The present invention relates generally to fluid enhanced ablation therapy, and more particularly, to systems and methods for visualizing the flow of fluid introduced during fluid enhanced ablation therapy.
Fluid enhanced ablation therapy involves the introduction of a fluid into a volume of tissue to deliver a therapeutic dose of energy in order to destroy tissue. The fluid can act as a therapeutic agent delivering thermal energy into the tissue volume—thermal energy supplied from the fluid itself (e.g., a heated fluid) or from an ablation element that provides thermal energy using, e.g., radio frequency (RF) electrical energy, microwave or light wave electromagnetic energy, ultrasonic vibrational energy, etc. This therapy can be applied to a variety of procedures, including the destruction of tumors.
One example of fluid enhanced ablation therapy is the SERF™ ablation technique (Saline Enhanced Radio Frequency™ ablation) described in U.S. Pat. No. 6,328,735, which is hereby incorporated by reference in its entirety. Using the SERF ablation technique, saline is passed through a needle and heated, and the heated fluid is delivered into a target volume of tissue surrounding the needle. In addition, RF electrical current is simultaneously passed through the tissue between an emitter electrode positioned on the needle and a remotely located return electrode. The saline acts as a therapeutic agent to deliver its thermal energy to the target volume of tissue via convection, and the RF electrical energy can act to supplement and/or replenish the thermal energy of the fluid that is lost as it moves through the tissue. The delivery of thermal energy via the movement of fluid through tissue can allow a greater volume of tissue to be treated with a therapeutic dose of ablative energy than is possible with other known techniques. The therapy is usually completed once the target volume of tissue reaches a desired therapeutic temperature, or otherwise receives a therapeutic dose of energy.
A common challenge in fluid enhanced ablation therapy is determining the extent of the target volume of tissue that has received a therapeutic dose of thermal energy. Known techniques for monitoring therapy progress include measuring the temperature of various portions of the target volume of tissue directly. Exemplary devices and methods for conducting such monitoring are described in U.S. Pat. Pub. No. 2012/0277737, which is hereby incorporated by reference in its entirety.
However, measuring the temperature of various portions of the target volume of tissue is not necessarily an effective technique for monitoring therapy progress. This is because it is often impractical to include more than a few temperature sensors on a single device, and the sensors can only report the temperature of the target volume of tissue in their immediate location. As a result, it can be difficult to monitor the overall shape of the treated volume of tissue.
Still further, misplacement of the needle or other fluid introduction device, or adjacent anatomical features that have high blood flow (e.g., capillaries, veins, etc.) can result in undesired and unexpected fluid flow. This unexpected fluid flow can direct therapeutic energy in an unexpected manner, thereby altering the shape and size of the treated volume of tissue that has received a therapeutic dose of thermal energy. Techniques for remotely monitoring the temperature of the target volume of tissue can report that the temperature is not rising as expected, but may not show where the heated fluid is flowing to and what the altered treated volume of tissue looks like.
Accordingly, there is a need in the art for improved systems and methods for monitoring fluid enhanced ablation therapy.
The present invention generally provides systems and methods for directly visualizing fluid enhanced ablation therapy. The systems and methods described herein generally include visualizing the flow of an imageable therapeutic fluid in a fluid enhanced ablation therapy procedure and correlating the visualized fluid flow with the shape and size of a volume of tissue that has received a therapeutic dose of thermal energy. In some cases, the imageable therapeutic fluid can be, e.g., a heated mix of one or more fluids (e.g., saline) that includes a contrast agent that can be used to visualize the flow of the therapeutic fluid. The visualized fluid flow can in some cases directly indicate the volume of tissue that has received a therapeutic dose of thermal energy or, in other cases, can indicate that a certain portion of the volume of tissue has received a therapeutic dose of thermal energy.
In one aspect, a method for ablating tissue is provided that includes inserting an elongate body into a tissue volume, heating an imageable fluid within the elongate body to transform the imageable fluid into an imageable therapeutic fluid, delivering the imageable therapeutic fluid into the tissue volume to deliver a therapeutic dose of thermal energy to the tissue volume, and imaging the tissue volume to determine the extent of the tissue volume containing the imageable therapeutic fluid. The imageable therapeutic fluid can indicate the extent of the tissue volume that has received the therapeutic dose of thermal energy.
In another embodiment, the method can include inserting an elongate body having an ablation element disposed thereon into a tissue volume. The method can further include heating an imageable fluid within the elongate body to transform the imageable fluid into an imageable therapeutic fluid, and delivering energy to the ablation element on the elongate body. The energy and the imageable therapeutic fluid can be simultaneously delivered into the volume of tissue to deliver a therapeutic dose of thermal energy to the tissue volume. The method can further include imaging the tissue volume to determine the extent of the tissue volume containing the imageable therapeutic fluid, wherein the imageable therapeutic fluid can indicate the extent of the tissue volume that has received the therapeutic dose of thermal energy.
The systems and methods described herein can have a number of additional features and/or modifications, all of which are considered within the scope of the present invention. For example, a variety of fluids can be used in the systems and methods described herein. In certain embodiments, the imageable fluid can include saline and a contrast agent to aid in visualizing the flow of the imageable fluid. The saline and contrast agent can be mixed together in a variety of proportions, either prior to use or instantaneously as the imageable fluid is delivered to the elongate body. In some embodiments, a ratio of saline to contrast agent can be about 1:1. In other embodiments, the ratio of saline to contrast agent can be about 10:1, while in still other embodiments the ratio of saline to contrast agent can be about 20:1. A number of different contrast agents can be employed with the systems and methods of the present invention, so long as they do not adversely impact the safety or effectiveness of the therapy procedure, as described in more detail below. In some embodiments, the contrast agent can be a water soluble contrast agent, and more preferably an iodinated water soluble contrast agent, such as iohexol.
In some embodiments, it can be important for the imageable therapeutic fluid utilized to have a heat capacity that is close to, or greater than, the heat capacity of the tissue itself. The imageable therapeutic fluid can act by exchanging thermal energy with tissue, therefore using a fluid with a heat capacity close to, or greater than, the heat capacity of the tissue can ensure that the imageable therapeutic fluid does not excessively lose its stored energy to the tissue as it heats the tissue. In some embodiments, for example, a heat capacity of the imageable therapeutic fluid can be greater than about 2 J/ml-° C., and more preferably greater than about 4 J/ml-° C.
A variety of different medical imaging technologies can be utilized to image the tissue volume to determine the extent of the tissue volume containing the imageable fluid. In some embodiments, for example, the tissue volume can be imaged using fluoroscopy, computed tomography (CT) scan, computer axial tomography (CAT) scan, magnetic resonance imaging (MRI), or ultrasound. The medical imaging technology utilized can, in some embodiments, be selected based on the contrast agent used in the imageable therapeutic fluid. For example, if iohexol is used as the contrast agent, the tissue can be imaged using computed tomography (CT) scanning, fluoroscopy, or some other form of X-ray imaging that is sensitive to iohexol.
Heating of the imageable fluid can be accomplished in a variety of manners. In certain embodiments, the imageable fluid can be heated by a heating element disposed within the elongate body. A number of different heating elements can be employed, including radio frequency (RF), laser, microwave, and resistive electrical heating elements. Further details on exemplary heating elements that can be used in the systems and methods described herein can be found in U.S. Pat. Pub. No. 2012/0265190, which is hereby incorporated by reference in its entirety.
As mentioned above, the visualized fluid flow in the tissue volume can indicate the extent of the tissue volume that has received the therapeutic dose of thermal energy. In some embodiments, a ratio of a linear dimension of a portion of the tissue volume containing the imageable therapeutic fluid to a linear dimension of a portion of the tissue volume that has received the therapeutic dose of thermal energy can be about 1:1. That is, the visualized fluid flow can directly correlate to the size of the treated volume of tissue. However, the correlation between the portion of the tissue volume containing the imageable therapeutic fluid to the portion of the tissue volume that has been treated need not be 1:1. For example, in some embodiments, a ratio of a linear dimension of a portion of the tissue volume containing the imageable therapeutic fluid to a linear dimension of a portion of the tissue volume that has received the therapeutic dose of thermal energy can be about 3:2. In other embodiments, a ratio of a linear dimension of a portion of the tissue volume containing the imageable therapeutic fluid to a linear dimension of a portion of the tissue volume that has received the therapeutic dose of thermal energy can be about 2:1. In still other embodiments, a ratio of a linear dimension of a portion of the tissue volume containing the imageable therapeutic fluid to a linear dimension of a portion of the tissue volume that has received the therapeutic dose of thermal energy can be about 5:1. Still further, in some embodiments, a ratio of a linear dimension of a portion of the tissue volume containing the imageable therapeutic fluid to a linear dimension of a portion of the tissue volume that has received the therapeutic dose of thermal energy can be about 10:1.
In certain embodiments, the relationship between the size of a portion of the tissue volume containing the imageable therapeutic fluid and the size of a portion of the tissue volume that has received a therapeutic dose of thermal energy can be described by a mathematical relationship. In some embodiments, for example, the method can include evaluating a mathematical model using a dimension of the imaged tissue volume containing the imageable therapeutic fluid to determine a dimension of the tissue volume that has received the therapeutic dose of thermal energy. In other embodiments, a ratio between the dimension of the tissue volume that has received the therapeutic dose of thermal energy calculated by the mathematical model and the dimension of the imaged tissue volume containing the imageable therapeutic fluid can be about 2:3. Of course, this calculated value can vary based on the mathematical model derived from, for example, the therapy operating parameters, tissue type, size and shape of the tissue volume, nearby sources of blood flow, etc.
The ablation element disposed on the elongate body can utilize a variety of types of therapeutic energy. For example, in some embodiments the ablation element can include a source of electromagnetic energy. Exemplary sources of electromagnetic energy can include, in various embodiments, RF electrical energy, laser light energy, and microwave electrical energy. In other embodiments, the ablation element can include a source of ultrasonic energy.
In another aspect, a system for delivering fluid enhanced ablation therapy is provided that includes an elongate body having proximal and distal ends, an inner lumen extending through the elongate body, at least one outlet port formed in the elongate body, and at least one ablation element positioned along the length of a distal portion of the elongate body. The system can further include an imageable fluid source in communication with the inner lumen of the elongate body, the imageable fluid source including saline and a contrast agent. The system can further include a heating element disposed within the inner lumen of the elongate body and configured to heat the imageable fluid to transform the imageable fluid into an imageable therapeutic fluid that can flow through the at least one outlet port and be delivered to tissue surrounding the at least one ablation element.
All of the variations and modifications discussed above can be included in a system according to the teachings of the present invention. For example, in some embodiments a heat capacity of the imageable fluid can be greater than about 2 J/ml-° C., and more preferably greater than about 4 J/ml-° C. In other embodiments, a ratio of saline to contrast agent can be about 1:1. In still other embodiments, a ratio of saline to contrast agent can be about 10:1. In yet other embodiments, a ratio of saline to contrast agent can be about 20:1. Furthermore, a variety of contrast agents can be used in the imageable fluid. In some embodiments, the contrast agent can be iohexol.
The ablation element positioned along the length of a distal portion of the elongate body can be configured to deliver a variety of types of energy into the tissue surrounding the elongate body. For example, in some embodiments, the ablation element can be configured to deliver energy selected from the group consisting of electromagnetic energy, radio frequency energy, laser energy, microwave energy, and ultrasonic energy.
The systems and methods described herein can provide a number of advantages over prior art systems and methods for monitoring fluid enhanced ablation therapy. In particular, the systems and methods described herein can allow for the direct visualization of the flow of an imageable therapeutic fluid as it delivers thermal energy within a target tissue volume. The expansion over time of a portion of the tissue volume containing the imageable therapeutic fluid can be monitored to ensure that fluid is not flowing in an undesirable or unexpected manner, and the size of the portion of the tissue volume containing the visualized therapeutic fluid can be used to indicate the size of the portion of the tissue volume that has received a therapeutic dose of thermal energy. Accordingly, the systems and methods described herein can provide a far more robust and detailed view of the progress of a fluid enhanced ablation therapy procedure.
The aspects and embodiments of the invention described above will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the systems and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the systems and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
The present invention is generally directed to systems and methods for visualizing fluid enhanced ablation therapy and, in particular, to systems and methods for visualizing the expansion over time of a proportion of a volume of tissue that has received a therapeutic dose of thermal energy (i.e., visualizing the expansion of a therapeutic temperature front as it encompasses a greater volume of tissue over time). The systems and methods described herein generally include visualizing the flow of an imageable therapeutic fluid in a fluid enhanced ablation therapy procedure and correlating the visualized flow with the shape and size of a volume of tissue that has received a therapeutic dose of thermal energy. In some cases, the imageable therapeutic fluid can be, e.g., a heated mix of saline and a contrast agent that can aid in visualizing the flow of the therapeutic fluid. The visualized fluid can in some cases directly indicate the volume of tissue that has received a therapeutic dose of thermal energy or, in other cases, can indicate that a certain portion of the volume of tissue containing the imageable therapeutic fluid has received a therapeutic dose of thermal energy. The systems and methods described herein provide unique advantages over known methods for monitoring fluid enhanced ablation therapy, including, for example, the ability to directly visualize the flow of an imageable therapeutic fluid within a patient's body to monitor the progress of a therapeutic procedure.
Fluid enhanced ablation therapy, as mentioned above, is defined by passing a fluid into tissue to act as a therapeutic agent and deliver thermal energy into the tissue. The thermal energy can be provided from the fluid itself (e.g., by using heated fluid), by delivering therapeutic energy from an ablation element (e.g., an RF electrode), or a combination of the two. The delivery of therapeutic energy into tissue causes hyperthermia in the tissue, ultimately resulting in necrosis. This temperature-induced selective destruction of tissue can be utilized to treat a variety of conditions including tumors, fibroids, cardiac dysrhythmias (e.g., ventricular tachycardia, etc.), and others.
The SERF™ ablation technique (Saline Enhanced Radio Frequency™ ablation) described in U.S. Pat. No. 6,328,735 and incorporated by reference above, delivers fluid heated to a therapeutic temperature into tissue along with ablative energy. The heated fluid acts as a therapeutic agent by flowing through the extracellular space of the treatment tissue and increasing the heat transfer through the tissue significantly. In particular, the flowing heated fluid convects thermal energy into the target tissue. The thermal energy can be supplied from the heated fluid itself, and the ablation energy source can act to replenish thermal energy lost from the fluid as it moves through tissue. Furthermore, the fluid can serve to constantly hydrate the tissue and prevent any tissue charring and associated impedance rise near the ablation element, as described in more detail below.
Fluid enhanced ablation therapy can have a number of advantages over prior art ablation techniques, such as conventional RF ablation. For example, conventional RF ablation often overheats the tissue located adjacent to the emitter electrode because the heat cannot be efficiently transported away from the electrode. This overheating can cause charring of the tissue and an associated rise in impedance that can effectively terminate the therapy. During fluid enhanced ablation therapy, in contrast, the therapeutically heated fluid can convect heat deeper into the target tissue, thereby reducing tissue charring and the associated impedance change of the tissue. Further, because the fluid is heated to a therapeutic level, it does not act as a heat sink that draws down the temperature of the surrounding tissue. Instead, the fluid itself acts as the therapeutic agent delivering thermal energy into the tissue and the RF energy can act to counter the loss of thermal energy from the fluid as it moves through the tissue. Therefore, the concurrent application of RF energy and injection of heated fluid into the tissue can eliminate the desiccation and/or vaporization of tissue adjacent to the electrode, maintain the effective tissue impedance, and increase the thermal transport within the tissue being heated with RF energy. The total volume of tissue that can be heated to therapeutic temperatures is thereby increased when compared to, e.g., conventional RF ablation.
In addition, fluid enhanced ablation therapy devices have a greater number of parameters that can be varied to adjust the shape of the treated volume of tissue. For example, when using the SERF ablation technique, an operator or control system can modify parameters such as fluid temperature (e.g., from about 40° C. to about 80° C.), fluid flow rate (e.g., from about 0 ml/min to about 20 ml/min), RF power (e.g., from about 0 W to about 100 W), and duration of treatment (e.g., from about 0 min to about 10 min) to adjust the temperature profile within the target volume of tissue. Different electrode configurations can also be used to vary the treatment. For example, an emitter electrode can be configured as a continuous cylindrical band around a needle or other elongate body, or the electrode can be formed in other geometries, such as spherical or helical. The electrode can form a continuous surface area, or it can have a plurality of discrete portions.
In some embodiments, the emitter electrode 105 can be a portion of the elongate body 102. For example, the elongate body 102 can be coated in an insulating material along its entire length except for the portion representing the emitter electrode 105. More particularly, in one embodiment, the elongate body 102 can be coated with 1.5 mil of the fluoropolymer Xylan™ 8840. In other embodiments, different coatings can be used in place of, or in conjunction with, the fluoropolymer coating. For example, in certain embodiments, 1 mil of Polyester shrink tubing can be disposed over the Xylan coating. The electrode 105 can have a variety of lengths and shape configurations. In one embodiment, the electrode 105 can be a 4 mm section of a tubular elongate body that is exposed to surrounding tissue. Further, the electrode 105 can be located anywhere along the length of the elongate body 105 (and there can also be more than one electrode disposed along the length of the elongate body). In one embodiment, the electrode can be located adjacent to the distal tip 104. In other embodiments, the elongate body can be formed from an insulating material, and the electrode can be disposed around the elongate body or between portions of the elongate body.
In other embodiments, the electrode can be formed from a variety of other materials suitable for conducting current. Any metal or metal salt may be used. Aside from stainless steel, exemplary metals include platinum, gold, or silver, and exemplary metal salts include silver/silver chloride. In one embodiment, the electrode can be formed from silver/silver chloride. It is known that metal electrodes assume a voltage potential different from that of surrounding tissue and/or liquid. Passing a current through this voltage difference can result in energy dissipation at the electrode/tissue interface, which can exacerbate excessive heating of the tissue near the electrodes. One advantage of using a metal salt such as silver/silver chloride is that it has a high exchange current density. As a result, a large amount of current can be passed through such an electrode into tissue with only a small voltage drop, thereby minimizing energy dissipation at this interface. Thus, an electrode formed from a metal salt such as silver/silver chloride can reduce excessive energy generation at the tissue interface and thereby produce a more desirable therapeutic temperature profile, even where there is no liquid flow about the electrode.
The electrode 105 or other ablation element can include one or more outlet ports 108 that are configured to deliver fluid from an inner lumen 106 extending through the elongate body 102 into surrounding tissue (as shown by arrows 109). Alternatively, the electrode 105 can be positioned near one or more outlet ports 108 formed in the elongate body 102. In many embodiments, it can be desirable to position the electrode adjacent to the one or more outlet ports to maximize the effect of the flowing fluid on the therapy. The outlet ports 108 can be formed in a variety of sizes, numbers, and pattern configurations. In addition, the outlet ports 108 can be configured to direct fluid in a variety of directions with respect to the elongate body 102. These can include the normal orientation (i.e., perpendicular to the elongate body surface) shown by arrows 109, as well as orientations directed proximally and distally along a longitudinal axis of the elongate body 102, including various orientations that develop a circular or spiral flow of liquid around the elongate body. Still further, in some embodiments, the elongate body 102 can be formed with an open distal end that serves as an outlet port. By way of example, in one embodiment, twenty-four equally-spaced outlet ports 108 having a diameter of about 0.4 mm can be created around the circumference of the electrode 105 using Electrical Discharge Machining (EDM). One skilled in the art will appreciate that additional manufacturing methods are available to create the outlet ports 108. In addition, in some embodiments, the outlet ports can be disposed along a portion of the elongate body adjacent to the electrode, rather than being disposed in the electrode itself.
The inner lumen 106 that communicates with the outlet ports 108 can also house a heating assembly 110 configured to heat fluid as it passes through the inner lumen 106 just prior to being introduced into tissue. The heating assembly 110 can have a variety of configurations and, in one embodiment, can include two wires suspended within the inner lumen 106. The wires can be configured to pass RF energy therebetween in order to heat fluid flowing through the inner lumen 106. In other embodiments, a single wire can be configured to pass RF energy between the wire and the inner walls of the elongate body. Further description of exemplary heating assemblies can be found in U.S. Pat. Pub. No. 2012/0265190, which is incorporated by reference above.
The portion of the elongate body located distal to the electrode 105 or other ablation element can be solid or filled such that the inner lumen 106 terminates at the distal end of the electrode 105. In one embodiment, the inner volume of the portion of the elongate body distal to the electrode can be filled with a plastic plug that can be epoxied in place or held by an interference fit. In other embodiments, the portion of the elongate body distal to the electrode can be formed from solid metal and attached to the proximal portion of the elongate body by welding, swaging, or any other technique known in the art.
The elongate body 102 illustrated in
While the device 200 is one exemplary embodiment of a medical device that can be adapted for use in fluid enhanced ablation therapy, a number of other devices can also be employed. For example, a very small elongate body can be required in treating cardiac dysrhythmias, such as ventricular tachycardia. In such a case, an appropriately sized elongate needle body can be, for example, disposed at a distal end of a catheter configured for insertion into the heart via the circulatory system. In one embodiment, a stainless steel needle body between about 20- and about 30-gauge (i.e., an outer diameter of about 0.3 mm to about 0.9 mm) can be disposed at a distal end of a catheter. The catheter can have a variety of sizes but, in some embodiments, it can have a length of about 120 cm and a diameter of about 8 French (“French” is a unit of measure used in the catheter industry to describe the size of a catheter and is equal to three times the diameter of the catheter in millimeters).
Referring back to
Fluid can be urged from the fluid reservoir 112 into the inner lumen 106 by a pump 116. In one embodiment, the pump 116 can be a syringe-type pump that produces a fixed volume flow via linear advancement of a plunger (not shown). In other embodiments, however, other types of pumps, such as a diaphragm pump, may also be employed.
The pump 116, as well as any other components of the system, can be controlled by a controller 118. The controller 118 can include a power supply 119 and can be configured to deliver electrical control signals to the pump 116 to cause the pump to produce a desired flow rate of fluid. The controller 118 can be connected to the pump 116 via an electrical connection 120. The controller 118 can also include an interface for receiving lead wires or other connecting elements to electrically couple the controller 118 to the elongate body 102 and one or more return electrodes 124. These electrical connections, which can have any desired length and can utilize any known electrical connecting elements to interface with the controller 118 (e.g., plugs, alligator clips, rings, prongs, etc.), are illustrated in
The return electrode 124 can have a variety of forms. For example, the return electrode 124 can be a single large electrode located outside a patient's body. In other embodiments, the return electrode 124 can be a return electrode located elsewhere along the elongate body 102, or it can be located on a second elongate body introduced into a patient's body near the treatment site. Regardless of the configuration used, the return electrode 124 is designed to receive current emitted from the mono-polar ablation element 105, thereby completing the circuit back to the controller 118 through the electrical connection 126.
In operation, the controller 118 can drive the delivery of fluid into target tissue at a desired flow rate, the heating of the imageable fluid to a desired therapeutic temperature, and the delivery of therapeutic ablative energy via the one or more ablation elements, such as electrode 105. To do so, the controller 118 can itself comprise a number of components for generating, regulating, and delivering required electrical control and therapeutic energy signals. In addition to the power supply 119 mentioned above, the controller 118 can include one or more digital data processors and associated storage memories that can be configured to perform a variety of functions, or control discrete circuit elements that perform a given function. These functions can include, for example, the generation of one or more electrical signals of various frequencies and amplitudes. Furthermore, the controller 118 can be configured to amplify any of these signals using one or more RF power amplifiers into relatively high-voltage, high-amperage signals, e.g., 50 volts at 1 amp. These RF signals can be delivered to the ablation element 105 via one or more electrical connections 122 and the elongate body 102 such that RF energy is passed between the emitter electrode 105 and any return electrodes or electrode assemblies 124 that are located remotely on a patient's body. In embodiments in which the elongate body is formed from non-conductive material, the one or more electrical connections 122 can extend through the inner lumen of the elongate body or along its outer surface to deliver current to the emitter electrode 105. The passage of RF energy between the ablation element and the return electrode 124 can heat the imageable therapeutic fluid and tissue surrounding the elongate body 102 due to their inherent electrical resistivity. The controller 118 can also include a number of other components, such as a directional coupler to feed a portion of the one or more RF signals to, for example, a power monitor to permit adjustment of the RF signal power to a desired treatment level. Still further, the controller 118 can include a user interface 121 to allow an operator to interact with the controller and set desired therapy operating parameters or receive feedback from the controller (e.g., warnings, indications, etc.).
As mentioned above, one challenge in fluid enhanced ablation therapy is monitoring the progress of the therapy. The ability to visualize the flow of a therapeutic fluid within a patient's body can be important for several reasons. For example, visualizing the flow can provide an indication of how much of a target tissue volume has received, or is likely to have received, a therapeutic dose of thermal energy from the treatment therapy. In addition, visualizing the flow of such a fluid can be helpful for an operator to determine if the elongate body is correctly positioned within a patient's body and whether or not the fluid is flowing within the target treatment volume in an expected manner.
Prior art techniques for monitoring the progress of fluid enhanced ablation therapy largely focus on measuring the temperature of tissue at specific points within the target tissue volume. Exemplary embodiments of such techniques are described in U.S. Pat. Pub. No. 2012/0277737, incorporated by reference above. Measuring the temperature of specific locations within a target tissue volume is not necessarily an effective indication of therapy process. In particular, sensors report only the temperature at their specific location, and do not provide information on the development of the volume of treated tissue as a whole. In addition, in the event that unexpected fluid flow is encountered (e.g., due to an adjacent vein or other anatomical feature that draws fluid away from the target tissue volume), remote temperature sensors might not provide any meaningful information other than the absence of an increase in temperature within the target tissue volume.
The systems and methods of the present invention address these challenges by providing for the direct visualization of the flow of a therapeutic fluid within a patient's body. This is accomplished by using an imageable fluid that can be viewed using any of a variety of known medical imaging technologies including, for example, fluoroscopy, computed tomography (CT) scanning, computer axial tomography (CAT) scanning, magnetic resonance imaging (MRI), and ultrasound. Furthermore, the systems and methods described herein allow for the determination of the size of a tissue volume that has received a therapeutic dose of thermal energy based on the size of a tissue volume that contains the imageable therapeutic fluid. The relationship between the sizes of these tissue volumes can be 1:1, or some other value based on the tissue type and therapy parameters in use, as described in more detail below.
In one aspect, for example, a method for ablating tissue is provided that includes inserting into a tissue volume an elongate body having an ablation element disposed thereon. The method can further include heating an imageable fluid within the elongate body to transform the imageable fluid into an imageable therapeutic fluid, and delivering energy to the ablation element on the elongate body. The energy and the imageable therapeutic fluid can be simultaneously delivered into the volume of tissue to deliver a therapeutic dose of thermal energy. The method can further include imaging the tissue volume to determine the extent of the tissue volume containing the imageable therapeutic fluid, wherein the imageable therapeutic fluid indicates the extent of the tissue volume that has received the therapeutic dose of thermal energy.
As described above, different fluids can be used in fluid enhanced ablation therapy and, accordingly, the imageable fluid can also include a variety of different fluids. In some embodiments, for example, the imageable fluid can be saline (or one or more other fluids used in place of saline) in combination with a contrast agent that can aid in visualizing the flow of the fluid. A contrast agent can be any substance that can be more easily detected using any of a variety of medical imaging technologies. For example, in the case of fluoroscopy and other X-ray medical imaging technologies, a contrast agent can be a fluid having a higher (e.g., positive) Hounsfield Unit value than the saline or other fluids being used. The Hounsfield Unit is a measurement of radiodensity in which a higher positive number indicates a greater ability to absorb, e.g., X-rays.
Furthermore, and as described above, a contrast agent can be selected such that the mixture of the contrast agent and other fluids (e.g., saline) does not have a significantly different heat capacity than the other fluids alone. Still further, the heat capacity of the mixture can be close to, or greater than, the heat capacity of the tissue to be treated. This can be important because a therapeutic fluid having a significantly lower heat capacity than the surrounding tissue can negatively affect the therapy. Accordingly, the imageable components of the imageable therapeutic fluid can, in some embodiments, be selected such that they are not filtered within the tissue volume, do not dissipate too rapidly within the tissue volume, do not interfere with the heating element within the elongate body, and further do not negatively affect the therapeutic performance of the fluid once in tissue.
There are many contrast agents known in the art, but one of ordinary skill in the art would not think to use them in combination with fluid enhanced ablation therapy for a number of reasons. For example, any contrast agent used in fluid enhanced ablation must be stable at the elevated therapeutic temperatures encountered during therapy. Many known contrast agents are not stable at these elevated temperatures (e.g., above 40° C.) and actually can become poisonous when raised to such elevated temperatures. Furthermore, many known contrast agents are non-ionic substances. This can raise concerns about whether the presence of the non-ionic contrast agent might interfere with, for example, the conduction of electrical energy between the ablation element and the ionic saline, saline solution, or other therapeutic fluid. Still further and as mentioned above, many contrast agents are large-molecule substances that may not be able to flow through the extracellular space of a volume of tissue due to the size of the molecules. If the contrast agent cannot flow with the saline through the extracellular space of the target tissue volume, it cannot serve its purpose of aiding to visualize the flow of fluid through the volume.
The systems and methods of the present invention can make use of any contrast agent that satisfies the criteria discussed above. One such contrast agent utilized in certain embodiments is iohexol, a non-ionic dye that is stable at the elevated temperatures encountered during fluid enhanced ablation therapy, does not negatively affect the transfer of energy between the ablation element and the imageable fluid, and has a sufficiently small molecular size to pass through the extracellular space of human tissue. The iohexol can be added directly to the saline, or it can be mixed in solution first prior to being mixed with the saline. The iohexol contrast solution is commercially available under the trade name Omnipaque®, manufactured by GE Healthcare. Note that spreading of a dye contrast agent like iohexol via chemical diffusion is not generally a concern because diffusion takes much longer than convection. As a result, over the time periods typically used in fluid enhanced ablation therapy, it can be assumed that the presence of a dye contrast agent is due to convective fluid flow, not chemical diffusion.
A suitable contrast agent can be mixed with saline or one or more other fluids in a variety of ratios. For example, in the embodiment illustrated in
The contrast agent can be mixed with the saline in a variety of manners. For example, with reference to
As described above, the systems and methods described herein not only provide for the direct visualization of the extent of a tissue volume containing an imageable therapeutic fluid, but also for the determination of the extent of the tissue volume that has received a therapeutic dose of thermal energy based on the visualization of the fluid flow. The relationship between the size of the volume of tissue containing the imageable therapeutic fluid and the size of the volume of tissue that has received a therapeutic dose of thermal energy can vary depending on a number of factors, including the definition of a therapeutic dose, the therapy operating parameters, the tissue type and other anatomical features, etc. In some embodiments, for example, a ratio between a linear dimension of the tissue volume containing the imageable therapeutic fluid and a linear dimension of the tissue volume that has received the therapeutic dose of thermal energy can be about 1:1. This proportion can be approached when the heat capacity of the imageable therapeutic fluid is much greater than that of the tissue. In other embodiments, however, the ratio can be smaller, indicating that only a portion of the volume containing the imageable therapeutic fluid has received a therapeutic dose of thermal energy. For example, in some embodiments, the ratio between a linear dimension of the tissue volume containing the imageable therapeutic fluid and a linear dimension of the tissue volume that has received the therapeutic dose of thermal energy can be about 3:2. In other embodiments, the ratio can be about 2:1, about 5:1, or about 10:1.
There are a number of different methods for calculating a therapeutic thermal dose, and any calculation ultimately depends on the temporal history of temperature (i.e., the amount of heating the tissue has previously endured) and the type of tissue being heated. Nonetheless, one exemplary suggestion by Nath, S. and Haines, D. E., Prog. Card. Dis. 37(4):185-205 (1995) (Nath et al.) is that raising the temperature of tissue to 50° C. for one minute administers a therapeutic dose and destroys the tissue.
Using the exemplary 50° C. mark as indicative of delivery of a therapeutic dose, the expansion of the treated volume of tissue can be seen over time. In particular, the first profile 602, taken 8 seconds after the initiation of therapy, indicates that the volume of tissue that has received a therapeutic dose of thermal energy extends less than 1 cm from the elongate body delivering the heated saline and RF or other energy. By 80 seconds after the initiation of therapy, the radius of the treated tissue volume extends about 1.5 cm from the elongate body, as shown by profile 604. The third profile 606, taken 400 seconds after initiating therapy, shows the therapeutic dose has been administered to a volume extending about 2.5 cm from the elongate body. The fourth profile 608, taken 800 seconds after initiating therapy, indicates that the therapeutic dose has been administered to a volume of tissue extending about 3 cm from the elongate body. The final profile 610 shows a steady state temperature profile indicating that over a longer period of time a treatment volume can grow to extend well over 5 cm from the elongate body.
As mentioned above, the expansion over time of a proportion of a volume of tissue that contains an imageable therapeutic fluid can be equal to or faster than the expansion of the 50°+ C. isotherm shown in
The radius of the volume of tissue that the imageable therapeutic fluid has flowed through can be expressed in terms of Qt. To begin, the volume of tissue that the injected imageable therapeutic fluid has filled, V, is:
V=3Qt (1)
Further, the imageable radius r is related to the filled volume according to:
The imageable radius r is therefore:
This equation can be used to solve for the radius r of a volume containing a contrast agent at any time t given a fluid flow rate Q.
Using the therapy parameters for the temperature profiles shown in
Thus, in this example, a ratio of a linear dimension of the volume of tissue containing imageable therapeutic fluid to a linear dimension of the volume of tissue that has received a therapeutic dose of thermal energy is about 3:2. Of course, this is just one possible ratio based on the heat capacity of the imageable therapeutic fluid, shape of the tissue volumes, type of tissue being treated, and therapy parameters. The ratios can vary based on differences in any of these parameters, but the concept remains the same, i.e., the expansion of an imageable fluid can be visualized and the size of a therapeutically treated volume of tissue can be determined based on the visualization.
Another advantage of the systems and methods described herein is the ability for a user to determine if the fluid being introduced into the target volume of tissue is flowing in an expected manner. If unexpected fluid flow is observed, a user can terminate therapy to diagnose the cause, reposition the elongate body, etc. The ability to actively monitor the development of a treatment volume and the flow of a therapeutic fluid within a patient's body can thus improve the safety of fluid enhanced ablation therapy.
For example, there are a number of situations in which incorrect placement of a needle or other elongate body can result in undesired fluid flow. In the liver, for example, incorrect placement of an elongate body or use of a high fluid flow rate can cause a hydro-dissection of the liver tissue in which the flowing saline tears the tissue apart rather than flow through the extracellular space. In addition, it is undesirable for fluid to flow out of the liver into the abdominal space. Each of these undesired phenomena can be directly visualized using the systems and methods of the present invention unlike prior art methods for monitoring fluid flow. Moreover, direct visualization allows for improved speed and accuracy during therapy delivery.
Fluid enhanced ablation therapy is also used commonly in the heart to treat cardiac dysrhythmias, such as ventricular tachycardia. Similar to the liver, misplacement of the elongate body in the heart can result in potentially dangerous undesired fluid flow. For example, if the elongate body extends too far and passes through the ventricular wall of the heart, fluid can be introduced into the space between the ventricle wall and pericardial sac. Further, this kind of positioning error can be common because the walls of the heart have varying thicknesses depending on location. Being able to visualize the flow of fluid introduced into the heart, liver, or other area of the body can allow for rapid recognition of undesired fluid flow and enable subsequent remedial steps to correct the flow and resume therapy.
By way of further example, undesired flow can occur even when the elongate body is correctly positioned in a volume of tissue due to the presence of certain anatomical structures. Veins, capillaries, and other sources of blood flow, for example, can carry fluid introduced adjacent thereto away from the target treatment volume of tissue, thereby preventing the tissue in the target volume of tissue from being raised to a therapeutic level. Directly visualizing the flow of fluid introduced into the patient's body can alert a user to the presence of such an anatomical feature quickly and allow for more rapid resumption of therapy after repositioning or otherwise compensating for the adjacent blood flow (e.g., by increasing fluid temperature or flow rate).
All papers and publications cited herein are hereby incorporated by reference in their entirety. One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4160455 | Law | Jul 1979 | A |
4424190 | Mather, III et al. | Jan 1984 | A |
5271413 | Dalamagas et al. | Dec 1993 | A |
5336222 | Durgin, Jr. et al. | Aug 1994 | A |
5403311 | Abele et al. | Apr 1995 | A |
5409487 | Jalbert et al. | Apr 1995 | A |
5431648 | Lev | Jul 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5449380 | Chin | Sep 1995 | A |
5456682 | Edwards et al. | Oct 1995 | A |
5458597 | Edwards et al. | Oct 1995 | A |
5462521 | Brucker et al. | Oct 1995 | A |
5472441 | Edwards et al. | Dec 1995 | A |
5496271 | Burton et al. | Mar 1996 | A |
5522815 | Durgin, Jr. et al. | Jun 1996 | A |
5545195 | Lennox et al. | Aug 1996 | A |
5549559 | Eshel | Aug 1996 | A |
5653692 | Masterson et al. | Aug 1997 | A |
5728143 | Gough et al. | Mar 1998 | A |
5735846 | Panescu et al. | Apr 1998 | A |
5800482 | Pomeranz et al. | Sep 1998 | A |
5827269 | Saadat | Oct 1998 | A |
5891094 | Masterson et al. | Apr 1999 | A |
5891134 | Goble et al. | Apr 1999 | A |
5954719 | Chen et al. | Sep 1999 | A |
5964791 | Bolmsjo | Oct 1999 | A |
6024743 | Edwards | Feb 2000 | A |
6030379 | Panescu et al. | Feb 2000 | A |
6032077 | Pomeranz | Feb 2000 | A |
6045549 | Smethers et al. | Apr 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6071280 | Edwards et al. | Jun 2000 | A |
6112123 | Kelleher et al. | Aug 2000 | A |
6119041 | Pomeranz et al. | Sep 2000 | A |
6139570 | Saadat et al. | Oct 2000 | A |
6139571 | Fuller et al. | Oct 2000 | A |
6179803 | Edwards et al. | Jan 2001 | B1 |
6208881 | Champeau | Mar 2001 | B1 |
6233490 | Kasevich | May 2001 | B1 |
6238393 | Mulier et al. | May 2001 | B1 |
6272370 | Gillies et al. | Aug 2001 | B1 |
6302904 | Wallsten et al. | Oct 2001 | B1 |
6315777 | Comben | Nov 2001 | B1 |
6328735 | Curley et al. | Dec 2001 | B1 |
6337994 | Stoianovici et al. | Jan 2002 | B1 |
6358273 | Strul et al. | Mar 2002 | B1 |
6405067 | Mest et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6443947 | Marko et al. | Sep 2002 | B1 |
6463332 | Aldrich | Oct 2002 | B1 |
6464694 | Massengill | Oct 2002 | B1 |
6468274 | Alleyne et al. | Oct 2002 | B1 |
6475213 | Whayne et al. | Nov 2002 | B1 |
6477396 | Mest et al. | Nov 2002 | B1 |
6494902 | Hoey et al. | Dec 2002 | B2 |
6529756 | Phan et al. | Mar 2003 | B1 |
6564096 | Mest | May 2003 | B2 |
6565561 | Goble et al. | May 2003 | B1 |
6603997 | Doody | Aug 2003 | B2 |
6620155 | Underwood et al. | Sep 2003 | B2 |
6641580 | Edwards et al. | Nov 2003 | B1 |
6669685 | Rizoiu et al. | Dec 2003 | B1 |
6678552 | Pearlman | Jan 2004 | B2 |
6702810 | McClurken et al. | Mar 2004 | B2 |
6752802 | Isenberg et al. | Jun 2004 | B1 |
6772012 | Ricart et al. | Aug 2004 | B2 |
6814730 | Li | Nov 2004 | B2 |
6904303 | Phan et al. | Jun 2005 | B2 |
6972014 | Eum et al. | Dec 2005 | B2 |
7001378 | Yon et al. | Feb 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7101369 | van der Welde | Sep 2006 | B2 |
7160259 | Tardy et al. | Jan 2007 | B2 |
7179256 | Mest | Feb 2007 | B2 |
7207989 | Pike, Jr. et al. | Apr 2007 | B2 |
7244254 | Brace et al. | Jul 2007 | B2 |
7270659 | Ricart et al. | Sep 2007 | B2 |
7311703 | Turovskiy et al. | Dec 2007 | B2 |
7387625 | Hovda et al. | Jun 2008 | B2 |
7387630 | Mest | Jun 2008 | B2 |
7412273 | Jais et al. | Aug 2008 | B2 |
7416552 | Paul et al. | Aug 2008 | B2 |
7559905 | Kagosaki et al. | Jul 2009 | B2 |
7604634 | Hooven | Oct 2009 | B2 |
7879030 | Paul et al. | Feb 2011 | B2 |
7938822 | Berzak et al. | May 2011 | B1 |
7951143 | Wang et al. | May 2011 | B2 |
7993335 | Rioux et al. | Aug 2011 | B2 |
8128620 | Wang et al. | Mar 2012 | B2 |
8128621 | Wang et al. | Mar 2012 | B2 |
8273082 | Wang et al. | Sep 2012 | B2 |
8287531 | Mest | Oct 2012 | B2 |
8333762 | Mest et al. | Dec 2012 | B2 |
8369922 | Paul et al. | Feb 2013 | B2 |
8439907 | Auth et al. | May 2013 | B2 |
8444638 | Woloszko et al. | May 2013 | B2 |
8449535 | Deno et al. | May 2013 | B2 |
8591507 | Kramer et al. | Nov 2013 | B2 |
8663226 | Germain | Mar 2014 | B2 |
8700133 | Hann | Apr 2014 | B2 |
8702697 | Curley | Apr 2014 | B2 |
8755860 | Paul et al. | Jun 2014 | B2 |
8758349 | Germain et al. | Jun 2014 | B2 |
8864760 | Kramer et al. | Oct 2014 | B2 |
8945121 | Curley | Feb 2015 | B2 |
9033972 | Curley | May 2015 | B2 |
9125671 | Germain et al. | Sep 2015 | B2 |
9138287 | Curley et al. | Sep 2015 | B2 |
9138288 | Curley | Sep 2015 | B2 |
9445861 | Curley | Sep 2016 | B2 |
20010031946 | Walker et al. | Oct 2001 | A1 |
20020120259 | Lettice et al. | Aug 2002 | A1 |
20020123749 | Jain | Sep 2002 | A1 |
20020183735 | Edwards et al. | Dec 2002 | A1 |
20030109871 | Johnson et al. | Jun 2003 | A1 |
20030120271 | Burnside et al. | Jun 2003 | A1 |
20040006336 | Swanson | Jan 2004 | A1 |
20040116922 | Hovda et al. | Jun 2004 | A1 |
20040220559 | Kramer et al. | Nov 2004 | A1 |
20040230190 | Dahla et al. | Nov 2004 | A1 |
20040260282 | Gough et al. | Dec 2004 | A1 |
20050015081 | Turovskiy et al. | Jan 2005 | A1 |
20050055019 | Skarda | Mar 2005 | A1 |
20050059963 | Phan et al. | Mar 2005 | A1 |
20050165391 | Maguire et al. | Jul 2005 | A1 |
20050187599 | Sharkey et al. | Aug 2005 | A1 |
20050192652 | Cioanta et al. | Sep 2005 | A1 |
20050245923 | Christopherson et al. | Nov 2005 | A1 |
20050267552 | Conquergood et al. | Dec 2005 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20060118127 | Chinn | Jun 2006 | A1 |
20060216275 | Mon | Sep 2006 | A1 |
20060259024 | Turovskiy et al. | Nov 2006 | A1 |
20060276780 | Brace et al. | Dec 2006 | A1 |
20060287650 | Cao et al. | Dec 2006 | A1 |
20070032786 | Francischelli | Feb 2007 | A1 |
20070185483 | Butty et al. | Aug 2007 | A1 |
20070219434 | Abreu | Sep 2007 | A1 |
20070287998 | Sharareh et al. | Dec 2007 | A1 |
20070288075 | Dowlatshahi | Dec 2007 | A1 |
20080086073 | McDaniel | Apr 2008 | A1 |
20080154258 | Chang et al. | Jun 2008 | A1 |
20080161788 | Dando et al. | Jul 2008 | A1 |
20080161797 | Wang et al. | Jul 2008 | A1 |
20080167650 | Joshi et al. | Jul 2008 | A1 |
20080275438 | Gadsby et al. | Nov 2008 | A1 |
20080275440 | Kratoska et al. | Nov 2008 | A1 |
20080288038 | Paul et al. | Nov 2008 | A1 |
20090069808 | Pike, Jr. et al. | Mar 2009 | A1 |
20090082837 | Gellman et al. | Mar 2009 | A1 |
20090093811 | Koblish et al. | Apr 2009 | A1 |
20090118725 | Auth et al. | May 2009 | A1 |
20090118727 | Pearson et al. | May 2009 | A1 |
20090163836 | Sliwa | Jun 2009 | A1 |
20090192507 | Luttich | Jul 2009 | A1 |
20090254083 | Wallace et al. | Oct 2009 | A1 |
20100030098 | Fojtik | Feb 2010 | A1 |
20100094272 | Rossetto et al. | Apr 2010 | A1 |
20100198056 | Fabro et al. | Aug 2010 | A1 |
20100292766 | Duong et al. | Nov 2010 | A1 |
20100324471 | Flaherty et al. | Dec 2010 | A1 |
20110060349 | Cheng et al. | Mar 2011 | A1 |
20110137150 | Connor et al. | Jun 2011 | A1 |
20110160726 | Ingle | Jun 2011 | A1 |
20110184403 | Brannan | Jul 2011 | A1 |
20110190756 | Venkatachalam et al. | Aug 2011 | A1 |
20110230799 | Christian et al. | Sep 2011 | A1 |
20110251615 | Truckai et al. | Oct 2011 | A1 |
20120108938 | Kauphusman et al. | May 2012 | A1 |
20120130381 | Germain | May 2012 | A1 |
20120265190 | Curley et al. | Oct 2012 | A1 |
20120265199 | Curley | Oct 2012 | A1 |
20120265200 | Curley | Oct 2012 | A1 |
20120265276 | Curley | Oct 2012 | A1 |
20120277737 | Curley | Nov 2012 | A1 |
20120310230 | Willis | Dec 2012 | A1 |
20140052117 | Curley | Feb 2014 | A1 |
20140188106 | Curley | Jul 2014 | A1 |
20140276743 | Curley | Sep 2014 | A1 |
20140350542 | Kramer et al. | Nov 2014 | A1 |
20150066025 | Curley | Mar 2015 | A1 |
20150223882 | Curley | Aug 2015 | A1 |
20150351823 | Curley | Dec 2015 | A1 |
20150359582 | Curley et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
1119127 | Aug 2003 | CN |
1525839 | Sep 2004 | CN |
1897885 | Jan 2007 | CN |
101209217 | Jul 2008 | CN |
101578073 | Nov 2009 | CN |
201642316 | Nov 2010 | CN |
101999931 | Apr 2011 | CN |
0 895 756 | Feb 1999 | EP |
0 908 156 | Apr 1999 | EP |
1 033 107 | Sep 2000 | EP |
2 042 112 | Apr 2009 | EP |
2 430 996 | Mar 2012 | EP |
10-505268 | May 1998 | JP |
9607360 | Mar 1996 | WO |
9634569 | Nov 1996 | WO |
9636288 | Nov 1996 | WO |
9729702 | Aug 1997 | WO |
9829068 | Jul 1998 | WO |
9932186 | Jul 1999 | WO |
02089686 | Nov 2002 | WO |
2005048858 | Jun 2005 | WO |
2005089663 | Sep 2005 | WO |
2006055658 | May 2006 | WO |
2006095171 | Sep 2006 | WO |
2006102471 | Sep 2006 | WO |
2006103951 | Oct 2006 | WO |
2007080578 | Jul 2007 | WO |
2010002733 | Jan 2010 | WO |
2010151619 | Dec 2010 | WO |
2012071058 | May 2012 | WO |
Entry |
---|
David R. Lide (ed)., CRC Handbook of Chemistry and Physics, 87th Edition. 2006. p. 8-81. CRC Press, Florida. |
International Search Report and Written Opinion for Application No. PCT/US2012/033203, issued Sep. 21, 2012. (23 pages). |
International Search Report and Written Opinion for Application No. PCT/US2012/033213, issued Sep. 21, 2012. (17 pages). |
International Search Report and Written Opinion for Application No. PCT/US2012/033216, issued Sep. 21, 2012. (17 pages). |
International Search Report and Written Opinion for Application No. PCT/US2012/033327, issued Sep. 21, 2012. (14 pages). |
International Search Report and Written Opinion for Application No. PCT/US2012/033332, issued Sep. 21, 2012. (20 pages). |
Nath et al., Prog. Card. Dis. 37(4):185-205 (1995). |
Rolf Sander, Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry. Max-Planck Institute of Chemistry. 1999, Mainz Germany. Www.henrys-law.org. |
Sapareto et al., Int. J Rad. One. Biol. Phys. 10(6):787-800 (1984). |
Brace CL. Microwave tissue ablation: biophysics, technology, and applications.; Crit Rev Biomed Eng. 2010;38 (1):65-78. |
International Search Report and Written Opinion for Application No. PCT/US2013/053977, issued Nov. 14, 2013. (20 pages). |
International Search Report and Written Opinion for Application No. PCT/US2014/024731, mailed Jul. 21, 2014 (39 pages). |
Extended European Search Report and Written Opinion for Application No. 12771601.7 issued Oct. 27, 2014 (7 pages). |
Extended European Search Report and Written Opinion for EP 12771331.1 dated Sep. 25, 2014 (6 pages). |
Extended Search Report and Written Opinion for EP 12 77 0537 dated Oct. 10, 2014 (6 pages). |
Extended Search Report and Written Opinion for EP 12 77 0631.5 dated Oct. 1, 2014 (6 Pages). |
Extended Search Report and Written Opinion for EP 12 77 1876 dated Oct. 13, 2014 (6 pages). |
Chinese Office Action for Application No. 201280028609.9, issued May 27, 2015. (22 pages). |
Chinese Office Action for Application No. 201280028620.5, issued May 27, 2015. (26 pages). |
Chinese Office Action for Application No. 201280028611.6, issued Jul. 29, 2015. (23 pages). |
Chinese Office Action for Application No. 201280028621.X, issued Jul. 31, 2015. (18 pages). |
U.S. Appl. No. 14/688,790, filed Apr. 16, 2015, Methods and Devices for Fluid Enhanced Microwave Ablation Therapy. |
U.S. Appl. No. 14/826,549, filed Aug. 14, 2015, Methods and Devices for Heating Fluid in Fluid Enhanced Ablation Therapy. |
U.S. Appl. No. 14/826,563, filed Aug. 14, 2015, Methods and Devices for Use of Degassed Fluids With Fluid Enhanced Ablation Devices. |
Chinese Office Action for Application No. 201380053690.0, issued Sep. 30, 2016. (17 pages). |
Extended European Search Report and Search Opinion for Application No. 13829821.1 issued Mar. 17, 2016 (7 pages). |
Japanese Office Action for Application No. 2014-505263, mailed Jan. 26, 2016 (4 pages). |
Japanese Office Action for Application No. 2014-505266, mailed Feb. 23, 2016 (7 pages). |
Young, S.T., et al., An instrument using variation of resistance to aid in needle tip insertion in epidural block in monkeys. Med Instrum. Oct. 1987;21(5):266-8. Abstract Only. |
Number | Date | Country | |
---|---|---|---|
20140275977 A1 | Sep 2014 | US |