The subject technology generally relates to scrolling and, in particular, relates to systems and methods for visually scrolling through a stack of items displayed on a device.
A touch-based device such as a smartphone may allow a user to scroll through content by using the user's finger gestures. For example, while touching a screen of the touch-based device with the user's finger, the user may slide the finger in an upward direction to move the content in the upward direction or may slide the finger in a downward direction to move the content in the downward direction. Unfortunately, if the user desires to scroll through a large amount of content, the user may need to apply repeated finger gestures to scroll through the large amount of content. Thus, it is desirable to scroll through content without necessarily relying on the user's finger gestures for the scrolling.
According to various aspects of the subject technology, a system for visually scrolling through a stack of items displayed on a device is provided. The system comprises a detection module configured to determine a motion of the device relative to a neutral position of the device. The system also comprises a display module configured to visually scroll through the stack of items in response to the motion of the device.
According to various aspects of the subject technology, a computer-implemented method for visually scrolling through a stack of items displayed on a device is provided. The method comprises determining a motion of the device relative to a neutral position of the device. The method also comprises visually scrolling through the stack of items in response to the motion of the device.
According to various aspects of the subject technology, a machine-readable medium encoded with executable instructions for visually scrolling through a stack of items displayed on a device is provided. The instructions comprise code for displaying the stack of items on the device. Each of the stack of items comprises at least one of a window, a browser tab, a contact page, a document, and an image. The instructions also comprise code for establishing a neutral position of the device and code for determining a motion of the device relative to the neutral position. The instructions also comprise code for visually scrolling through the stack of items in response to the motion of the device. A direction of the scrolling corresponds to a direction of a tilt of the motion of the device.
Additional features and advantages of the subject technology will be set forth in the description below, and in part will be apparent from the description, or may be learned by practice of the subject technology. The advantages of the subject technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide further understanding of the subject technology and are incorporated in and constitute a part of this specification, illustrate aspects of the subject technology and together with the description serve to explain the principles of the subject technology.
In the following detailed description, numerous specific details are set forth to provide a full understanding of the subject technology. It will be apparent, however, to one ordinarily skilled in the art that the subject technology may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail so as not to obscure the subject technology.
Touch-based mobile devices such as smartphones and tablets are typically equipped with small screens compared to other computing devices like laptop computers and desktop computers. In this regard, items displayed on the touch-based mobile devices can be stacked on top of one another in order to save space and accommodate the smaller screens. Items that may be stacked include windows, browser tabs, contact pages, documents, images, and other suitable items in a frame format. For example, a mobile device may display multiple windows stacked on top of one another, and a user may select a particular window to be displayed by rearranging the stack of multiple windows or manipulating the stack in some other manner. U.S. patent application Ser. No. 13/094,489, filed on Apr. 26, 2011 and entitled “Mobile Browser Context Switching,” describes various examples of stacked items and is incorporated by reference herein.
The mobile devices are typically equipped with accelerometers. Aspects of the subject technology take advantage of the accelerometers in order to provide a user of a mobile device with an optimized experience for navigating through a stack of items displayed on the mobile device. According to certain aspects, the user may visually scroll through the stack of items by moving the mobile device in an appropriate manner. For example, if the user tilts the mobile device forward (assuming the mobile device is in a portrait mode (e.g., when the screen of the mobile device is oriented vertically from the user's perspective and may be taller than it is wide)), the stack of items may be visually scrolled through in an upward direction relative to the screen of the mobile device, thereby allowing the user to quickly view the contents of each of the items as the items move upward without necessarily having to rely on the user's finger gestures for the scrolling. If the user tilts the phone backward (assuming the mobile device is in the portrait mode), the stack of items may be visually scrolled through in a downward direction relative to the screen of the mobile device. The stack of items may be visually scrolled through in a similar manner when the mobile device is in a landscape mode (e.g., when the screen mobile device is oriented horizontally from the user's perspective and may be wider than it is tall), except that the stack of items may be visually scrolled through toward the left or the right relative to the screen depending on how the user tilts the phone. According to certain aspects, either type of scrolling (e.g., upward/downward scrolling or left/right scrolling) may be employed for mobile devices with square screens.
According to step S202 in
Prior to visually scrolling through stack of items 302, however, position module 102 may establish a neutral position of device 300 according to step S204 in
According to certain aspects, user input received from the user of device 300 may be used to establish the neutral position. The user input, for example, may comprise at least one of a touch-based input, a button-based input, or other suitable user input. This user input may indicate that the user is using device 300 and does not wish to visually scroll through stack of items 302 based on the movement of device 300. For example, the user may be using finger gestures or button inputs to interact with content displayed on screen 312 of device 300. During this time, the user may not necessarily desire to visually scroll through stack of items 302 based on the movement of device 300, especially if the movement is unintentional. In this regard, detection module 104 may monitor device 300 for the user input and may establish the neutral position of device 300 upon completion of the user input.
According to step S206 in
According to step S208 in
According to certain aspects, stack of items 302 may be visually scrolled through by unstacking and/or expanding one or more of stack of items 302. For example,
According to various aspects of the subject technology, display module 106 may suspend the scrolling upon the user input (e.g., a touch-based input and/or a button-based input) being detected by detection module 104. For example, as discussed above, detection module 104 may monitor device 300 for the user input. The detection of the user input by detection module 104 may indicate that the user has identified content displayed on screen 312 that the user would like to interact with. Thus, scrolling can be suspended upon detection of the user input to allow the user to interact with the content displayed. For example, as stack of items 302 is being visually scrolled through in the direction of arrow 308a, item 304e may become displayed (e.g., as shown in
In some aspects, processor module 404 may comprise one or more processors, where each processor may perform different functions or execute different instructions and/or processes. For example, one or more processors may execute instructions for visually scrolling through a stack of items displayed on a device (e.g., method 200), and one or more processors may execute instructions for input/output functions.
Memory module 406 may be random access memory (“RAM”) or other dynamic storage devices for storing information and instructions to be executed by processor module 404. Memory module 406 may also be used for storing temporary variables or other intermediate information during execution of instructions by processor 404. In some aspects, memory module 406 may comprise battery-powered static RAM, which stores information without requiring power to maintain the stored information. Storage module 410 may be a magnetic disk or optical disk and may also store information and instructions. In some aspects, storage module 410 may comprise hard disk storage or electronic memory storage (e.g., flash memory). In some aspects, memory module 406 and storage module 410 are both a machine-readable medium.
Controller 400 is coupled via I/O module 408 to a user interface for providing information to and receiving information from an operator of system 100. For example, the user interface may be a cathode ray tube (“CRT”) or LCD monitor for displaying information to an operator. The user interface may also include, for example, a keyboard or a mouse coupled to controller 400 via I/O module 408 for communicating information and command selections to processor module 404.
According to various aspects of the subject disclosure, methods described herein are executed by controller 400. Specifically, processor module 404 executes one or more sequences of instructions contained in memory module 406 and/or storage module 410. In one example, instructions may be read into memory module 406 from another machine-readable medium, such as storage module 410. In another example, instructions may be read directly into memory module 406 from I/O module 408, for example from an operator of system 100 via the user interface. Execution of the sequences of instructions contained in memory module 406 and/or storage module 410 causes processor module 404 to perform methods to visually scroll through a stack of items displayed on a device. For example, a computational algorithm for visually scrolling through a stack of items displayed on a device may be stored in memory module 406 and/or storage module 410 as one or more sequences of instructions. Information such as the motion of the device, the neutral position of the device, the stack of items, the speed of the scrolling, the speed of the motion of the device, the direction of the scrolling, the direction of the motion of the device, the order of the stack of items, the user input, and/or other suitable information may be communicated from processor module 404 to memory module 406 and/or storage module 410 via bus 402 for storage. In some aspects, the information may be communicated from processor module 404, memory module 406, and/or storage module 410 to I/O module 408 via bus 402. The information may then be communicated from I/O module 408 to an operator of system 100 via the user interface.
One or more processors in a multi-processing arrangement may also be employed to execute the sequences of instructions contained in memory module 406 and/or storage module 410. In some aspects, hard-wired circuitry may be used in place of or in combination with software instructions to implement various aspects of the subject disclosure. Thus, aspects of the subject disclosure are not limited to any specific combination of hardware circuitry and software.
The term “machine-readable medium,” or “computer-readable medium,” as used herein, refers to any medium that participates in providing instructions to processor module 404 for execution. Such a medium may take many forms, including, but not limited to, non-volatile media and volatile media. Non-volatile media include, for example, optical or magnetic disks, such as storage module 410. Volatile media include dynamic memory, such as memory module 406. Common forms of machine-readable media or computer-readable media include, for example, floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical mediums with patterns of holes, a RAM, a PROM, an EPROM, a FLASH EPROM, any other memory chip or cartridge, or any other medium from which a processor can read.
The foregoing description is provided to enable a person skilled in the art to practice the various configurations described herein. While the subject technology has been particularly described with reference to the various figures and configurations, it should be understood that these are for illustration purposes only and should not be taken as limiting the scope of the subject technology.
There may be many other ways to implement the subject technology. Various functions and elements described herein may be partitioned differently from those shown without departing from the scope of the subject technology. Various modifications to these configurations will be readily apparent to those skilled in the art, and generic principles defined herein may be applied to other configurations. Thus, many changes and modifications may be made to the subject technology, by one having ordinary skill in the art, without departing from the scope of the subject technology.
It is understood that the specific order or hierarchy of steps in the processes disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged. Some of the steps may be performed simultaneously. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
Terms such as “top,” “bottom,” “right,” “left,” “up,” “down,” “forward,” “backward,” and the like as used in this disclosure should be understood as referring to an arbitrary frame of reference, rather than to the ordinary gravitational frame of reference. Thus, a top surface, a bottom surface, a front surface, and a rear surface may extend upwardly, downwardly, diagonally, or horizontally in a gravitational frame of reference.
A phrase such as “an aspect” does not imply that such aspect is essential to the subject technology or that such aspect applies to all configurations of the subject technology. A disclosure relating to an aspect may apply to all configurations, or one or more configurations. An aspect may provide one or more examples of the disclosure. A phrase such as an “aspect” may refer to one or more aspects and vice versa. A phrase such as an “embodiment” does not imply that such embodiment is essential to the subject technology or that such embodiment applies to all configurations of the subject technology. A disclosure relating to an embodiment may apply to all embodiments, or one or more embodiments. An embodiment may provide one or more examples of the disclosure. A phrase such an “embodiment” may refer to one or more embodiments and vice versa. A phrase such as a “configuration” does not imply that such configuration is essential to the subject technology or that such configuration applies to all configurations of the subject technology. A disclosure relating to a configuration may apply to all configurations, or one or more configurations. A configuration may provide one or more examples of the disclosure. A phrase such as a “configuration” may refer to one or more configurations and vice versa.
Furthermore, to the extent that the term “include,” “have,” or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
A reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” The term “some” refers to one or more. All structural and functional equivalents to the elements of the various configurations described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and intended to be encompassed by the subject technology. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the above description.