., “Identification of the target neuronal elements in electrical deep brain stimulation,” Eur J Neurosci., 12(12) (Dec. 2000), pp. 4573-4577.
Jezernik, S., et al., “Neural network classification of nerve activity recorded in a mixed nerve,” Neurol Res., 23(5) (Jul. 2001), pp. 429-434.
Jones, DK., et al., “Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging,” Magn. Reson. Med., 42(3) (Sep. 1999), pp. 515-525.
Krack, P., et al., “Postoperative management of subthalamic nucleus stimulation for Parkinson's disease,” Mov. Disord., vol. 17(suppl 3) (2002), pp. 188-197.
Le Bihan, D., et al., “Diffusion tensor imaging: concepts and applications,” J Magn Reson Imaging, 13(4) (Apr. 2001), pp. 534-546.
Lee, D. C., et al., “Extracellular electrical stimulation of central neurons: quantitative studies,” In: Handbook of neuroprosthetic methods, WE Finn and PG Lopresti (eds) CRC Press (2003), pp. 95-125.
Levy, AL., et al., “An Internet-connected, patient-specific, deformable brain atlas integrated into a surgical navigation system,” J Digit Imaging, 10(3 Suppl 1) (Aug. 1997), pp. 231-237.
Liu, Haiying, et al., “Intra-operative MR-guided DBS implantation for treating PD and ET,” Proceedings of SPIE vol. 4319, Department of Radiology & Neurosurgery, University of Minnesota, Minneapolis, MN 55455 (2001), pp. 272-276.
Mcintyre, C. C., et al., “Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output,” Neurophysiol., 88(4), (Oct. 2002), pp. 1592-1604.
Mcintyre, C. C., et al., “Microstimulation of spinal motoneurons: a model study,” Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology society, vol. 5, (1997), pp. 2032-2034.
Mcintyre, Cameron C., et al., “Model-based Analysis of deep brain stimulation of the thalamus,” Proceedings of the Second joint EMBS/BM ES Conference, vol. 3, Annual Fall Meeting of the Biomedical Engineering Society (Cal. No. 02CH37392) IEEEPiscataway, NJ (2002) pp. 2047-2048.
Mcintyre, C. C., et al., “Model-based design of stimulus trains for selective microstimulation of targeted neuronal populations,” Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1 (2001), pp. 806-809.
Mcintyre, C. C., et al., Model-based design of stimulus waveforms for selective microstimulation in the central nervous system,, Proceedings of the First Joint [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual FallMeeting of the Biomedical Engineering Soc.] BM ES/EMBS Conference, vol. 1 (1999), p. 384.
Mcintyre, Cameron C., et al., “Modeling the excitability of mammalian nerve fibers: influence of aflerpotentials on the recovery cycle,” J Neurophysiol, 87(2) (Feb. 2002), pp. 995-1006.
Mcintyre, Cameron C., et al., “Selective microstimulation of central nervous system neurons,” Annals of biomedical engineering, 28(3) (Mar. 2000), pp. 219-233.
Mcintyre, C. C., et al., “Sensitivity analysis of a model of mammalian neural membrane,” Biol Cybern., 79(1) (Jul. 1998), pp. 29-37.
Mcintyre, Cameron C., et al., “Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both,” Clin Neurophysiol, 115(6) (Jun. 2004), pp. 1239-1248.
Mcintyre, Cameron C., et al., “Uncovering the mechanisms of deep brain stimulation for Parkinson's disease through functional imaging, neural recording, and neural modeling,” Crit Rev Biomed Eng., 30(4-6) (2002), pp. 249-281.
Mouine et al. “Multi-Strategy and Multi-Algorithm Cochlear Prostheses”, Biomed. Sci. Instrument, 2000; 36:233-238.
Mcintyre, Cameron C., et al., “Electric Field and Stimulating Influence generated by Deep Brain Stimulation of the Subthalamaic Nucleus,” Clinical Neurophysiology, 115(3) (Mar. 2004), pp. 589-595.
Mcintyre, Cameron C., et al., “Electric field generated by deep brain stimulation of the subthalamic nucleus,” Biomedical Engineering Society Annual Meeting, Nashville TN (Oct. 2003), 16 pages.
Mcintyre, Cameron C., et al., “Excitation of central nervous system neurons by nonuniform electric fields,” Biophys. J., 76(2) (1999), pp. 878-888.
McNeal, DR., et al., “Analysis of a model for excitation of myelinated nerve,” IEEE Trans Biomed Eng., vol. 23 (1976), pp. 329-337.
Micheli-Tzanakou, E. , et al., “Computational Intelligence for target assesment in Parkinson's disease,” Proceedings of SPIE vol. 4479, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation IV (2001 ), pp. 54-69.
Miocinovic, S., et al., “Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation,” J Neurophysiol., 96(3) (Sep. 2006), pp. 1569-1580.
Miranda, P. C., et al., “The distribution of currents inducedin the brain by Magnetic Stimulation: a finite element analysis incorporating OT-MRI-derived conductivity data,” Proc. Intl. Soc. Mag. Reson. Med. 9 (2001 ), p. 1540.
Miranda, P. C., et al., “The Electric Field Induced in the Brain by Magnetic Stimulation: A 3-D Finite-Element Analysis of the Effect of Tissue Heterogeneity and Anisotropy,” IEEE Transactions on Biomedical Enginering, 50(9) (Sep. 2003), pp. 1074-1085.
Moffitt, MA., et al., “Prediction of myelinated nerve fiber stimulation thresholds: limitations of linear models,” IEEE Transactions on Biomedical Engineering, 51 (2) (2003), pp. 229-236.
Moro, E, et al., “The impact on Parkinson's disease of electrical parameter settings in STN stimulation,” Neurology, 59(5) (Sep. 10, 2002), pp. 706-713.
Nowak, LG., et al., “Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements,” Exp. Brain Res., 118(4) (Feb. 1998), pp. 477-488.
Nowak, LG., et al., “Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments,” Exp. Brain Res., 118(4) (Feb. 1998), pp. 489-500.
O'Suilleabhain, PE., et al., “Tremor response to polarity, voltage, pulsewidth and frequency of thalamic stimulation,” Neurology, 60(5) (Mar. 11, 2003), pp. 786-790.
Pierpaoli, C., et al., “Toward a quantitative assessment of diffusion anisotropy,” Magn Reson Med., 36(6) (Dec. 1996), pp. 893-906.
Plonsey, R., et al., “Considerations of quasi-stationarity in electrophysiological systems,” Bull Math Biophys., 29(4) (Dec. 1967), pp. 657-664.
Ranck, J B., “Specific impedance of rabbit cerebral cortex,” Exp. Neurol., vol. 7 (Feb. 1963), pp. 144-152.
Ranck, J B., et al., “The Specific impedance of the dorsal columns of the cat: an anisotropic medium,” Exp. Neurol., 11 (Apr. 1965), pp. 451-463.
Ranck, J B., “Which elements are excited in electrical stimulation of mammalian central nervous system: a review,” Brain Res., 98(3) (Nov. 21, 1975), pp. 417-440.
Rattay, F., et al., “A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes,” Hear Res., 153(1-2) (Mar. 2001), pp. 43-63.
Rattay, F., “A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability,” Hear Res., 153(1-2) (Mar. 2001), pp. 64-79.
Rattay, F., “Arrival at Functional Electrostimulation by modelling of fiber excitation,” Proceedings of the Ninth annual Conference of the IEEE Engineering in Medicine and Biology Society (1987), pp. 1459-1460.
Rattay, F., “The inftuence of intrinsic noise can preserve the temporal fine structure of speech signals in models of electrically stimulated human cochlear neurones,” Journal of Physiology, Scientific Meeting of the Physiological Society, London, England, UK Apr. 19-21, 1999 (Jul. 1999), p. 170P.
Rizzone, M., et al., “Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: effects of variation in stimulation parameters,” J. Neurol. Neurosurg. Psychiatry., 71(2) (Aug. 2001), pp. 215-219.
Saint-Cyr, J. A., et al., “Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging,” J. Neurosurg., 87(5) (Nov. 2002), pp. 1152-1166.
Sances, A., et al., “In Electroanesthesia: Biomedical and Biophysical Studies,” A Sances and SJ Larson, Eds., Academic Press, NY (1975), pp. 114-124.
Sl. Jean, P., et al., “Automated atlas integration and interactive three-dimensional visualization tools for planning and guidance in functional neurosurgery,” IEEE Transactions on Medical Imaging, 17(5) (1998), pp. 672-680.
Starr, P.A., et al., “Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations,” J. Neurosurg., 97(2) (Aug. 2002), pp. 370-387.
Sterio, D., et al., “Neurophysiological refinement of subthalamic nucleus targeting,” Neurosurgery, 50(1) (Jan. 2002), pp. 58-69.
Struijk, J. J., et al., “Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study,” IEEE Transactions on Biomedical Engineering, 40(7) (Jul. 1993), pp. 632-639.
Struijk, J J., et al., “Recruitment of dorsal column fibers in spinal cord stimulation: influence of collateral branching,” IEEE Transactions on Biomedical Engineering, 39(9) (Sep. 1992), pp. 903-912.
Tamma, F., et al., “Anatomo-clinical correlation of intraoperative stimulation-induced side-effects during HF-DBS of the subthalamic nucleus,” Neurol Sci., vol. 23 (Suppl 2) (2002), pp. 109-110.
Tarler, M., et al., “Comparison between monopolar and tripolar configurations in chronically implanted nerve cuff electrodes,” IEEE 17th Annual Conference Engineering in Medicine and Biology Society, vol. 2 (1995), pp. 1093-1109.
Testerman, Roy L., “Coritical response to callosal stimulation: A model for determining safe and efficient stimulus parameters,” Annals of Biomedical Engineering, 6(4) (1978), pp. 438-452.
Tuch, D.S., et al., “Conductivity mapping of biological tissue using diffusion MRI,” Ann NY Acad Sci., 888 (Oct. 30, 1999), pp. 314-316.
Tuch, D.S., et al., “Conductivity tensor mapping of the human brain using diffusion tensor MRI,” Proc Nall Acad Sci USA, 98(20) (Sep. 25, 2001), pp. 11697-11701.
Veraart, C., et al., “Selective control of muscle activation with a multipolar nerve cuff electrode,” IEEE Transactions on Biomedical Engineering, 40(7) (Jul. 1993), pp. 640-653.
Vercueil, L., et al., “Deep brain stimulation in the treatment of severe dystonia,” J. Neurol., 248(8) (Aug. 2001 ), pp. 695-700.
Vilalte, “Circuit Design of the Power-on-Reset,” Apr. 2000, pp. 1-25.
Vitek, J. L., “Mechanisms of deep brain stimulation: excitation or inhibition,” Mov. Disord., vol. 17 (Suppl. 3) (2002), pp. 69-72.
Voges, J., et al.; “Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position,” J. Neurosurg., 96(2) (Feb. 2002), pp. 269-279.
Wakana, S., et al., “Fiber tract-based atlas of human white matter anatomy,” Radiology, 230(1) (Jan. 2004), pp. 77-87.
Alexander, DC., et al., “Spatial transformations of diffusion tensor magnetic resonance images,” IEEE Transactions on Medical Imaging, 20 (11), (2001), pp. 1131-1139.
Wu, Y. R., et al., “Does Stimulation of the GPi control dyskinesia by activating inhibitory axons?,” Mov. Disord., vol. 16 (2001), pp. 208-216.
Yelnik, J., et al., “Localization of stimulating electrodes in patients with Parkinson disease by using a three-dimensional atlas-magnetic resonance imaging coregistration method,” J Neurosurg., 99(1) (Jul. 2003), pp. 89-99.
Yianni, John, et al., “Globus pallidus internus deep brain stimulation for dystonic conditions: a prospective audit,” Mov. Disord., vol. 18 (2003), pp. 436-442.
Zonenshayn, M., et al., “Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting,” Neurosurgery, 47(2) (Aug. 2000), pp. 282-294.
Voghell et al., “Programmable Current Source Dedicated to Implantable Microstimulators” ICM '98 Proceedings of the Tenth International Conference, pp. 67-70.
Butson, Christopher R., et al., “Patient-specific analysis of the volume of tissue activated during deep brain stimulation”, NeuroImage. vol. 34. (2007),661-670.
Adler, DE., et al. “The tentorial notch: anatomical variation, morphometric analysis, and classification in 100 human autopsy cases,” J. Neurosurg., 96(6), (Jun. 2002), pp. 1103-1112.
Jones et al., “An Advanced Demultiplexing System for Physiological Stimulation”, IEEE Transactions on Biomedical Engineering, vol. 44 No. 12 Dec. 1997, pp. 1210-1220.
Alo, K. M., et al., “New trends in neuromodulation for the management of neuropathic pain,” Neurosurgery, 50(4), (Apr. 2002), pp. 690-703, discussion pp. 703-704.
Ashby, P., et al., “Neurophysiological effects of stimulation through electrodes in the human subthalamic nucleus,” Brain, 122 (Pl 10); (Oct. 1999), pp. 1919-1931.
Baker, K. B., et al., “Subthalamic nucleus deep brain stimulus evoked potentials: Physiological and therapeutic implications,” Movement Disorders, 17(5), (Sep./Oct. 2002), pp. 969-983.
Bammer, R, et al., “Diffusion tensor imaging using single-shot SENSE-EPI”, Magn Reson Med., 48(1 ), (Jul. 2002), pp. 128-136.
Basser, P J., et al., “MR diffusion tensor spectroscopy and imaging,” Biophys J., 66(1 ), (Jan. 1994), pp. 259-267.
Basser, P J., et al., “New currents in electrical stimulation of excitable tissues,” Annu Rev Biomed Eng., 2, (2000), pp. 377-397.
Benabid, AL., et al., “Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders,” J. Neurosurg., 84(2), (Feb. 1996), pp. 203-214.
Benabid, AL., et al., “Combined (lhalamotoy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease,” Appl Neurophysiol, vol. 50, (1987), pp. 344-346.
Benabid, A L., et al., “Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus,” Lancet, 337 (8738), (Feb. 16, 1991 ), pp. 403-406.
Butson, C. R., et al., “Predicting the effects of deep brain stimulation with diffusion tensor based electric field models,” Medical Image Computing and Computer-Assisted Intervention—Mic Cai 2006, Lecture Notes in Computer Science (LNCS), vol. 4191, pp. 429-437, LNCS, Springer, Berlin, DE.
Christensen, Gary E., et al., “Volumetric transformation of brain anatomy,” IEEE Transactions on Medical Imaging, 16 (6), (Dec. 1997), pp. 864-877.
Cooper, S , et al., “Differential effects of thalamic stimulation parameters on tremor and paresthesias in essential tremor,” Movement Disorders, 17(Supp. 5), (2002), p. S193.
Coubes, P, et al., “Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus,” Lancet, 355 (9222), (Jun. 24, 2000), pp. 2220-2221.
Dasilva, A.F. M., et al., “A Primer Diffusion Tensor Imaging of Anatomical Substructures,” Neurosurg. Focus; 15(1) (Jul. 2003), pp. 1-4.
Dawant, B. M., et al., “Compuerized atlas-guided positioning of deep brain stimulators: a feasibility study,” Biomedical Image registration, Second International Workshop, WBIR 2003, Revised Papers (Lecture notes in Comput. Sci. vol. (2717), Springer-Verlag Berlin, Germany(2003), pp. 142-150.
Finnis, K. W., et al., “3-D functional atalas of subcortical structures for image guided stereotactic neurosurgery,” Neuroimage, vol. 9, No. 6, Iss. 2 (1999), p. S206.
Finnis, K. W., et al., “3D Functional Database of Subcorticol Structures for Surgical Guidance in Image Guided Stereotactic Neurosurgery,” Medical Image Computing and Computer-Assisted Intervention—MICCAI'99, Second International Conference.Cambridge, UK, Sep. 19-22, 1999, Proceedings (1999), pp. 758-767.
Finnis, K. W., et al., “A 3-Dimensional Database of Deep Brain Functional Anatomy, and Its Application to Image-Guided Neurosurgery,” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention.Lecture Notes in Computer Science; vol. 1935 (2000), pp. 1-8.
Finnis, K. W., et al., “A functional database for guidance of surgical and therapeutic procedures in the deep brain,” Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 3 (2000), pp. 1787-1789.
Finnis, K. W., et al., “Application of a Population Based Electrophysiological Database to the Planning and Guidance of Deep Brain Stereotactic Neurosurgery,” Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention—Part 11, Lecture Notes in Computer Science; vol. 2489 (2002), pp. 69-76.
Finnis, K. W., et al., “Subcortical physiology deformed into a patient-specific brain atlas for image-guided stereotaxy,” Proceedings of SPIE—vol. 4681 Medical Imaging 2002: Visualization, Image-Guided Procedures, and Display (May 2002), pp. 184-195.
Finnis, Krik W., et al., “Three-Dimensional Database of Subcortical Electrophysiology for Image-Guided Stereotatic Functional Neurosurgery,” IEEE Transactions on Medical Imaging, 22(1) (Jan. 2003), pp. 93-104.
Gabriels, L , et al., “Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: psychopathological and neuropsychological outcome in three cases,” Acta Psychiatr Scand., 107(4) (2003), pp. 275-282.
Gabriels, LA., et al., “Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder,” Neurosurgery, 52(6) (Jun. 2003), pp. 1263-1276.
Goodall, E. V., et al., “Modeling study of activation and propagation delays during stimulation of peripheral nerve fibers with a tricolor cuff electrode,” IEEE Transactions on Rehabilitation Engineering, [see also IEEE Trans. on Neural Systems and Rehabilitation], 3(3) (Sep. 1995), pp. 272-282.
Goodall, E. V., et al., “Position-selective activation of peripheral nerve fibers with a cuff electrode,” IEEE Transactions on Biomedical Engineering, 43(8) (Aug. 1996), pp. 851-856.
Goodall, E. V., “Simulation of activation and propagation delay during tripolar neural stimulation,” Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (1993), pp. 1203-1204.
Grill, WM., “Modeling the effects of electric fields on nerve fibers: influence of tissue electrical properties,” IEEE Transactions on Biomedical Engineering, 46(8) (1999), pp. 918-928.
Grill, W. M., et al., “Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes,” J Biomed Mater Res., 50(2) (May 2000), pp. 215-226.
Grill, W, M., “Neural modeling in neuromuscular and rehabilitation research,” Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4 (2001 ), pp. 4065-4068.
Grill, W. M., et al., “Non-invasive measurement of the input-output properties of peripheral nerve stimulating electrodes,” Journal of Neuroscience Methods, 65(1) (Mar. 1996), pp. 43-50.
Grill, W. M., et al., “Quantification of recruitment properties of multiple contact cuff electrodes,” IEEE Transactions on Rehabilitation Engineering, [see also IEEE Trans. on Neural Systems and Rehabilitation], 4(2) (Jun. 1996), pp. 49-62.
Grill, W. M., “Spatially selective activation of peripheral nerve for neuroprosthetic applications,” Ph.D. Case Western Reserve University, (1995), pp. 245 pages.
Grill, W. M., “Stability of the input-output properties of chronically implanted multiple contact nerve cuff stimulating electrodes,” IEEE Transactions on Rehabilitation Engineering [see also IEEE Trans. on Neural Systems and Rehabilitation] (1998), pp. 364-373.
Grill, W. M., “Stimulus waveforms for selective neural stimulation,” IEEE Engineering in Medicine and Biology Magazine, 14(4) (Jul.-Aug. 1995), pp. 375-385.
Grill, W. M., et al., “Temporal stability of nerve cuff electrode recruitment properties,” IEEE 17th Annual Conference Engineering in Medicine and Biology Society, vol. 2 (1995), pp. 1089-1090.
Gross, RE., et al., “Advances in neurostimulation for movement disarders,” Neurol Res., 22(3) (Apr. 2000), pp. 247-258.
Guridi et al., “The subthalamic nucleus, hemiballismus and Parkinson's disease: reappraisal of a neurological dogma,” Brain, vol. 124, 2001, pp. 5-19.
Haberler, C, et al., “No tissue damage by chronic deep brain stimulation in Parkinson's disease,” Ann Neurol., 48(3) (Sep. 2000), pp. 372-376.
Hamel, W, et al., “Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: evaluation of active electrode contacts,” J Neurol Neurosurg Psychiatry, 74(8) (Aug. 2003), pp. 1036-1046.
Hanekom, “Modelling encapsulation tissue around cochlear implant electrodes,” Med. Biol. Eng. Comput. vol. 43 (2005), pp. 47-55.
Haueisen, J , et al., “The influence of brain tissue anisotropy on human EEG and MEG,” Neuroimage, 15(1) (Jan. 2002), pp. 159-166.
D'Haese et al. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2005 Lecture Notes in Computer Science, 2005, vol. 3750, 2005, 427-434.
Rohde et al. IEEE Transactions on Medical Imaging, vol. 22 No. 11, 2003 p. 1470-1479.
Dawant et al., Biomedical Image Registration. Lecture Notes in Computer Science, 2003, vol. 2717, 2003, 142-150.
Miocinovic et al., “Stereotactiv Neurosurgical Planning, Recording, and Visualization for Deep Brain Stimulation in Non-Human Primates”, Journal of Neuroscience Methods, 162:32-41, Apr. 5, 2007, XP022021469.
Gemmar et al., “Advanced Methods for Target Navigation Using Microelectrode Recordings in Stereotactic Neurosurgery for Deep Brain Stimulation”, 21st IEEE International Symposium on Computer-Based Medical Systems, Jun. 17, 2008, pp. 99-104, XP031284774.
Acar et al., “Safety Anterior Commissure-Posterior Commissure-Based Target Calculation of the Subthalamic Nucleus in Functional Stereotactic Procedures”, Stereotactic Funct. Neurosura., 85:287-291, Aug. 2007.
Andrade-Souza, “Comparison of Three Methods of Targeting the Subthalamic Nucleus for Chronic Stimulation in Parkinson's Disease”, Neurosurgery, 56:360-368, Apr. 2005.
Anheim et al., “Improvement in Parkinson Disease by Subthalamic Nucleus Stimulation Based on Electrode Placement”, Arch Neural., 65:612-616, May 2008.
Butson et al., “Tissue and Electrode Capacitance Reduce Neural Activation Volume During Deep Brain Stimulation”, Clinical Neurophysiology, 116:2490-2500, Oct. 2005.
Butson et al., “Sources and Effects of Electrode Impedance During Deep Brain Stimulation”, Clinical Neurophysiology, 117:44 7-454, Dec. 2005.
D'Haese et al., “Computer-Aided Placement of Deep Brain Stimulators: From Planning to Intraoperative Guidance”, IEEE Transaction on Medical Imaging, 24:1469-1478, Nov. 2005.
Gross et al., “Electrophysiological Mapping for the Implantation of Deep Brain Stimulators for Parkinson's Disease and Tremor”, Movement Disorders, 21 :S259-S283, Jun. 2006.
Halpern et al., “Brain Shift During Deep Brain Stimulation Surgery for Parkinson's Disease”, Stereotact Funct. Neurosurg., 86:37-43, published online Sep. 2007.
Herzog et al., “Most Effective Stimulation Site in Subthalamic Deep Brain Stimulation for Parkinson's Disease”, Movement Disorders, 19:1050-1099, published on line Mar. 2004.
Jeon et al., A Feasibility Study of Optical Coherence Tomography for Guiding Deep Brain Probes, Journal of Neuroscience Methods, 154:96-101, Jun. 2006.
Khan et al., “Assessment of Brain Shift Related to Deep Brain Stimulation Surgery”, Sterreotact Funct. Neurosurg., 86:44-53, published online Sep. 2007.
Koop et al., “Improvement in a Quantitative Measure of Bradykinesia After Microelectrode Recording in Patients with Parkinson's Disease During Deep Brain Stimulation Surgery”, Movement Disorders, 21 :673-678, published on line Jan. 2006.
Lemaire et al., “Brain Mapping in Stereotactic Surgery: A Brief Overview from the Probabilistic Targeting to the Patient-Based Anatomic Mapping”, NeuroImage, 37:S109-S115, available online Jun. 2007.
Machado et al., “Deep Brain Stimulation for Parkinson's Disease: Surgical Technique and Perioperative Management”, Movement Disorders, 21 :S247-S258, Jun. 2006.
Maks et al., “Deep Brain Stimulation Activation Volumes and Their Association with Neurophysiological Mapping and Therapeutic Outcomes”, Downloaded from jnnp.bmj.com, pp. 1-21, published online Apr. 2008.
Moran et al., “Real-Time Refinment of Subthalamic Nucleous Targeting Using Bayesian Decision-Making on the Root Mean Square Measure”, Movement Disorders, 21: 1425-1431, published online Jun. 2006.
Sakamoto et al., “Homogeneous Fluorescence Assays for RNA Diagnosis by Pyrene-Conjugated 2′-0-Methyloligoribonucleotides”, Nucleosides, Nucleotides, and Nucleric Acids, 26:1659-1664, on line publication Oct. 2007.
Winkler et al., The First Evaluation of Brain Shift During Functional Neurosurgery by Deformation Field Anaiysis, J, Neural. Neurosurg. Psychiatry, 76:1161-1163, Aug. 2005.
Yelnik et al., “A Three-Dimensional, Histological and Deformable Atlas of the Human Basal J Ganglia. I. Atlas Construction Based on Immunohistochemical and MRI Data”, NeuroImage, 34:618,-638,Jan. 2007.
Ward, H. E., et al., “Update on deep brain stimulation for neuropsychiatric disorders,” Neurobiol Dis 38 (3) (2010), pp. 346-353.
Alberts et al. “Bilateral subthalamic stimulation impairs cognitive-motor performance in Parkinson's disease patients.” Brain (2008), 131, 3348-3360, Abstract.
Butson, Christopher R., et al., “Sources and effects of electrode impedance during deep brain stimulation”, Clinical Neurophysiology. vol. 117.(2006),447-454.
An, et al., “Prefronlal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys,” J Comp Neural 401 (4) (1998), pp. 455-479.
Bulson, C. R., et al., “Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation,” Clinical Neurophysiology, vol. 116 (2005), pp. 2490-2500.
Carmichael, S. T., et al., “Connectional networks within the orbital and medial prefronlal cortex of macaque monkeys,” J Comp Neural 371 (2) (1996), pp. 179-207.
Croxson, et al., “Quantitative investigation of connections of the prefronlal cortex in the human and macaque using probabilistic diffusion tractography,” J Neurosci 25 (39) (2005), pp. 8854-8866.
Frankemolle, et al., “Reversing cognitive-motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming,” Brain 133 (2010), pp. 746-761.
Freedman, et al., “Subcortical projections of area 25 (subgenual cortex) of the macaque monkey,” J Comp Neurol 421 (2) (2000), pp. 172-188.
Giacobbe, et al., “Treatment resistant depression as a failure of brain homeostatic mechanisms: implications for deep brain stimulation,” Exp Neural 219 (1) (2009), pp. 44-52.
Goodman, et al., “Deep brain stimulation for intractable obsessive compulsive disorder: pilot study using a blinded, staggered-onset design,” Biol Psychiatry 67 (6) (2010), pp. 535-542.
Greenberg, et al., “Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience,” Mol Psychiatry 15 (1) (2010), pp. 64-79.
Greenberg. et al., “Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder,” Neuropsychopharmacology 31 (11) (2006), pp. 2384-2393.
Gutman, et al., “A tractography analysis of two deep brain stimulation white matter targets for depression,” Biol Psychiatry 65 (4) (2009), pp. 276-282.
Haber, et al., “Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning,” J Neurosci 26 (32) (2006), pp. 8368-8376.
Haber, et al., “Cognitive and limbic circuits that are affected by deep brain stimulation,” Front Biosci 14 (2009), pp. 1823-1834.
Hines, M. L., et al., “The NEURON simulation environment,” Neural Comput., 9(6) (Aug. 15, 1997), pp. 1179-1209.
Hua, et al., “Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification,” Neuroimage 39 (1) (2008), pp. 336-347.
Johansen-Berg, et al., “Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression,” Cereb Cortex 18 (6) (2008), pp. 1374-1383.
Kopell, et al., “Deep brain stimulation for psychiatric disorders,” J Clin Neurophysiol 21 (1) (2004), pp. 51-67.
Lozano, et al., “Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression,” Biol Psychiatry 64 (6) (2008), pp. 461-467.
Lujan, et al., “Tracking the mechanisms of deep brain stimulation for neuropsychiatric disorders,” Front Biosci 13 (2008), pp. 5892-5904.
Lujan, J.L. et al., “Automated 3-Dimensional Brain Atlas Fitting to Microelectrode Recordings from Deep Brain Stimulation Surgeries,” Stereotact. Funel. Neurosurg. 87(2009), pp. 229-240.
Machado, et al., “Functional topography of the ventral striatum and anterior limb of the internal capsule determined by electrical stimulation of awake patients,” Clin Neurophysiol 120 (11) (2009), pp. 1941-1948.
Malone, et al., “Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression,” Biol Psychiatry 65 (4) (2009), pp. 267-275.
Mayberg, H. S., et al., “Deep brain stimulation for treatment-resistant depression,” Neuron, 45(5) (Mar. 3, 2005), pp. 651-660.
Mayberg, H. S., et al., “Limbic-cortical dysregulation: a proposed model of depression,” J Neuropsychiatry Clin Neurosci. 9 (3) (1997), pp. 471-481.
McIntyre, C. C., et al., “Network perspectives on the mechanisms of deep brain stimulation,” Neurobiol Dis 38 (3) (2010), pp. 329-337.
Miocinovic, S., et al., “Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation,” Exp Neurol 216 (i) (2009), pp. 166-176.
Nuttin, et al., “Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder,” Lancet 354 (9189) (1999), p. 1526.
Saxena, et al., “Cerebral glucose metabolism in obsessive-compulsive hoarding,” Am J Psychiatry. 161 (6) (2004), pp. 1038-1048.
Viola, et al., “Importance-driven focus of attention,” IEEE Trans Vis Comput Graph 12 (5) (2006), pp. 933-940.
Wakana, S., et al., “Reproducibility of quantitative tractography methods applied to cerebral white matter,” Neuroimage 36 (3) (2007), pp. 630-644.
Mayr et al., “Basic Design and Construction of the Vienna FES Implants: Existing Solutions and Prospects for New Generations of Implants”, Medical Engineering & Physics, 2001; 23:53-60.
McIntyre, Cameron , et al., “Finite element analysis of the current-density and electric field generated by metal microelectrodes”, Ann Biomed Eng . 29(3), (2001 ),227-235.
Foster, K. R., et al., “Dielectric properties of tissues and biological materiais: a critical review.”, Grit Rev Biomed Ena. 17(1 ). {1989),25-104.
Limousin, P., et al., “Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease”, N Engl J Med .. 339(16), (Oct. 15, 1998), 1105-11.
Kitagawa, M., et al., “Two-year follow-up of chronic stimulation of the posterior subthalamic white matter for tremor-dominant Parkinson's disease.”, Neurosurgery. 56(2). (Feb. 2005),281-9.
Johnson, M. D., et al., “Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, [see also IEEE Trans. on Rehabilitation Engineering (2005), 160-165.
Holsheimer, J. , et al., “Chronaxie calculated from current-duration and voltage-duration data”, J Neurosci Methods. 97(1). (Apr. 1, 2000),45-50.
Hines, M. L., et al., “The NEURON simulation environment”, Neural Comput. 9(6). (Aug. 15, 1997), 1179-209.
Herzog, J., et al., “Most effective stimulation site in subthalamic deep brain stimulation for Parkinson's disease”, Mov Disord. 19(9). (Sep. 2004), 1050-4.
Hershey, T., et al., “Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD.”, Neurology 61(6). (Sep. 23, 2003),816-21.
Hemm, S. , et al., “Evolution of Brain Impedance in Dystonic Patients Treated by GPi Electrical Stimulation”, Neuromodulation 7(2) (Apr. 2004),67-75.
Hemm, S., et al., “Deep brain stimulation in movement disorders: stereotactic coregistration of two-dimensional electrical field modeling and magnetic resonance imaging.”, J Neurosurg. 103(6): (Dec. 2005),949-55.
Haueisen, J, et al., “The influence of brain tissue anisotropy on human EEG and MEG”, Neuroimage 15(1) (Jan. 2002),159-166.
Haslinger, B., et al., “Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease.”, Neuroimage 28(3). (Nov. 15, 2005),598-606.
Hashimoto, T. , et al., “Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons”, J Neurosci. 23(5). (Mar. 1, 2003),1916-23.
Hardman, C. D., et al., “Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei”, J Comp Neurol., 445(3). (Apr. 8, 2002),238-55.
McNaughtan et al., “Electrochemical Issues in Impedance Tomography”, 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester; Apr. 14-17, 1999.
Grill, WM., et al., “Electrical properties of implant encapsulation tissue”, Ann Biomed Eng. vol. 22. (1994),23-33.
Grill, W. M., et al., “Deep brain stimulation creates an informational lesion of the stimulated nucleus”, Neuroreport. 15l7t (May 19, 2004 ), 1137-40.
Related Publications (1)
Number Date Country
20180064930 A1 Mar 2018 US
Provisional Applications (1)
Number Date Country
62383200 Sep 2016 US