Systems and methods for voice-assisted media content selection

Information

  • Patent Grant
  • 11797263
  • Patent Number
    11,797,263
  • Date Filed
    Thursday, November 4, 2021
    2 years ago
  • Date Issued
    Tuesday, October 24, 2023
    7 months ago
Abstract
Systems and methods for media playback via a media playback system include (i) capturing a voice input comprising a request for media content, (ii) receiving information derived at least from the request for media content, (iii) requesting and receiving information from at least one remote computing device associated with a first media content service and at least one remote computing device associated with a second media content service, wherein (a) the information identifies first media content available via the first media content service for playback and identifies second media content available via the second media content service for playback, and (b) the first and second media content are related to the requested media content, and (iv) after receiving at least one of the first information and the second information, (a) selecting the first media content instead of the second media content, and (b) playing back the first media content.
Description
TECHNICAL FIELD

The present technology relates to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to voice-assisted media content selection or some aspect thereof.


BACKGROUND

Options for accessing and listening to digital audio in an out-loud setting were limited until in 2003, when SONOS, Inc. filed for one of its first patent applications, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering a media playback system for sale in 2005. The SONOS Wireless HiFi System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a smartphone, tablet, or computer, one can play what he or she wants in any room that has a networked playback device. Additionally, using the controller, for example, different songs can be streamed to each room with a playback device, rooms can be grouped together for synchronous playback, or the same song can be heard in all rooms synchronously.


Given the ever-growing interest in digital media, there continues to be a need to develop consumer-accessible technologies to further enhance the listening experience.





BRIEF DESCRIPTION OF THE DRAWINGS

Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:



FIG. 1A is a partial cutaway view of an environment having a media playback system configured in accordance with aspects of the disclosed technology.



FIG. 1B is a schematic diagram of the media playback system of FIG. 1A and one or more networks;



FIG. 2A is a functional block diagram of an example playback device;



FIG. 2B is an isometric diagram of an example playback device that includes a network microphone device;



FIGS. 3A-3E are diagrams showing example zones and zone groups in accordance with aspects of the disclosure;



FIG. 4A is a functional block diagram of an example controller device in accordance with aspects of the disclosure;



FIGS. 4B and 4C are controller interfaces in accordance with aspects of the disclosure;



FIG. 5A is a functional block diagram of an example network microphone device in accordance with aspects of the disclosure;



FIG. 5B is a diagram of an example voice input in accordance with aspects of the disclosure;



FIG. 6 is a functional block diagram of example remote computing device(s) in accordance with aspects of the disclosure;



FIG. 7A is a schematic diagram of an example network system in accordance with aspects of the disclosure;



FIG. 7B is a flow diagram showing a process for voice-assisted media content selection implemented by the example network system of FIG. 7A;



FIG. 7C is an example message flow implemented by the example network system of FIG. 7A in accordance with aspects of the disclosure;



FIG. 7D is an example message flow implemented by the example network system of FIG. 7A in accordance with aspects of the disclosure;



FIG. 8A is a table showing example attributes of media content that may be received by a media playback system in accordance with aspects of the disclosure;



FIGS. 8B-8H is a table with example voice input commands, associated attributes, and media playback system and/or VAS actions, and in accordance with aspects of the disclosure; and



FIGS. 9A, 9B, and 9C are tables with example voice input commands and associated information in accordance with aspects of the disclosure.





The drawings are for purposes of illustrating example embodiments, but it is understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings. In the drawings, identical reference numbers identify at least generally similar elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refers to the Figure in which that element is first introduced. For example, element 103a is first introduced and discussed with reference to FIG. 1A.


DETAILED DESCRIPTION

I. Overview


Voice control can be beneficial for a “smart” home having smart appliances and related devices, such as wireless illumination devices, home-automation devices (e.g., thermostats, door locks, etc.), and audio playback devices. In some implementations, networked microphone devices may be used to control smart home devices. A network microphone device will typically include a microphone for receiving voice inputs. The network microphone device can forward voice inputs to a voice assistant service (VAS), such as AMAZON's ALEXA, APPLE's SIRI, MICROSOFT's CORTANA, GOOGLE ASSISTANT, etc. A traditional VAS may be a remote service implemented by cloud servers to process voice inputs. A VAS may process a voice input to determine an intent of the voice input. Based on the response, the network microphone device may cause one or more smart devices to perform an action. For example, the network microphone device may instruct an illumination device to turn on/off based on the response to the instruction from the VAS.


A voice input detected by a network microphone device will typically include a wake word followed by an utterance containing a user request. The wake word is typically a predetermined word or phrase used to “wake up” and invoke the VAS for interpreting the intent of the voice input. For instance, in querying the AMAZON VAS, a user might speak the wake word “Alexa.” Other examples include “Ok, Google” for invoking the GOOGLE VAS and “Hey, Siri” for invoking the APPLE VAS, or “Hey, Sonos” for a VAS offered by SONOS. In various embodiments, a wake word may also be referred to as, e.g., an activation-, trigger-, wakeup-word or phrase, and may take the form of any suitable word; combination of words, such as phrases; and/or audio cues indicating that the network microphone device and/or an associated VAS is to invoke an action.


A network microphone device listens for a user request or command accompanying a wake word in the voice input. In some instances, the user request may include a command to control a third-party device, such as a thermostat (e.g., NEST thermostat), an illumination device (e.g., a PHILIPS HUE lighting device), or a media playback device (e.g., a SONOS playback device). For example, a user might speak the wake word “Alexa” followed by the utterance “set the thermostat to 68 degrees” to set the temperature in a home using the Amazon VAS. A user might speak the same wake word followed by the utterance “turn on the living room” to turn on illumination devices in a living room area of the home. The user may similarly speak a wake word followed by a request to play a particular song, an album, or a playlist of music on a playback device in the home.


A VAS may employ natural language understanding (NLU) systems to process voice inputs. NLU systems typically require multiple remote servers that are programmed to detect the underlying intent of a given voice input. For example, the servers may maintain a lexicon of language; parsers; grammar and semantic rules; and associated processing algorithms to determine the user's intent.


As it relates to voice control of media playback systems, however, such as multi-zone playback systems, conventional VAS(es) may be particularly limited. For example, a traditional VAS may only support voice control for rudimentary device playback or require the user to use specific and stilted phraseology to interact with a device rather than natural dialogue. Further, a traditional VAS may not support multi-zone playback or other features that a user wishes to control, such as device grouping, multi-room volume, equalization parameters, and/or audio content for a given playback scenario. Controlling such functions may require significantly more resources beyond those needed for rudimentary playback.


In addition to the above-mentioned limitations, typical VAS(es) may integrate with relatively few, if any, media content services. Thus, users generally can only interact with less than a handful of media content services through typical VAS(es), and are usually restricted to only those providers associated with a particular VAS.


Restricting voice control-enabled media content searching and playing to a single media content service may greatly limit the media content available to a user on a voice-requested basis, as different media content services have different media content catalogs. For example, some artists/albums/songs are only available on select media content services, and certain types of media content, such as podcasts and audiobooks, are only available on select media content services. Moreover, different media content services employ different algorithms for suggesting new media content to users and, when taken together, these varying discovery tools expose users to a wider variety of media content than do the discovery tools of any individual media content service. This and other benefits to subscribing to multiple media content services are lost, however, on a user that is restricted to searching and playing back media from only one or two media content services.


For example, consider a user that pays a monthly subscription to a VAS provider for a first music service (such as a VAS-sponsored music service, e.g., AMAZON's AMAZON MUSIC UNLIMITED) and another monthly subscription for a second music service (e.g., SPOTIFY, I HEART RADIO, PANDORA, TUNEIN, etc.). If the user asks the VAS to play music by [Artist A], the VAS will not play back songs by [Artist A] for the user if neither of the first and second music services include songs by [Artist A] in their respective media libraries. Also, if a user has access to [Artist A]'s songs through a third music service that is not supported by the VAS, such as APPLE's iTUNES, the VAS will not provide access to this service, despite the user paying a monthly fee to have access to these songs. To access the media library of the third music service, the user will need to access the library through an alternate service, such as the iTUNES service). A related inconvenience is that the user will not be able to voice-request play back of any media content unique to iTUNES, such as user- and iTUNES-created playlists, iTUNES radio stations (such as Beats 1), etc.


In addition, it would be prohibitively difficult for those media content services not associated with any VAS (such as I HEART RADIO, PANDORA, TUNEIN, etc.) and those media playback systems not associated with a VAS to develop voice-processing technology that could be even moderately competitive with that of the already-existing VAS(es). This is because NLU processing is computationally intensive, and providers of VAS(es) must maintain and continually develop processing algorithms and deploy an increasing number of resources, such as additional cloud servers, to process and learn from the myriad voice inputs that are received from users all over the world. Specifically with respect to media playback systems, inclusion of a sophisticated VAS would add significant cost, and also cause the system to consume considerably more energy, which of course is undesirable.


The media playback systems detailed herein address the above-mentioned and other challenges associated with searching and accessing media content across multiple media content services by providing a cross-service content platform that functions as a gateway between the VAS (or multiple VAS(es)) and the media content services. For example, the media playback system may include a network microphone device that captures a voice input including a request to play particular media content. To identify or “find” the requested media content based on the voice input, the media playback system may send a message including the voice input and other information (if necessary) to a VAS to derive information related to the requested media content from the voice input. In some embodiments, the media playback system may send a VAS only certain information (e.g., only certain metadata) that is needed by the VAS to interpret the voice input and provide an interpretation sufficient for the VAS to conduct a search to resolve one or more aspects of the request (if necessary). For example, a knowledge base of user intent data handled by the media playback system and/or the VAS may learn a household's preferences for certain types of content (e.g., preferred albums, live versions of songs over radio recordings, etc.) independent of and even unaware of the media content service that ultimately provides the desired content. In one aspect, this enables media content to be selected for play back by the media playback system in a way that does not discriminate one media content service over the other. In another aspect, certain metadata may be excluded in the exchanges between the media playback system and the VAS, such as information that would expressly identify a media content service. Thus, although the VAS performs the initial search of the media content request, the media playback system maintains control of the parameters of the search, as the VAS's search is based only on information provided to the VAS by the media playback system. In some embodiments described below, the VAS may be instructed by the media playback system to provide a voice output to the user that indicates which media content service is selected or available to play the desired media content without biasing the initial search toward a particular media content service.


The media playback systems of the present technology may also dictate that the VAS identify certain attributes, such as possible songs, artists, album titles that are suitable and/or intended by the user, such as within a specific data structure generated by the VAS (for example, as a result of the determination of intent by the VAS), as well as the types of information contained within the predefined structure. Once the media playback system receives a message with attributes (e.g., one more packets with requested payload from the VAS), the media playback system then sends a request to one or more media content services to find (e.g., search) for media content corresponding to the information of the messages received from the VAS. A predefined data structure and payload requested from the VAS by the media playback system may, for example, be driven by the data structure and payload required by one or more of the media content services in order to search for a particular media content.


Unlike typical VAS(es) that may only communicate or exchange data with a limited number of media content services (as described above), the media playback systems detailed herein are configured to send data to and receive data from a VAS (and in some embodiments multiple VAS(es)) and multiple media content services. As such, when conducting a voice-assisted media content search, the user is not limited to media content from the limited number of media content services associated with (e.g., sponsored by) a particular VAS. Rather, the user may search for media content on SPOTIFY and APPLE's iTunes, even though the VAS may sponsor or directly support searching iTUNEs and/or SPOTIFY. Thus, a user is provided access to a greater and more diverse array of media content via voice control.


While some embodiments described herein may refer to functions performed by given actors such as “users” and/or other entities, it should be understood that this description is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves.


II. Example Operating Environment



FIGS. 1A and 1B illustrate an example configuration of a media playback system 100 (or “MPS 100”) in which one or more embodiments disclosed herein may be implemented. Referring first to FIG. 1A, the MPS 100 as shown is associated with an example home environment having a plurality of rooms and spaces, which may be collectively referred to as a “home environment” or “environment 101”. The environment 101 comprises a household having several rooms, spaces, and/or playback zones, including a master bathroom 101a, a master bedroom 101b (referred to herein as “Nick's Room”), a second bedroom 101c, a family room or den 101d, an office 101e, a living room 101f, a dining room 101g, a kitchen 101h, and an outdoor patio 101i. While certain embodiments and examples are described below in the context of a home environment, the technologies described herein may be implemented in other types of environments. In some embodiments, for example, the MPS 100 can be implemented in one or more commercial settings (e.g., a restaurant, mall, airport, hotel, a retail or other store), one or more vehicles (e.g., a sports utility vehicle, bus, car, a ship, a boat, an airplane), multiple environments (e.g., a combination of home and vehicle environments), and/or another suitable environment where multi-zone audio may be desirable.


Within these rooms and spaces, the MPS 100 includes one or more computing devices. Referring to FIGS. 1A and 1B together, such computing devices can include playback devices 102 (identified individually as playback devices 102a-102n), network microphone devices 103 (identified individually as “NMD(s)” 103a-103i), and controller devices 104a and 104b (collectively “controller devices 104”). The home environment may include additional and/or other computing devices, including local network devices, such as one or more smart illumination devices 108 (FIG. 1B), and a smart thermostat 110, and a local computing device 105 (FIG. 1A).


Referring to FIG. 1B, the various playback, network microphone, and controller devices 102-104 and/or other network devices of the MPS 100 may be coupled to one another via point-to-point connections and/or over other connections, which may be wired and/or wireless, via a LAN 111 including a network router 109. For example, the playback device 102j (which may be designated as “Left”) in the Den 101d (FIG. 1A) may have a point-to-point connection with the playback device 102a in the Den 101d (which may be designated as “Right”). In one embodiment, the Left playback device 102j may communicate over the point-to-point connection with the Right playback device 102a. In a related embodiment, the Left playback device 102j may communicate with other network devices via the point-to-point connection and/or other connections via the LAN 111.


As further shown in FIG. 1B, in some embodiments the MPS 100 is coupled to one or more remote computing devices 106, which may comprise different groups of remote computing devices 106a-106c associated with various services, including voice assistant services (“VAS(es)”), media content services (“MCS(es)”), and/or services for supporting operations of the MPS 100 via a wide area network (WAN) 107. In some embodiments, the remote computing device(s) may be cloud servers. The remote computing device(s) 106 may be configured to interact with computing devices in the environment 101 in various ways. For example, the remote computing device(s) 106 may be configured to facilitate streaming and controlling playback of media content, such as audio, in the home environment. In one aspect of the technology described in greater detail below, the various playback devices, network microphone devices, and/or controller devices 102-104 are coupled to at least one remote computing device associated with a VAS, and at least one remote computing device associated with an MCS. Also, as described in greater detail below, in some embodiments the various playback devices, network microphone devices, and/or controller devices 102-104 may be coupled to several remote computing devices, each associated with a different VAS and/or to a plurality of remote computing devices associated with multiple different media content services.


In some embodiments, one or more of the playback devices 102 may include an on-board (e.g., integrated) network microphone device. For example, the playback devices 102a-e include corresponding NMDs 103a-e, respectively. Playback devices that include network microphone devices may be referred to herein interchangeably as a playback device or a network microphone device unless indicated otherwise in the description.


In some embodiments, one or more of the NMDs 103 may be a stand-alone device. For example, the NMDs 103f and 103g may be stand-alone network microphone devices. A stand-alone network microphone device may omit components typically included in a playback device, such as a speaker or related electronics. In such cases, a stand-alone network microphone device may not produce audio output or may produce limited audio output (e.g., relatively low-quality audio output).


In use, a network microphone device may receive and process voice inputs from a user in its vicinity. For example, a network microphone device may capture a voice input upon detection of the user speaking the input. In the illustrated example, the NMD 103d of the playback device 102d in the Living Room may capture the voice input of a user in its vicinity. In some instances, other network microphone devices (e.g., the NMDs 103f and 103i) in the vicinity of the voice input source (e.g., the user) may also detect the voice input. In such instances, network microphone devices may arbitrate between one another to determine which device(s) should capture and/or process the detected voice input. Examples for selecting and arbitrating between network microphone devices may be found, for example, in U.S. application Ser. No. 15/438,749 filed Feb. 21, 2017, and titled “Voice Control of a Media Playback System,” which is incorporated herein by reference in its entirety.


In certain embodiments, a network microphone device may be assigned to a playback device that may not include a network microphone device. For example, the NMD 103f may be assigned to the playback devices 102i and/or 102l in its vicinity. In a related example, a network microphone device may output audio through a playback device to which it is assigned. Additional details regarding associating network microphone devices and playback devices as designated or default devices may be found, for example, in previously referenced U.S. patent application Ser. No. 15/438,749.


In use, the network microphone devices 103 are configured to interact with a voice assistant service VAS, such as a first VAS 160 hosted by one or more of the remote computing devices 106a. For example, as shown in FIG. 1B, the NMD 103f is configured to receive voice input 121 from a user 123. The NMD 103f transmits data associated with the received voice input 121 to the remote computing devices 106a of the VAS 160, which are configured to (i) process the received voice input data and (ii) transmit a corresponding command to the MPS 100. In some aspects, for example, the remote computing devices 106a comprise one or more modules and/or servers of a VAS (e.g., a VAS operated by one or more of SONOS, AMAZON, GOOGLE APPLE, MICROSOFT). The remote computing devices 106a can receive the voice input data from the NMD 103f, for example, via the LAN 111 and the router 109. In response to receiving the voice input data, the remote computing devices 106a process the voice input data (i.e., “Play Hey Jude by The Beatles”), and may determine that the processed voice input includes a command to play a song (e.g., “Hey Jude”). In response, one of the computing devices 106a of the VAS 160 transmits a command to one or more remote computing devices (e.g., remote computing devices 106d) associated with the MPS 100. In this example, the VAS 160 may transmit a command to the MPS 100 to play back “Hey Jude” by the Beatles. As described below, the MPS 100, in turn, can query a plurality of suitable media content services (“MCS(es)”) 167 for media content, such as by sending a request to a first MCS hosted by first one or more remote computing devices 106b and a second MCS hosted by second one or more remote computing devices 106c. In some aspects, for example, the remote computing devices 106b and 106c comprise one or more modules and/or servers of a corresponding MCS (e.g., an MCS operated by one or more of SPOTIFY, PANDORA, AMAZON MUSIC , etc.).


Further aspects relating to the different components of the example MPS 100 and how the different components may interact to provide a user with a media experience may be found in the following sections. While discussions herein may generally refer to the example MPS 100, technologies described herein are not limited to applications within, among other things, the home environment as shown in FIG. 1A. For instance, the technologies described herein may be useful in other home environment configurations comprising more or fewer of any of the playback, network microphone, and/or controller devices 102-104. For example, the technologies herein may be utilized within an environment containing a single playback device 102 and/or a single network microphone device 103. In such cases, the LAN 111 may be eliminated and the single playback device 102 and/or the single network microphone device 103 may communicate directly with the remote computing devices 106a-d. In some embodiments, a telecommunication network (e.g., an LTE network, a 5G network) may communicate with the various playback, network microphone, and/or controller devices 102-104 independent of a LAN.


a. Example Playback and Network Microphone Devices



FIG. 2A is a functional block diagram illustrating certain aspects of a selected one of the playback devices 102 shown in FIG. 1A. As shown, such a playback device may include a processor 212, software components 214, memory 216, audio processing components 218, audio amplifier(s) 220, speaker(s) 222, and a network interface 230 including wireless interface(s) 232 and wired interface(s) 234. In some embodiments, a playback device may not include the speaker(s) 222, but rather a speaker interface for connecting the playback device to external speakers. In certain embodiments, the playback device may include neither the speaker(s) 222 nor the audio amplifier(s) 222, but rather an audio interface for connecting a playback device to an external audio amplifier or audio-visual receiver.


A playback device may further include a user interface 236. The user interface 236 may facilitate user interactions independent of or in conjunction with one or more of the controller devices 104. In various embodiments, the user interface 236 includes one or more of physical buttons and/or graphical interfaces provided on touch sensitive screen(s) and/or surface(s), among other possibilities, for a user to directly provide input. The user interface 236 may further include one or more of lights and the speaker(s) to provide visual and/or audio feedback to a user.


In some embodiments, the processor 212 may be a clock-driven computing component configured to process input data according to instructions stored in the memory 216. The memory 216 may be a tangible computer-readable medium configured to store instructions executable by the processor 212. For example, the memory 216 may be data storage that can be loaded with one or more of the software components 214 executable by the processor 212 to achieve certain functions. In one example, the functions may involve a playback device retrieving audio data from an audio source or another playback device. In another example, the functions may involve a playback device sending audio data to another device on a network. In yet another example, the functions may involve pairing of a playback device with one or more other playback devices to create a multi-channel audio environment.


Certain functions may involve a playback device synchronizing playback of audio content with one or more other playback devices. During synchronous playback, a listener may not perceive time-delay differences between playback of the audio content by the synchronized playback devices. U.S. Pat. No. 8,234,395 filed Apr. 4, 2004, and titled “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is hereby incorporated by reference in its entirety, provides in more detail some examples for audio playback synchronization among playback devices.


The audio processing components 218 may include one or more digital-to-analog converters (DAC), an audio preprocessing component, an audio enhancement component or a digital signal processor (DSP), and so on. In some embodiments, one or more of the audio processing components 218 may be a subcomponent of the processor 212. In one example, audio content may be processed and/or intentionally altered by the audio processing components 218 to produce audio signals. The produced audio signals may then be provided to the audio amplifier(s) 210 for amplification and playback through speaker(s) 212. Particularly, the audio amplifier(s) 210 may include devices configured to amplify audio signals to a level for driving one or more of the speakers 212. The speaker(s) 212 may include an individual transducer (e.g., a “driver”) or a complete speaker system involving an enclosure with one or more drivers. A particular driver of the speaker(s) 212 may include, for example, a subwoofer (e.g., for low frequencies), a mid-range driver (e.g., for middle frequencies), and/or a tweeter (e.g., for high frequencies). In some cases, each transducer in the one or more speakers 212 may be driven by an individual corresponding audio amplifier of the audio amplifier(s) 210. In addition to producing analog signals for playback, the audio processing components 208 may be configured to process audio content to be sent to one or more other playback devices for playback.


Audio content to be processed and/or played back by a playback device may be received from an external source, such as via an audio line-in input connection (e.g., an auto-detecting 3.5 mm audio line-in connection) or the network interface 230.


The network interface 230 may be configured to facilitate a data flow between a playback device and one or more other devices on a data network. As such, a playback device may be configured to receive audio content over the data network from one or more other playback devices in communication with a playback device, network devices within a local area network, or audio content sources over a wide area network such as the Internet. In one example, the audio content and other signals transmitted and received by a playback device may be transmitted in the form of digital packet data containing an Internet Protocol (IP)-based source address and IP-based destination addresses. In such a case, the network interface 230 may be configured to parse the digital packet data such that the data destined for a playback device is properly received and processed by the playback device.


As shown, the network interface 230 may include wireless interface(s) 232 and wired interface(s) 234. The wireless interface(s) 232 may provide network interface functions for a playback device to wirelessly communicate with other devices (e.g., other playback device(s), speaker(s), receiver(s), network device(s), control device(s) within a data network the playback device is associated with) in accordance with a communication protocol (e.g., any wireless standard including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The wired interface(s) 234 may provide network interface functions for a playback device to communicate over a wired connection with other devices in accordance with a communication protocol (e.g., IEEE 802.3). While the network interface 230 shown in FIG. 2A includes both wireless interface(s) 232 and wired interface(s) 234, the network interface 230 may in some embodiments include only wireless interface(s) or only wired interface(s).


As discussed above, a playback device may include a network microphone device, such as one of the NMDs 103 shown in FIG. 1A. A network microphone device may share some or all the components of a playback device, such as the processor 212, the memory 216, the microphone(s) 224, etc. In other examples, a network microphone device includes components that are dedicated exclusively to operational aspects of the network microphone device. For example, a network microphone device may include far-field microphones and/or voice processing components, which in some instances a playback device may not include. In another example, a network microphone device may include a touch-sensitive button for enabling/disabling a microphone. In yet another example, a network microphone device can be a stand-alone device, as discussed above. FIG. 2B is an isometric diagram showing an example playback device 202 incorporating a network microphone device. The playback device 202 has a control area 237 at the top of the device for enabling/disabling microphone(s). The control area 237 is adjacent another area 239 at the top of the device for controlling playback.


By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including a “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “PLAYBASE,” “BEAM,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Any other past, present, and/or future playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, it is understood that a playback device is not limited to the example illustrated in FIG. 2A or to the SONOS product offerings. For example, a playback device may include a wired or wireless headphone. In another example, a playback device may include or interact with a docking station for personal mobile media playback devices. In yet another example, a playback device may be integral to another device or component such as a television, a lighting fixture, or some other device for indoor or outdoor use.


b. Example Playback Device Configurations



FIGS. 3A-3E show example configurations of playback devices in zones and zone groups. Referring first to FIG. 3E, in one example, a single playback device may belong to a zone. For example, the playback device 102c on the Patio may belong to Zone A. In some implementations described below, multiple playback devices may be “bonded” to form a “bonded pair” which together form a single zone. For example, the playback device 102f (FIG. 1A) named Bed1 in FIG. 3E may be bonded to the playback device 102g (FIG. 1A) named Bed2 in FIG. 3E to form Zone B. Bonded playback devices may have different playback responsibilities (e.g., channel responsibilities). In another implementation described below, multiple playback devices may be merged to form a single zone. For example, the playback device 102d named Bookcase may be merged with the playback device 102m named Living Room to form a single Zone C. The merged playback devices 102d and 102m may not be specifically assigned different playback responsibilities. That is, the merged playback devices 102d and 102m may, aside from playing audio content in synchrony, each play audio content as they would if they were not merged.


Each zone in the MPS 100 may be provided for control as a single user interface (UI) entity. For example, Zone A may be provided as a single entity named Patio. Zone C may be provided as a single entity named Living Room. Zone B may be provided as a single entity named Stereo.


In various embodiments, a zone may take on the name of one of the playback device(s) belonging to the zone. For example, Zone C may take on the name of the Living Room device 102m (as shown). In another example, Zone C may take on the name of the Bookcase device 102d. In a further example, Zone C may take on a name that is some combination of the Bookcase device 102d and Living Room device 102m. The name that is chosen may be selected by user. In some embodiments, a zone may be given a name that is different than the device(s) belonging to the zone. For example, Zone B is named Stereo but none of the devices in Zone B have this name.


Playback devices that are bonded may have different playback responsibilities, such as responsibilities for certain audio channels. For example, as shown in FIG. 3A, the Bed1 and Bed2 devices 102f and 102g may be bonded so as to produce or enhance a stereo effect of audio content. In this example, the Bed1 playback device 102f may be configured to play a left channel audio component, while the Bed2 playback device 102g may be configured to play a right channel audio component. In some implementations, such stereo bonding may be referred to as “pairing.”


Additionally, bonded playback devices may have additional and/or different respective speaker drivers. As shown in FIG. 3B, the playback device 102b named Front may be bonded with the playback device 102k named SUB. The Front device 102b may render a range of mid to high frequencies and the SUB device 102k may render low frequencies as, e.g., a subwoofer. When unbonded, the Front device 102b may render a full range of frequencies. As another example, FIG. 3C shows the Front and SUB devices 102b and 102k further bonded with Right and Left playback devices 102a and 102k, respectively. In some implementations, the Right and Left devices 102a and 102k may form surround or “satellite” channels of a home theater system. The bonded playback devices 102a, 102b, 102j, and 102k may form a single Zone D (FIG. 3E).


Playback devices that are merged may not have assigned playback responsibilities, and may each render the full range of audio content the respective playback device is capable of. Nevertheless, merged devices may be represented as a single UI entity (i.e., a zone, as discussed above). For instance, the playback device 102d and 102m in the Living Room have the single UI entity of Zone C. In one embodiment, the playback devices 102d and 102m may each output the full range of audio content each respective playback device 102d and 102m are capable of, in synchrony.


In some embodiments, a stand-alone network microphone device may be in a zone by itself. For example, the NMD 103h in FIG. 1A is named Closet and forms Zone E. A network microphone device may also be bonded or merged with another device so as to form a zone. For example, the NMD device 103f named Island may be bonded with the playback device 102i Kitchen, which together form Zone G, which is also named Kitchen. Additional details regarding associating network microphone devices and playback devices as designated or default devices may be found, for example, in previously referenced U.S. patent application Ser. No. 15/438,749. In some embodiments, a stand-alone network microphone device may not be associated with a zone.


Zones of individual, bonded, and/or merged devices may be grouped to form a zone group. For example, referring to FIG. 3E, Zone A may be grouped with Zone B to form a zone group that includes the two zones. As another example, Zone A may be grouped with one or more other Zones C-I. The Zones A-I may be grouped and ungrouped in numerous ways. For example, three, four, five, or more (e.g., all) of the Zones A-I may be grouped. When grouped, the zones of individual and/or bonded playback devices may play back audio in synchrony with one another, as described in previously referenced U.S. Pat. No. 8,234,395. Playback devices may be dynamically grouped and ungrouped to form new or different groups that synchronously play back audio content.


In various implementations, the zones in an environment may be the default name of a zone within the group or a combination of the names of the zones within a zone group, such as Dining Room+Kitchen, as shown in FIG. 3E. In some embodiments, a zone group may be given a unique name selected by a user, such as Nick's Room, as also shown in FIG. 3E.


Referring again to FIG. 2A, certain data may be stored in the memory 216 as one or more state variables that are periodically updated and used to describe the state of a playback zone, the playback device(s), and/or a zone group associated therewith. The memory 216 may also include the data associated with the state of the other devices of the media system, and shared from time to time among the devices so that one or more of the devices have the most recent data associated with the system.


In some embodiments, the memory may store instances of various variable types associated with the states. Variables instances may be stored with identifiers (e.g., tags) corresponding to type. For example, certain identifiers may be a first type “a1” to identify playback device(s) of a zone, a second type “b1” to identify playback device(s) that may be bonded in the zone, and a third type “c1” to identify a zone group to which the zone may belong. As a related example, in FIG. 1A, identifiers associated with the Patio may indicate that the Patio is the only playback device of a particular zone and not in a zone group. Identifiers associated with the Living Room may indicate that the Living Room is not grouped with other zones but includes bonded playback devices 102a, 102b, 102j, and 102k. Identifiers associated with the Dining Room may indicate that the Dining Room is part of Dining Room+Kitchen group and that devices 103f and 102i are bonded. Identifiers associated with the Kitchen may indicate the same or similar information by virtue of the Kitchen being part of the Dining Room+Kitchen zone group. Other example zone variables and identifiers are described below.


In yet another example, the MPS 100 may include variables or identifiers representing other associations of zones and zone groups, such as identifiers associated with Areas, as shown in FIG. 3. An area may involve a cluster of zone groups and/or zones not within a zone group. For instance, FIG. 3E shows a first area named First Area and a second area named Second Area. The First Area includes zones and zone groups of the Patio, Den, Dining Room, Kitchen, and Bathroom. The Second Area includes zones and zone groups of the Bathroom, Nick's Room, the Bedroom, and the Living Room. In one aspect, an Area may be used to invoke a cluster of zone groups and/or zones that share one or more zones and/or zone groups of another cluster. In another aspect, this differs from a zone group, which does not share a zone with another zone group. Further examples of techniques for implementing Areas may be found, for example, in U.S. application Ser. No. 15/682,506 filed Aug. 21, 2017 and titled “Room Association Based on Name,” and U.S. Pat. No. 8,483,853 filed Sep. 11, 2007, and titled “Controlling and manipulating groupings in a multi-zone media system.” Each of these applications is incorporated herein by reference in its entirety. In some embodiments, the MPS 100 may not implement Areas, in which case the system may not store variables associated with Areas.


The memory 216 may be further configured to store other data. Such data may pertain to audio sources accessible by a playback device or a playback queue that the playback device (or some other playback device(s)) may be associated with. In embodiments described below, the memory 216 is configured to store a set of command data for selecting a particular VAS when processing voice inputs.


During operation, one or more playback zones in the environment of FIG. 1A may each be playing different audio content. For instance, the user may be grilling in the Patio zone and listening to hip hop music being played by the playback device 102c while another user may be preparing food in the Kitchen zone and listening to classical music being played by the playback device 102i. In another example, a playback zone may play the same audio content in synchrony with another playback zone. For instance, the user may be in the Office zone where the playback device 102n is playing the same hip-hop music that is being playing by playback device 102c in the Patio zone. In such a case, playback devices 102c and 102n may be playing the hip-hop in synchrony such that the user may seamlessly (or at least substantially seamlessly) enjoy the audio content that is being played out-loud while moving between different playback zones. Synchronization among playback zones may be achieved in a manner similar to that of synchronization among playback devices, as described in previously referenced U.S. Pat. No. 8,234,395.


As suggested above, the zone configurations of the MPS 100 may be dynamically modified. As such, the MPS 100 may support numerous configurations. For example, if a user physically moves one or more playback devices to or from a zone, the MPS 100 may be reconfigured to accommodate the change(s). For instance, if the user physically moves the playback device 102c from the Patio zone to the Office zone, the Office zone may now include both the playback devices 102c and 102n. In some cases, the use may pair or group the moved playback device 102c with the Office zone and/or rename the players in the Office zone using, e.g., one of the controller devices 104 and/or voice input. As another example, if one or more playback devices 102 are moved to a particular area in the home environment that is not already a playback zone, the moved playback device(s) may be renamed or associated with a playback zone for the particular area.


Further, different playback zones of the MPS 100 may be dynamically combined into zone groups or split up into individual playback zones. For example, the Dining Room zone and the Kitchen zone may be combined into a zone group for a dinner party such that playback devices 102i and 102l may render audio content in synchrony. As another example, bonded playback devices 102 in the Den zone may be split into (i) a television zone and (ii) a separate listening zone. The television zone may include the Front playback device 102b. The listening zone may include the Right, Left, and SUB playback devices 102a, 102j, and 102k, which may be grouped, paired, or merged, as described above. Splitting the Den zone in such a manner may allow one user to listen to music in the listening zone in one area of the living room space, and another user to watch the television in another area of the living room space. In a related example, a user may implement either of the NMD 103a or 103b (FIG. 1B) to control the Den zone before it is separated into the television zone and the listening zone. Once separated, the listening zone may be controlled, for example, by a user in the vicinity of the NMD 103a, and the television zone may be controlled, for example, by a user in the vicinity of the NMD 103b. As described above, however, any of the NMDs 103 may be configured to control the various playback and other devices of the MPS 100.


c. Example Controller Devices



FIG. 4A is a functional block diagram illustrating certain aspects of a selected one of the controller devices 104 of the MPS 100 of FIG. 1A. Such controller devices may also be referred to as a controller. The controller device shown in FIG. 4A may include components that are generally similar to certain components of the network devices described above, such as a processor 412, memory 416, microphone(s) 424, and a network interface 430. In one example, a controller device may be a dedicated controller for the MPS 100. In another example, a controller device may be a network device on which media playback system controller application software may be installed, such as for example, an iPhone™, iPad™ or any other smart phone, tablet or network device (e.g., a networked computer such as a PC or Mac™)


The memory 416 of a controller device may be configured to store controller application software and other data associated with the MPS 100 and a user of the system 100. The memory 416 may be loaded with one or more software components 414 executable by the processor 412 to achieve certain functions, such as facilitating user access, control, and configuration of the MPS 100. A controller device communicates with other network devices over the network interface 430, such as a wireless interface, as described above.


In one example, data and information (e.g., such as a state variable) may be communicated between a controller device and other devices via the network interface 430. For instance, playback zone and zone group configurations in the MPS 100 may be received by a controller device from a playback device, a network microphone device, or another network device, or transmitted by the controller device to another playback device or network device via the network interface 406. In some cases, the other network device may be another controller device.


Playback device control commands such as volume control and audio playback control may also be communicated from a controller device to a playback device via the network interface 430. As suggested above, changes to configurations of the MPS 100 may also be performed by a user using the controller device. The configuration changes may include adding/removing one or more playback devices to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or merged player, separating one or more playback devices from a bonded or merged player, among others.


The user interface(s) 440 of a controller device may be configured to facilitate user access and control of the MPS 100, by providing controller interface(s) such as the controller interfaces 440a and 440b shown in FIGS. 4B and 4C, respectively, which may be referred to collectively as the controller interface 440. Referring to FIGS. 4B and 4C together, the controller interface 440 includes a playback control region 442, a playback zone region 443, a playback status region 444, a playback queue region 446, and a sources region 448. The user interface 400 as shown is just one example of a user interface that may be provided on a network device such as the controller device shown in FIG. 4A and accessed by users to control a media playback system such as the MPS 100. Other user interfaces of varying formats, styles, and interactive sequences may alternatively be implemented on one or more network devices to provide comparable control access to a media playback system.


The playback control region 442 (FIG. 4B) may include selectable (e.g., by way of touch or by using a cursor) icons to cause playback devices in a selected playback zone or zone group to play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode. The playback control region 442 may also include selectable icons to modify equalization settings, and playback volume, among other possibilities.


The playback zone region 443 (FIG. 4C) may include representations of playback zones within the MPS 100. The playback zones regions may also include representation of zone groups, such as the Dining Room+Kitchen zone group, as shown. In some embodiments, the graphical representations of playback zones may be selectable to bring up additional selectable icons to manage or configure the playback zones in the media playback system, such as a creation of bonded zones, creation of zone groups, separation of zone groups, and renaming of zone groups, among other possibilities.


For example, as shown, a “group” icon may be provided within each of the graphical representations of playback zones. The “group” icon provided within a graphical representation of a particular zone may be selectable to bring up options to select one or more other zones in the media playback system to be grouped with the particular zone. Once grouped, playback devices in the zones that have been grouped with the particular zone will be configured to play audio content in synchrony with the playback device(s) in the particular zone. Analogously, a “group” icon may be provided within a graphical representation of a zone group. In this case, the “group” icon may be selectable to bring up options to deselect one or more zones in the zone group to be removed from the zone group. Other interactions and implementations for grouping and ungrouping zones via a user interface such as the user interface 400 are also possible. The representations of playback zones in the playback zone region 443 (FIG. 4C) may be dynamically updated as playback zone or zone group configurations are modified.


The playback status region 444 (FIG. 4B) may include graphical representations of audio content that is presently being played, previously played, or scheduled to play next in the selected playback zone or zone group. The selected playback zone or zone group may be visually distinguished on the user interface, such as within the playback zone region 443 and/or the playback status region 444. The graphical representations may include track title, artist name, album name, album year, track length, and other relevant information that may be useful for the user to know when controlling the media playback system via the user interface 440.


The playback queue region 446 may include graphical representations of audio content in a playback queue associated with the selected playback zone or zone group. In some embodiments, each playback zone or zone group may be associated with a playback queue containing information corresponding to zero or more audio items for playback by the playback zone or zone group. For instance, each audio item in the playback queue may comprise a uniform resource identifier (URI), a uniform resource locator (URL) or some other identifier that may be used by a playback device in the playback zone or zone group to find and/or retrieve the audio item from a local audio content source or a networked audio content source, possibly for playback by the playback device.


In one example, a playlist may be added to a playback queue, in which case information corresponding to each audio item in the playlist may be added to the playback queue. In another example, audio items in a playback queue may be saved as a playlist. In a further example, a playback queue may be empty, or populated but “not in use” when the playback zone or zone group is playing continuously streaming audio content, such as Internet radio that may continue to play until otherwise stopped, rather than discrete audio items that have playback durations. In an alternative embodiment, a playback queue can include Internet radio and/or other streaming audio content items and be “in use” when the playback zone or zone group is playing those items. Other examples are also possible.


When playback zones or zone groups are “grouped” or “ungrouped,” playback queues associated with the affected playback zones or zone groups may be cleared or re-associated. For example, if a first playback zone including a first playback queue is grouped with a second playback zone including a second playback queue, the established zone group may have an associated playback queue that is initially empty, that contains audio items from the first playback queue (such as if the second playback zone was added to the first playback zone), that contains audio items from the second playback queue (such as if the first playback zone was added to the second playback zone), or a combination of audio items from both the first and second playback queues. Subsequently, if the established zone group is ungrouped, the resulting first playback zone may be re-associated with the previous first playback queue, or be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Similarly, the resulting second playback zone may be re-associated with the previous second playback queue, or be associated with a new playback queue that is empty, or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Other examples are also possible.


With reference still to FIGS. 4B and 4C, the graphical representations of audio content in the playback queue region 446 (FIG. 4B) may include track titles, artist names, track lengths, and other relevant information associated with the audio content in the playback queue. In one example, graphical representations of audio content may be selectable to bring up additional selectable icons to manage and/or manipulate the playback queue and/or audio content represented in the playback queue. For instance, a represented audio content may be removed from the playback queue, moved to a different position within the playback queue, or selected to be played immediately, or after any currently playing audio content, among other possibilities. A playback queue associated with a playback zone or zone group may be stored in a memory on one or more playback devices in the playback zone or zone group, on a playback device that is not in the playback zone or zone group, and/or some other designated device. Playback of such a playback queue may involve one or more playback devices playing back media items of the queue, perhaps in sequential or random order.


The sources region 448 may include graphical representations of selectable audio content sources and selectable voice assistants associated with a corresponding VAS. The VAS(es) may be selectively assigned. In some examples, multiple VAS(es), such as AMAZON's ALEXA, MICROSOFT's CORTANA, etc., may be invokable by the same network microphone device. In some embodiments, a user may assign a VAS exclusively to one or more network microphone devices. For example, a user may assign a first VAS to one or both of the NMDs 102a and 102b in the Living Room shown in FIG. 1A, and a second VAS to the NMD 103f in the Kitchen. Other examples are possible.


d. Example Audio Content Sources


The audio sources in the sources region 448 may be audio content sources from which audio content may be retrieved and played by the selected playback zone or zone group. One or more playback devices in a zone or zone group may be configured to retrieve for playback audio content (e.g., according to a corresponding URI or URL for the audio content) from a variety of available audio content sources. In one example, audio content may be retrieved by a playback device directly from a corresponding audio content source (e.g., a line-in connection). In another example, audio content may be provided to a playback device over a network via one or more other playback devices or network devices. As described in greater detail below, in some embodiments audio content may be provided by one or more media content services.


Example audio content sources may include a memory of one or more playback devices in a media playback system such as the MPS 100 of FIG. 1A, local music libraries on one or more network devices (such as a controller device, a network-enabled personal computer, or a networked-attached storage (NAS), for example), streaming audio services providing audio content via the Internet (e.g., the cloud), or audio sources connected to the media playback system via a line-in input connection on a playback device or network devise, among other possibilities.


In some embodiments, audio content sources may be regularly added or removed from a media playback system such as the MPS 100 of FIG. 1A. In one example, an indexing of audio items may be performed whenever one or more audio content sources are added, removed or updated. Indexing of audio items may involve scanning for identifiable audio items in all folders/directory shared over a network accessible by playback devices in the media playback system, and generating or updating an audio content database containing metadata (e.g., title, artist, album, track length, among others) and other associated information, such as a URI or URL for each identifiable audio item found. Other examples for managing and maintaining audio content sources may also be possible.


e. Example Network Microphone Devices



FIG. 5A is a functional block diagram showing example features of an example NMD 503 in accordance with aspects of the disclosure. One or more of the NMDs 103 (FIG. 1A) may comprise the NMD 503. The network microphone device shown in FIG. 5A may include components that are generally similar to certain components of network microphone devices described above, such as the processor 212 (FIG. 2A), network interface 230 (FIG. 2A), microphone(s) 224 (FIG. 2A), and the memory 216 (FIG. 2A). Although not shown for purposes of clarity, a network microphone device may include other components, such as speakers, amplifiers, signal processors, as discussed above.


The microphone(s) 224 may be a plurality of microphones arranged to detect sound in the environment of the network microphone device. In one example, the microphone(s) 224 may be arranged to detect audio from one or more directions relative to the network microphone device. The microphone(s) 224 may be sensitive to a portion of a frequency range. In one example, a first subset of the microphone(s) 224 may be sensitive to a first frequency range, while a second subset of the microphone(s) 224 may be sensitive to a second frequency range. The microphone(s) 224 may further be arranged to capture location information of an audio source (e.g., voice, audible sound) and/or to assist in filtering background noise. In some embodiments the microphone(s) 224 may have a single microphone rather than a plurality of microphones.


A network microphone device further includes components for detecting and facilitating capture of voice input. For example, the network microphone device 503 shown in FIG. 5A includes beam former components 551, acoustic echo cancellation (AEC) components 552, voice activity detector components 553, and/or wake word detector components 554. In various embodiments, one or more of the components 551-556 may be a subcomponent of the processor 512. The beamforming and AEC components 551 and 552 are configured to detect an audio signal and determine aspects of voice input within the detect audio, such as the direction, amplitude, frequency spectrum, etc. For example, the beamforming and AEC components 551 and 552 may be used in a process to determine an approximate distance between a network microphone device and a user speaking to the network microphone device. In another example, a network microphone device may detective a relative proximity of a user to another network microphone device in a media playback system.


The voice activity detector activity components 553 are configured to work closely with the beamforming and AEC components 551 and 552 to capture sound from directions where voice activity is detected. Potential speech directions can be identified by monitoring metrics which distinguish speech from other sounds. Such metrics can include, for example, energy within the speech band relative to background noise and entropy within the speech band, which is measure of spectral structure. Speech typically has a lower entropy than most common background noise.


The wake-word detector components 554 are configured to monitor and analyze received audio to determine if any wake words are present in the audio. The wake-word detector components 554 may analyze the received audio using a wake word detection algorithm. If the wake-word detector 554 detects a wake word, a network microphone device may process voice input contained in the received audio. Example wake word detection algorithms accept audio as input and provide an indication of whether a wake word is present in the audio. Many first- and third-party wake word detection algorithms are known and commercially available. For instance, operators of a voice service may make their algorithm available for use in third-party devices. An algorithm may be trained to detect certain wake words.


In some embodiments, a network microphone device may include additional and/or alternate components for detecting and facilitating capture of voice input. For example, a network microphone device may incorporate linear filtering components (e.g., in lieu of beam former components), such as components described in U.S. patent application Ser. No. 15/984,073, filed May 18, 2018, titled “Linear Filtering for Noise-Suppressed Speech Detection,” which is incorporated by reference herein in its entirety.


In some embodiments, the wake word detector 554 includes multiple detectors configured to run multiple wake word detection algorithms on the received audio simultaneously (or substantially simultaneously). As noted above, different voice services (e.g. AMAZON's ALEXA, APPLE's SIRI, MICROSOFT's CORTANA, GOOGLE'S Assistant, etc.) each use a different wake word for invoking their respective voice service. To support multiple services, the wake word detector 554 may run the received audio through the wake word detection algorithm for each supported voice service in parallel. In such embodiments, the network microphone device 103 may include VAS selector components 556 configured to pass voice input to the appropriate voice assistant service. In other embodiments, the VAS selector components 556 may be omitted.


In some embodiments, a network microphone device may include speech processing components 555 configured to further facilitate voice processing, such as by performing voice recognition that is trained to recognize a particular user or a particular set of users associated with a household. Voice recognition software may implement voice-processing algorithms that are tuned to specific voice profile(s).


In some embodiments, one or more of the components described above, such as one or more of the components 551-556, can operate in conjunction with the microphone(s) 224 to detect and store a user's voice profile, which may be associated with a user account of the MPS 100. In some embodiments, voice profiles may be stored as and/or compared to variables stored in the set of command information, or data table 590, as shown in FIG. 5A. The voice profile may include aspects of the tone or frequency of user's voice and/or other unique aspects of the user such as those described in previously referenced U.S. patent application Ser. No. 15/438,749.


In some embodiments, one or more of the components described above, such as one or more of the components 551-556, can operate in conjunction with the microphone array 524 to determine the location of a user in the home environment and/or relative to a location of one or more of the NMDs 103. Techniques for determining the location or proximity of a user may include or more techniques disclosed in previously referenced U.S. patent application Ser. No. 15/438,749, U.S. Pat. No. 9,084,058 filed Dec. 29, 2011, and titled “Sound Field Calibration Using Listener Localization,” and U.S. Pat. No. 8,965,033 filed Aug. 31, 2012, and titled “Acoustic Optimization.” Each of these applications is incorporated herein by reference in its entirety.



FIG. 5B is a diagram of an example voice input in accordance with aspects of the disclosure. The voice input may be captured by a network microphone device, such as by one or more of the network microphone devices 103 (FIG. 1A) and 503 (FIG. 5A). Capturing the voice input may include storing the voice input in physical memory storage used to temporarily store data, such as in conjunction with transmitting a request to a voice assistant service, as described in greater detail below. In some embodiments, a network microphone device may include one or more buffers, such as a buffer disclosed in U.S. patent application Ser. No. 15/989,715 filed Jun. 13, 2018, and titled “Determining and Adapting to Changes in Microphone Performance of Playback Devices,” which is incorporated by reference herein in its entirety. Each of these applications is incorporated herein by reference in its entirety.


The voice input may include a wake word portion 557a and a voice utterance portion 557b (collectively “voice input 557”). In some embodiments, the wake word 557a can be a known wake word, such as “Alexa,” which is associated with AMAZON's ALEXA. In other embodiments, the voice input 557 may not include a wake word.


In some embodiments, a network microphone device may output an audible and/or visible response upon detection of the wake word portion 557a. In addition or alternately, a network microphone device may output an audible and/or visible response after processing a voice input and/or a series of voice inputs (e.g., in the case of a multi-turn request).


The voice utterance portion 557b of the voice input 557 may include, for example, one or more spoken commands 558 (identified individually as a first command 558a and a second command 558b) and one or more spoken keywords 559 (identified individually as a first keyword 559a and a second keyword 559b). A keyword may be, for example, a word in the voice input identifying a particular device or group in the MPS 100. As used herein, the term “keyword” may refer to a single word (e.g., “Bedroom”) or a group of words (e.g., “the Living Room”). In one example, the first command 557a can be a command to play music, such as a specific song, album, playlist, etc. In this example, the keywords 559 may be one or more words identifying one or more zones in which the music is to be played, such as the Living Room and the Dining Room (FIG. 1A). In some examples, the voice utterance portion 557b can include other information, such as detected pauses (e.g., periods of non-speech) between words spoken by a user, as shown in FIG. 5B. The pauses may demarcate the locations of separate commands, keywords, or other information spoke by the user within the voice utterance portion 557b.


In some embodiments, the MPS 100 is configured to temporarily reduce the volume of audio content that it is playing while detecting the wake word portion 557a. The MPS 100 may restore the volume after processing the voice input 557, as shown in FIG. 5B. Such a process can be referred to as ducking, examples of which are disclosed in previously referenced U.S. patent application Ser. No. 15/438,749.


f. Example Network and Remote Computing Systems


As discussed above, the MPS 100 may be configured to communicate with one or more remote computing devices (e.g., cloud servers) associated with one or more VAS(es). FIG. 6 is a functional block diagram showing remote computing devices associated with an example VAS configured to communicate with the MPS 100. As shown in FIG. 6, in various embodiments one or more of the NMDs 103 may send voice inputs over the WAN 107 to the one or more remote computing device(s) associated with the one or more VAS(es). For purposes of illustration, selected communication paths of the voice input 557 are represented by arrows in FIG. 6. In some embodiments, the one or more NMDs 103 only send the voice utterance portion 557b (FIG. 5B) of the voice input 557 to the remote computing device(s) associated with the one or more VAS(es) (and not the wake word portion 557a). In some embodiments, the one or more NMDs 103 send both the voice utterance portion 557b and the wake word portion 557a (FIG. 5B) to the remote computing device(s) associated with the one or more VAS(es).


As shown in FIG. 6, the remote computing device(s) associated with the VAS(es) may include a memory 616, an intent engine 662, and a system controller 612 comprising one or more processors. In some embodiments, the intent engine 662 is a subcomponent of the system controller 612. The memory 616 may be a tangible computer-readable medium configured to store instructions executable by the system controller 612 and/or one or more of the playback devices, NMDs, and/or controller devices 102-104.


The intent engine 662 may receive a voice input from the MPS 100 after it has been converted to text by a speech-to-text engine (not shown). A speech-to-text engine may be located at or distributed across one or more other computing devices, such as the one or more remote computing devices 106d (FIG. 1B).


Upon receiving the voice input 557 from the MPS 100, the intent engine 662 processes the voice input 557 and determines an intent of the voice input 557. While processing the voice input 557, the intent engine 662 may determine if certain command criteria are met for particular command(s) detected in the voice input 557. Command criteria for a given command in a voice input may be based, for example, on the inclusion of certain keywords within the voice input. In addition or alternately, command criteria for given command(s) may involve detection of one or more control state and/or zone state variables in conjunction with detecting the given command(s). Control state variables may include, for example, indicators identifying a level of volume, a queue associated with one or more device(s), and playback state, such as whether devices are playing a queue, paused, etc. Zone state variables may include, for example, indicators identifying which, if any, zone players are grouped. The command information may be stored in memory of e.g., the databases 664 and/or the memory 216 of the one or more network microphone devices.


In some embodiments, the intent engine 662 is in communication with one or more database(s) 664 associated with the selected VAS and/or one or more database(s) of the MPS 100. The VAS database(s) 664 and/or database(s) of the MPS 100 may store various user data, analytics, catalogs, and other information for NLU-related and/or other processing. The VAS database(s) 664 may reside in the memory 616 of the remote computing device(s) associated with the VAS or elsewhere, such as in memory of one or more of the remote computing devices 106d and/or local network devices (e.g., the playback devices, NMDs, and/or controller devices 102-104) of the MPS 100 (FIG. 1A). Likewise, the media playback system database(s) may reside in the memory of the remote computing device(s) and/or local network devices (e.g., the playback devices, NMDs, and/or controller devices 102-104) of the MPS 100 (FIG. 1A). In some embodiments, the VAS database(s) 664 and/or database(s) associated with the MPS 100 may be updated for adaptive learning and feedback based on the voice input processing.


The various local network devices 102-105 (FIG. 1A) and/or remote computing devices 106d of the MPS 100 may exchange various feedback, information, instructions, and/or related data with the remote computing device(s) associated with the selected VAS. Such exchanges may be related to or independent of transmitted messages containing voice inputs. In some embodiments, the remote computing device(s) and the media playback system 100 may exchange data via communication paths as described herein and/or using a metadata exchange channel as described in previously referenced U.S. patent application Ser. No. 15/438,749.



FIG. 7A depicts an example network system 700 in which a voice-assisted media content selection process is performed. The network system 700 comprises the MPS 100 coupled to: (i) the VAS 160 and associated remote computing devices 106a; (ii) one or more other VAS(es) 760, each hosted by one or more corresponding remote computing devices 706a, and (iii) a plurality of MCS(es) 167, such as a first media content service 762 (or “MCS 762”) hosted by one or more corresponding remote computing devices 106b, and a second media content service 763 (or “MCS 763”) hosted by one or more corresponding remote computing devices 106c. In some embodiments, the MPS 100 may be coupled to more or fewer VAS(es) (e.g., one VAS, three VAS(es), four VAS(es), five VAS(es), six VAS(es), etc.) and/or more or fewer media content services (e.g., one MCS, three MCS(es), four MCS(es), five MCS(es), six MCS(es), etc.).


The MPS 100 may be coupled to the VAS(es) 160, 760 and/or the first and second MCSes 762, 763 (and/or their associated remote computing devices 106a, 706a, 106b, and 106c) via a WAN and/or a LAN 111 connected to the WAN 107 and/or one or more routers 109 (FIG. 1B). In this way, the various local network devices 102-105 of the MPS 100 and/or the one or more remote computing devices 106d of the MPS 100 may communicate with the remote computing device(s) of the VAS(es) 160, 760 and the MCSes 762, 763.


In some embodiments, the MPS 100 may be configured to concurrently communicate with both the MCSes 167 and/or the VAS(es) 160, 760. For example, the MPS 100 may transmit search requests for particular content to both the first and second MCS(es) 762, 763 in parallel, and may send voice input data to one or more of the VAS(es) 160, 760 in parallel.


III. Find & Play



FIG. 7B shows an example embodiment of a method 750 that can be implemented by the media playback systems disclosed and/or described herein (such as MPS 100) to identify (Group I), select (Group II), and play back media content (Group III) requested by a user. The processes shown in FIG. 7B may occur, for example, within the network system 700 of FIG. 7A and include data exchanges between the MPS 100, one or more VAS(es) 160, 760, and one or more MCS(es) 167 (such as first and second MCS(es) 762 and 763).


Method 750 begins at block 751, which includes the MPS 100 capturing a voice input via a network microphone device, such as via one or more of the network microphone devices 103 (FIG. 1A) and 503 (FIG. 5A) described above. The voice input comprises a request for media content. As shown at block 752, the MPS 100 may transmit the voice input to the one or more remote computing devices 106a associated with the VAS 160 and, as depicted at block 753, receives a response from the VAS 160 comprising intent information derived from the request for media content. If the derived intent information does not identify and/or describe the requested media content adequately for the MCS(es) to search for the media content, the MPS 100 may request additional information from the user, as shown at block 755. In some embodiments, to prompt the user for additional information, the MPS 100 may play back a voice output to the user provided by the VAS (which may in some embodiments by requested by the MPS 100 from the VAS) and, upon receiving the voice data corresponding to the voice output, play back the voice data to the user to request the additional information. For example, if the user commands “Play Crash by Dave Matthews,” the MPS 100 may request voice data from the VAS that enables the MPS 100 to play back “Would you like to hear the album ‘Crash’ by the Dave Matthews Band or the song ‘Crash’ by the Dave Matthews Band?” Additional details regarding data exchanges between the MPS 100 and the VAS 160 to identify the requested media content are discussed in greater detail below with reference to FIGS. 7C and 7D.


Once the MPS 100 has obtained information sufficient to proceed with a search of the requested media content, the method advances to block 754 in which the MPS 100 requests a search for the requested media content across a plurality of MCS(es) 167. The remote computing devices associated with the MCS(es) 167 perform the search and send a response to the MPS 100 with the results. As shown at block 756, the MPS 100 processes the results to determine what MCS options are available to the user and, as shown at block 757 the MPS 100 selects an MCS for play back. Additional details regarding the data exchanges between the MPS 100, the VAS 160, and the MCS(es) 167 to locate and select the requested media content are discussed in greater detail below with reference to FIGS. 7C and 7D.


Finally, as shown at blocks 758 and 759, the MPS 100 may request voice data from the VAS 160 and, upon receiving the requested audio data, play back a voice output to confirm play back of the requested media content. Before, during, and/or after playing back the voice output, the MPS 100 may begin play back of the requested media content, as shown at block 761. Additional details regarding the data exchanges between the MPS 100, the VAS 160, and the MCS(es) 167 to play back the requested media content are discussed in greater detail below with reference to FIG. 7D.


a. Examples of Data Exchanges for Identifying and Finding Media Content


i. Identify


As shown in FIG. 7C, the process begins with the MPS 100 capturing a voice input (block 772) via a network microphone device, such as one or more of the NMDs 103 shown in FIGS. 1A and 1B. The MPS 100 may then transmit one or more messages 782 containing all or a portion of the captured input to one or more remote computing devices associated with a VAS, such as remote computing devices 106a associated with VAS 160. The transmitted voice input may include the wake-word portion (or a portion thereof) and/or the voice utterance portion (or a portion thereof). As discussed above, in some embodiments the MPS 100 selects an appropriate VAS from a plurality of VAS options based on commands and associated command criteria in the set of command information 590 (FIG. 5A). For example, in some embodiments, the MPS 100 selects the ALEXA VAS when the voice input is, e.g., “Alexa, play some INXS,” or selects the GOOGLE VAS when the voice input includes the same voice utterance but a different preceding wake word, such as “Hey Google, play some INXS.”


In some embodiments, the MPS 100 transmits secondary information to the VAS 160 along with the message 782 containing the voice input. In addition or alternately, the MPS 100 may transmit secondary information as a separate message or packet before, after, and/or at the same time as the message 782. Secondary information may include, for example, zone state information, control state information, a user's playback history, a user's playlists, a user's media content preferences, the media content service(s) available to the user, the user's preferred media content service, etc. In some embodiments, the MPS 100 may transmit data over a metadata channel, as described in U.S. patent application Ser. No. 15/131,244, filed Apr. 18, 2016, titled “Metadata Exchange Involving a Networked Playback System and a Networked Microphone System,” which is incorporated by reference herein in its entirety.


In some embodiments, the MPS 100 sends the voice input to the VAS 160 without any initial processing of the voice input (other than that required to transmit the data to the VAS 160). In some embodiments, the MPS 100 processes all or a portion of the voice input prior to sending the message 782 to derive media content information from the voice input and/or determine what secondary information, if any, should be transmitted with or in addition to the message 782. In some embodiments, the MPS 100 automatically sends secondary information to the VAS 160 without processing the voice input.


As shown at block 775, upon receiving the message 782 containing the voice input, the remote computing devices 106a of the VAS 160 may process the voice input to determine the user's intent. This may include deriving information that identifies or facilitates identification of the requested media content in the voice input (if any). When the remote computing devices 106a are finished processing the voice input, the remote computing devices 106a may transmit a response 783 (e.g., one or more packets) to the MPS 100 that contains derived intent information from the voice input as payload for processing by the MPS 100. As described in greater detail below, the payload depends at least in part on the contents of the voice input and the extent to which the VAS was able to determine the intent of the voice input.


(A) If the voice input does not contain any media content—for example, if the voice input is a simple command such as “Play,” “Pause,” “Turn up the volume,” etc.—the remote computing devices 106a may send an empty structure or packet (e.g., having a null payload) or otherwise communicate to the MPS 100 that no additional media content searching is needed.


(B) If the voice input contains a request for media content, such as for media content to be ultimately played back by the MPS 100, the payload of the response 783 may include information that enables the MPS 100 to request a search for the media content from one or more MCS(es). The payload may be used by the MPS 100 to build request(s) suitable for communicating with and requesting information from an MCS, such as via the Sonos Music API (SMAPI). For example, the MPS 100 may build separate first, second, and third requests suitable to search for content the SPOTIFY, PANDORA, and APPLE MUSIC platforms, respectively. In some instances, the voice input may be a relatively straightforward request that may be readily resolved by the VAS 160 without the VAS 160 having to perform extensive NLU processing and/or Internet searching. Examples of requests include commands to play a particular artist (i.e., “Play George Strait”), play a particular song, play a particular album, etc. In some embodiments, a VAS may determine to “resolve” a request on its own rather than going through the MPS 100. For example, if a user speaks “Play Dave Mathew's Crash on GOOGLE PLAY,” the VAS may directly communicate with one or more MCS(es) without the MPS 100 intervening. In such embodiments, the VAS may resolve requests if certain conditions are met. For example, the VAS may resolve a request in cases where both of the following conditions are satisfied: (i) the request is straightforward and (ii) the media content service is directly supported by the VAS. A media content service may be directly supported by a VAS, for example, when the VAS has an affiliation with the media content service and the user has authorized a link between the media content service and the VAS. An example of a sponsored media content service may be SPOTIFY, which today may be linked with VASes provided by both AMAZON and GOOGLE. In some embodiments, the MPS 100 may intervene between the VAS and the media content service even in cases where the VAS sponsors a media content service, such as when the voice input is relatively less straightforward and/or when MPS intervention is preferred to find and possibly play back media content as described above and in further detail below.


(C) If the intent of the voice input is ambiguous to the VAS 160, the VAS 160 may: (1) perform a search to further clarify the intent (e.g., on the Internet, on a database associated with the remote computing devices 106a, within the metadata provided by the MPS 100, etc.), and/or (2) send a response to the MPS 100 that includes a request for the MPS 100 to supply additional information. In some instances, the additional information will require the MPS 100 to request additional input from the user.


In any of the above scenarios, the response 783 received by the MPS 100 may have a predefined data structure with a format having at least one predefined field. The packet/response 783 comprises the derived payload 783a (FIG. 7B) according to the format. For example, the MPS 100 may expect the payload to include a plurality of fields representing various media content attributes, such as “artist,” “album,” “song,” “genre,” “activity,” etc. Non-exhaustive examples of field types 870 and derived payload 783a that may be included in the payload are displayed at FIGS. 8A-8H, respectively.


The remote computing devices 106a associated with the VAS 160 may process the voice input by converting the voice input to text (for example, via a speech-to-text component, discussed above with reference to FIG. 6) and analyzing the text to determine the intent of the request. In some embodiments, the remote computing devices 106a may employ NLU systems that maintain and utilize a lexicon of language, parsers, grammar and semantic rules, and associated processing algorithms to derive information related to the requested media content. For example, the VAS 160 may (i) identify derived payload 783a and/or field types 870 within the voice input that correspond to the intent of the voice input, and (ii) associate the derived payload 783a with one or more of the fields. The derived payload 783a and/or field types 870 identified by the VAS 160 and contained within the packet 783 may be derived by the VAS 160 based on a search and/or metadata provided by the MPS 100 (described in greater detail below) and/or may be stated explicitly by the user. For example, the voice input “Play the ‘In the Zone’ album” explicitly names derived payload 783a (i.e., “In the Zone”) and a field type (i.e., “album”); as such, the resulting response 783 would include {album: “In the Zone”}. In some embodiments, the response 783 contains only the fields populated with derived payload 783a. In particular embodiments, the response 783 contains all of the predefined fields, whether null or populated. In certain cases, the response 783 from the VAS does not include any metadata derived from the voice input.


In some instances, the intent of all or a portion of the voice input remains ambiguous to the VAS 160 after processing. In such scenarios, the remote computing devices 106a associated with the VAS 160 may perform a search to further clarify the ambiguous portion(s) and/or may send a request to the MPS 100 to supply additional information. Should the VAS 160 conduct a search, the information used to conduct the search may be limited to the text of the voice input. For example, when processing the voice input “Play the latest album from John Legend” (Example No. 20 of FIG. 8C), the remote computing devices 106a of the VAS 160 may populate the artist field with “John Legend” but conduct a search to resolve which John Legend album is the “latest album.” The remote computing devices 106a will then populate the album field with the results of the search (i.e., John Legend's latest album, “Darkness and Light”). In some embodiments, a predefined descriptor may be updated to reduce response time for similar future queries. For instance, for the foregoing example, the payload may be tagged with a “latest” descriptor, as shown at Example 20 of FIG. 8C.


The remote computing devices 106a associated with the VAS 160 may also search the secondary information and/or metadata already provided by the MPS 100 to resolve any ambiguity. For example, for the voice input “Play my cooking playlist” (Example No. 15 in FIG. 8C), the remote computing devices 106a may search a list of the user's playlist names provided by the MPS 100 and determine that the request is referring to the user's playlist titled “Cooking.” As another example, for the voice input “Play ‘Callin' Baton Rouge,’ the remote computing devices 106a may access the user intent metadata provided by the MPS 100 to determine which version of ‘Callin' Baton Rouge’ is intended by the user. If the user intent metadata provided by the MPS 100 shows that the user only plays the live version of “Callin' Baton Rouge” from Garth Brooks' album “Double Live,” the remote computing devices 106a may send a response 783 with {song: “Callin' Baton Rouge”, album: “Double Live”}. In some instances, the particular song, album, artist may also be tagged with one or more additional descriptors, such as with a “live” descriptor, for similar future queries as appropriate to improve searching and response time.


In some embodiments, the MPS 100 may send the remote computing devices 106a associated with the VAS 160 only certain information (e.g., only certain metadata) that is needed by the VAS 160 to interpret the voice input and/or conduct a search to resolve one or more aspects of the request. For example, in some aspects, certain metadata may be excluded in the exchanges between the MPS 100 and the VAS 160, such as information that would expressly identify an MCS. Excluding MCS preferences in the metadata may be beneficial as it enables media content to be selected for play back by the MPS 100 (and/or the user) in a way that does not discriminate one MCS over another. Accordingly, although the remote computing devices 106a of the VAS 160 may perform the initial search of the media content request, the MPS 100 maintains control of the parameters of the search and, to some extent, the search results. This may be beneficial as it precludes the VAS 160 from providing search results that could bias the subsequent MCS selection.


In some instances, the MPS 100 may send additional messages 782 and receive multiple responses 783 before it ultimately determines the user's intent and the appropriate information to send to the MCS(es) for media content searching (only one message 782 and one response 783 are shown in FIG. 7C). For example, where all or a portion of the utterance is ambiguous, the VAS 160 may request additional information from the MPS 100. This determination may be made with or without the remote computing devices 106a of the VAS 160 first determining the intent. In response, the MPS 100 may retrieve the requested additional information (for example, from a database associated with the MPS's remote computing devices 106d) and send the information back to the VAS 160 for further processing. In some embodiments, the VAS 160 may request more information by including a URI and/or a hyperlink in the response 783 that identifies an action to be taken by the MPS 100 to retrieve the additional information. For example, the URI may be a playlist associated with a media content service. The playlist may be spoken by the user in the initial voice utterance, and the VAS may access the tracks in the playlist, assuming the user and/or the VAS has been granted the appropriate permissions to do so by the MPS 100 and/or the MCS(es) that provide the content within the playlist.


The VAS 160 may also instruct the MPS 100 to request the additional information from the user. For example, for the voice input “Play my Running playlist,” the VAS 160 may determine that the request is ambiguous because the user has a playlist titled “Running” on multiple MCS(es) 167. In this scenario, the remote computing devices 106a associated with the VAS 160 may request that the MPS 100 asks the user which playlist the user is referring to. For example, the MPS 100 may ask the user “Would you like to play your ‘Running’ playlist from iTUNES or your ‘Running’ playlist from SPOTIFY?” As another example, a voice input requesting a song or album for which multiple versions exist may require the MPS 100 to ask the user which version of the song or which album the user would like played back. For the voice input “Play West Side Story” (see column 4 for Example No. 23 in FIG. 8D), the VAS 160 may determine that the “West Side Story” album has a Broadway version and a concert hall version and require clarification from the user as to which of the two albums the user is referring to.


For the MPS 100 to request and obtain clarifying information from the user, the VAS 160 may send a packet 783 that includes voice data for a voice output that may be played back by MPS 100 to the user. Likewise, the MPS 100 may process the response 783 (block 776) and determine that additional user input is required, even if the VAS has determined otherwise. In some aspects, the MPS 100 may receive feedback from the MCS(es) 167 that the requested media content could not be found (discussed in greater detail below). In the latter two scenarios, the MPS 100 may send a message to the remote computing devices 106a associated with the VAS 160 that includes a request for voice data of a voice output that the MPS 100 can play back to the user (e.g., via one or more of the playback devices 102) to obtain clarifying information. The remote computing devices 106a may perform the requested text-to-speech conversion and transmit a packet containing the voice data to the MPS 100. The MPS 100 may then play back the voice output to the user and capture the user's responsive voice input. To determine the intent of the user's responsive voice input, the exchanges described above with reference to blocks 772-776 may be repeated as necessary until the MPS 100 has sufficient descriptive information of the requested media content to request a search.


ii. Search


Once the MPS 100 has received or is otherwise in possession of information sufficiently descriptive of the requested media content from the response(s) 783, the MPS 100 may send a search request 785 to a plurality of remote computing devices associated with the plurality of MCS(es) 167. For example, the MPS 100 may send a search request to (i) first remote computing devices 106b associated with the first MCS 762 and (ii) second remote computing devices 106c associated with the second MCS 763. The first and second remote computing devices 106b, 106c may then search their respective libraries for the media content described in the payload, as depicted at block 786. Preferably, the VAS 160 does not exchange information directly with the first and second remote computing devices 106b, 106c of the first and second MCS(es) 762, 763 and the MPS 100 is the single contact point between all of the VAS(es) and all of the MCS(es).


After completing the search request, each of the first and second remote computing devices 106b, 106c may send a response (shown collectively as “response 787”) to the MPS 100 indicating whether the corresponding first and second MCS(es) have the requested media content. Any MCS that has the requested media content may also send instructions for playing back the media content. If only a single MCS returns the requested media content, the MPS 100 may proceed to play back the media content from the single MCS without requesting additional input from the user. However, in some cases it may be beneficial for the MPS 100 to solicit additional input from the user. For example, when multiple MCS(es) send instructions for playing back the requested media content, the MPS 100 may ask the user which MCS the user would like to use. In some embodiments, the MPS 100 may display a list of media content (e.g., songs, albums, etc.) and/or MCS(es) that have the requested media content on the display of a controller device 104 (FIGS. 1A and 1B), and the user may select the desired media content and/or MCS from the list. In these and other embodiments, the MPS 100 may automatically select one of the available MCS(es) based on the user's preferred media content service and/or other secondary information.


The MPS 100 may also request additional information from the user when the voice input identifies a specific MCS for playing back the requested media content and the requested MCS's search does not turn up the requested media content. Should a different, non-requested MCS (to which the user also subscribes or otherwise has access to) have the requested media content, the MPS 100 may (a) inform the user that the requested MCS does not have the requested media content, (b) inform the user that the media content was found on a different MCS, and (c) ask the user if the user would like the MPS 100 to play back the requested media content on the other MCS.


To request clarification from the user, the MPS 100 may send a request 790 to the VAS 160 for voice data related to a specific voice output, and the VAS 160 may process the request 791 to generate the voice output to be played back by the MPS 100 to the user. The VAS 160 may send a message 792 to the MPS 100 including the voice output, and the MPS 100 may play back the voice output 793 to the user to obtain clarification from the user.


Whether selected automatically by the MPS 100 or in response to feedback from the user, the MPS 100 ultimately selects one of the MCS(es). for playing back or potentially playing back the requested media content (assuming the user's request was resolvable). The MPS 100 foregoes selection of other MCS(es) once the ultimate MCS has been selected. In some instances, playback may begin automatically after the search without further input from the user (e.g., if the user requested to play the media content in the voice input(s) prompting the search). In other instances, playback may be initiated by the user depending on the results of the search and upon confirmation by the user. The following discussion with reference to FIG. 7D describes the various data exchanges that may occur between the MPS 100, the VAS 160, and/or the MCS(es) 167 in order to play back the selected media content.


b. Examples of Data Exchanges for Playing Back Media Content


Referring to block 784 of FIG. 7D, the MPS 100 may capture a user's voice input in response to the MPS's 100 request for the user to select one of the available MCS(es). The MPS 100 may then send the voice input 795 to the VAS 160 for processing to determine the intent (block 796) of the voice input. The VAS 160 may send a response or packet 797 to the MPS 100 that contains information identifying the MCS selection made by the user. The MPS 100 may then process the response 797 (block 798) and generate a desired message for the user. The MPS 100 may send a request 799 to the VAS to convert the MPS's 100 message into voice data that can be played back as a voice output by the MPS 100 to the user. In some embodiments, the message may be a confirmation to the user that the MPS 100 will play or is already playing the user's requested media content on a certain one of the MCS(es). For example, the MPS 100 may play back a voice output such as “You are listening to ‘Jagged Little Pill’ on SPOTIFY.” At block 831, the VAS converts the message into the requested audio data and transmits a packet 832 containing the voice data to the MPS 100. Before, concurrently with, and/or after playing back the voice output (at block 833) to the user, the MPS 100 may exchange data (block 834) with the selected MCS to play back the requested and found media content (for example, via one or more of the playback devices 102). In some instances it may be beneficial to play the voice output confirming the media content and/or MCS selection prior to playing back the media content, as retrieving the media content from the MCS for playback may create a latency and the voice output can fill that latency for the user.


In some embodiments, the MPS 100 may indicate to the user that the requested media content is being played back without interacting or receiving additional data from the VAS 160. For example, the MPS 100 may have stored voice outputs not specific to the requested media content (e.g., “Playing requested audio”) or may provide an indication that does not include any voice output (such as a ding, displaying a certain color, etc.).


In some embodiments, the MPS 100, the VAS 160, and/or the MCS(es) 167 may use voice inputs that result in successful (or unsuccessful) responses from the VAS 160 and/or MCS(es) 167 for training and adaptive training and learning. Training and adaptive learning may enhance the accuracy of voice processing by the MPS 100, the VAS 160, and/or the MCS(es) 167. In some embodiments, the intent engine 662 (FIG. 6) may update and maintain training learning data in the VAS database(s) 664 for one or more user accounts associated with the MPS 100.


c. Examples of Commands for Controlling Media Content Playback


Commands for controlling the media playback system, such as playback of content identified via the search in FIG. 7C, can include, for example, a command for initiating playback, such as when the user says “play music.” Another command may be a control command, such as a transport control command, for e.g., pausing, resuming, skipping, playback. For example, a command may be a command involving a user asking to “skip to the next track in a song.” Yet another command may be a zone targeting command, such as command for grouping, bonding, and merging playback devices. For example, the command may be a command involving a user asking to “group the Living Room and the Dining Room.” In such cases, the command may not involve a search for media content, but rather directs media content to be streamed to a group of targeted devices in a particular group of devices.


The commands described above are examples and other commands are possible. For example, FIGS. 9A-9C show tables with additional example playback initiation, control, and zone targeting commands. As an additional example, commands may include inquiry commands. An inquiry command may involve, for example, a query by a user as to what audio is currently playing. For example, the user may speak an inquiry command of “Tell me what is playing in the Living Room.” Other suitable commands are shown and described, for example, in U.S. patent application Ser. No. 15/721,141 filed Sep. 29, 2017, and titled “Media Playback System with Voice Assistance,” and U.S. Pat. No. 9,947,316 filed Jul. 29, 2016, and titled “Voice Control of a Media Playback System,” each of which is incorporated herein by reference in their entirety.


The intent for commands and associated variable instances that may be detected in voice input may be based on any of number predefined syntaxes that may be associated with a user's intent (e.g., play, pause, adding to queue, grouping, other transport controls, controls available via, e.g., the controller devices 104). In some implementations, processing of commands and associated variable instances may be based on predetermined “slots” in which command(s) and/or variable(s) are expected to be specified in the syntax. In these and other implementations, sets of words or vocabulary used for determining user intent may be updated in response to user customizations and preferences, feedback, and adaptive learning, as discussed above.


In some embodiments, different words, syntaxes, and/or phrases used for a command may be associated with the same intent. For example, including the command word “play,” “listen,” or “hear” in a voice input may correspond to a cognate reflecting the same intent that the media playback system play back media content.



FIGS. 9A-9C show further examples of cognates. For instance, the commands in the left-hand side of the table 900 may have certain cognates represented in the right-hand side of the table. Referring to FIG. 9A, for example, the “play” command in the left-hand column has the same intent as the cognate phrases in the right-hand column, including “break it down,” “let's jam”, “bust it.” In various embodiments, commands and cognates may be added, removed, or edited in the table 900. For example, commands and cognates may be added, removed, or edited in response to user customizations and preferences, feedback, training, and adaptive learning, as discussed above. FIGS. 9B and 9C show examples cognates related to control and zone targeting, respectively.


In some embodiments, variable instances may have cognates that are predefined in a manner similar to cognates for commands. For example, a “Patio” zone variable in the MPS 100 may have the cognate “Outside” representing the same zone variable. As another example, the “Living Room” zone variable may have the cognates “Living Area”, “TV Room,” “Family Room,” etc.


A command may be compared to multiple sets of command criteria. In some embodiments, command criteria may determine if a voice input includes more than one command. For example, a voice input with a command to “play [media variable]” may be accompanied by a second command to “also play in [zone variable].” In this example, the MPS 100 may recognize “play” as one command and recognize “also play” as command criteria that is satisfied by the inclusion of the latter command. In some embodiments, when the above example commands are spoken together in the same voice input this may correspond to a grouping intent.


In similar embodiments, the voice input may include two commands or phrases which are spoken in sequence. The method 800 may recognize that such commands or phrases in sequence may be related. For example, the user may provide the voice input “play some classical music” followed by in “the Living Room” and the “Dining Room,” which is an inferential command to group the playback devices in the Living Room and the Dining Room.


In some embodiments, the MPS 100 may detect for pause(s) of a limited duration (e.g., 1 to 2 seconds) when processing words or phrases in sequence. In some implementations, the pause may be intentionally made by the user to demarcate between commands and phrases to facilitate voice processing of a relatively longer chain of commands and information. The pause may have a predetermined duration sufficient for capturing the chain of commands and information without causing the MPS 100 to idle back to wake word monitoring at block 802. In one aspect, a user may use such pauses to execute multiple commands without having to re-utter a wake word for each desired command to be executed.


In some embodiments, processing commands may involve updating playback queues stored on the playback devices in response to the change in a playlist or playback queue stored on a cloud network, such that the portion of the playback queue matches a portion or entirety of the playlist or playback queue in cloud network.


In some embodiments, processing a command may lead to a determination that the VAS needs additional information and audibly prompting a user for this information. For instance, a user may be prompted for additional information when executing a multi-turn command.


While the methods and systems have been described herein with respect to media content (e.g., music content, video content), the methods and systems described herein may be applied to a variety of content which may have associated audio that can be played by a media playback system. For example, pre-recorded sounds which might not be part of a music catalog may be played in response to a voice input. One example is the voice input “what does a nightingale sound like?” The networked microphone system's response to this voice input might not be music content with an identifier and may instead be a short audio clip. The media playback system may receive information associated with playing back the short audio clip (e.g., storage address, link, URL, file) and a media playback system command to play the short audio clip. Other examples are possible including podcasts, news clips, notification sounds, alarms, etc.


CONCLUSION

The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.


The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.


When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.


It will be appreciated that FIGS. 8A-8H are provided merely by way of example and do not represent an exhaustive list of request types 880, example utterances 882, desired payloads 884, and/or actions/inactions 886 associated with the media playback systems of the present technology. Moreover, although the actions/inactions column 886 provides that many of the example requests “[r]equire[ ] the VAS to resolve,” in some embodiments such types of requests do not require the VAS to resolve and instead can be resolved by the MPS 100 and/or a combination of the MPS 100 and the VAS.


The present technology is illustrated, for example, according to various aspects described below. Various examples of aspects of the present technology are described as numbered examples (1, 2, 3, etc.) for convenience. These are provided as examples and do not limit the present technology. It is noted that any of the dependent examples may be combined in any combination, and placed into a respective independent example. The other examples can be presented in a similar manner.


Example 1: A method, comprising: capturing voice input via a network microphone device of a media playback system, wherein the voice input comprises a request for media content; transmitting the voice input from the media playback system to one or more remote computing devices associated with a voice assistant service for deriving intent information regarding the request for media content based at least on the voice input; receiving, at the media playback system, a response from the one or more remote computing devices, wherein the response comprises the derived intent information; based at least in part on the derived intent information, requesting via the media playback system, media content information from a plurality of media content services, wherein the requesting comprises requesting the media content information from (i) at least one first remote computing device associated with a first media content service and (ii) at least one second remote computing device associated with a second media content service; receiving, at the media playback system, first information from the at least one first remote computing device and second information from the at least one second remote computing device, wherein the first information identifies first media content available via the first media content service for playback and the second information identifies second media content available via the second media content service for playback; and after receiving at least one of the first information and the second information, (i) selecting the first media content and foregoing selection of the second media content and (ii) playing back the first media content.


Example 2: The method of Example 1, further comprising: (i) transmitting, via the media playback system, a request for a voice response to the one or more computing devices of the voice assistant service, wherein the request for the voice response is based at least on one of the first information and the second information; and (ii) receiving and playing back, via the media playback system, the voice response.


Example 3: The method of Example 2, wherein the voice response is at least one of (a) a request for additional information regarding the request for media content, and (b) an acknowledgment of receipt of the request for media content.


Example 4: The method of Example 2 or Example 3, wherein the voice response identifies the first media content available via the first media content service, the first media content service, the second media content available via the second media content service, and the second media content service.


Example 5: The method of any one of Examples 1 to 4, further comprising, after transmitting the first and second information, (i) receiving, via the media playback system, a selection of media content related to the first information and (ii) requesting, via the media playback system, the selection of media content from the at least one remote computing device of the first media content service for playback.


Example 6: The method of any one of Examples 1 to 5, further comprising, (i) after receiving the selection, initiating the playback of the first media content, and (ii) after initiating the playback of the first media content, transmitting a request for a voice response to the one or more remote computing devices of the voice assistant service.


Example 7: The method of any one of Examples 1 to 6, wherein the response received from the one or more remote computing devices associated with the voice assistant service includes a message comprising a plurality of predetermined fields, wherein at least one of the predetermined fields is populated by the voice assistant service with at least a portion of the derived intent information.


Example 8: The method of any of Examples 1 to 7, wherein the media playback system includes one or more remote computing devices.


Example 9: The method of any one of Examples 1 to 8, wherein media content available via the first media content service comprises media content that is not available via the second media content service.


Example 10: The method of any one of Examples 1 to 9, further comprising receiving, at the network microphone device, the particular media content from the selected media content service.


Example 11: The method of any one of Examples 1 to 10, further comprising causing a playback device associated with the network microphone device to play back the particular media content from the selected media content service.


Example 12: The method of any one of Examples 1 to 11, wherein the response includes a payload having at least a first field, a second field, and a third field, and wherein the first field corresponds to a song, the second field corresponds to an album, and the third field corresponds to an artist.


Example 13: The method of Example 12, wherein the first field, the second field, and/or the third field may be a null value.


Example 14: The method of any one of Examples 1 to 13, further comprising selecting the first media content service over the second media content service.


Example 15: The method of any one of Examples 1 to 14, further comprising selecting a first voice assistant service over a second voice assistant service.


Example 16: The method of any one of Examples 1 to 15, further comprising transmitting secondary information to the voice assistant service with the voice input.


Example 17: The method of Example 16, wherein the secondary information includes at least one of zone state information, a user's playback history, a user's playlists, and a user's media content preferences.


Example 18: The method of any one of Examples 1 to 17, further comprising outputting, via the network microphone device, an audible and/or visible indicator.


Example 19: The method of Example 18, wherein the indicator is output after the network microphone device sends data related to the voice input to the voice assistant service.


Example 20: The method of Example 18, wherein the indicator is output after the network microphone device receives the response from the voice assistant service.


Example 21: The method of any one of Examples 1 to 20, wherein the response from the voice assistant service includes an indication of the requested media content service.


Example 22: The method of any one of Examples 1 to 21, wherein the response from the voice assistant service includes metadata identifying particular audio content.


Example 23: The method of any one of Examples 1 to 22, wherein the voice input is a first voice input, the method further comprises: (i) after receiving the response from the voice assistant service, outputting, via the media playback system, an audible prompt for additional information, (ii) receiving a second voice input via the media playback system, and (iii) transmitting data related to the second voice input to the voice assistant service.


Example 24: A media playback system comprising one or more processors, at least one network microphone device comprising at least one microphone, and a computer-readable medium storing instructions executable by one or more processors to cause the media playback system to perform operations comprising the method of any one of Examples 1 to 23.


Example 25: A tangible, non-transitory computer-readable medium comprising instructions executable by one or more processors, causing the processor to perform the method of any one of Examples 1 to 23.

Claims
  • 1. A method, comprising: capturing voice input via a network microphone device (NMD) of a media playback system, the media playback system comprising one or more local network devices, including the network microphone device, within a physical environment and one or more first remote computing devices, wherein the voice input comprises a request for media content;transmitting the voice input from the NMD to one or more second remote computing devices associated with a voice assistant service for deriving intent information regarding the request for media content based at least on the voice input;receiving, at the media playback system, a response from the one or more second remote computing devices associated with the voice assistant service, wherein the response comprises the derived intent information and an identified media content service;based at least in part on the derived intent information, requesting, via the media playback system and independent of the voice assistant service, media content information from one or more third remote computing devices associated with the identified media content service;receiving, at the media playback system and independent of the voice assistant service, information from the one or more third remote computing devices, wherein the information identifies media content available via the media content service for playback; andafter receiving the information, (i) transmitting a uniform resource identifier (URI) or uniform resource locator (URL) associated with the media content from the one or more first remote computing devices of the media playback system to the NMD, and (ii) requesting, via the NMD, the media content, via the URI or URL, from the one or more third remote computing devices of the media content service for playback, and (iii) playing back the media content via the NMD.
  • 2. The method of claim 1, wherein the requesting, via the media playback system and independent of the voice assistant service, media content information from one or more third remote computing devices associated with the identified media content service comprises transmitting a request from the one or more first remote computing devices of the media playback system to the one or more third remote computing devices associated with the identified media content service.
  • 3. The method of claim 1, wherein the identified media content service is based at least in part on the derived intent information.
  • 4. The method of claim 1, further comprising: transmitting, via the media playback system, a request for a voice response to the one or more second computing devices of the voice assistant service; andreceiving and playing back, via the media playback system, the voice response.
  • 5. The method of claim 4, wherein the voice response is at least one of (a) a request for additional information regarding the request for media content, and (b) an acknowledgement of receipt of the request for media content.
  • 6. The method of claim 1, further comprising, (i) after receiving the selection initiating the playback of the media content, and (ii) after initiating the playback of the media content, transmitting a request for a voice response to the one or more second remote computing devices of the voice assistant service.
  • 7. The method of claim 1, wherein the derived intent information comprises a predefined data structure including one or more media content attributes, and wherein requesting media content information from the media content service comprises querying the media content service for media corresponding to the media content attributes.
  • 8. A media playback system, comprising: one or more processors;at least one network microphone device (NMD) comprising at least one microphone;one or more first remote computing devices; andtangible, non-transitory, computer-readable media storing instructions executable by one or more processors to cause the media playback system to perform operations comprising: capturing voice input via the NMD, wherein the voice input comprises a request for media content;transmitting the voice input to one or more second remote computing devices associated with a voice assistant service for deriving intent information regarding the request for media content based at least on the voice input;receiving a response from the one or more second remote computing devices, wherein the response comprises the derived intent information and an identified media content service;based at least in part on the derived intent information, requesting, independent of the voice assistant service, media content information from one or more third remote computing devices associated with the identified media content service;receiving, independent of the voice assistant service, information from the one or more third remote computing devices, wherein the information identifies media content available via the media content service for playback; andafter receiving the information, (i) transmitting a uniform resource identifier (URI) or uniform resource locator (URL) associated with the media content from the one or more first remote computing devices of the media playback system to the NMD, and (ii) requesting, via the NMD, the media content, via the URI or URL, from the one or more third remote computing devices of the media content service for playback, and (iii) playing back the media content via the NMD.
  • 9. The media playback system of claim 8, wherein the requesting, via the media playback system and independent of the voice assistant service, media content information from one or more third remote computing devices associated with the identified media content service comprises transmitting a request from the one or more first remote computing devices of the media playback system to the one or more third remote computing devices associated with the identified media content service.
  • 10. The media playback system of claim 8, wherein the identified media content service is based at least in part on the derived intent information.
  • 11. The media playback system of claim 8, wherein the operations further comprise: transmitting, via the media playback system, a request for a voice response to the one or more second computing devices of the voice assistant service; andreceiving and playing back, via the media playback system, the voice response.
  • 12. The media playback system of claim 11, wherein the voice response is at least one of (a) a request for additional information regarding the request for media content, and (b) an acknowledgement of receipt of the request for media content.
  • 13. The media playback system of claim 8, wherein the operations further comprise, (i) after receiving the selection initiating the playback of the media content, and (ii) after initiating the playback of the media content, transmitting a request for a voice response to the one or more second remote computing devices of the voice assistant service.
  • 14. The media playback system of claim 8, wherein the derived intent information comprises a predefined data structure including one or more media content attributes, and wherein requesting media content information from the media content service comprises querying the media content service for media corresponding to the media content attributes.
  • 15. One or more tangible, non-transitory, computer-readable media storing instructions executable by one or more processors to cause a media playback system to perform operations comprising: capturing voice input via a network microphone device (NMD) of a media playback system, the media playback system comprising one or more local network devices, including the network microphone device, within a physical environment and one or more first remote computing devices, wherein the voice input comprises a request for media content;transmitting the voice input from the media playback system to one or more second remote computing devices associated with a voice assistant service for deriving intent information regarding the request for media content based at least on the voice input;receiving, at the media playback system, a response from the one or more second remote computing devices associated with the voice assistant service, wherein the response comprises the derived intent information and an identified media content service;based at least in part on the derived intent information, requesting, independent of the voice assistant service, media content information from one or more third remote computing devices associated with the identified media content service;receiving, at the media playback system and independent of the voice assistant service, information from the one or more third remote computing devices, wherein the information identifies media content available via the media content service for playback; andafter receiving the information, (i) transmitting a uniform resource identifier (URI) or uniform resource locator (URL) associated with the media content from the one or more first remote computing devices of the media playback system to the NMD, and (ii) requesting, via the NMD, the media content, via the URI or URL, from the one or more third remote computing devices of the media content service for playback, and (iii) playing back the media content via the NMD.
  • 16. The computer-readable media of claim 15, wherein the requesting, via the media playback system and independent of the voice assistant service, media content information from one or more third remote computing devices associated with the identified media content service comprises transmitting a request from the one or more first remote computing devices of the media playback system to the one or more third remote computing devices associated with the identified media content service.
  • 17. The computer-readable media of claim 15, wherein the identified media content service is based at least in part on the derived intent information.
  • 18. The computer-readable media of claim 15, further comprising: transmitting, via the media playback system, a request for a voice response to the one or more second computing devices of the voice assistant service; andreceiving and playing back, via the media playback system, the voice response.
  • 19. The computer-readable media of claim 18, wherein the voice response is at least one of (a) a request for additional information regarding the request for media content, and (b) an acknowledgement of receipt of the request for media content.
  • 20. The computer-readable media of claim 15, further comprising, (i) after receiving the selection initiating the playback of the media content, and (ii) after initiating the playback of the media content, transmitting a request for a voice response to the one or more second remote computing devices of the voice assistant service.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a continuation of U.S. patent application Ser. No. 16/109,375, filed Aug. 22, 2018, which claims the benefit of priority under 35 USC § 119(e) to U.S. Provisional Application No. 62/669,385, filed May 10, 2018, which are incorporated by reference herein in their entireties.

US Referenced Citations (1225)
Number Name Date Kind
999715 Gundersen Aug 1911 A
4741038 Elko et al. Apr 1988 A
4941187 Slater Jul 1990 A
4974213 Siwecki Nov 1990 A
5036538 Oken et al. Jul 1991 A
5440644 Farinelli et al. Aug 1995 A
5588065 Tanaka et al. Dec 1996 A
5717768 Laroche Feb 1998 A
5740260 Odom Apr 1998 A
5761320 Farinelli et al. Jun 1998 A
5857172 Rozak Jan 1999 A
5923902 Inagaki Jul 1999 A
5949414 Namikata et al. Sep 1999 A
6032202 Lea et al. Feb 2000 A
6070140 Tran May 2000 A
6088459 Hobelsberger Jul 2000 A
6219645 Byers Apr 2001 B1
6256554 DiLorenzo Jul 2001 B1
6301603 Maher et al. Oct 2001 B1
6311157 Strong Oct 2001 B1
6366886 Dragosh et al. Apr 2002 B1
6404811 Cvetko et al. Jun 2002 B1
6408078 Hobelsberger Jun 2002 B1
6469633 Wachter Oct 2002 B1
6522886 Youngs et al. Feb 2003 B1
6594347 Calder et al. Jul 2003 B1
6594630 Zlokarnik et al. Jul 2003 B1
6611537 Edens et al. Aug 2003 B1
6611604 Irby et al. Aug 2003 B1
6631410 Kowalski et al. Oct 2003 B1
6757517 Chang Jun 2004 B2
6778869 Champion Aug 2004 B2
6937977 Gerson Aug 2005 B2
7099821 Visser et al. Aug 2006 B2
7103542 Doyle Sep 2006 B2
7130608 Hollstrom et al. Oct 2006 B2
7130616 Janik Oct 2006 B2
7143939 Henzerling Dec 2006 B2
7174299 Fujii et al. Feb 2007 B2
7228275 Endo et al. Jun 2007 B1
7236773 Thomas Jun 2007 B2
7295548 Blank et al. Nov 2007 B2
7356471 Ito et al. Apr 2008 B2
7383297 Atsmon et al. Jun 2008 B1
7391791 Balassanian et al. Jun 2008 B2
7483538 McCarty et al. Jan 2009 B2
7516068 Clark Apr 2009 B1
7571014 Lambourne et al. Aug 2009 B1
7577757 Carter et al. Aug 2009 B2
7630501 Blank et al. Dec 2009 B2
7643894 Braithwaite et al. Jan 2010 B2
7657910 McAulay et al. Feb 2010 B1
7661107 Van Dyke et al. Feb 2010 B1
7702508 Bennett Apr 2010 B2
7705565 Patino et al. Apr 2010 B2
7792311 Holmgren et al. Sep 2010 B1
7853341 McCarty et al. Dec 2010 B2
7961892 Fedigan Jun 2011 B2
7987294 Bryce et al. Jul 2011 B2
8014423 Thaler et al. Sep 2011 B2
8019076 Lambert Sep 2011 B1
8032383 Bhardwaj et al. Oct 2011 B1
8041565 Bhardwaj et al. Oct 2011 B1
8045952 Qureshey et al. Oct 2011 B2
8073125 Zhang et al. Dec 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8085947 Haulick et al. Dec 2011 B2
8103009 McCarty et al. Jan 2012 B2
8136040 Fleming Mar 2012 B2
8165867 Fish Apr 2012 B1
8233632 MacDonald et al. Jul 2012 B1
8234395 Millington Jul 2012 B2
8239206 LeBeau et al. Aug 2012 B1
8255224 Singleton et al. Aug 2012 B2
8284982 Bailey Oct 2012 B2
8290603 Lambourne Oct 2012 B1
8325909 Tashev et al. Dec 2012 B2
8340975 Rosenberger Dec 2012 B1
8364481 Strope et al. Jan 2013 B2
8385557 Tashev et al. Feb 2013 B2
8386261 Mellott et al. Feb 2013 B2
8386523 Mody et al. Feb 2013 B2
8423893 Ramsay et al. Apr 2013 B2
8428758 Naik et al. Apr 2013 B2
8453058 Coccaro et al. May 2013 B1
8473618 Spear et al. Jun 2013 B2
8483853 Lambourne Jul 2013 B1
8484025 Moreno et al. Jul 2013 B1
8588849 Patterson et al. Nov 2013 B2
8594320 Faller Nov 2013 B2
8600443 Kawaguchi et al. Dec 2013 B2
8620232 Helsloot Dec 2013 B2
8639214 Fujisaki Jan 2014 B1
8710970 Oelrich et al. Apr 2014 B2
8719039 Sharifi May 2014 B1
8738925 Park et al. May 2014 B1
8762156 Chen Jun 2014 B2
8775191 Sharifi et al. Jul 2014 B1
8831761 Kemp et al. Sep 2014 B2
8831957 Taubman et al. Sep 2014 B2
8848879 Coughlan et al. Sep 2014 B1
8861756 Zhu et al. Oct 2014 B2
8874448 Kauffmann et al. Oct 2014 B1
8938394 Faaborg et al. Jan 2015 B1
8942252 Balassanian et al. Jan 2015 B2
8983383 Haskin Mar 2015 B1
8983844 Thomas et al. Mar 2015 B1
9002024 Nakadai et al. Apr 2015 B2
9015049 Baldwin et al. Apr 2015 B2
9042556 Kallai et al. May 2015 B2
9047857 Barton Jun 2015 B1
9060224 List Jun 2015 B1
9070367 Hoffmeister et al. Jun 2015 B1
9088336 Mani et al. Jul 2015 B2
9094539 Noble Jul 2015 B1
9098467 Blanksteen et al. Aug 2015 B1
9124650 Maharajh et al. Sep 2015 B2
9124711 Park et al. Sep 2015 B2
9148742 Koulomzin et al. Sep 2015 B1
9183845 Gopalakrishnan et al. Nov 2015 B1
9190043 Krisch et al. Nov 2015 B2
9208785 Ben-David et al. Dec 2015 B2
9215545 Dublin et al. Dec 2015 B2
9245527 Lindahl Jan 2016 B2
9251793 Lebeau et al. Feb 2016 B2
9253572 Beddingfield, Sr. et al. Feb 2016 B2
9262612 Cheyer Feb 2016 B2
9263042 Sharifi Feb 2016 B1
9275637 Salvador et al. Mar 2016 B1
9288597 Carlsson et al. Mar 2016 B2
9300266 Grokop Mar 2016 B2
9304736 Whiteley et al. Apr 2016 B1
9307321 Unruh Apr 2016 B1
9313317 Lebeau et al. Apr 2016 B1
9318107 Sharifi Apr 2016 B1
9319816 Narayanan Apr 2016 B1
9324322 Torok et al. Apr 2016 B1
9335819 Jaeger et al. May 2016 B1
9354687 Bansal et al. May 2016 B2
9361878 Boukadakis Jun 2016 B2
9361885 Ganong, III et al. Jun 2016 B2
9368105 Freed et al. Jun 2016 B1
9373329 Strope et al. Jun 2016 B2
9374634 Macours Jun 2016 B2
9386154 Baciu et al. Jul 2016 B2
9390708 Hoffmeister Jul 2016 B1
9401058 De La Fuente et al. Jul 2016 B2
9412392 Lindahl et al. Aug 2016 B2
9426567 Lee et al. Aug 2016 B2
9431021 Scalise et al. Aug 2016 B1
9443516 Katuri et al. Sep 2016 B2
9443527 Watanabe et al. Sep 2016 B1
9472201 Sleator Oct 2016 B1
9472203 Ayrapetian et al. Oct 2016 B1
9484030 Meaney et al. Nov 2016 B1
9489948 Chu et al. Nov 2016 B1
9494683 Sadek Nov 2016 B1
9509269 Rosenberg Nov 2016 B1
9510101 Polleros Nov 2016 B1
9514476 Kay et al. Dec 2016 B2
9514747 Bisani et al. Dec 2016 B1
9514752 Sharifi Dec 2016 B2
9516081 Tebbs et al. Dec 2016 B2
9532139 Lu et al. Dec 2016 B1
9536541 Chen et al. Jan 2017 B2
9548053 Basye et al. Jan 2017 B1
9548066 Jain et al. Jan 2017 B2
9552816 Vanlund et al. Jan 2017 B2
9554210 Ayrapetian et al. Jan 2017 B1
9558755 Laroche et al. Jan 2017 B1
9560441 McDonough, Jr. et al. Jan 2017 B1
9576591 Kim et al. Feb 2017 B2
9601116 Casado et al. Mar 2017 B2
9615170 Kirsch et al. Apr 2017 B2
9615171 O'Neill et al. Apr 2017 B1
9626695 Balasubramanian et al. Apr 2017 B2
9632748 Faaborg et al. Apr 2017 B2
9633186 Ingrassia, Jr. et al. Apr 2017 B2
9633368 Sreenzeiger et al. Apr 2017 B2
9633660 Haughay et al. Apr 2017 B2
9633661 Typrin et al. Apr 2017 B1
9633671 Giacobello et al. Apr 2017 B2
9633674 Sinha et al. Apr 2017 B2
9640179 Hart et al. May 2017 B1
9640183 Jung et al. May 2017 B2
9640194 Nemala et al. May 2017 B1
9641919 Poole et al. May 2017 B1
9646614 Bellegarda et al. May 2017 B2
9648564 Cui et al. May 2017 B1
9653060 Hilmes et al. May 2017 B1
9653075 Chen et al. May 2017 B1
9659555 Hilmes et al. May 2017 B1
9672812 Watanabe et al. Jun 2017 B1
9672821 Krishnaswamy et al. Jun 2017 B2
9674587 Triplett et al. Jun 2017 B2
9685171 Yang Jun 2017 B1
9691378 Meyers et al. Jun 2017 B1
9691379 Mathias et al. Jun 2017 B1
9691384 Wang et al. Jun 2017 B1
9697826 Sainath et al. Jul 2017 B2
9697828 Prasad et al. Jul 2017 B1
9698999 Mutagi et al. Jul 2017 B2
9704478 Vitaladevuni et al. Jul 2017 B1
9706320 Starobin et al. Jul 2017 B2
9721566 Newendorp et al. Aug 2017 B2
9721568 Polansky et al. Aug 2017 B1
9721570 Beal et al. Aug 2017 B1
9728188 Rosen et al. Aug 2017 B1
9734822 Sundaram et al. Aug 2017 B1
9736578 Iyengar et al. Aug 2017 B2
9743204 Welch et al. Aug 2017 B1
9743207 Hartung Aug 2017 B1
9747011 Lewis et al. Aug 2017 B2
9747899 Pogue et al. Aug 2017 B2
9747920 Ayrapetian et al. Aug 2017 B2
9747926 Sharifi et al. Aug 2017 B2
9749738 Adsumilli et al. Aug 2017 B1
9749760 Lambourne Aug 2017 B2
9754605 Chhetri Sep 2017 B1
9756422 Paquier et al. Sep 2017 B2
9762967 Clarke et al. Sep 2017 B2
9767786 Starobin et al. Sep 2017 B2
9769420 Moses Sep 2017 B1
9779725 Sun et al. Oct 2017 B2
9779732 Lee et al. Oct 2017 B2
9779734 Lee Oct 2017 B2
9779735 Civelli et al. Oct 2017 B2
9781532 Sheen Oct 2017 B2
9799330 Nemala et al. Oct 2017 B2
9805733 Park Oct 2017 B2
9811314 Plagge et al. Nov 2017 B2
9812128 Mixter et al. Nov 2017 B2
9813810 Nongpiur Nov 2017 B1
9813812 Berthelsen et al. Nov 2017 B2
9818407 Secker-Walker et al. Nov 2017 B1
9820036 Tritschler et al. Nov 2017 B1
9820039 Lang Nov 2017 B2
9826306 Lang Nov 2017 B2
9865259 Typrin et al. Jan 2018 B1
9865264 Gelfenbeyn Jan 2018 B2
9875740 Kumar et al. Jan 2018 B1
9881616 Beckley et al. Jan 2018 B2
9898250 Williams et al. Feb 2018 B1
9899021 Mtaladevuni et al. Feb 2018 B1
9900723 Choisel et al. Feb 2018 B1
9916839 Scalise et al. Mar 2018 B1
9947316 Millington et al. Apr 2018 B2
9947333 David Apr 2018 B1
9972318 Kelly et al. May 2018 B1
9972343 Thorson et al. May 2018 B1
9973849 Zhang et al. May 2018 B1
9979560 Kim et al. May 2018 B2
9992642 Rapp et al. Jun 2018 B1
10013381 Mayman et al. Jul 2018 B2
10013995 Lashkari et al. Jul 2018 B1
10025447 Dixit et al. Jul 2018 B1
10026401 Mutagi et al. Jul 2018 B1
10028069 Lang Jul 2018 B1
10048930 Vega et al. Aug 2018 B1
10049675 Haughay Aug 2018 B2
10051366 Buoni et al. Aug 2018 B1
10051600 Zhong et al. Aug 2018 B1
10057698 Drinkwater et al. Aug 2018 B2
RE47049 Zhu et al. Sep 2018 E
10068573 Aykac et al. Sep 2018 B1
10074369 Devaraj et al. Sep 2018 B2
10074371 Wang et al. Sep 2018 B1
10079015 Lockhart et al. Sep 2018 B1
10089981 Elangovan et al. Oct 2018 B1
10108393 Millington et al. Oct 2018 B2
10115400 Wilberding Oct 2018 B2
10116748 Farmer et al. Oct 2018 B2
10127911 Kim et al. Nov 2018 B2
10134388 Lilly Nov 2018 B1
10134398 Sharifi Nov 2018 B2
10134399 Lang et al. Nov 2018 B2
10136204 Poole et al. Nov 2018 B1
10152969 Reilly et al. Dec 2018 B2
10181323 Beckhardt et al. Jan 2019 B2
10186265 Lockhart et al. Jan 2019 B1
10186266 Devaraj et al. Jan 2019 B1
10186276 Dewasurendra et al. Jan 2019 B2
10192546 Piersol et al. Jan 2019 B1
10224056 Torok et al. Mar 2019 B1
10225651 Lang Mar 2019 B2
10229680 Gillespie et al. Mar 2019 B1
10241754 Kadarundalagi Raghuram Doss et al. Mar 2019 B1
10248376 Keyser-Allen et al. Apr 2019 B2
10249205 Hammersley et al. Apr 2019 B2
10276161 Hughes et al. Apr 2019 B2
10297256 Reilly et al. May 2019 B2
10304440 Panchapagesan et al. May 2019 B1
10304475 Wang et al. May 2019 B1
10318236 Pal et al. Jun 2019 B1
10332508 Hoffmeister Jun 2019 B1
10339917 Aleksic et al. Jul 2019 B2
10339957 Chenier et al. Jul 2019 B1
10346122 Morgan Jul 2019 B1
10354650 Gruenstein et al. Jul 2019 B2
10354658 Wilberding Jul 2019 B2
10365887 Mulherkar Jul 2019 B1
10365889 Plagge et al. Jul 2019 B2
10366688 Gunn et al. Jul 2019 B2
10366699 Dharia et al. Jul 2019 B1
10374816 Leblang et al. Aug 2019 B1
10381001 Gunn et al. Aug 2019 B2
10381002 Gunn et al. Aug 2019 B2
10381003 Wakisaka et al. Aug 2019 B2
10388272 Thomson et al. Aug 2019 B1
10424296 Penilla et al. Sep 2019 B2
10433058 Torgerson et al. Oct 2019 B1
10445057 Vega et al. Oct 2019 B2
10445365 Luke et al. Oct 2019 B2
10469966 Lambourne Nov 2019 B2
10499146 Lang et al. Dec 2019 B2
10510340 Fu et al. Dec 2019 B1
10511904 Buoni et al. Dec 2019 B2
10515625 Metallinou et al. Dec 2019 B1
10522146 Tushinskiy Dec 2019 B1
10546583 White et al. Jan 2020 B2
10565998 Wilberding Feb 2020 B2
10573312 Thomson et al. Feb 2020 B1
10573321 Smith et al. Feb 2020 B1
10580405 Wang et al. Mar 2020 B1
10586534 Argyropoulos et al. Mar 2020 B1
10586540 Smith et al. Mar 2020 B1
10593328 Wang et al. Mar 2020 B1
10593330 Sharifi Mar 2020 B2
10599287 Kumar et al. Mar 2020 B2
10600406 Shapiro et al. Mar 2020 B1
10602268 Soto Mar 2020 B1
10614807 Beckhardt et al. Apr 2020 B2
10621981 Sereshki Apr 2020 B2
10622009 Zhang et al. Apr 2020 B1
10623811 Cwik Apr 2020 B1
10624612 Sumi et al. Apr 2020 B2
10643609 Pogue et al. May 2020 B1
10645130 Corbin et al. May 2020 B2
10672383 Thomson et al. Jun 2020 B1
10679625 Lockhart et al. Jun 2020 B1
10681460 Woo et al. Jun 2020 B2
10685669 Lan et al. Jun 2020 B1
10694608 Baker et al. Jun 2020 B2
10699711 Reilly Jun 2020 B2
10706843 Elangovan et al. Jul 2020 B1
10712997 Wilberding et al. Jul 2020 B2
10728196 Wang Jul 2020 B2
10740065 Jarvis et al. Aug 2020 B2
10748531 Kim Aug 2020 B2
10762896 Yavagal et al. Sep 2020 B1
10777189 Fu et al. Sep 2020 B1
10777203 Pasko Sep 2020 B1
10797667 Fish et al. Oct 2020 B2
10824682 Alvares et al. Nov 2020 B2
10825471 Walley et al. Nov 2020 B2
10837667 Nelson et al. Nov 2020 B2
10847137 Mandal et al. Nov 2020 B1
10847143 Millington et al. Nov 2020 B2
10847149 Mok et al. Nov 2020 B1
10848885 Lambourne Nov 2020 B2
RE48371 Zhu et al. Dec 2020 E
10867596 Yoneda et al. Dec 2020 B2
10867604 Smith et al. Dec 2020 B2
10871943 D'Amato et al. Dec 2020 B1
10878811 Smith et al. Dec 2020 B2
10878826 Li et al. Dec 2020 B2
10897679 Lambourne Jan 2021 B2
10911596 Do et al. Feb 2021 B1
10943598 Singh et al. Mar 2021 B2
10964314 Jazi et al. Mar 2021 B2
10971158 Patangay et al. Apr 2021 B1
11024311 Mixter et al. Jun 2021 B2
11050615 Mathews et al. Jun 2021 B2
11062705 Watanabe et al. Jul 2021 B2
11100923 Fainberg et al. Aug 2021 B2
11127405 Antos et al. Sep 2021 B1
11137979 Plagge Oct 2021 B2
11159878 Chatlani et al. Oct 2021 B1
11172328 Soto et al. Nov 2021 B2
11172329 Soto et al. Nov 2021 B2
11175880 Liu Nov 2021 B2
11184704 Jarvis et al. Nov 2021 B2
11206052 Park et al. Dec 2021 B1
11212612 Lang et al. Dec 2021 B2
11264019 Bhattacharya et al. Mar 2022 B2
11277512 Leeds et al. Mar 2022 B1
11315556 Smith et al. Apr 2022 B2
11354092 D'Amato et al. Jun 2022 B2
11361763 Maas et al. Jun 2022 B1
11411763 Mackay et al. Aug 2022 B2
11445301 Park et al. Sep 2022 B2
11514898 Millington Nov 2022 B2
20010003173 Lim Jun 2001 A1
20010042107 Palm Nov 2001 A1
20020022453 Balog et al. Feb 2002 A1
20020026442 Lipscomb et al. Feb 2002 A1
20020034280 Infosino Mar 2002 A1
20020046023 Fujii et al. Apr 2002 A1
20020054685 Avendano et al. May 2002 A1
20020055950 Witteman May 2002 A1
20020072816 Shdema et al. Jun 2002 A1
20020116196 Tran Aug 2002 A1
20020124097 Isely et al. Sep 2002 A1
20020143532 McLean et al. Oct 2002 A1
20030015354 Edwards et al. Jan 2003 A1
20030038848 Lee et al. Feb 2003 A1
20030040908 Yang et al. Feb 2003 A1
20030070182 Pierre et al. Apr 2003 A1
20030070869 Hlibowicki Apr 2003 A1
20030072462 Hlibowicki Apr 2003 A1
20030095672 Hobelsberger May 2003 A1
20030130850 Badt et al. Jul 2003 A1
20030157951 Hasty, Jr. Aug 2003 A1
20030235244 Pessoa et al. Dec 2003 A1
20040024478 Hans et al. Feb 2004 A1
20040093219 Shin et al. May 2004 A1
20040105566 Matsunaga et al. Jun 2004 A1
20040127241 Shostak Jul 2004 A1
20040128135 Anastasakos et al. Jul 2004 A1
20040153321 Chung et al. Aug 2004 A1
20040161082 Brown et al. Aug 2004 A1
20040234088 McCarty et al. Nov 2004 A1
20050031131 Browning et al. Feb 2005 A1
20050031132 Browning et al. Feb 2005 A1
20050031133 Browning et al. Feb 2005 A1
20050031134 Leske Feb 2005 A1
20050031137 Browning et al. Feb 2005 A1
20050031138 Browning et al. Feb 2005 A1
20050031139 Browning et al. Feb 2005 A1
20050031140 Browning Feb 2005 A1
20050033582 Gadd et al. Feb 2005 A1
20050047606 Lee et al. Mar 2005 A1
20050077843 Benditt Apr 2005 A1
20050164664 DiFonzo et al. Jul 2005 A1
20050195988 Tashev et al. Sep 2005 A1
20050201254 Looney et al. Sep 2005 A1
20050207584 Bright Sep 2005 A1
20050235334 Togashi et al. Oct 2005 A1
20050254662 Blank et al. Nov 2005 A1
20050268234 Rossi et al. Dec 2005 A1
20050283330 Laraia et al. Dec 2005 A1
20050283475 Beranek et al. Dec 2005 A1
20060004834 Pyhalammi et al. Jan 2006 A1
20060023945 King et al. Feb 2006 A1
20060041431 Maes Feb 2006 A1
20060093128 Oxford May 2006 A1
20060104451 Browning et al. May 2006 A1
20060147058 Wang Jul 2006 A1
20060190269 Tessel et al. Aug 2006 A1
20060190968 Jung et al. Aug 2006 A1
20060247913 Huerta et al. Nov 2006 A1
20060262943 Oxford Nov 2006 A1
20070018844 Sutardja Jan 2007 A1
20070019815 Asada et al. Jan 2007 A1
20070033043 Hyakumoto Feb 2007 A1
20070038999 Millington Feb 2007 A1
20070060054 Romesburg Mar 2007 A1
20070071206 Gainsboro et al. Mar 2007 A1
20070071255 Schobben Mar 2007 A1
20070076131 Li et al. Apr 2007 A1
20070076906 Takagi et al. Apr 2007 A1
20070140058 McIntosh et al. Jun 2007 A1
20070140521 Mitobe et al. Jun 2007 A1
20070142944 Goldberg et al. Jun 2007 A1
20070147651 Mitobe et al. Jun 2007 A1
20070201639 Park et al. Aug 2007 A1
20070254604 Kim Nov 2007 A1
20070286426 Xiang et al. Dec 2007 A1
20080008333 Nishikawa et al. Jan 2008 A1
20080031466 Buck et al. Feb 2008 A1
20080037814 Shau Feb 2008 A1
20080090537 Sutardja Apr 2008 A1
20080090617 Sutardja Apr 2008 A1
20080144858 Khawand et al. Jun 2008 A1
20080146289 Korneluk et al. Jun 2008 A1
20080160977 Ahmaniemi et al. Jul 2008 A1
20080182518 Lo Jul 2008 A1
20080192946 Faller Aug 2008 A1
20080207115 Lee et al. Aug 2008 A1
20080208594 Cross et al. Aug 2008 A1
20080221897 Cerra et al. Sep 2008 A1
20080247530 Barton et al. Oct 2008 A1
20080248797 Freeman et al. Oct 2008 A1
20080291896 Tuubel et al. Nov 2008 A1
20080291916 Xiong et al. Nov 2008 A1
20080301729 Broos et al. Dec 2008 A1
20090003620 McKillop et al. Jan 2009 A1
20090005893 Sugii et al. Jan 2009 A1
20090010445 Matsuo Jan 2009 A1
20090013255 Yuschik et al. Jan 2009 A1
20090018828 Nakadai et al. Jan 2009 A1
20090043206 Towfiq et al. Feb 2009 A1
20090046866 Feng et al. Feb 2009 A1
20090052688 Ishibashi et al. Feb 2009 A1
20090076821 Brenner et al. Mar 2009 A1
20090113053 Van Wie et al. Apr 2009 A1
20090153289 Hope et al. Jun 2009 A1
20090191854 Beason Jul 2009 A1
20090197524 Haff et al. Aug 2009 A1
20090214048 Stokes, III et al. Aug 2009 A1
20090220107 Every et al. Sep 2009 A1
20090228919 Zott et al. Sep 2009 A1
20090238377 Ramakrishnan et al. Sep 2009 A1
20090238386 Usher et al. Sep 2009 A1
20090248397 Garcia et al. Oct 2009 A1
20090249222 Schmidt et al. Oct 2009 A1
20090264072 Dai Oct 2009 A1
20090299745 Kennewick et al. Dec 2009 A1
20090323907 Gupta et al. Dec 2009 A1
20090323924 Tashev et al. Dec 2009 A1
20090326949 Douthitt et al. Dec 2009 A1
20100014690 Wolff et al. Jan 2010 A1
20100023638 Bowman Jan 2010 A1
20100035593 Franco et al. Feb 2010 A1
20100041443 Yokota Feb 2010 A1
20100070276 Wasserblat et al. Mar 2010 A1
20100070922 DeMaio et al. Mar 2010 A1
20100075723 Min et al. Mar 2010 A1
20100088100 Lindahl Apr 2010 A1
20100092004 Kuze Apr 2010 A1
20100161335 Whynot Jun 2010 A1
20100172516 Lastrucci Jul 2010 A1
20100178873 Lee et al. Jul 2010 A1
20100179806 Zhang et al. Jul 2010 A1
20100179874 Higgins et al. Jul 2010 A1
20100185448 Meisel Jul 2010 A1
20100211199 Naik et al. Aug 2010 A1
20100260348 Bhow et al. Oct 2010 A1
20100278351 Fozunbal et al. Nov 2010 A1
20100299639 Ramsay et al. Nov 2010 A1
20100329472 Nakadai et al. Dec 2010 A1
20100332236 Tan Dec 2010 A1
20110019833 Kuech et al. Jan 2011 A1
20110033059 Bhaskar et al. Feb 2011 A1
20110035580 Wang et al. Feb 2011 A1
20110044461 Kuech et al. Feb 2011 A1
20110044489 Saiki et al. Feb 2011 A1
20110046952 Koshinaka Feb 2011 A1
20110066634 Phillips et al. Mar 2011 A1
20110091055 Leblanc Apr 2011 A1
20110103615 Sun May 2011 A1
20110131032 Yang, II et al. Jun 2011 A1
20110145581 Malhotra et al. Jun 2011 A1
20110170707 Yamada et al. Jul 2011 A1
20110176687 Birkenes Jul 2011 A1
20110182436 Murgia et al. Jul 2011 A1
20110202924 Banguero et al. Aug 2011 A1
20110218656 Bishop et al. Sep 2011 A1
20110267985 Wilkinson et al. Nov 2011 A1
20110276333 Wang et al. Nov 2011 A1
20110280422 Neumeyer et al. Nov 2011 A1
20110285808 Feng et al. Nov 2011 A1
20110289506 Trivi et al. Nov 2011 A1
20110299706 Sakai Dec 2011 A1
20120009906 Patterson et al. Jan 2012 A1
20120020485 Msser et al. Jan 2012 A1
20120020486 Fried et al. Jan 2012 A1
20120022863 Cho et al. Jan 2012 A1
20120022864 Leman et al. Jan 2012 A1
20120027218 Every et al. Feb 2012 A1
20120076308 Kuech et al. Mar 2012 A1
20120078635 Rothkopf et al. Mar 2012 A1
20120086568 Scott et al. Apr 2012 A1
20120123268 Tanaka et al. May 2012 A1
20120128160 Kim et al. May 2012 A1
20120131125 Seidel et al. May 2012 A1
20120148075 Goh et al. Jun 2012 A1
20120162540 Ouchi et al. Jun 2012 A1
20120163603 Abe et al. Jun 2012 A1
20120177215 Bose et al. Jul 2012 A1
20120183149 Hiroe Jul 2012 A1
20120224457 Kim et al. Sep 2012 A1
20120224715 Kikkeri Sep 2012 A1
20120237047 Neal et al. Sep 2012 A1
20120245941 Cheyer Sep 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120288100 Cho Nov 2012 A1
20120297284 Matthews, III et al. Nov 2012 A1
20120308044 Vander et al. Dec 2012 A1
20120308046 Muza Dec 2012 A1
20130006453 Wang et al. Jan 2013 A1
20130024018 Chang et al. Jan 2013 A1
20130034241 Pandey et al. Feb 2013 A1
20130039527 Jensen et al. Feb 2013 A1
20130051755 Brown et al. Feb 2013 A1
20130058492 Silzle et al. Mar 2013 A1
20130066453 Seefeldt Mar 2013 A1
20130073293 Jang et al. Mar 2013 A1
20130080146 Kato et al. Mar 2013 A1
20130080167 Mozer Mar 2013 A1
20130080171 Mozer et al. Mar 2013 A1
20130124211 McDonough May 2013 A1
20130129100 Sorensen May 2013 A1
20130148821 Sorensen Jun 2013 A1
20130170647 Reilly et al. Jul 2013 A1
20130179173 Lee et al. Jul 2013 A1
20130183944 Mozer et al. Jul 2013 A1
20130191119 Sugiyama Jul 2013 A1
20130191122 Mason Jul 2013 A1
20130198298 Li et al. Aug 2013 A1
20130211826 Mannby Aug 2013 A1
20130216056 Thyssen Aug 2013 A1
20130230184 Kuech et al. Sep 2013 A1
20130238326 Kim et al. Sep 2013 A1
20130262101 Srinivasan Oct 2013 A1
20130283169 Van Wie Oct 2013 A1
20130289994 Newman et al. Oct 2013 A1
20130294611 Yoo et al. Nov 2013 A1
20130301840 Yemdji et al. Nov 2013 A1
20130315420 You Nov 2013 A1
20130317635 Bates et al. Nov 2013 A1
20130322462 Poulsen Dec 2013 A1
20130322665 Bennett et al. Dec 2013 A1
20130324031 Loureiro Dec 2013 A1
20130329896 Krishnaswamy et al. Dec 2013 A1
20130331970 Beckhardt et al. Dec 2013 A1
20130332165 Beckley et al. Dec 2013 A1
20130336499 Beckhardt et al. Dec 2013 A1
20130339028 Rosner et al. Dec 2013 A1
20130343567 Triplett et al. Dec 2013 A1
20140003611 Mohammad et al. Jan 2014 A1
20140003625 Sheen et al. Jan 2014 A1
20140003635 Mohammad et al. Jan 2014 A1
20140005813 Reimann Jan 2014 A1
20140006026 Lamb et al. Jan 2014 A1
20140006825 Shenhav Jan 2014 A1
20140019743 DeLuca Jan 2014 A1
20140034929 Hamada et al. Feb 2014 A1
20140046464 Reimann Feb 2014 A1
20140056435 Kjems et al. Feb 2014 A1
20140064476 Mani et al. Mar 2014 A1
20140064501 Olsen et al. Mar 2014 A1
20140073298 Rossmann Mar 2014 A1
20140075306 Rega Mar 2014 A1
20140075311 Boettcher et al. Mar 2014 A1
20140094151 Klappert et al. Apr 2014 A1
20140100854 Chen et al. Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140109138 Cannistraro et al. Apr 2014 A1
20140122075 Bak et al. May 2014 A1
20140126745 Dickins et al. May 2014 A1
20140136195 Abdossalami et al. May 2014 A1
20140145168 Ohsawa et al. May 2014 A1
20140146983 Kim et al. May 2014 A1
20140149118 Lee et al. May 2014 A1
20140159581 Pruemmer et al. Jun 2014 A1
20140161263 Koishida et al. Jun 2014 A1
20140163978 Basye et al. Jun 2014 A1
20140164400 Kruglick Jun 2014 A1
20140167931 Lee et al. Jun 2014 A1
20140168344 Shoemake et al. Jun 2014 A1
20140172899 Hakkani-Tur et al. Jun 2014 A1
20140172953 Blanksteen Jun 2014 A1
20140181271 Millington Jun 2014 A1
20140188476 Li et al. Jul 2014 A1
20140192986 Lee et al. Jul 2014 A1
20140195252 Gruber et al. Jul 2014 A1
20140200881 Chatlani Jul 2014 A1
20140207457 Biatov et al. Jul 2014 A1
20140214429 Pantel Jul 2014 A1
20140215332 Lee et al. Jul 2014 A1
20140219472 Huang et al. Aug 2014 A1
20140222436 Binder et al. Aug 2014 A1
20140229184 Shires Aug 2014 A1
20140229959 Beckhardt et al. Aug 2014 A1
20140244013 Reilly Aug 2014 A1
20140244269 Tokutake Aug 2014 A1
20140244712 Walters et al. Aug 2014 A1
20140249817 Hart et al. Sep 2014 A1
20140252386 Ito et al. Sep 2014 A1
20140254805 Su et al. Sep 2014 A1
20140258292 Thramann et al. Sep 2014 A1
20140259075 Chang et al. Sep 2014 A1
20140269757 Park et al. Sep 2014 A1
20140270216 Tsilfidis et al. Sep 2014 A1
20140270282 Tammi et al. Sep 2014 A1
20140274185 Luna et al. Sep 2014 A1
20140274203 Ganong, III et al. Sep 2014 A1
20140274218 Kadiwala et al. Sep 2014 A1
20140277650 Zurek et al. Sep 2014 A1
20140278343 Tran Sep 2014 A1
20140278372 Nakadai et al. Sep 2014 A1
20140278445 Eddington, Jr. Sep 2014 A1
20140278933 McMillan Sep 2014 A1
20140288686 Sant et al. Sep 2014 A1
20140291642 Watabe et al. Oct 2014 A1
20140303969 Inose et al. Oct 2014 A1
20140310002 Nitz et al. Oct 2014 A1
20140310614 Jones Oct 2014 A1
20140324203 Coburn, IV et al. Oct 2014 A1
20140328490 Mohammad et al. Nov 2014 A1
20140330896 Addala et al. Nov 2014 A1
20140334645 Yun et al. Nov 2014 A1
20140340888 Ishisone et al. Nov 2014 A1
20140357248 Tonshal et al. Dec 2014 A1
20140358535 Lee et al. Dec 2014 A1
20140363022 Dizon et al. Dec 2014 A1
20140363024 Apodaca Dec 2014 A1
20140365225 Haiut Dec 2014 A1
20140365227 Cash et al. Dec 2014 A1
20140368734 Hoffert et al. Dec 2014 A1
20140369491 Kloberdans et al. Dec 2014 A1
20140372109 Iyer et al. Dec 2014 A1
20150006176 Pogue et al. Jan 2015 A1
20150006184 Marti et al. Jan 2015 A1
20150010169 Popova et al. Jan 2015 A1
20150014680 Yamazaki et al. Jan 2015 A1
20150016642 Walsh et al. Jan 2015 A1
20150018992 Griffiths et al. Jan 2015 A1
20150019201 Schoenbach Jan 2015 A1
20150019219 Tzirkel-Hancock et al. Jan 2015 A1
20150030172 Gaensler et al. Jan 2015 A1
20150032443 Karov et al. Jan 2015 A1
20150032456 Wait Jan 2015 A1
20150036831 Klippel Feb 2015 A1
20150039303 Lesso et al. Feb 2015 A1
20150039310 Clark et al. Feb 2015 A1
20150039311 Clark et al. Feb 2015 A1
20150039317 Klein et al. Feb 2015 A1
20150058018 Georges et al. Feb 2015 A1
20150063580 Huang et al. Mar 2015 A1
20150066479 Pasupalak et al. Mar 2015 A1
20150073807 Kumar Mar 2015 A1
20150086034 Lombardi et al. Mar 2015 A1
20150088500 Conliffe Mar 2015 A1
20150091709 Reichert et al. Apr 2015 A1
20150092947 Gossain et al. Apr 2015 A1
20150104037 Lee et al. Apr 2015 A1
20150106085 Lindahl Apr 2015 A1
20150110294 Chen et al. Apr 2015 A1
20150112672 Giacobello et al. Apr 2015 A1
20150124975 Pontoppidan May 2015 A1
20150126255 Yang et al. May 2015 A1
20150128065 Torii et al. May 2015 A1
20150134456 Baldwin May 2015 A1
20150154953 Bapat et al. Jun 2015 A1
20150154976 Mutagi Jun 2015 A1
20150161990 Sharifi Jun 2015 A1
20150169279 Duga Jun 2015 A1
20150170645 Di Censo et al. Jun 2015 A1
20150170665 Gundeti et al. Jun 2015 A1
20150172843 Quan Jun 2015 A1
20150179181 Morris et al. Jun 2015 A1
20150180432 Gao et al. Jun 2015 A1
20150181318 Gautama et al. Jun 2015 A1
20150189438 Hampiholi et al. Jul 2015 A1
20150200454 Heusdens et al. Jul 2015 A1
20150200923 Triplett Jul 2015 A1
20150201271 Diethorn et al. Jul 2015 A1
20150221307 Shah et al. Aug 2015 A1
20150221678 Yamazaki et al. Aug 2015 A1
20150222563 Burns et al. Aug 2015 A1
20150222987 Angel, Jr. et al. Aug 2015 A1
20150228274 Leppanen et al. Aug 2015 A1
20150228803 Koezuka et al. Aug 2015 A1
20150237406 Ochoa et al. Aug 2015 A1
20150243287 Nakano et al. Aug 2015 A1
20150245152 Ding et al. Aug 2015 A1
20150245154 Dadu et al. Aug 2015 A1
20150249889 Iyer et al. Sep 2015 A1
20150253292 Larkin et al. Sep 2015 A1
20150253960 Lin et al. Sep 2015 A1
20150254057 Klein et al. Sep 2015 A1
20150263174 Yamazaki et al. Sep 2015 A1
20150271593 Sun et al. Sep 2015 A1
20150277846 Yen et al. Oct 2015 A1
20150280676 Holman et al. Oct 2015 A1
20150296299 Klippel et al. Oct 2015 A1
20150302856 Kim et al. Oct 2015 A1
20150319529 Klippel Nov 2015 A1
20150325267 Lee et al. Nov 2015 A1
20150331663 Beckhardt et al. Nov 2015 A1
20150334471 Innes et al. Nov 2015 A1
20150338917 Steiner et al. Nov 2015 A1
20150341406 Rockefeller et al. Nov 2015 A1
20150346845 Di Censo et al. Dec 2015 A1
20150348548 Piernot et al. Dec 2015 A1
20150348551 Gruber et al. Dec 2015 A1
20150355878 Corbin Dec 2015 A1
20150363061 De Nigris, III et al. Dec 2015 A1
20150363401 Chen et al. Dec 2015 A1
20150370531 Faaborg Dec 2015 A1
20150371657 Gao Dec 2015 A1
20150371659 Gao Dec 2015 A1
20150371664 Bar-Or et al. Dec 2015 A1
20150373100 Kravets et al. Dec 2015 A1
20150380010 Srinivasan Dec 2015 A1
20150382047 Van Os et al. Dec 2015 A1
20150382128 Ridihalgh et al. Dec 2015 A1
20160007116 Holman Jan 2016 A1
20160018873 Fernald et al. Jan 2016 A1
20160021458 Johnson et al. Jan 2016 A1
20160026428 Morganstern et al. Jan 2016 A1
20160027440 Gelfenbeyn Jan 2016 A1
20160029142 Isaac et al. Jan 2016 A1
20160034448 Tran Feb 2016 A1
20160035321 Cho et al. Feb 2016 A1
20160035337 Aggarwal et al. Feb 2016 A1
20160036962 Rand et al. Feb 2016 A1
20160042748 Jain et al. Feb 2016 A1
20160044151 Shoemaker et al. Feb 2016 A1
20160050488 Matheja et al. Feb 2016 A1
20160055847 Dahan Feb 2016 A1
20160055850 Nakadai et al. Feb 2016 A1
20160057522 Choisel et al. Feb 2016 A1
20160066087 Solbach et al. Mar 2016 A1
20160070526 Sheen Mar 2016 A1
20160072804 Chien et al. Mar 2016 A1
20160077710 Lewis et al. Mar 2016 A1
20160077794 Kim et al. Mar 2016 A1
20160086609 Yue et al. Mar 2016 A1
20160088036 Corbin et al. Mar 2016 A1
20160088392 Huttunen et al. Mar 2016 A1
20160093281 Kuo et al. Mar 2016 A1
20160093304 Kim et al. Mar 2016 A1
20160094718 Mani et al. Mar 2016 A1
20160094917 Wilk et al. Mar 2016 A1
20160098393 Hebert Apr 2016 A1
20160098992 Renard et al. Apr 2016 A1
20160103653 Jang Apr 2016 A1
20160104480 Sharifi Apr 2016 A1
20160111110 Gautama et al. Apr 2016 A1
20160125876 Schroeter et al. May 2016 A1
20160127780 Roberts et al. May 2016 A1
20160133259 Rubin et al. May 2016 A1
20160134924 Bush et al. May 2016 A1
20160134966 Fitzgerald et al. May 2016 A1
20160134982 Iyer May 2016 A1
20160140957 Duta et al. May 2016 A1
20160148612 Guo et al. May 2016 A1
20160148615 Lee et al. May 2016 A1
20160154089 Altman Jun 2016 A1
20160155442 Kannan et al. Jun 2016 A1
20160155443 Khan et al. Jun 2016 A1
20160157035 Russell et al. Jun 2016 A1
20160162469 Santos Jun 2016 A1
20160171976 Sun et al. Jun 2016 A1
20160173578 Sharma et al. Jun 2016 A1
20160173983 Berthelsen et al. Jun 2016 A1
20160180853 Vanlund et al. Jun 2016 A1
20160189716 Lindahl et al. Jun 2016 A1
20160192099 Oishi et al. Jun 2016 A1
20160196499 Khan et al. Jul 2016 A1
20160203331 Khan et al. Jul 2016 A1
20160210110 Feldman Jul 2016 A1
20160212488 Van Os et al. Jul 2016 A1
20160212538 Fullam et al. Jul 2016 A1
20160216938 Millington Jul 2016 A1
20160217789 Lee et al. Jul 2016 A1
20160225385 Hammarqvist Aug 2016 A1
20160232451 Scherzer Aug 2016 A1
20160234204 Rishi et al. Aug 2016 A1
20160234615 Lambourne Aug 2016 A1
20160239255 Chavez et al. Aug 2016 A1
20160240192 Raghuvir Aug 2016 A1
20160241976 Pearson Aug 2016 A1
20160253050 Mishra et al. Sep 2016 A1
20160260431 Newendorp et al. Sep 2016 A1
20160283841 Sainath et al. Sep 2016 A1
20160299737 Clayton et al. Oct 2016 A1
20160302018 Russell et al. Oct 2016 A1
20160314782 Klimanis Oct 2016 A1
20160316293 Klimanis Oct 2016 A1
20160322045 Hatfield et al. Nov 2016 A1
20160336519 Seo et al. Nov 2016 A1
20160343866 Koezuka et al. Nov 2016 A1
20160343949 Seo et al. Nov 2016 A1
20160343954 Seo et al. Nov 2016 A1
20160345114 Hanna et al. Nov 2016 A1
20160352915 Gautama Dec 2016 A1
20160353217 Starobin et al. Dec 2016 A1
20160353218 Starobin et al. Dec 2016 A1
20160357503 Triplett et al. Dec 2016 A1
20160364206 Keyser-Allen et al. Dec 2016 A1
20160366515 Mendes et al. Dec 2016 A1
20160372113 David et al. Dec 2016 A1
20160372688 Seo et al. Dec 2016 A1
20160373269 Okubo et al. Dec 2016 A1
20160373909 Rasmussen et al. Dec 2016 A1
20160379634 Vamamoto et al. Dec 2016 A1
20170003931 Dvortsov et al. Jan 2017 A1
20170012207 Seo et al. Jan 2017 A1
20170012232 Kataishi et al. Jan 2017 A1
20170019732 Mendes et al. Jan 2017 A1
20170025124 Mixter et al. Jan 2017 A1
20170025615 Seo et al. Jan 2017 A1
20170025630 Seo et al. Jan 2017 A1
20170026769 Patel Jan 2017 A1
20170032244 Kurata Feb 2017 A1
20170034263 Archambault et al. Feb 2017 A1
20170039025 Kielak Feb 2017 A1
20170040002 Basson et al. Feb 2017 A1
20170040018 Tormey Feb 2017 A1
20170041724 Master et al. Feb 2017 A1
20170053648 Chi Feb 2017 A1
20170053650 Ogawa Feb 2017 A1
20170060526 Barton et al. Mar 2017 A1
20170062734 Suzuki et al. Mar 2017 A1
20170070478 Park et al. Mar 2017 A1
20170076212 Shams et al. Mar 2017 A1
20170076720 Gopalan et al. Mar 2017 A1
20170076726 Bae Mar 2017 A1
20170078824 Heo Mar 2017 A1
20170083285 Meyers et al. Mar 2017 A1
20170083606 Mohan Mar 2017 A1
20170084277 Sharifi Mar 2017 A1
20170084278 Jung Mar 2017 A1
20170084292 Yoo Mar 2017 A1
20170084295 Tsiartas et al. Mar 2017 A1
20170090864 Jorgovanovic Mar 2017 A1
20170092278 Evermann et al. Mar 2017 A1
20170092297 Sainath et al. Mar 2017 A1
20170092299 Matsuo Mar 2017 A1
20170092889 Seo et al. Mar 2017 A1
20170092890 Seo et al. Mar 2017 A1
20170094215 Western Mar 2017 A1
20170103748 Weissberg et al. Apr 2017 A1
20170103754 Higbie et al. Apr 2017 A1
20170103755 Jeon et al. Apr 2017 A1
20170110124 Boesen et al. Apr 2017 A1
20170110130 Sharifi et al. Apr 2017 A1
20170110144 Sharifi et al. Apr 2017 A1
20170117497 Seo et al. Apr 2017 A1
20170123251 Nakada et al. May 2017 A1
20170125037 Shin May 2017 A1
20170125456 Kasahara May 2017 A1
20170133007 Drewes May 2017 A1
20170133011 Chen et al. May 2017 A1
20170134872 Silva et al. May 2017 A1
20170139720 Stein May 2017 A1
20170140449 Kannan May 2017 A1
20170140748 Roberts et al. May 2017 A1
20170140750 Wang et al. May 2017 A1
20170140757 Penilla et al. May 2017 A1
20170140759 Kumar et al. May 2017 A1
20170151930 Boesen Jun 2017 A1
20170164139 Deselaers et al. Jun 2017 A1
20170177585 Rodger et al. Jun 2017 A1
20170178662 Ayrapetian et al. Jun 2017 A1
20170180561 Kadiwala et al. Jun 2017 A1
20170186425 Dawes et al. Jun 2017 A1
20170186427 Wang et al. Jun 2017 A1
20170188150 Brunet et al. Jun 2017 A1
20170188437 Banta Jun 2017 A1
20170193999 Aleksic et al. Jul 2017 A1
20170206896 Ko et al. Jul 2017 A1
20170206900 Lee et al. Jul 2017 A1
20170214996 Yeo Jul 2017 A1
20170236512 Williams et al. Aug 2017 A1
20170236515 Pinsky et al. Aug 2017 A1
20170242649 Jarvis et al. Aug 2017 A1
20170242651 Lang et al. Aug 2017 A1
20170242653 Lang et al. Aug 2017 A1
20170242656 Plagge et al. Aug 2017 A1
20170242657 Jarvis et al. Aug 2017 A1
20170243576 Millington et al. Aug 2017 A1
20170243587 Plagge et al. Aug 2017 A1
20170245076 Kusano et al. Aug 2017 A1
20170255612 Sarikaya et al. Sep 2017 A1
20170257686 Gautama et al. Sep 2017 A1
20170269900 Triplett Sep 2017 A1
20170269975 Wood et al. Sep 2017 A1
20170270919 Parthasarathi et al. Sep 2017 A1
20170278512 Pandya et al. Sep 2017 A1
20170287485 Civelli et al. Oct 2017 A1
20170300289 Gai Oct 2017 A1
20170300990 Tanaka et al. Oct 2017 A1
20170329397 Lin Nov 2017 A1
20170330565 Daley et al. Nov 2017 A1
20170331869 Bendahan et al. Nov 2017 A1
20170332168 Moghimi et al. Nov 2017 A1
20170346872 Naik et al. Nov 2017 A1
20170352357 Fink Dec 2017 A1
20170353789 Kim et al. Dec 2017 A1
20170357390 Alonso Ruiz et al. Dec 2017 A1
20170357475 Lee et al. Dec 2017 A1
20170357478 Piersol et al. Dec 2017 A1
20170364371 Nandi et al. Dec 2017 A1
20170365247 Ushakov Dec 2017 A1
20170366393 Shaker et al. Dec 2017 A1
20170374454 Bernardini et al. Dec 2017 A1
20170374552 Xia et al. Dec 2017 A1
20180012077 Laska et al. Jan 2018 A1
20180018964 Reilly et al. Jan 2018 A1
20180018965 Daley Jan 2018 A1
20180018967 Lang et al. Jan 2018 A1
20180020306 Sheen Jan 2018 A1
20180025733 Qian et al. Jan 2018 A1
20180033428 Kim et al. Feb 2018 A1
20180033429 Makke et al. Feb 2018 A1
20180033438 Toma et al. Feb 2018 A1
20180040324 Wilberding Feb 2018 A1
20180047394 Tian et al. Feb 2018 A1
20180053504 Wang et al. Feb 2018 A1
20180054506 Hart et al. Feb 2018 A1
20180061396 Srinivasan et al. Mar 2018 A1
20180061402 Devaraj et al. Mar 2018 A1
20180061404 Devaraj et al. Mar 2018 A1
20180061409 Valentine et al. Mar 2018 A1
20180061419 Melendo Casado et al. Mar 2018 A1
20180061420 Patil et al. Mar 2018 A1
20180062871 Jones et al. Mar 2018 A1
20180084367 Greff et al. Mar 2018 A1
20180088900 Glaser et al. Mar 2018 A1
20180091898 Yoon et al. Mar 2018 A1
20180091913 Hartung et al. Mar 2018 A1
20180096678 Zhou et al. Apr 2018 A1
20180096683 James et al. Apr 2018 A1
20180096696 Mixter Apr 2018 A1
20180107446 Wilberding et al. Apr 2018 A1
20180108351 Beckhardt et al. Apr 2018 A1
20180122372 Wanderlust May 2018 A1
20180122378 Mixter et al. May 2018 A1
20180130469 Gruenstein et al. May 2018 A1
20180132217 Stirling-Gallacher May 2018 A1
20180132298 Birnam et al. May 2018 A1
20180137857 Zhou et al. May 2018 A1
20180137861 Ogawa May 2018 A1
20180139512 Moran et al. May 2018 A1
20180152557 White et al. May 2018 A1
20180158454 Campbell et al. Jun 2018 A1
20180165055 Yu et al. Jun 2018 A1
20180167981 Jonna et al. Jun 2018 A1
20180174597 Lee et al. Jun 2018 A1
20180182383 Kim et al. Jun 2018 A1
20180182390 Hughes et al. Jun 2018 A1
20180182397 Carbune et al. Jun 2018 A1
20180182410 Kaskari et al. Jun 2018 A1
20180188948 Ouyang et al. Jul 2018 A1
20180190274 Kirazci et al. Jul 2018 A1
20180190285 Heckman et al. Jul 2018 A1
20180196776 Hershko et al. Jul 2018 A1
20180197533 Lyon et al. Jul 2018 A1
20180199130 Jaffe et al. Jul 2018 A1
20180199146 Sheen Jul 2018 A1
20180204569 Nadkar et al. Jul 2018 A1
20180205963 Matei et al. Jul 2018 A1
20180210698 Park et al. Jul 2018 A1
20180211665 Park et al. Jul 2018 A1
20180218747 Moghimi et al. Aug 2018 A1
20180219976 Decenzo et al. Aug 2018 A1
20180225933 Park et al. Aug 2018 A1
20180228006 Baker et al. Aug 2018 A1
20180233130 Kaskari et al. Aug 2018 A1
20180233136 Torok et al. Aug 2018 A1
20180233137 Torok et al. Aug 2018 A1
20180233139 Finkelstein et al. Aug 2018 A1
20180233141 Solomon et al. Aug 2018 A1
20180233142 Koishida et al. Aug 2018 A1
20180233150 Gruenstein et al. Aug 2018 A1
20180234765 Torok et al. Aug 2018 A1
20180260680 Finkelstein et al. Sep 2018 A1
20180261213 Arik et al. Sep 2018 A1
20180262793 Lau et al. Sep 2018 A1
20180262831 Matheja et al. Sep 2018 A1
20180270565 Ganeshkumar Sep 2018 A1
20180270573 Lang et al. Sep 2018 A1
20180277107 Kim Sep 2018 A1
20180277113 Hartung et al. Sep 2018 A1
20180277119 Baba et al. Sep 2018 A1
20180277133 Deetz et al. Sep 2018 A1
20180286394 Li et al. Oct 2018 A1
20180286414 Ravindran et al. Oct 2018 A1
20180293221 Finkelstein et al. Oct 2018 A1
20180293484 Wang et al. Oct 2018 A1
20180301147 Kim Oct 2018 A1
20180308470 Park et al. Oct 2018 A1
20180314552 Kim et al. Nov 2018 A1
20180322891 Van Den Oord et al. Nov 2018 A1
20180324756 Ryu et al. Nov 2018 A1
20180330727 Tulli Nov 2018 A1
20180335903 Coffman et al. Nov 2018 A1
20180336274 Choudhury et al. Nov 2018 A1
20180336892 Kim et al. Nov 2018 A1
20180349093 McCarty et al. Dec 2018 A1
20180350356 Garcia Dec 2018 A1
20180350379 Wung et al. Dec 2018 A1
20180352334 Family et al. Dec 2018 A1
20180356962 Corbin Dec 2018 A1
20180358009 Daley et al. Dec 2018 A1
20180358019 Mont-Reynaud Dec 2018 A1
20180365567 Kolavennu Dec 2018 A1
20180367944 Heo et al. Dec 2018 A1
20190012141 Piersol et al. Jan 2019 A1
20190013019 Lawrence Jan 2019 A1
20190014592 Hampel et al. Jan 2019 A1
20190019112 Gelfenbeyn et al. Jan 2019 A1
20190033446 Bultan et al. Jan 2019 A1
20190035404 Gabel et al. Jan 2019 A1
20190037173 Lee Jan 2019 A1
20190042187 Truong et al. Feb 2019 A1
20190043488 Booklet et al. Feb 2019 A1
20190043492 Lang Feb 2019 A1
20190051298 Lee et al. Feb 2019 A1
20190066672 Wood et al. Feb 2019 A1
20190066687 Wood et al. Feb 2019 A1
20190066710 Bryan et al. Feb 2019 A1
20190073999 Prémont et al. Mar 2019 A1
20190074025 Lashkari et al. Mar 2019 A1
20190079724 Feuz et al. Mar 2019 A1
20190081507 Ide Mar 2019 A1
20190081810 Jung Mar 2019 A1
20190082255 Tajiri et al. Mar 2019 A1
20190087455 He et al. Mar 2019 A1
20190088261 Lang et al. Mar 2019 A1
20190090056 Rexach et al. Mar 2019 A1
20190096408 Li et al. Mar 2019 A1
20190098400 Buoni et al. Mar 2019 A1
20190104119 Giorgi et al. Apr 2019 A1
20190104373 Wodrich et al. Apr 2019 A1
20190108839 Reilly et al. Apr 2019 A1
20190115011 Khellah et al. Apr 2019 A1
20190122662 Chang et al. Apr 2019 A1
20190130906 Kobayashi et al. May 2019 A1
20190156847 Bryan et al. May 2019 A1
20190163153 Price et al. May 2019 A1
20190172452 Smith et al. Jun 2019 A1
20190172467 Kim et al. Jun 2019 A1
20190172476 Wung et al. Jun 2019 A1
20190173687 Mackay et al. Jun 2019 A1
20190179607 Thangarathnam et al. Jun 2019 A1
20190179611 Wojogbe et al. Jun 2019 A1
20190182072 Roe et al. Jun 2019 A1
20190186937 Sharifi et al. Jun 2019 A1
20190188328 Oyenan et al. Jun 2019 A1
20190189117 Kumar Jun 2019 A1
20190206391 Busch et al. Jul 2019 A1
20190206405 Gillespie et al. Jul 2019 A1
20190206412 Li et al. Jul 2019 A1
20190219976 Giorgi et al. Jul 2019 A1
20190220246 Orr et al. Jul 2019 A1
20190221206 Chen et al. Jul 2019 A1
20190237067 Friedman et al. Aug 2019 A1
20190237089 Shin Aug 2019 A1
20190239008 Lambourne Aug 2019 A1
20190239009 Lambourne Aug 2019 A1
20190243603 Keyser-Allen et al. Aug 2019 A1
20190243606 Jayakumar et al. Aug 2019 A1
20190244608 Choi et al. Aug 2019 A1
20190251960 Maker et al. Aug 2019 A1
20190281397 Lambourne Sep 2019 A1
20190287536 Sharifi et al. Sep 2019 A1
20190287546 Ganeshkumar Sep 2019 A1
20190288970 Siddiq Sep 2019 A1
20190289367 Siddiq Sep 2019 A1
20190295542 Huang et al. Sep 2019 A1
20190295555 Wilberding Sep 2019 A1
20190295556 Wilberding Sep 2019 A1
20190295563 Kamdar et al. Sep 2019 A1
20190297388 Panchaksharaiah et al. Sep 2019 A1
20190304443 Bhagwan Oct 2019 A1
20190311710 Eraslan et al. Oct 2019 A1
20190311712 Firik et al. Oct 2019 A1
20190311715 Pfeffinger et al. Oct 2019 A1
20190311718 Huber et al. Oct 2019 A1
20190311720 Pasko Oct 2019 A1
20190311722 Caldwell Oct 2019 A1
20190317606 Jain et al. Oct 2019 A1
20190318729 Chao et al. Oct 2019 A1
20190325870 Mitic Oct 2019 A1
20190325888 Geng Oct 2019 A1
20190341037 Bromand et al. Nov 2019 A1
20190341038 Bromand et al. Nov 2019 A1
20190342962 Chang et al. Nov 2019 A1
20190347063 Liu et al. Nov 2019 A1
20190348044 Chun et al. Nov 2019 A1
20190362714 Mori et al. Nov 2019 A1
20190364375 Soto et al. Nov 2019 A1
20190364422 Zhuo Nov 2019 A1
20190371310 Fox et al. Dec 2019 A1
20190371324 Powell et al. Dec 2019 A1
20190371342 Tukka et al. Dec 2019 A1
20190392832 Mitsui et al. Dec 2019 A1
20200007987 Woo et al. Jan 2020 A1
20200034492 Verbeke et al. Jan 2020 A1
20200043489 Bradley et al. Feb 2020 A1
20200051554 Kim et al. Feb 2020 A1
20200074990 Kim et al. Mar 2020 A1
20200090647 Kurtz Mar 2020 A1
20200092687 Devaraj et al. Mar 2020 A1
20200098354 Lin et al. Mar 2020 A1
20200098379 Tai et al. Mar 2020 A1
20200105245 Gupta et al. Apr 2020 A1
20200105256 Fainberg et al. Apr 2020 A1
20200105264 Jang et al. Apr 2020 A1
20200110571 Liu et al. Apr 2020 A1
20200125162 D'Amato et al. Apr 2020 A1
20200135194 Jeong Apr 2020 A1
20200135224 Bromand et al. Apr 2020 A1
20200152206 Shen et al. May 2020 A1
20200175989 Lockhart et al. Jun 2020 A1
20200184964 Myers et al. Jun 2020 A1
20200184980 Wilberding Jun 2020 A1
20200193973 Tolomei et al. Jun 2020 A1
20200211539 Lee Jul 2020 A1
20200211550 Pan et al. Jul 2020 A1
20200211556 Mixter et al. Jul 2020 A1
20200213729 Soto Jul 2020 A1
20200216089 Garcia et al. Jul 2020 A1
20200234709 Kunitake Jul 2020 A1
20200244650 Burris et al. Jul 2020 A1
20200251107 Wang et al. Aug 2020 A1
20200265838 Lee et al. Aug 2020 A1
20200310751 Anand et al. Oct 2020 A1
20200336846 Rohde et al. Oct 2020 A1
20200342869 Lee et al. Oct 2020 A1
20200366477 Brown et al. Nov 2020 A1
20200395006 Smith et al. Dec 2020 A1
20200395010 Smith et al. Dec 2020 A1
20200395013 Smith et al. Dec 2020 A1
20200409652 Wilberding et al. Dec 2020 A1
20200409926 Srinivasan et al. Dec 2020 A1
20210035561 D'Amato et al. Feb 2021 A1
20210035572 D'Amato et al. Feb 2021 A1
20210067867 Kagoshima Mar 2021 A1
20210118429 Shan Apr 2021 A1
20210118439 Schillmoeller et al. Apr 2021 A1
20210166680 Jung et al. Jun 2021 A1
20210183366 Reinspach et al. Jun 2021 A1
20210280185 Tan et al. Sep 2021 A1
20210295849 Van Der Ven et al. Sep 2021 A1
20220036882 Ahn et al. Feb 2022 A1
20220050585 Fettes et al. Feb 2022 A1
20220083136 DeLeeuw Mar 2022 A1
20220301561 Robert Jose et al. Sep 2022 A1
Foreign Referenced Citations (157)
Number Date Country
2017100486 Jun 2017 AU
2017100581 Jun 2017 AU
1323435 Nov 2001 CN
1748250 Mar 2006 CN
1781291 May 2006 CN
101310558 Nov 2008 CN
101427154 May 2009 CN
101480039 Jul 2009 CN
101661753 Mar 2010 CN
101686282 Mar 2010 CN
101907983 Dec 2010 CN
102123188 Jul 2011 CN
102256098 Nov 2011 CN
102567468 Jul 2012 CN
102999161 Mar 2013 CN
103052001 Apr 2013 CN
103181192 Jun 2013 CN
103210663 Jul 2013 CN
103546616 Jan 2014 CN
103811007 May 2014 CN
104010251 Aug 2014 CN
104035743 Sep 2014 CN
104053088 Sep 2014 CN
104092936 Oct 2014 CN
104104769 Oct 2014 CN
104115224 Oct 2014 CN
104282305 Jan 2015 CN
104520927 Apr 2015 CN
104538030 Apr 2015 CN
104572009 Apr 2015 CN
104575504 Apr 2015 CN
104635539 May 2015 CN
104865550 Aug 2015 CN
104885406 Sep 2015 CN
104885438 Sep 2015 CN
105162886 Dec 2015 CN
105187907 Dec 2015 CN
105204357 Dec 2015 CN
105206281 Dec 2015 CN
105284076 Jan 2016 CN
105284168 Jan 2016 CN
105389099 Mar 2016 CN
105427861 Mar 2016 CN
105453179 Mar 2016 CN
105472191 Apr 2016 CN
105493179 Apr 2016 CN
105493442 Apr 2016 CN
105632486 Jun 2016 CN
105679318 Jun 2016 CN
106028223 Oct 2016 CN
106030699 Oct 2016 CN
106375902 Feb 2017 CN
106531165 Mar 2017 CN
106708403 May 2017 CN
106796784 May 2017 CN
106910500 Jun 2017 CN
107004410 Aug 2017 CN
107122158 Sep 2017 CN
107465974 Dec 2017 CN
107644313 Jan 2018 CN
107767863 Mar 2018 CN
107832837 Mar 2018 CN
107919116 Apr 2018 CN
107919123 Apr 2018 CN
108028047 May 2018 CN
108028048 May 2018 CN
108198548 Jun 2018 CN
109712626 May 2019 CN
1349146 Oct 2003 EP
1389853 Feb 2004 EP
2051542 Apr 2009 EP
2166737 Mar 2010 EP
2683147 Jan 2014 EP
2986034 Feb 2016 EP
3128767 Feb 2017 EP
3133595 Feb 2017 EP
2351021 Sep 2017 EP
3270377 Jan 2018 EP
3285502 Feb 2018 EP
2501367 Oct 2013 GB
S63301998 Dec 1988 JP
H0883091 Mar 1996 JP
2001236093 Aug 2001 JP
2003223188 Aug 2003 JP
2004109361 Apr 2004 JP
2004163590 Jun 2004 JP
2004347943 Dec 2004 JP
2004354721 Dec 2004 JP
2005242134 Sep 2005 JP
2005250867 Sep 2005 JP
2005284492 Oct 2005 JP
2006092482 Apr 2006 JP
2007013400 Jan 2007 JP
2007142595 Jun 2007 JP
2007235875 Sep 2007 JP
2008079256 Apr 2008 JP
2008158868 Jul 2008 JP
2008217444 Sep 2008 JP
2010141748 Jun 2010 JP
2013037148 Feb 2013 JP
2014071138 Apr 2014 JP
2014510481 Apr 2014 JP
2014137590 Jul 2014 JP
2015161551 Sep 2015 JP
2015527768 Sep 2015 JP
2016009193 Jan 2016 JP
2016095383 May 2016 JP
2017072857 Apr 2017 JP
2017129860 Jul 2017 JP
2017227912 Dec 2017 JP
2018055259 Apr 2018 JP
20100036351 Apr 2010 KR
100966415 Jun 2010 KR
20100111071 Oct 2010 KR
20130050987 May 2013 KR
20140005410 Jan 2014 KR
20140035310 Mar 2014 KR
20140054643 May 2014 KR
20140111859 Sep 2014 KR
20140112900 Sep 2014 KR
201629950 Aug 2016 TW
200153994 Jul 2001 WO
03054854 Jul 2003 WO
2003093950 Nov 2003 WO
2008048599 Apr 2008 WO
2008096414 Aug 2008 WO
2012166386 Dec 2012 WO
2013184792 Dec 2013 WO
2014064531 May 2014 WO
2014159581 Oct 2014 WO
2015017303 Feb 2015 WO
2015037396 Mar 2015 WO
2015105788 Jul 2015 WO
2015131024 Sep 2015 WO
2015133022 Sep 2015 WO
2015178950 Nov 2015 WO
2015195216 Dec 2015 WO
2016003509 Jan 2016 WO
2016014142 Jan 2016 WO
2016014686 Jan 2016 WO
2016022926 Feb 2016 WO
2016033364 Mar 2016 WO
2016057268 Apr 2016 WO
2016085775 Jun 2016 WO
2016136062 Sep 2016 WO
2016165067 Oct 2016 WO
2016171956 Oct 2016 WO
2016200593 Dec 2016 WO
2017039632 Mar 2017 WO
2017058654 Apr 2017 WO
2017138934 Aug 2017 WO
2017147075 Aug 2017 WO
2017147936 Sep 2017 WO
2018027142 Feb 2018 WO
2018067404 Apr 2018 WO
2018140777 Aug 2018 WO
2019005772 Jan 2019 WO
Non-Patent Literature Citations (689)
Entry
US 9,299,346 B1, 03/2016, Hart et al. (withdrawn)
Chung et al. Empirical Evaluation of Gated Recurrent Neural Network on Sequence Modeling. Dec. 11, 2014, 9 pages.
Cipriani,. The complete list of OK, Google commands—CNE 1. Jul. 1, 2016, 5 pages, [online], [retrieved on Jan. 15, 2020]. Retrieved from the Internet: (URL:https://web.archive.org/web/20160803230926/https://www.cnet.com/how-to/complete-list-of-ok-google-commands/).
Corrected Notice of Allowability dated Mar. 8, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 6 pages.
Couke et al. Efficient Keyword Spotting using Dilated Convolutions and Gating, arXiv:1811.07684v2, Feb. 18, 2019, 5 pages.
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages.
Dell, Inc. “Start Here,” Jun. 2000, 2 pages.
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages.
European Patent Office, European EPC Article 94.3 dated Mar. 11, 2022, issued in connection with European Application No. 19731415.6, 7 pages.
European Patent Office, European EPC Article 94.3 dated Nov. 11, 2021, issued in connection with European Application No. 19784172.9, 5 pages.
European Patent Office, European EPC Article 94.3 dated Feb. 23, 2021, issued in connection with European Application No. 17200837.7, 8 pages.
European Patent Office, European EPC Article 94.3 dated Feb. 26, 2021, issued in connection with European Application No. 18789515.6, 8 pages.
European Patent Office, European EPC Article 94.3 dated Mar. 3, 2022, issued in connection with European Application No. 19740292.8, 10 pages.
European Patent Office, European Extended Search Report dated Oct. 7, 2021, issued in connection with European Application No. 21193616.6, 9 pages.
European Patent Office, European Extended Search Report dated Nov. 25, 2020, issued in connection with European Application No. 20185599.6, 9 pages.
European Patent Office, European Extended Search Report dated Feb. 3, 2020, issued in connection with European Application No. 19197116.7, 9 pages.
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 177570702, 8 pages.
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 17757075.1, 9 pages.
European Patent Office, European Extended Search Report dated Oct. 30, 2017, issued in connection with EP Application No. 17174435.2, 11 pages.
European Patent Office, European Extended Search Report dated Aug. 6, 2020, issued in connection with European Application No. 20166332.5, 10 pages.
European Patent Office, European Office Action dated Jul. 1, 2020, issued in connection with European Application No. 17757075.1, 7 pages.
European Patent Office, European Office Action dated Jan. 14, 2020, issued in connection with European Application No. 17757070.2, 7 pages.
European Patent Office, European Office Action dated Jan. 21, 2021, issued in connection with European Application No. 17792272.1, 7 pages.
European Patent Office, European Office Action dated Jan. 22, 2019, issued in connection with European Application No. 17174435.2, 9 pages.
European Patent Office, European Office Action dated Sep. 23, 2020, issued in connection with European Application No. 18788976.1, 7 pages.
European Patent Office, European Office Action dated Oct. 26, 2020, issued in connection with European Application No. 18760101.8, 4 pages.
European Patent Office, European Office Action dated Aug. 30, 2019, issued in connection with European Application No. 17781608.9, 6 pages.
European Patent Office, European Office Action dated Sep. 9, 2020, issued in connection with European Application No. 18792656.3, 10 pages.
European Patent Office, European Search Report dated Mar. 1, 2022, issued in connection with European Application No. 21180778.9, 9 pages.
European Patent Office, Examination Report dated Jul. 15, 2021, issued in connection with European Patent Application No. 19729968.8, 7 pages.
European Patent Office, Extended Search Report dated Aug. 13, 2021, issued in connection with European Patent Application No. 21164130.3, 11 pages.
European Patent Office, Extended Search Report dated May 16, 2018, issued in connection with European Patent Application No. 17200837.7, 11 pages.
European Patent Office, Extended Search Report dated Jul. 25, 2019, issued in connection with European Patent Application No. 18306501.0, 14 pages.
European Patent Office, Extended Search Report dated May 29, 2020, issued in connection with European Patent Application No. 19209389.6, 8 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Dec. 20, 2019, issued in connection with European Application No. 17174435.2, 13 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Feb. 4, 2022, issued in connection with European Application No. 17757075.1, 10 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Dec. 9, 2021, issued in connection with European Application No. 17200837.7, 10 pages.
Fadilpasic,“Cortana can now be the default PDA on your Android”, IT Pro Portal: Accessed via WayBack Machine; http://web.archive.org/web/20171129124915/https://www.itproportal.com/2015/08/11/cortana-can-now-be- . . . , Aug. 11, 2015, 6 pages.
Final Office Action dated Jul. 23, 2021, issued in connection with U.S. Appl. No. 16/439,046, filed Jun. 12, 2019, 12 pages.
Final Office Action dated Oct. 6, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 25 pages.
Final Office Action dated Feb. 10, 2021, issued in connection with U.S. Appl. No. 16/219,702, filed Dec. 13, 2018, 9 pages.
Final Office Action dated Feb. 10, 2021, issued in connection with U.S. Appl. No. 16/402,617, filed May 3, 2019, 13 pages.
Final Office Action dated Nov. 10, 2020, issued in connection with U.S. Appl. No. 16/600,644, filed Oct. 14, 2019, 19 pages.
Final Office Action dated Apr. 11, 2019, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 17 pages.
Final Office Action dated Aug. 11, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 7 pages.
Final Office Action dated Dec. 11, 2019, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 10 pages.
Final Office Action dated Sep. 11, 2019, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 13 pages.
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 18 pages.
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 20 pages.
Final Office Action dated May 13, 2020, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 20 pages.
Final Office Action dated Jul. 15, 2021, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 22 pages.
Notice of Allowance dated Mar. 9, 2018, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 8 pages.
Oord et al. WaveNet: A Generative Model for Raw Audio. Arxiv.org, Cornell University Library, Sep. 12, 2016, 15 pages.
Optimizing Siri on HomePod in Far-Field Settings. Audio Software Engineering and Siri Speech Team, Machine Learning Journal vol. 1, Issue 12. https://machinelearning.apple.com/2018/12/03/optimizing-siri-on-homepod-in-far-field-settings.html. Dec. 2018, 18 pages.
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages.
Parada et al. Contextual Information Improves OOV Detection in Speech. Proceedings of the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Jun. 2, 2010, 9 pages.
Pre-Appeal Brief Decision mailed on Jan. 18, 2022, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 2 pages.
Pre-Appeal Brief Decision mailed on Jun. 2, 2021, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 2 pages.
Preinterview First Office Action dated Aug. 5, 2019, issued in connection with U.S. Appl. No. 16/434,426, filed Jun. 7, 2019, 4 pages.
Preinterview First Office Action dated Mar. 25, 2020, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 6 pages.
Preinterview First Office Action dated Sep. 30, 2019, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 4 pages.
Preinterview First Office Action dated May 7, 2020, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 5 pages.
Preinterview First Office Action dated Jan. 8, 2021, issued in connection with U.S. Appl. No. 16/798,967, filed Feb. 24, 2020, 4 pages.
Presentations at WinHEC 2000, May 2000, 138 pages.
Renato De Mori. Spoken Language Understanding: A Survey. Automatic Speech Recognition & Understanding, 2007. IEEE, Dec. 1, 2007, 56 pages.
Restriction Requirement dated Aug. 14, 2019, issued in connection with U.S. Appl. No. 16/214,711, filed Dec. 10, 2018, 5 pages.
Restriction Requirement dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 8 pages.
Rottondi et al., “An Overview on Networked Music Performance Technologies,” IEEE Access, vol. 4, pp. 8823-8843, 2016, DOI: 10.1109/ACCESS.2016.2628440, 21 pages.
Rybakov et al. Streaming keyword spotting on mobile devices, arXiv:2005.06720v2, Jul. 29, 2020, 5 pages.
Shan et al. Attention-based End-to-End Models for Small-Footprint Keyword Spotting, arXiv:1803.10916v1, Mar. 29, 2018, 5 pages.
Snips: How to Snips—Assistant creation & Installation, Jun. 26, 2017, 6 pages.
Souden et al. “An Integrated Solution for Online Multichannel Noise Tracking and Reduction.” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19. No. 7, Sep. 7, 2011, 11 pages.
Souden et al. “Gaussian Model-Based Multichannel Speech Presence Probability” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 5, Jul. 5, 2010, 6pages.
Souden et al. “On Optimal Frequency-Domain Multichannel Linear Filtering for Noise Reduction.” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 2, Feb. 2010, 17pages.
Speidel, Hans. Chatbot Training: How to use training data to provide fully automated customer support. Retrieved from the Internet: URL: https://www.crowdguru.de/wp-content/uploads/Case-Study-Chatbox-training-How-to-use-training-data-to-provide-fully-automated-customer-support.pdf. Jun. 29, 2017, 4 pages.
Stemmer et al. Speech Recognition and Understanding on Hardware-Accelerated DSP. Proceedings of Interspeech 2017: Show & Tell Contribution, Aug. 20, 2017, 2 pages.
Steven J. Nowlan and Geoffrey E. Hinton “Simplifying Neural Networks by Soft Weight-Sharing” Neural Computation 4, 1992, 21 pages.
Tsiami et al. “Experiments in acoustic source localization using sparse arrays in adverse indoors environments”, 2014 22nd European Signal Processing Conference, Sep. 1, 2014, 5 pages.
Tsung-Hsien Wen et al.: “A Network-based End-to-End Trainable Task-oriented Dialogue System”, CORR (ARXIV), vol. 1604.04562v1, Apr. 15, 2016 (Apr. 15, 2016), pp. 1-11.
Tsung-Hsien Wen et al.: “A Network-based End-to-End Trainable Task-oriented Dialogue System”, CORR ARXIV, vol. 1604.04562v1, Apr. 15, 2016, pp. 1-11, XP055396370, Stroudsburg, PA, USA.
Tweet: “How to start using Google app voice commands to make your life easier Share This Story shop ©Bullet”, Jan. 21, 2016, https://bgr.com/2016/01/21/best-ok-google-voice-commands/, 3 page.
Ullrich et al. “Soft Weight-Sharing for Neural Network Compression.” ICLR 2017, 16 pages.
United States Patent and Trademark Office, U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages.
United States Patent and Trademark Office, U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages.
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54.
Vacher at al. “Recognition of voice commands by multisource ASR and noise cancellation in a smart home environment” Signal Processing Conference 2012 Proceedings of the 20th European, IEEE, Aug. 27, 2012, 5 pages.
Vacher et al. “Speech Recognition in a Smart Home: Some Experiments for Telemonitoring,” 2009 Proceedings of the 5th Conference on Speech Technology and Human-Computer Dialogoue, Constant, 2009, 10 pages.
“S Voice or Google Now?”; https://web.archive.org/web/20160807040123/lowdown.carphonewarehouse.com/news/s-voice-or-google-now/ . . . , Apr. 28, 2015; 4 pages.
Wen et al. A Network-based End-to-End Trainable Task-oriented Dialogue System, CORR (ARXIV), Apr. 15, 2016, 11 pages.
Wu et al. End-to-End Recurrent Entity Network for Entity-Value Independent Goal-Oriented Dialog Learning. DSTC6—Dialog System Technology Challenges, Dec. 10, 2017, 5 pages.
Wung et al. “Robust Acoustic Echo Cancellation in the Short-Time Fourier Transform Domain Using Adaptive Crossband Filters” IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP, 2014, p. 1300-1304.
Xiao et al. “A Learning-Based Approach to Direction of Arrival Estimation in Noisy and Reverberant Environments,” 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19, 2015, 5 pages.
Xiaoguang et al. “Robust Small-Footprint Keyword Spotting Using Sequence-To-Sequence Model with Connectionist Temporal Classifier”, 2019 IEEE, Sep. 28, 2019, 5 pages.
Xu et al. An End-to-end Approach for Handling Unknown Slot Values in Dialogue State Tracking. ARXIV.org, Cornell University Library, May 3, 2018, 10 pages.
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages.
Yamaha DME Designer 3.0 Owner's Manual; Copyright 2008, 501 pages.
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages.
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages.
Baykovskiy, Dmitry. Survey of the Speech Recognition Techniques for Mobile Devices. Proceedings of Specom 2006, Jun. 25, 2006, 6 pages.
Final Office Action dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages.
Final Office Action dated Jun. 15, 2021, issued in connection with U.S. Appl. No. 16/819,755, filed Mar. 16, 2020, 12 pages.
Final Office Action dated Oct. 15, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages.
Final Office Action dated Oct. 15, 2020, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 9 pages.
Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 10 pages.
Final Office Action dated Dec. 17, 2021, issued in connection with U.S. Appl. No. 16/813,643, filed Mar. 9, 2020, 12 pages.
Final Office Action dated May 18, 2020, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 31, 2018, 16 pages.
Final Office Action dated Feb. 21, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 12 pages.
Final Office Action dated May 21, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 21 pages.
Final Office Action dated Feb. 22, 2021, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 20 pages.
Final Office Action dated Feb. 22, 2021, issued in connection with U.S. Appl. No. 16/213,570, filed an Dec. 7, 2018, 12 pages.
Final Office Action dated Jun. 22, 2020, issued in connection with U.S. Appl. No. 16/179,779, filed Nov. 2, 2018, 16 pages.
Final Office Action dated Mar. 23, 2020, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages.
Final Office Action dated Feb. 24, 2020, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 20 pages.
Final Office Action dated Apr. 26, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 20 pages.
Final Office Action dated Nov. 29, 2021, issued in connection with U.S. Appl. No. 17/236,559, filed Apr. 21, 2021, 11 pages.
Final Office Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 6 pages.
Final Office Action dated Jun. 4, 2021, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 38 pages.
Final Office Action dated Oct. 4, 2021, issued in connection with U.S. Appl. No. 16/806,747, filed an Mar. 2, 2020, 17 pages.
Final Office Action dated Feb. 5, 2019, issued in connection with U.S. Appl. No. 15/438,749, filed an Feb. 21, 2017, 17 pages.
Final Office Action dated Feb. 7, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 8 pages.
Final Office Action dated Jun. 8, 2021, issued in connection with U.S. Appl. No. 16/271,550, filed Feb. 8, 2019, 41 pages.
Final Office Action dated Sep. 8, 2020, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 12 pages.
Fiorenza Arisio et al. “Deliverable 1.1 User Study, analysis of requirements and definition of the application task,” May 31, 2012, http://dirha.fbk.eu/sites/dirha.fbk.euffiles/docs/DIRHA_D1.1., 31 pages.
First Action Interview Office Action dated Mar. 8, 2021, issued in connection with U.S. Appl. No. 16/798,967, filed Feb. 24, 2020, 4 pages.
First Action Interview Office Action dated Aug. 14, 2019, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 4 pages.
First Action Interview Office Action dated Jun. 15, 2020, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 4 pages.
First Action Interview Office Action dated Jun. 2, 2020, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 10 pages.
First Action Interview Office Action dated Jan. 22, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 3 pages.
First Action Interview Office Action dated Jul. 5, 2019, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 4 pages.
Freiberger, Kari, “Development and Evaluation of Source Localization Algorithms for Coincident Microphone Arrays,” Diploma Thesis, Apr. 1, 2010, 106 pages.
Giacobello et al. “A Sparse Nonuniformly Partitioned Multidelay Filter for Acoustic Echo Cancellation,” 2013, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2013, New Paltz, NY, 4 pages.
Giacobello et al. “Tuning Methodology for Speech Enhancement Algorithms using a Simulated Conversational Database and Perceptual Objective Measures,” 2014, 4th Joint Workshop on Hands-free Speech Communication and Microphone Arrays HSCMA, 2014, 5 pages.
Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.” ICLR 2016, Feb. 15, 2016, 14 pages.
Hans Speidel: “Chatbot Training: How to use training data to provide fully automated customer support”, Jun. 29, 2017, pp. 1-3, XP055473185, Retrieved from the Internet: URL:https://www.crowdguru.de/wp-content/uploads/Case-Study-Chatbot-training-How-to-use-training-data-to-provide-fully-automated-customer-support.pdf [retrieved on May 7, 2018].
Helwani et al. “Source-domain adaptive filtering for MIMO systems with application to acoustic echo cancellation”, Acoustics Speech and Signal Processing, 2010 IEEE International Conference, Mar. 14, 2010, 4 pages.
Hirano et al. “A Noise-Robust Stochastic Gradient Algorithm with an Adaptive Step-Size Suitable for Mobile Hands-Free Telephones,” 1995, International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 4 pages.
Indian Patent Office, Examination Report dated May 24, 2021, issued in connection with Indian Patent Application No. 201847035595, 6 pages.
Indian Patent Office, Examination Report dated Feb. 25, 2021, issued in connection with Indian Patent Application No. 201847035625, 6 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 1, 2021, issued in connection with International Application No. PCT/US2019/052129, filed on Sep. 20, 2019, 13 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jul. 1, 2021, issued in connection with International Application No. PCT/US2019/067576, filed on Dec. 19, 2019, 8 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Aug. 10, 2021, issued in connection with International Application No. PCT/US2020/017150, filed on Feb. 7, 2020, 20 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Dec. 10, 2020, issued in connection with International Application No. PCT/US2019/033945, filed on May 25, 2018, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Mar. 10, 2020, issued in connection with International Application No. PCT/US2018/050050, filed on Sep. 7, 2018, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 15, 2021, issued in connection with International Application No. PCT/US2019/054332, filed on Oct. 2, 2019, 9 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 15, 2019, issued in connection with International Application No. PCT/US2017/042170, filed on Jul. 14, 2017, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 15, 2019, issued in connection with International Application No. PCT/US2017/042227, filed on Jul. 14, 2017, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Mar. 25, 2021, issued in connection with International Application No. PCT/US2019/050852, filed on Sep. 12, 2019, 8 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Aug. 27, 2019, issued in connection with International Application No. PCT/US2018/019010, filed on Feb. 21, 2018, 9 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Mar. 31, 2020, issued in connection with International Application No. PCT/US2018/053517, filed on Sep. 28, 2018, 10 pages.
Advisory Action dated Jun. 10, 2020, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 4 pages.
Advisory Action dated Aug. 13, 2021, issued in connection with U.S. Appl. No. 16/271,550, filed Feb. 8, 2019, 4 pages.
Advisory Action dated Apr. 23, 2021, issued in connection with U.S. Appl. No. 16/219,702, filed Dec. 13, 2018, 3 pages.
Advisory Action dated Apr. 24, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 4 pages.
Advisory Action dated Feb. 28, 2022, issued in connection with U.S. Appl. No. 16/813,643, filed Mar. 9, 2020, 3 pages.
Advisory Action dated Jun. 28, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 3 pages.
Advisory Action dated Dec. 31, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 4 pages.
Advisory Action dated Sep. 8, 2021, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 4 pages.
Advisory Action dated Jun. 9, 2020, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 3 pages.
Andra et al. Contextual Keyword Spotting in Lecture Video With Deep Convolutional Neural Network. 2017 International Conference on Advanced Computer Science and Information Systems, IEEE, Oct. 28, 2017, 6 pages.
Anonymous,. S Voice or Google Now—The Lowdown. Apr. 28, 2015, 9 pages. [online], [retrieved on Nov. 29, 2017]. Retrieved from the Internet (URL:http://web.archive.org/web/20160807040123/http://lowdown.carphonewarehouse.com/news/s-voice-or-google-now/29958/).
Anonymous: “What are the function of 4 Microphones on iPhone 6S/6S+?”, ETrade Supply, Dec. 24, 2015, XP055646381, Retrieved from the Internet URL:https://www.etradesupply.com/blog/4-microphones-iphone-6s6s-for/ [retrieved on Nov. 27, 2019].
Audhkhasi Kartik et al. End-to-end ASR-free keyword search from speech. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, Mar. 5, 2017, 7 pages.
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages.
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages.
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages.
Australian Patent Office, Australian Examination Report Action dated Apr. 14, 2020, issued in connection with Australian Application No. 2019202257, 3 pages.
Australian Patent Office, Australian Examination Report Action dated Oct. 3, 2019, issued in connection with Australian Application No. 2018230932, 3 pages.
Australian Patent Office, Australian Examination Report Action dated Mar. 4, 2022, issued in connection with Australian Application No. 2021202786, 2 pages.
Australian Patent Office, Australian Examination Report Action dated Apr. 7, 2021, issued in connection with Australian Application No. 2019333058, 2 pages.
Australian Patent Office, Australian Examination Report Action dated Aug. 7, 2020, issued in connection with Australian Application No. 2019236722, 4 pages.
Australian Patent Office, Examination Report dated Jun. 28, 2021, issued in connection with Australian Patent Application No. 2019395022, 2 pages.
Australian Patent Office, Examination Report dated Oct. 30, 2018, issued in connection with Australian Application No. 2017222436, 3 pages.
“Automatic Parameter Tying in Neural Networks” ICLR 2018, 14 pages.
Bertrand et al. “Adaptive Distributed Noise Reduction for Speech Enhancement in Wireless Acoustic Sensor Networks” Jan. 2010, 4 pages.
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages.
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages.
Canadian Patent Office, Canadian Examination Report dated Dec. 1, 2021, issued in connection with Canadian Application No. 3096442, 4 pages.
Canadian Patent Office, Canadian Examination Report dated Nov. 2, 2021, issued in connection with Canadian Application No. 3067776, 4 pages.
Canadian Patent Office, Canadian Examination Report dated Oct. 26, 2021, issued in connection with Canadian Application No. 3072492, 3 pages.
Canadian Patent Office, Canadian Examination Report dated Mar. 9, 2021, issued in connection with Canadian Application No. 3067776, 5 pages.
Canadian Patent Office, Canadian Office Action dated Nov. 14, 2018, issued in connection with Canadian Application No. 3015491, 3 pages.
Chinese Patent Office, Chinese Office Action and Translation dated Jul. 2, 2021, issued in connection with Chinese Application No. 201880077216.4, 22 pages.
Chinese Patent Office, Chinese Office Action and Translation dated Mar. 30, 2021, issued in connection with Chinese Application No. 202010302650.7, 15 pages.
Chinese Patent Office, First Office Action and Translation dated Dec. 1, 2021, issued in connection with Chinese Application No. 201780077204.7, 11 pages.
Chinese Patent Office, First Office Action and Translation dated Dec. 20, 2021, issued in connection with Chinese Application No. 202010302650.7, 10 pages.
Chinese Patent Office, First Office Action and Translation dated Mar. 20, 2019, issued in connection with Chinese Application No. 201780025028.2, 18 pages.
Chinese Patent Office, First Office Action and Translation dated Mar. 27, 2019, issued in connection with Chinese Application No. 201780025029.7, 9 pages.
Chinese Patent Office, First Office Action and Translation dated May 27, 2021, issued in connection with Chinese Application No. 201880026360.5, 15 pages.
Chinese Patent Office, First Office Action and Translation dated Dec. 28, 2020, issued in connection with Chinese Application No. 201880072203.8, 11 pages.
Chinese Patent Office, First Office Action and Translation dated Nov. 5, 2019, issued in connection with Chinese Application No. 201780072651.3, 19 pages.
Chinese Patent Office, First Office Action dated Feb. 28, 2020, issued in connection with Chinese Application No. 201780061543.6, 29 pages.
Chinese Patent Office, Second Office Action and Translation dated Mar. 3, 2022, issued in connection with Chinese Application No. 201880077216.4, 11 pages.
Chinese Patent Office, Second Office Action and Translation dated May 11, 2020, issued in connection with Chinese Application No. 201780061543.6, 17 pages.
Chinese Patent Office, Second Office Action and Translation dated Jul. 18, 2019, issued in connection with Chinese Application No. 201780025029.7, 14 pages.
Chinese Patent Office, Second Office Action and Translation dated Sep. 23, 2019, issued in connection with Chinese Application No. 201780025028.2, 15 pages.
Chinese Patent Office, Second Office Action and Translation dated Mar. 31, 2020, issued in connection with Chinese Application No. 201780072651.3, 17 pages.
Chinese Patent Office, Third Office Action and Translation dated Sep. 16, 2019, issued in connection with Chinese Application No. 201780025029.7, 14 pages.
Chinese Patent Office, Third Office Action and Translation dated Aug. 5, 2020, issued in connection with Chinese Application No. 201780072651.3, 10 pages.
Chinese Patent Office, Translation of Office Action dated Jul. 18, 2019, issued in connection with Chinese Application No. 201780025029.7, 8 pages.
Non-Final Office Action dated Sep. 16, 2021, issued in connection with U.S. Appl. No. 16/879,553, filed May 20, 2020, 24 pages.
Non-Final Office Action dated Aug. 17, 2021, issued in connection with U.S. Appl. No. 17/236,559, filed Apr. 21, 2021, 10 pages.
Non-Final Office Action dated Sep. 17, 2020, issued in connection with U.S. Appl. No. 16/600,949, filed Oct. 14, 2019, 29 pages.
Non-Final Office Action dated Apr. 18, 2018, issued in connection with U.S. Appl. No. 15/811,468, filed Nov. 13, 2017, 14 pages.
Non-Final Office Action dated Aug. 18, 2021, issued in connection with U.S. Appl. No. 16/845,946, filed Apr. 10, 2020, 14 pages.
Non-Final Office Action dated Jan. 18, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 18 pages.
Non-Final Office Action dated Oct. 18, 2019, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 27 pages.
Non-Final Office Action dated Sep. 18, 2019, issued in connection with U.S. Appl. No. 16/179,779, filed Nov. 2, 2018, 14 pages.
Non-Final Office Action dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 12 pages.
Non-Final Office Action dated Dec. 19, 2019, issued in connection with U.S. Appl. No. 16/147,710, filed Sep. 29, 2018, 10 pages.
Non-Final Office Action dated Feb. 19, 2020, issued in connection with U.S. Appl. No. 16/148,879, filed Oct. 1, 2018, 15 pages.
Non-Final Office Action dated Sep. 2, 2020, issued in connection with U.S. Appl. No. 16/290,599, filed Mar. 1, 2019, 17 pages.
Non-Final Office Action dated Sep. 2, 2021, issued in connection with U.S. Appl. No. 16/947,895, filed Aug. 24, 2020, 16 pages.
Non-Final Office Action dated Feb. 20, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2016, 31 pages.
Non-Final Office Action dated Jun. 20, 2019, issued in connection with U.S. Appl. No. 15/946,585, filed Apr. 5, 2018, 10 pages.
Non-Final Office Action dated Apr. 21, 2021, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 9 pages.
Non-Final Office Action dated Aug. 21, 2019, issued in connection with U.S. Appl. No. 16/192,126, filed Nov. 15, 2018, 8 pages.
Non-Final Office Action dated Feb. 21, 2019, issued in connection with U.S. Appl. No. 16/214,666, filed Dec. 10, 2018, 12 pages.
Non-Final Office Action dated Jan. 21, 2020, issued in connection with U.S. Appl. No. 16/214,711, filed Dec. 10, 2018, 9 pages.
Non-Final Office Action dated Jan. 21, 2020, issued in connection with U.S. Appl. No. 16/598,125, filed Oct. 10, 2019, 25 pages.
Non-Final Office Action dated Oct. 21, 2019, issued in connection with U.S. Appl. No. 15/973,413, filed May 7, 2018, 10 pages.
Non-Final Office Action dated Jul. 22, 2020, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages.
Non-Final Office Action dated May 22, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 19 pages.
Non-Final Office Action dated Sep. 22, 2020, issued in connection with U.S. Appl. No. 16/539,843, filed Aug. 13, 2019, 7 pages.
Non-Final Office Action dated Jun. 23, 2021, issued in connection with U.S. Appl. No. 16/439,032, filed Jun. 12, 2019, 13 pages.
Non-Final Office Action dated May 23, 2019, issued in connection with U.S. Appl. No. 16/154,071, filed an Oct. 8, 2018, 36 pages.
Non-Final Office Action dated Nov. 23, 2020, issued in connection with U.S. Appl. No. 16/524,306, filed Jul. 29, 2019, 14 pages.
Non-Final Office Action dated Sep. 23, 2020, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 31, 2018, 17 pages.
Non-Final Office Action dated Aug. 24, 2017, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 13 pages.
Non-Final Office Action dated Jul. 24, 2019, issued in connection with U.S. Appl. No. 16/439,009, filed Jun. 12, 2019, 26 pages.
Non-Final Office Action dated Jul. 25, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Jul. 22, 2016, 11 pages.
Non-Final Office Action dated Dec. 26, 2018, issued in connection with U.S. Appl. No. 16/154,469, filed Oct. 8, 2018, 7 pages.
Non-Final Office Action dated Jan. 26, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 16 pages.
Non-Final Office Action dated Oct. 26, 2017, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 12 pages.
Non-Final Office Action dated Oct. 26, 2021, issued in connection with U.S. Appl. No. 16/736,725, filed Jan. 7, 2020, 12 pages.
Non-Final Office Action dated Jun. 27, 2018, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 16 pages.
Non-Final Office Action dated Jun. 27, 2019, issued in connection with U.S. Appl. No. 16/437,437, filed Jun. 11, 2019, 8 pages.
Non-Final Office Action dated Jun. 27, 2019, issued in connection with U.S. Appl. No. 16/437,476, filed Jun. 11, 2019, 8 pages.
Non-Final Office Action dated Mar. 27, 2020, issued in connection with U.S. Appl. No. 16/790,621, filed Feb. 13, 2020, 8 pages.
Non-Final Office Action dated May 27, 2020, issued in connection with U.S. Appl. No. 16/715,713, filed Dec. 16, 2019, 14 pages.
Non-Final Office Action dated Oct. 27, 2020, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 13 pages.
Non-Final Office Action dated Oct. 27, 2020, issued in connection with U.S. Appl. No. 16/715,984, filed Dec. 16, 2019, 14 pages.
Non-Final Office Action dated Oct. 27, 2020, issued in connection with U.S. Appl. No. 16/819,755, filed Mar. 16, 2020, 8 pages.
Non-Final Office Action dated Oct. 28, 2019, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages.
Non-Final Office Action dated Oct. 28, 2021, issued in connection with U.S. Appl. No. 16/378,516, filed Apr. 8, 2019, 10 pages.
Non-Final Office Action dated Oct. 28, 2021, issued in connection with U.S. Appl. No. 17/247,736, filed Dec. 21, 2020, 12 pages.
Non-Final Office Action dated Mar. 29, 2019, issued in connection with U.S. Appl. No. 16/102,650, filed Aug. 13, 2018, 11 pages.
Non-Final Office Action dated Mar. 29, 2021, issued in connection with U.S. Appl. No. 16/528,265, filed Jul. 31, 2019, 18 pages.
Non-Final Office Action dated Nov. 29, 2021, issued in connection with U.S. Appl. No. 16/989,350, filed Aug. 10, 2020, 15 pages.
Non-Final Office Action dated Sep. 29, 2020, issued in connection with U.S. Appl. No. 16/402,617, filed May 3, 2019, 12 pages.
Newman, Jared. “Chromecast Audio's multi-room support has arrived,” Dec. 11, 2015, https://www.pcworld.com/article/3014204/customer-electronic/chromcase-audio-s-multi-room-support-has . . . , 1 page.
Ngo et al. “Incorporating the Conditional Speech Presence Probability in Multi-Channel Wiener Filter Based Noise Reduction in Hearing Aids.” EURASIP Journal on Advances in Signal Processing vol. 2009, Jun. 2, 2009, 11 pages.
Non-Final Office Action dated Jul. 12, 2021, issued in connection with U.S. Appl. No. 17/008,104, filed Aug. 31, 2020, 6 pages.
Non-Final Office Action dated Jun. 18, 2021, issued in connection with U.S. Appl. No. 17/236,559, filed Apr. 21, 2021, 9 pages.
Non-Final Office Action dated Dec. 21, 2020, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 22 pages.
Non-Final Office Action dated Jul. 22, 2021, issued in connection with U.S. Appl. No. 16/179,779, filed Nov. 2, 2018, 19 pages.
Non-Final Office Action dated Apr. 23, 2021, issued in connection with U.S. Appl. No. 16/660,197, filed Oct. 22, 2019, 9 pages.
Non-Final Office Action dated Jun. 25, 2021, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 11 pages.
Non-Final Office Action dated Jul. 8, 2021, issued in connection with U.S. Appl. No. 16/813,643, filed Mar. 9, 2020, 12 pages.
Non-Final Office Action dated Dec. 9, 2020, issued in connection with U.S. Appl. No. 16/271,550, filed Feb. 8, 2019, 35 pages.
Non-Final Office Action dated Jul. 9, 2021, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 18 pages.
Non-Final Office Action dated Jun. 1, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages.
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 11 pages.
Non-Final Office Action dated Nov. 3, 2017, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 11 pages.
Non-Final Office Action dated Nov. 4, 2019, issued in connection with U.S. Appl. No. 16/022,662, filed Jun. 28, 2018, 16 pages.
Non-Final Office Action dated Sep. 5, 2019, issued in connection with U.S. Appl. No. 16/416,752, filed May 20, 2019, 14 pages.
Non-Final Office Action dated Feb. 7, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 12 pages.
Non-Final Office Action dated Feb. 8, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 17 pages.
Non-Final Office Action dated Mar. 9, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 13 pages.
Non-Final Office Action dated Oct. 9, 2019, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 16 pages.
Non-Final Office Action dated Jul. 1, 2020, issued in connection with U.S. Appl. No. 16/138,111, filed Sep. 21, 2018, 14 pages.
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages.
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 13 pages.
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 15 pages.
Non-Final Office Action dated Sep. 10, 2018, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 17 pages.
Non-Final Office Action dated Aug. 11, 2021, issued in connection with U.S. Appl. No. 16/841,116, filed Apr. 6, 2020, 9 pages.
Non-Final Office Action dated Feb. 11, 2021, issued in connection with U.S. Appl. No. 16/876,493, filed May 18, 2020, 16 pages.
Non-Final Office Action dated Feb. 11, 2022, issued in connection with U.S. Appl. No. 17/145,667, filed Jan. 11, 2021, 9 pages.
Non-Final Office Action dated Mar. 11, 2021, issued in connection with U.S. Appl. No. 16/834,483, filed Mar. 30, 2020, 11 pages.
Non-Final Office Action dated Oct. 11, 2019, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 31, 2018, 14 pages.
Non-Final Office Action dated Sep. 11, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 8 pages.
Non-Final Office Action dated Sep. 11, 2020, issued in connection with U.S. Appl. No. 16/219,702, filed Dec. 13, 2018, 9 pages.
Non-Final Office Action dated Apr. 12, 2021, issued in connection with U.S. Appl. No. 16/528,224, filed Jul. 31, 2019, 9 pages.
Non-Final Office Action dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 11 pages.
Non-Final Office Action dated Feb. 12, 2019, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 13 pages.
Non-Final Office Action dated Jan. 13, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 11 pages.
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 23 pages.
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 16/160,107, filed Oct. 15, 2018, 8 pages.
Non-Final Office Action dated Nov. 13, 2019, issued in connection with U.S. Appl. No. 15/984,073, filed May 18, 2018, 18 pages.
Non-Final Office Action dated Oct. 13, 2021, issued in connection with U.S. Appl. No. 16/679,538, filed Nov. 11, 2019, 8 pages.
Non-Final Office Action dated May 14, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 8 pages.
Non-Final Office Action dated Sep. 14, 2017, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 16 pages.
Non-Final Office Action dated Sep. 14, 2018, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 15 pages.
Non-Final Office Action dated Apr. 15, 2020, issued in connection with U.S. Appl. No. 16/138,111, filed Sep. 21, 2018, 15 pages.
Non-Final Office Action dated Dec. 15, 2020, issued in connection with U.S. Appl. No. 17/087,423, filed Nov. 2, 2020, 7 pages.
Non-Final Office Action dated Jan. 15, 2019, issued in connection with U.S. Appl. No. 16/173,797, filed Oct. 29, 2018, 6 pages.
Non-Final Office Action dated Nov. 15, 2019, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 17 pages.
Non-Final Office Action dated Mar. 16, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 5 pages.
Non-Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 16 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Feb. 5, 2019, issued in connection with International Application No. PCT/US2017/045521, filed on Aug. 4, 2017, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Feb. 5, 2019, issued in connection with International Application No. PCT/US2017/045551, filed on Aug. 4, 2017, 9 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Jan. 7, 2021, issued in connection with International Application No. PCT/US2019/039828, filed on Jun. 28, 2019, 11 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 8, 2021, issued in connection with International Application No. PCT/US2019/052654, filed on Sep. 24, 2019, 7 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 8, 2021, issued in connection with International Application No. PCT/US2019/052841, filed on Sep. 25, 2019, 8 pages.
International Bureau, International Preliminary Report on Patentability and Written Opinion, dated Apr. 8, 2021, issued in connection with International Application No. PCT/US2019/053253, filed on Sep. 26, 2019, 10 pages.
International Bureau, International Preliminary Report on Patentability, dated Apr. 11, 2019, issued in connection with International Application No. PCT/US2017/0054063, filed on Sep. 28, 2017, 9 pages.
International Bureau, International Preliminary Report on Patentability, dated Jun. 17, 2021, issued in connection with International Application No. PCT/US2019/064907, filed on Dec. 6, 2019, 8 pages.
International Bureau, International Preliminary Report on Patentability, dated Mar. 2, 2021, issued in connection with International Application No. PCT/US2019/048558, filed on Aug. 28, 2019, 8 pages.
International Bureau, International Preliminary Report on Patentability, dated Feb. 20, 2020, issued in connection with International Application No. PCT/US2018/045397, filed on Aug. 6, 2018, 8 pages.
International Bureau, International Preliminary Report on Patentability, dated Apr. 23, 2019, issued in connection with International Application No. PCT/US2017/057220, filed on Oct. 18, 2017, 7 pages.
International Bureau, International Preliminary Report on Patentability, dated Mar. 31, 2020, issued in connection with International Application No. PCT/US2018053123, filed on Sep. 27, 2018, 12 pages.
International Bureau, International Preliminary Report on Patentability, dated Mar. 31, 2020, issued in connection with International Application No. PCT/US2018053472, filed on Sep. 28, 2018, 8 pages.
International BUREAU, International Preliminary Report on Patentability, dated Mar. 31, 2020, issued in connection with International Application No. PCT/US2018053517, filed on Sep. 28, 2018, 10 pages.
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018728, filed on Feb. 21, 2017, 8 pages.
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018739, filed on Feb. 21, 2017, 7 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 10, 2020, issued in connection with International Application No. PCT/US2020/044250, filed on Jul. 30, 2020, 15 pages.
International Bureau, International Search Report and Written Opinion dated Dec. 11, 2019, issued in connection with International Application No. PCT/US2019/052129, filed on Sep. 20, 2019, 18 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 13, 2018, issued in connection with International Application No. PCT/US2018/045397, filed on Aug. 6, 2018, 11 pages.
International Bureau, International Search Report and Written Opinion dated Jan. 14, 2019, issued in connection with International Application No. PCT/US2018053472, filed on Sep. 28, 2018, 10 pages.
International Bureau, International Search Report and Written Opinion dated Jul. 14, 2020, issued in connection with International Application No. PCT/US2020/017150, filed on Feb. 7, 2020, 27 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 14, 2017, issued in connection with International Application No. PCT/US2017/045521, filed on Aug. 4, 2017, 10 pages.
International Bureau, International Search Report and Written Opinion dated Jul. 17, 2019, issued in connection with International Application No. PCT/US2019/032934, filed on May 17, 2019, 17 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 18, 2019, issued in connection with International Application No. PCT/US2019/048558, filed on Aug. 28, 2019, 11 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 18, 2019, issued in connection with International Application No. PCT/US2019052841, filed on Sep. 25, 2019, 12 pages.
International Bureau, International Search Report and Written Opinion dated Mar. 2, 2020, issued in connection with International Application No. PCT/U.S. Pat. No. 2019064907, filed on Dec. 6, 2019, 11 pages.
International Bureau, International Search Report and Written Opinion dated Mar. 2, 2020, issued in connection with International Application No. PCT/US2019/064907, filed on Dec. 6, 2019, 9 pages.
International Bureau, International Search Report and Written Opinion dated Dec. 20, 2019, issued in connection with International Application No. PCT/US2019052654, filed on Sep. 24, 2019, 11 pages.
International Bureau, International Search Report and Written Opinion dated Sep. 21, 2020, issued in connection with International Application No. PCT/US2020/037229, filed on Jun. 11, 2020, 17 pages.
International Bureau, International Search Report and Written Opinion dated Oct. 22, 2020, issued in connection with International Application No. PCT/US2020/044282, filed on Jul. 30, 2020, 15 pages.
International Bureau, International Search Report and Written Opinion dated Apr. 23, 2021, issued in connection with International Application No. PCT/US2021/070007, filed on Jan. 6, 2021, 11 pages.
International Bureau, International Search Report and Written Opinion dated Jul. 24, 2018, issued in connection with International Application No. PCT/US2018/019010, filed on Feb. 21, 2018, 12 pages.
International Bureau, International Search Report and Written Opinion, dated Feb. 27, 2019, issued in connection with International Application No. PCT/US2018/053123, filed on Sep. 27, 2018, 16 pages.
International Bureau, International Search Report and Written Opinion dated Sep. 27, 2019, issued in connection with International Application No. PCT/US2019/039828, filed on Jun. 28, 2019, 13 pages.
International Bureau, International Search Report and Written Opinion dated Nov. 29, 2019, issued in connection with International Application No. PCT/US2019/053253, filed on Sep. 29, 2019, 14 pages.
International Bureau, International Search Report and Written Opinion dated Sep. 4, 2019, issued in connection with International Application No. PCT/US2019/033945, filed on May 24, 2019, 8 pages.
International Bureau, International Search Report and Written Opinion dated Aug. 6, 2020, issued in connection with International Application No. PCT/FR2019/000081, filed on May 24, 2019, 12 pages.
International Bureau, International Search Report and Written Opinion dated Dec. 6, 2018, issued in connection with International Application No. PCT/US2018/050050, filed on Sep. 7, 2018, 9 pages.
International Bureau, International Search Report and Written Opinion dated Dec. 6, 2019, issued in connection with International Application No. PCT/US2019050852, filed on Sep. 12, 2019, 10 pages.
International Bureau, International Search Report and Written Opinion dated Oct. 6, 2017, issued in connection with International Application No. PCT/US2017/045551, filed on Aug. 4, 2017, 12 pages.
International Bureau, International Search Report and Written Opinion dated Apr. 8, 2020, issued in connection with International Application No. PCT/US2019/067576, filed on Dec. 19, 2019, 12 pages.
International Searching Authority, International Search Report and Written Opinion dated Feb. 8, 2021, issued in connection with International Application No. PCT/EP2020/082243, filed on Nov. 16, 2020, 10 pages.
International Searching Authority, International Search Report and Written Opinion dated Feb. 12, 2021, issued in connection with International Application No. PCT/US2020/056632, filed on Oct. 21, 2020, 10 pages.
International Searching Authority, International Search Report and Written Opinion dated Dec. 19, 2018, in connection with International Application No. PCT/US2018/053517, 13 pages.
International Searching Authority, International Search Report and Written Opinion dated Nov. 22, 2017, issued in connection with International Application No. PCT/US2017/054063, filed on Sep. 28, 2017, 11 pages.
International Searching Authority, International Search Report and Written Opinion dated Apr. 23, 2021, issued in connection with International Application No. PCT/US2020/066231, filed on Dec. 18, 2020, 9 pages.
International Searching Authority, International Search Report and Written Opinion dated Jan. 23, 2018, issued in connection with International Application No. PCT/US2017/57220, filed on Oct. 18, 2017, 8 pages.
International Searching Authority, International Search Report and Written Opinion dated May 23, 2017, issued in connection with International Application No. PCT/US2017/018739, Filed on Feb. 21, 2017, 10 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 23, 2017, issued in connection with International Application No. PCT/US2017/042170, filed on Jul. 14, 2017, 15 pages.
International Searching Authority, International Search Report and Written Opinion dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2017/042227, filed on Jul. 14, 2017, 16 pages.
International Searching Authority, International Search Report and Written Opinion dated May 30, 2017, issued in connection with International Application No. PCT/US2017/018728, Filed on Feb. 21, 2017, 11 pages.
Japanese Patent Office, Decision of Refusal and Translation dated Jun. 8, 2021, issued in connection with Japanese Patent Application No. 2019-073348, 5 pages.
Japanese Patent Office, English Translation of Office Action dated Nov. 17, 2020, issued in connection with Japanese Application No. 2019-145039, 5 pages.
Japanese Patent Office, English Translation of Office Action dated Aug. 27, 2020, issued in connection with Japanese Application No. 2019-073349, 6 pages.
Japanese Patent Office, English Translation of Office Action dated Jul. 30, 2020, issued in connection with Japanese Application No. 2019-517281, 26 pages.
Japanese Patent Office, Non-Final Office Action and Translation dated Nov. 5, 2019, issued in connection with Japanese Patent Application No. 2019-517281, 6 pages.
Japanese Patent Office, Notice of Reasons for Refusal and Translation dated Jun. 22, 2021, issued in connection with Japanese Patent Application No. 2020-517935, 4 pages.
Japanese Patent Office, Notice of Reasons for Refusal and Translation dated Nov. 28, 2021, issued in connection with Japanese Patent Application No. 2020-550102, 9 pages.
Japanese Patent Office, Office Action and Translation dated Mar. 16, 2021, issued in connection with Japanese Patent Application No. 2020-506725, 7 pages.
Japanese Patent Office, Office Action and Translation dated Nov. 17, 2020, issued in connection with Japanese Patent Application No. 2019-145039, 7 pages.
Japanese Patent Office, Office Action and Translation dated Apr. 20, 2021, issued in connection with Japanese Patent Application No. 2020-513852, 9 pages.
Japanese Patent Office, Office Action and Translation dated Feb. 24, 2021, issued in connection with Japanese Patent Application No. 2019-517281, 4 pages.
Japanese Patent Office, Office Action and Translation dated Apr. 27, 2021, issued in connection with Japanese Patent Application No. 2020-518400, 10 pages.
Japanese Patent Office, Office Action and Translation dated Aug. 27, 2020, issued in connection with Japanese Patent Application No. 2019-073349, 6 pages.
Japanese Patent Office, Office Action and Translation dated Jul. 30, 2020, issued in connection with Japanese Patent Application No. 2019-517281, 6 pages.
Japanese Patent Office, Office Action and Translation dated Jul. 6, 2020, issued in connection with Japanese Patent Application No. 2019-073348, 10 pages.
Japanese Patent Office, Office Action and Translation dated Jul. 6, 2021, issued in connection with Japanese Patent Application No. 2019-073349, 6 pages.
Japanese Patent Office, Office Action and Translation dated Oct. 8, 2019, issued in connection with Japanese Patent Application No. 2019-521032, 5 pages.
Japanese Patent Office, Office Action dated Dec. 7, 2021, issued in connection with Japanese Patent Application No. 2020-513852, 6 pages.
Japanese Patent Office, Office Action Translation dated Nov. 5, 2019, issued in connection with Japanese Patent Application No. 2019-517281, 2 pages.
Japanese Patent Office, Office Action Translation dated Oct. 8, 2019, issued in connection with Japanese Patent Application No. 2019-521032, 8 pages.
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861.
Johnson, “Implementing Neural Networks into Modern Technology,” IJCNN'99. International Joint Conference on Neural Networks. Proceedings [Cat. No. 99CH36339], Washington, DC, USA, 1999, pp. 1028-1032, vol. 2, doi 10.1109/IJCNN.1999.831096. [retrieved on Jun. 22, 2020].
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 http://www.reviewsonline.com/articles/961906864.htm retrieved Jun. 18, 2014, 2 pages.
Jose Alvarez and Mathieu Salzmann “Compression-aware Training of Deep Networks” 31st Conference on Neural Information Processing Systems, Nov. 13, 2017, 12pages.
Joseph Szurley et al, “Efficient computation of microphone utility in a wireless acoustic sensor network with multi-channel Wiener filter based noise reduction”, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, Mar. 25-30, 2012, pp. 2657-2660, XP032227701, DOI: 10.1109/ICASSP .2012.6288463 ISBN: 978-1-4673-0045-2.
Ketabdar et al. Detection of Out-of-Vocabulary Words in Posterior Based ASR. Proceedings of Interspeech 2007, Aug. 27, 2007, 4 pages.
Kim et al. Character-Aware Neural Language Models. Retrieved from the Internet: URL: https://arxiv.org/pdf/1508.06615v3.pdf, Oct. 16, 2015, 9 pages.
Korean Patent Office, Korean Examination Report and Translationdated Nov. 25, 2021, issued in connection with Korean Application No. 10-2021-7008937, 14 pages.
Korean Patent Office, Korean Examination Report and Translation dated Apr. 26, 2021, issued in connection with Korean Application No. 10-2021-7008937, 15 pages.
Korean Patent Office, Korean Examination Report and Translation dated Dec. 27, 2021, issued in connection with Korean Application No. 10-2021-7008937, 22 pages.
Korean Patent Office, Korean Office Action and Translation dated Oct. 14, 2021, issued in connection with Korean Application No. 10-2020-7011843, 29 pages.
Korean Patent Office, Korean Office Action and Translation dated Aug. 16, 2019, issued in connection with Korean Application No. 10-2018-7027452, 14 pages.
Korean Patent Office, Korean Office Action and Translation dated Apr. 2, 2020, issued in connection with Korean Application No. 10-2020-7008486, 12 pages.
Korean Patent Office, Korean Office Action and Translation dated Mar. 25, 2020, issued in connection with Korean Application No. 10-2019-7012192, 14 pages.
Korean Patent Office, Korean Office Action and Translation dated Aug. 26, 2020, issued in connection with Korean Application No. 10-2019-7027640, 16 pages.
Korean Patent Office, Korean Office Action and Translation dated Mar. 30, 2020, issued in connection with Korean Application No. 10-2020-7004425, 5 pages.
Korean Patent Office, Korean Office Action and Translation dated Jan. 4, 2021, issued in connection with Korean Application No. 10-2020-7034425, 14 pages.
Korean Patent Office, Korean Office Action and Translation dated Sep. 9, 2019, issued in connection with Korean Application No. 10-2018-7027451, 21 pages.
Korean Patent Office, Korean Office Action dated May 8, 2019, issued in connection with Korean Applicatior No. 10-2018-7027451, 7 pages.
Korean Patent Office, Korean Office Action dated May 8, 2019, issued in connection with Korean Applicatior No. 10-2018-7027452, 5 pages.
Lei et al. Accurate and Compact Large Vocabulary Speech Recognition on Mobile Devices. Interspeech 2013, Aug. 25, 2013, 4 pages.
Lengerich et al. An End-to-End Architecture for Keyword Spotting and Voice Activity Detection, arXiv:1611.09405v1, Nov. 28, 2016, 5 pages.
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages.
Maja Taseska and Emanual A.P. Habets, “MMSE-Based Blind Source Extraction in Diffuse Noise Fields Using a Complex Coherence-Based a Priori Sap Estimator.” International Workshop on Acoustic Signal Enhancement 2012, Sep. 4-6, 2012, 4pages.
Matrix—The Ultimate Development Board Sep. 14, 2019 Matrix—The Ultimate Development Board Sep. 14, 2019 https-//web.archive.org/web/20190914035838/https-//www.matrix.one/, 1 page.
Mesaros et al. Detection and Classification of Acoustic Scenes and Events: Outcome of the DCASE 2016 Challenge. IEEE/ACM Transactions on Audio, Speech, and Language Processing Feb. 2018, 16 pages.
Molina et al., “Maximum Entropy-Based Reinforcement Learning Using a Confidence Measure in Speech Recognition for Telephone Speech,” in IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 5, pp. 1041-1052, Jul. 2010, doi: 10.1109/TASL.2009.2032618. [Retrieved online] URLhttps://ieeexplore.ieee.org/document/5247099?partnum=5247099&searchProductType=IEEE%20Journals%20Transactions.
Morales-Cordovilla et al. “Room Localization for Distant Speech Recognition,” Proceedings of Interspeech 2014, Sep. 14, 2014, 4 pages.
Non-Final Office Action dated Dec. 3, 2020, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 11 pages.
Non-Final Office Action dated Jul. 3, 2019, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 7 pages.
Non-Final Office Action dated May 3, 2019, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 14 pages.
Non-Final Office Action dated Oct. 3, 2018, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 20 pages.
Non-Final Office Action dated Apr. 30, 2019, issued in connection with U.S. Appl. No. 15/718,521, filed Sep. 28, 2017, 39 pages.
Non-Final Office Action dated Jun. 30, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 13 pages.
Non-Final Office Action dated Apr. 4, 2019, issued in connection with U.S. Appl. No. 15/718,911, filed Sep. 28, 2017, 21 pages.
Non-Final Office Action dated Aug. 4, 2020, issued in connection with U.S. Appl. No. 16/600,644, filed Oct. 14, 2019, 30 pages.
Non-Final Office Action dated Jan. 4, 2019, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 6 pages.
Non-Final Office Action dated Jan. 4, 2022, issued in connection with U.S. Appl. No. 16/879,549, filed May 20, 2020, 14 pages.
Non-Final Office Action dated Nov. 5, 2021, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 21 pages.
Non-Final Office Action dated Apr. 6, 2020, issued in connection with U.S. Appl. No. 16/424,825, filed May 29, 2019, 22 pages.
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 32 pages.
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 6 pages.
Non-Final Office Action dated Jan. 6, 2021, issued in connection with U.S. Appl. No. 16/439,046, filed Jun. 12, 2019, 13 pages.
Non-Final Office Action dated Mar. 6, 2020, issued in connection with U.S. Appl. No. 16/141,875, filed Sep. 25, 2018, 8 pages.
Non-Final Office Action dated Sep. 6, 2017, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 13 pages.
Non-Final Office Action dated Sep. 6, 2018, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 2 pages.
Non-Final Office Action dated Dec. 7, 2021, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 36 pages.
Non-Final Office Action dated Jan. 7, 2022, issued in connection with U.S. Appl. No. 17/135,123, filed Dec. 28, 2020, 16 pages.
Non-Final Office Action dated Mar. 7, 2022, issued in connection with U.S. Appl. No. 16/812,758, filed Mar. 9, 2020, 18 pages.
Non-Final Office Action dated Feb. 8, 2022, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 17 pages.
Non-Final Office Action dated Sep. 8, 2020, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 19 pages.
Non-Final Office Action dated Apr. 9, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages.
Non-Final Office Action dated Apr. 9, 2021, issued in connection with U.S. Appl. No. 16/780,483, filed Feb. 3, 2020, 45 pages.
Non-Final Office Action dated Feb. 9, 2021, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 16 pages.
Non-Final Office Action dated May 9, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 22 pages.
Non-Final Office Action dated Sep. 9, 2020, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 29 pages.
Notice of Allowance dated Aug. 10, 2021, issued in connection with U.S. Appl. No. 17/157,686, filed Jan. 25, 2021, 9 pages.
Notice of Allowance dated Aug. 2, 2021, issued in connection with U.S. Appl. No. 16/660,197, filed Oct. 22, 2019, 7 pages.
Notice of Allowance dated Mar. 31, 2021, issued in connection with U.S. Appl. No. 16/813,643, filed Mar. 9, 2020, 11 pages.
Notice of Allowance dated Aug. 4, 2021, issued in connection with U.S. Appl. No. 16/780,483, filed Feb. 3, 2020, 5 pages.
Notice of Allowance dated Dec. 2, 2019, issued in connection with U.S. Appl. No. 15/718,521, filed Sep. 28, 2017, 15 pages.
Notice of Allowance dated Dec. 4, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 5 pages.
Notice of Allowance dated Jul. 5, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 5 pages.
Notice of Allowance dated Jul. 9, 2018, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 5 pages.
Notice of Allowance dated Apr. 1, 2019, issued in connection with U.S. Appl. No. 15/935,966, filed Mar. 26, 2018, 5 pages.
Notice of Allowance dated Aug. 1, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 9 pages.
Notice of Allowance dated Feb. 1, 2022, issued in connection with U.S. Appl. No. 16/439,046, filed Jun. 12, 2019, 9 pages.
Notice of Allowance dated Jun. 1, 2021, issued in connection with U.S. Appl. No. 16/219,702, filed Dec. 13, 2018, 8 pages.
Notice of Allowance dated Jun. 1, 2021, issued in connection with U.S. Appl. No. 16/685,135, filed Nov. 15, 2019, 10 pages.
Notice of Allowance dated Mar. 1, 2022, issued in connection with U.S. Appl. No. 16/879,549, filed May 20, 2020, 9 pages.
Notice of Allowance dated Sep. 1, 2021, issued in connection with U.S. Appl. No. 15/936,177, filed Mar. 26, 2018, 22 pages.
Notice of Allowance dated Aug. 10, 2020, issued in connection with U.S. Appl. No. 16/424,825, filed May 29, 2019, 9 pages.
Notice of Allowance dated Feb. 10, 2021, issued in connection with U.S. Appl. No. 16/138,111, filed Sep. 21, 2018, 8 pages.
Notice of Allowance dated Apr. 11, 2018, issued in connection with U.S. Appl. No. 15/719,454, filed Sep. 28, 2017, 15 pages.
Notice of Allowance dated Oct. 11, 2019, issued in connection with U.S. Appl. No. 16/437,476, filed Jun. 11, 2019, 9 pages.
Notice of Allowance dated Sep. 11, 2019, issued in connection with U.S. Appl. No. 16/154,071, filed Oct. 8, 2018, 5 pages.
Notice of Allowance dated Aug. 12, 2021, issued in connection with U.S. Appl. No. 16/819,755, filed Mar. 16, 2020, 6 pages.
Notice of Allowance dated Dec. 12, 2018, issued in connection with U.S. Appl. No. 15/811,468, filed Nov. 13, 2017, 9 pages.
Notice of Allowance dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 8 pages.
Notice of Allowance dated Jun. 12, 2019, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 7 pages.
Notice of Allowance dated May 12, 2021, issued in connection with U.S. Appl. No. 16/402,617, filed May 3, 2019, 8 pages.
Notice of Allowance dated Sep. 12, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 15 pages.
Notice of Allowance dated Dec. 13, 2017, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 9 pages.
Notice of Allowance dated Dec. 13, 2021, issued in connection with U.S. Appl. No. 16/879,553, filed May 20, 2020, 15 pages.
Notice of Allowance dated Feb. 13, 2019, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 10 pages.
Notice of Allowance dated Jan. 13, 2020, issued in connection with U.S. Appl. No. 16/192,126, filed Nov. 15, 2018, 6 pages.
Notice of Allowance dated Jan. 13, 2021, issued in connection with U.S. Appl. No. 16/539,843, filed Aug. 13, 2019, 5 pages.
Notice of Allowance dated Nov. 13, 2020, issued in connection with U.S. Appl. No. 16/131,409, filed Sep. 14, 2018, 11 pages.
Notice of Allowance dated Aug. 14, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 10 pages.
Notice of Allowance dated Aug. 14, 2020, issued in connection with U.S. Appl. No. 16/598,125, filed Oct. 10, 2019, 5 pages.
Notice of Allowance dated Feb. 14, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 11 pages.
Notice of Allowance dated Jan. 14, 2021, issued in connection with U.S. Appl. No. 17/087,423, filed Nov. 2, 2020, 8 pages.
Notice of Allowance dated Jan. 14, 2022, issued in connection with U.S. Appl. No. 16/966,397, filed Jul. 30, 2020, 5 pages.
Notice of Allowance dated Jun. 14, 2017, issued in connection with U.S. Appl. No. 15/282,554, filed Sep. 30, 2016, 11 pages.
Notice of Allowance dated Nov. 14, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 5 pages.
Notice of Allowance dated Dec. 15, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages.
Notice of Allowance dated Jan. 15, 2020, issued in connection with U.S. Appl. No. 16/439,009, filed Jun. 12, 2019, 9 pages.
Notice of Allowance dated Mar. 15, 2019, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 9 pages.
Notice of Allowance dated Oct. 15, 2019, issued in connection with U.S. Appl. No. 16/437,437, filed Jun. 11, 2019, 9 pages.
Notice of Allowance dated Oct. 15, 2020, issued in connection with U.S. Appl. No. 16/715,713, filed Dec. 16, 2019, 9 pages.
Notice of Allowance dated Oct. 15, 2021, issued in connection with U.S. Appl. No. 16/213,570, filed Dec. 7, 2018, 8 pages.
Notice of Allowance dated Sep. 15, 2021, issued in connection with U.S. Appl. No. 16/685,135, filed Nov. 15, 2019, 10 pages.
Notice of Allowance dated Apr. 16, 2021, issued in connection with U.S. Appl. No. 16/798,967, filed Feb. 24, 2020, 16 pages.
Notice of Allowance dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 9 pages.
Notice of Allowance dated Aug. 17, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 9 pages.
Notice of Allowance dated Feb. 17, 2021, issued in connection with U.S. Appl. No. 16/715,984, filed Dec. 16, 2019, 8 pages.
Notice of Allowance dated Jul. 17, 2019, issued in connection with U.S. Appl. No. 15/718,911, filed Sep. 28, 2017, 5 pages.
Notice of Allowance dated Jun. 17, 2020, issued in connection with U.S. Appl. No. 16/141,875, filed Sep. 25, 2018, 6 pages.
Notice of Allowance dated Sep. 17, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 6 pages.
Notice of Allowance dated Apr. 18, 2019, issued in connection with U.S. Appl. No. 16/173,797, filed Oct. 29, 2018, 9 pages.
Notice of Allowance dated Dec. 18, 2019, issued in connection with U.S. Appl. No. 16/434,426, filed Jun. 7, 2019, 13 pages.
Notice of Allowance dated Feb. 18, 2020, issued in connection with U.S. Appl. No. 16/022,662, filed Jun. 28, 2018, 8 pages.
Notice of Allowance dated Jul. 18, 2019, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 9 pages.
Notice of Allowance dated Jul. 18, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 8 pages.
Notice of Allowance dated Mar. 18, 2021, issued in connection with U.S. Appl. No. 16/177,185, filed Oct. 31, 2018, 8 pages.
Notice of Allowance dated Aug. 19, 2020, issued in connection with U.S. Appl. No. 16/271,560, filed Feb. 8, 2019, 9 pages.
Notice of Allowance dated Dec. 19, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 9 pages.
Notice of Allowance dated Jul. 19, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 7 pages.
Notice of Allowance dated Mar. 19, 2021, issued in connection with U.S. Appl. No. 17/157,686, filed Jan. 25, 2021, 11 pages.
Notice of Allowance dated Aug. 2, 2019, issued in connection with U.S. Appl. No. 16/102,650, filed Aug. 13, 2018, 5 pages.
Notice of Allowance dated Dec. 2, 2020, issued in connection with U.S. Appl. No. 15/989,715, filed May 25, 2018, 11 pages.
Notice of Allowance dated Dec. 2, 2021, issued in connection with U.S. Appl. No. 16/841,116, filed Apr. 6, 2020, 5 pages.
Notice of Allowance dated Sep. 2, 2020, issued in connection with U.S. Appl. No. 16/214,711, filed Dec. 10, 2018, 9 pages.
Notice of Allowance dated Jul. 20, 2020, issued in connection with U.S. Appl. No. 15/984,073, filed May 18, 2018, 12 pages.
Notice of Allowance dated Mar. 20, 2018, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 7 pages.
Notice of Allowance dated Oct. 20, 2021, issued in connection with U.S. Appl. No. 16/439,032, filed Jun. 12, 2019, 8 pages.
Notice of Allowance dated Sep. 20, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 7 pages.
Notice of Allowance dated Apr. 21, 2021, issued in connection with U.S. Appl. No. 16/145,275, filed Sep. 28, 2018, 8 pages.
Notice of Allowance dated Dec. 21, 2021, issued in connection with U.S. Appl. No. 16/271,550, filed Feb. 8, 2019, 11 pages.
Notice of Allowance dated Feb. 21, 2020, issued in connection with U.S. Appl. No. 16/416,752, filed May 20, 2019, 6 pages.
Notice of Allowance dated Jan. 21, 2020, issued in connection with U.S. Appl. No. 16/672,764, filed Nov. 4, 2019, 10 pages.
Notice of Allowance dated Jan. 21, 2021, issued in connection with U.S. Appl. No. 16/600,644, filed Oct. 14, 2019, 7 pages.
Notice of Allowance dated Oct. 21, 2019, issued in connection with U.S. Appl. No. 15/946,585, filed Apr. 5, 2018, 5 pages.
Notice of Allowance dated Aug. 22, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Sep. 22, 2016, 5 pages.
Notice of Allowance dated Jan. 22, 2018, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 9 pages.
Notice of Allowance dated Jul. 22, 2020, issued in connection with U.S. Appl. No. 16/131,409, filed Sep. 14, 2018, 13 pages.
Notice of Allowance dated Jul. 22, 2020, issued in connection with U.S. Appl. No. 16/790,621, filed Feb. 13, 2020, 10 pages.
Notice of Allowance dated Nov. 22, 2021, issued in connection with U.S. Appl. No. 16/834,483, filed Mar. 30, 2020, 10 pages.
Notice of Allowance dated Aug. 23, 2021, issued in connection with U.S. Appl. No. 16/109,375, filed Aug. 22, 2018, 10 pages.
Notice of Allowance dated Jun. 23, 2021, issued in connection with U.S. Appl. No. 16/814,844, filed Mar. 10, 2020, 8 pages.
Notice of Allowance dated Apr. 24, 2019, issued in connection with U.S. Appl. No. 16/154,469, filed Oct. 3, 2018, 5 pages.
Notice of Allowance dated Oct. 25, 2021, issued in connection with U.S. Appl. No. 16/723,909, filed Dec. 20, 2019, 11 pages.
Notice of Allowance dated Aug. 26, 2020, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 9 pages.
Notice of Allowance dated May 26, 2021, issued in connection with U.S. Appl. No. 16/927,670, filed Jul. 13, 2020, 10 pages.
Notice of Allowance dated Apr. 27, 2020, issued in connection with U.S. Appl. No. 16/700,607, filed Dec. 2, 2019, 10 pages.
Notice of Allowance dated Mar. 27, 2019, issued in connection with U.S. Appl. No. 16/214,666, filed Dec. 10, 2018, 6 pages.
Notice of Allowance dated Mar. 28, 2018, issued in connection with U.S. Appl. No. 15/699,982, filed Sep. 8, 2017, 17 pages.
Notice of Allowance dated May 28, 2021, issued in connection with U.S. Appl. No. 16/524,306, filed Jul. 29, 2019, 9 pages.
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 13 pages.
Notice of Allowance dated Jan. 29, 2021, issued in connection with U.S. Appl. No. 16/290,599, filed Mar. 1, 2019, 9 pages.
Notice of Allowance dated Jun. 29, 2020, issued in connection with U.S. Appl. No. 16/216,357, filed Dec. 11, 2018, 8 pages.
Notice of Allowance dated Mar. 29, 2021, issued in connection with U.S. Appl. No. 16/600,949, filed Oct. 14, 2019, 9 pages.
Notice of Allowance dated May 29, 2020, issued in connection with U.S. Appl. No. 16/148,879, filed Oct. 1, 2018, 6 pages.
Notice of Allowance dated Sep. 29, 2021, issued in connection with U.S. Appl. No. 16/876,493, filed May 18, 2020, 5 pages.
Notice of Allowance dated Apr. 3, 2019, issued in connection with U.S. Appl. No. 16/160,107, filed Oct. 15, 2018, 7 pages.
Notice of Allowance dated Jun. 3, 2021, issued in connection with U.S. Appl. No. 16/876,493, filed May 18, 2020, 7 pages.
Notice of Allowance dated Mar. 3, 2022, issued in connection with U.S. Appl. No. 16/679,538, filed Nov. 11, 2019, 7 pages.
Notice of Allowance dated Jul. 30, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 5 pages.
Notice of Allowance dated Jul. 30, 2019, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 9 pages.
Notice of Allowance dated Mar. 30, 2020, issued in connection with U.S. Appl. No. 15/973,413, filed May 7, 2018, 5 pages.
Notice of Allowance dated Nov. 30, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 5 pages.
Notice of Allowance dated Oct. 30, 2019, issued in connection with U.S. Appl. No. 16/131,392, filed Sep. 14, 2018, 9 pages.
Notice of Allowance dated Oct. 30, 2020, issued in connection with U.S. Appl. No. 16/528,016, filed Jul. 31, 2019, 10 pages.
Notice of Allowance dated May 31, 2019, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 9 pages.
Notice of Allowance dated Jun. 4, 2021, issued in connection with U.S. Appl. No. 16/528,265, filed Jul. 31, 2019, 17 pages.
Notice of Allowance dated Mar. 4, 2020, issued in connection with U.S. Appl. No. 16/444,975, filed Jun. 18, 2019, 10 pages.
Notice of Allowance dated Feb. 5, 2020, issued in connection with U.S. Appl. No. 16/178,122, filed Nov. 1, 2018, 9 pages.
Notice of Allowance dated Oct. 5, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2018, 10 pages.
Notice of Allowance dated Feb. 6, 2019, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 9 pages.
Notice of Allowance dated Feb. 6, 2020, issued in connection with U.S. Appl. No. 16/227,308, filed Dec. 20, 2018, 7 pages.
Notice of Allowance dated Apr. 7, 2020, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 7 pages.
Notice of Allowance dated Apr. 7, 2020, issued in connection with U.S. Appl. No. 16/147,710, filed Sep. 29, 2018, 15 pages.
Notice of Allowance dated Jun. 7, 2019, issued in connection with U.S. Appl. No. 16/102,153, filed Aug. 13, 2018, 9 pages.
Notice of Allowance dated Jun. 7, 2021, issued in connection with U.S. Appl. No. 16/528,224, filed Jul. 31, 2019, 9 pages.
Notice of Allowance dated Nov. 8, 2021, issued in connection with U.S. Appl. No. 17/008,104, filed Aug. 31, 2020, 9 pages.
Notice of Allowance dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 11 pages.
Notice of Allowance dated Dec. 9, 2021, issued in connection with U.S. Appl. No. 16/845,946, filed Apr. 10, 2020, 10 pages.
Notice of Allowance dated Feb. 9, 2022, issued in connection with U.S. Appl. No. 17/247,736, filed Dec. 21, 2020, 8 pages.
Korean Patent Office, Korean Examination Report and Translation dated Apr. 10, 2023, issued in connection with Korean Application No. 10-2022-7024007, 8 pages.
Korean Patent Office, Korean Examination Report and Translation dated Oct. 13, 2022, issued in connection with Korean Application No. 10-2021-7030939, 4 pages.
Korean Patent Office, Korean Examination Report and Translation dated Apr. 19, 2022, issued in connection with Korean Application No. 10-2021-7008937, 14 pages.
Korean Patent Office, Korean Examination Report and Translation dated Jul. 26, 2022, issued in connectior with Korean Application No. 10-2022-7016656, 17 pages.
Korean Patent Office, Korean Examination Report and Translation dated Mar. 31, 2023, issued in connection with Korean Application No. 10-2022-7016656, 7 pages.
Korean Patent Office, Korean Examination Report and Translation dated Oct. 31, 2021, issued in connection with Korean Application No. 10-2022-7024007, 10 pages.
Korean Patent Office, Office Action and Translation dated Feb. 27, 2023, issued in connection with Korean Application No. 10-2022-7021879, 5 pages.
Mathias Wolfel. Channel Selection by Class Separability Measures for Automatic Transcriptions on Distant Microphones, INTERSPEECH 2007 10.21437/Interspeech.2007-255, 4 pages.
Non-Final Office Action dated Feb. 2, 2023, issued in connection with U.S. Appl. No. 17/305,698, filed Jul. 13, 2021, 16 pages.
Non-Final Office Action dated Dec. 5, 2022, issued in connection with U.S. Appl. No. 17/662,302, filed May 6, 2022, 12 pages.
Non-Final Office Action dated Oct. 5, 2022, issued in connection with U.S. Appl. No. 17/449,926, filed Oct. 4, 2021, 11 pages.
Non-Final Office Action dated Apr. 12, 2023, issued in connection with U.S. Appl. No. 17/878,649, filed Aug. 1, 2022, 16 pages.
Non-Final Office Action dated Nov. 14, 2022, issued in connection with U.S. Appl. No. 17/077,974, filed Oct. 22, 2020, 6 pages.
Non-Final Office Action dated Sep. 14, 2022, issued in connection with U.S. Appl. No. 17/446,690, filed Sep. 1, 2021, 10 pages.
Non-Final Office Action dated Aug. 15, 2022, issued in connection with U.S. Appl. No. 17/448,015, filed Sep. 17, 2021,12 pages.
Non-Final Office Action dated Dec. 15, 2022, issued in connection with U.S. Appl. No. 17/549,253, filed Dec. 13, 2021, 10 pages.
Non-Final Office Action dated Sep. 15, 2022, issued in connection with U.S. Appl. No. 17/247,507, filed Dec. 14, 2020, 9 pages.
Non-Final Office Action dated Sep. 15, 2022, issued in connection with U.S. Appl. No. 17/327,911, filed May 24, 2021, 44 pages.
Non-Final Office Action dated Feb. 16, 2023, issued in connection with U.S. Appl. No. 17/305,920, filed Jul. 16, 2021, 12 pages.
Non-Final Office Action dated Oct. 18, 2022, issued in connection with U.S. Appl. No. 16/949,973, filed Nov. 23, 2020, 31 pages.
Non-Final Office Action dated Sep. 19, 2022, issued in connection with U.S. Appl. No. 17/385,542, filed Jul. 26, 2021, 9 pages.
Non-Final Office Action dated Apr. 20, 2023, issued in connection with U.S. Appl. No. 18/061,570, filed Dec. 5, 2022, 12 pages.
Non-Final Office Action dated Oct. 20, 2022, issued in connection with U.S. Appl. No. 17/532,674, filed Nov. 22, 2021, 52 pages.
Non-Final Office Action dated Dec. 22, 2022, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 39 pages.
Non-Final Office Action dated Mar. 23, 2022, issued in connection with U.S. Appl. No. 16/907,953, filed Jun. 22, 2020, 7 pages.
Non-Final Office Action dated Sep. 23, 2022, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 25 pages.
Non-Final Office Action dated Apr. 24, 2023, issued in connection with U.S. Appl. No. 17/532,744, filed Nov. 22, 2021, 18 pages.
Non-Final Office Action dated May 24, 2022, issued in connection with U.S. Appl. No. 17/101,949, filed Nov. 23, 2020, 10 pages.
Non-Final Office Action dated Apr. 25, 2023, issued in connection with U.S. Appl. No. 17/536,572, filed Nov. 29, 2021, 8 pages.
Non-Final Office Action dated Apr. 25, 2023, issued in connection with U.S. Appl. No. 17/656,794, filed Mar. 28, 2022, 22 pages.
Non-Final Office Action dated Oct. 25, 2022, issued in connection with U.S. Appl. No. 17/549,034, filed Dec. 13, 2021, 20 pages.
Non-Final Office Action dated May 26, 2022, issued in connection with U.S. Appl. No. 16/989,805, filed Aug. 10, 2020, 14 pages.
Non-Final Office Action dated Feb. 27, 2023, issued in connection with U.S. Appl. No. 17/493,430, filed Oct. 4, 2021, 17 pages.
Non-Final Office Action dated Feb. 28, 2023, issued in connection with U.S. Appl. No. 17/548,921, filed Dec. 13, 2021, 12 pages.
Non-Final Office Action dated Mar. 28, 2022, issued in connection with U.S. Appl. No. 17/222,151, filed Apr. 5, 2021, 5 pages.
Non-Final Office Action dated Sep. 30, 2022, issued in connection with U.S. Appl. No. 17/353,254, filed Jun. 21, 2021, 22 pages.
Non-Final Office Action dated Nov. 4, 2022, issued in connection with U.S. Appl. No. 17/445,272, filed Aug. 17, 2021, 22 pages.
Non-Final Office Action dated Oct. 4, 2022, issued in connection with U.S. Appl. No. 16/915,234, filed Jun. 29, 2020, 16 pages.
Non-Final Office Action dated Apr. 5, 2023, issued in connection with U.S. Appl. No. 18/145,501, filed Dec. 22, 2022, 6 pages.
Non-Final Office Action dated Feb. 7, 2023, issued in connection with U.S. Appl. No. 17/303,001, filed May 18, 2021, 8 pages.
Notice of Allowance dated Nov. 2, 2022, issued in connection with U.S. Appl. No. 16/989,805, filed Aug. 10, 2020, 5 pages.
Notice of Allowance dated Nov. 3, 2022, issued in connection with U.S. Appl. No. 17/448,015, filed Sep. 17, 2021, 7 pages.
Notice of Allowance dated Feb. 6, 2023, issued in connection with U.S. Appl. No. 17/077,974, filed Oct. 22, 2020, 7 pages.
Notice of Allowance dated Jan. 6, 2023, issued in connection with U.S. Appl. No. 17/896,129, filed Aug. 26, 2022, 13 pages.
Notice of Allowance dated Dec. 7, 2022, issued in connection with U.S. Appl. No. 17/315,599, filed May 10, 2021, 11 pages.
Notice of Allowance dated Feb. 8, 2023, issued in connection with U.S. Appl. No. 17/446,690, filed Sep. 1, 2021, 8 pages.
Notice of Allowance dated Jan. 9, 2023, issued in connection with U.S. Appl. No. 17/247,507, filed Dec. 14, 2020, 8 pages.
Notice of Allowance dated Mar. 9, 2023, issued in connection with U.S. Appl. No. 17/662,302, filed May 6, 2022, 7 pages.
Notice of Allowance dated Nov. 9, 2022, issued in connection with U.S. Appl. No. 17/385,542, filed Jul. 26, 2021, 8 pages.
Advisory Action dated Nov. 7, 2022, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 4 pages.
Australian Patent Office, Australian Examination Report Action dated Nov. 10, 2022, issued in connection with Australian Application No. 2018312989, 2 pages.
Australian Patent Office, Australian Examination Report Action dated May 19, 2022, issued in connection with Australian Application No. 2021212112, 2 pages.
Australian Patent Office, Australian Examination Report Action dated Sep. 28, 2022, issued in connection with Australian Application No. 2018338812, 3 pages.
Canadian Patent Office, Canadian Examination Report dated Sep. 14, 2022, issued in connection with Canadian Application No. 3067776, 4 pages.
Canadian Patent Office, Canadian Examination Report dated Oct. 19, 2022, issued in connection with Canadian Application No. 3123601, 5 pages.
Canadian Patent Office, Canadian Examination Report dated Mar. 29, 2022, issued in connection with Canadian Application No. 3111322, 3 pages.
Canadian Patent Office, Canadian Examination Report dated Jun. 7, 2022, issued in connection with Canadian Application No. 3105494, 5 pages.
Chinese Patent Office, First Office Action and Translation dated Jun. 1, 2021, issued in connection with Chinese Application No. 201980089721.5, 21 pages.
Chinese Patent Office, First Office Action and Translation dated Feb. 9, 2023, issued in connection with Chinese Application No. 201880076788.0, 13 pages.
Chinese Patent Office, First Office Action and Translation dated Oct. 9, 2022, issued in connection with Chinese Application No. 201780056695.7, 10 pages.
Chinese Patent Office, First Office Action and Translation dated Nov. 10, 2022, issued in connection with Chinese Application No. 201980070006.7, 15 pages.
Chinese Patent Office, First Office Action and Translation dated Jan. 19, 2023, issued in connection with Chinese Application No. 201880064916.X, 10 pages.
Chinese Patent Office, First Office Action and Translation dated Sep. 19, 2022, issued in connection with Chinese Application No. 201980056604.9, 13 pages.
Chinese Patent Office, First Office Action and Translation dated Nov. 25, 2022, issued in connection with Chinese Application No. 201780056321.5, 8 pages.
Chinese Patent Office, First Office Action and Translation dated Feb. 27, 2023, issued in connection with Chinese Application No. 201980003798.6, 12 pages.
Chinese Patent Office, First Office Action and Translation dated Dec. 30, 2022, issued in connection with Chinese Application No. 201880076775.3, 10 pages.
Chinese Patent Office, Second Office Action and Translation dated Apr. 1, 2023, issued in connection with Chinese Application No. 201980056604.9, 11 pages.
Chinese Patent Office, Second Office Action dated Dec. 21, 2022, issued in connection with Chinese Application No. 201980089721.5, 12 pages.
European Patent Office, Decision to Refuse European Patent Application dated May 30, 2022, issued in connection with European Application No. 17200837.7, 4 pages.
European Patent Office, European EPC Article 94.3 dated Feb. 10, 2023, issued in connection with European Application No. 19729968.8, 7 pages.
European Patent Office, European EPC Article 94.3 dated May 2, 2022, issued in connection with European Application No. 20185599.6, 7 pages.
European Patent Office, European EPC Article 94.3 dated Jun. 21, 2022, issued in connection with European Application No. 19780508.8, 5 pages.
European Patent Office, European EPC Article 94.3 dated Feb. 23, 2023, issued in connection with European Application No. 19839734.1, 8 pages.
European Patent Office, European EPC Article 94.3 dated Nov. 28, 2022, issued in connection with European Application No. 18789515.6, 7 pages.
European Patent Office, European EPC Article 94.3 dated Jun. 30, 2022, issued in connection with European Application No. 19765953.5, 4 pages.
European Patent Office, European Extended Search Report dated Oct. 7, 2022, issued in connection with European Application No. 22182193.7, 8 pages.
European Patent Office, European Extended Search Report dated Apr. 22, 2022, issued in connection with European Application No. 21195031.6, 14 pages.
European Patent Office, European Extended Search Report dated Jun. 23, 2022, issued in connection with European Application No. 22153180.9, 6 pages.
European Patent Office, European Extended Search Report dated Jun. 30, 2022, issued in connection with European Application No. 21212763.3, 9 pages.
European Patent Office, European Extended Search Report dated Jul. 8, 2022, issued in connection with European Application No. 22153523.0, 9 pages.
European Patet Office, European Search Report dated Oct. 4, 2022, issued in connection with European Application No. 22180226.7, 6 pages.
European Patent Office, Summons to Attend Oral Proceedings mailed on Jul. 15, 2022, issued in connection with European Application No. 17792272.1, 11 pages.
Final Office Action dated Jun. 1, 2022, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 20 pages.
Final Office Action dated Aug. 17, 2022, issued in connection with U.S. Appl. No. 16/179,779, filed Nov. 2, 2018, 26 pages.
Final Office Action dated Mar. 21, 2022, issued in connection with U.S. Appl. No. 16/153,530, filed Oct. 5, 2018, 23 pages.
Final Office Action dated Aug. 22, 2022, issued in connection with U.S. Appl. No. 16/168,389, filed Oct. 23, 2018, 37 pages.
Final Office Action dated Jul. 27, 2022, issued in connection with U.S. Appl. No. 16/989,350, filed Aug. 10, 2020, 15 pages.
Final Office Action dated Mar. 29, 2023, issued in connection with U.S. Appl. No. 17/549,034, filed Dec. 13, 2021, 21 pages.
Final Office Action dated Jun. 7, 2022, issued in connection with U.S. Appl. No. 16/736,725, filed Jan. 7, 2020, 14 pages.
Helwani et al. Source-domain adaptive filtering for MIMO systems with application to acoustic echo cancellation. In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Jun. 28, 2010, 4 pages. [retrieved on Mar. 23, 2023], Retrieved from the Internet: URL: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C14&q=SOURCE−DOMAIN+ADAPTIVE+FILTERING+FOR+MIMO+SYSTEMS+WITH+APPLICATION+TO+ACOUSTIC+ECHO+CANCELLATION&btnG=.
International Bureau, International Preliminary Report on Patentability, dated Jul. 21, 2022, issued in connection with International Application No. PCT/US2021/070007, filed on Jan. 6, 2021, 8 pages.
International Bureau, International Preliminary Report on Patentability, dated Apr. 26, 2022, issued in connection with International Application No. PCT/US2020/056632, filed on Oct. 21, 2020, 7 pages.
Japanese Patent Office, Decision of Refusal and Translation dated Oct. 4, 2022, issued in connection with Japanese Patent Application No. 2021-535871, 6 pages.
Japanese Patent Office, Decision of Refusal and Translation dated Jul. 26, 2022, issued in connection with Japanese Patent Application No. 2020-513852, 10 pages.
Japanese Patent Office, Non-Final Office Action dated Apr. 4, 2023, issued in connection with Japanese Patent Application No. 2021-573944, 5 pages.
Japanese Patent Office, Notice of Reasons for Refusal and Translation dated Sep. 13, 2022, issued in connection with Japanese Patent Application No. 2021-163622, 12 pages.
Japanese Patent Office, Office Action and Translation dated Nov. 15, 2022, issued in connection with Japanese Patent Application No. 2021-146144, 9 pages.
Japanese Patent Office, Office Action dated Nov. 29, 2022, issued in connection with Japanese Patent Application No. 2021-181224, 6 pages.
Katsamanis et al. Robust far-field spoken command recognition for home automation combining adaptation and multichannel processing. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing—Proceedings, May 2014, pp. 5547-5551.
Notice of Allowance dated Jun. 10, 2022, issued in connection with U.S. Appl. No. 16/879,549, filed May 20, 2020, 8 pages.
Notice of Allowance dated May 11, 2022, issued in connection with U.S. Appl. No. 17/135,123, filed Dec. 28, 2020, 8 pages.
Notice of Allowance dated May 11, 2022, issued in connection with U.S. Appl. No. 17/145,667, filed Jan. 11, 2021, 7 pages.
Notice of Allowance dated Jul. 12, 2022, issued in connection with U.S. Appl. No. 16/907,953, filed Jun. 22, 2020, 8 pages.
Notice of Allowance dated Jul. 12, 2022, issued in connection with U.S. Appl. No. 17/391,404, filed Aug. 2, 2021, 13 pages.
Notice of Allowance dated Apr. 13, 2022, issued in connection with U.S. Appl. No. 17/236,559, filed Apr. 21, 2021, 7 pages.
Notice of Allowance dated Feb. 13, 2023, issued in connection with U.S. Appl. No. 18/045,360, filed Oct. 10, 2022, 9 pages.
Notice of Allowance dated Aug. 15, 2022, issued in connection with U.S. Appl. No. 17/101,949, filed Nov. 23, 2020, 11 pages.
Notice of Allowance dated Feb. 15, 2023, issued in connection with U.S. Appl. No. 17/659,613, filed Apr. 18, 2022, 21 pages.
Notice of Allowance dated Sep. 15, 2022, issued in connection with U.S. Appl. No. 16/736,725, filed Jan. 1, 2020, 11 pages.
Notice of Allowance dated Aug. 17, 2022, issued in connection with U.S. Appl. No. 17/135,347, filed Dec. 28, 2020, 14 pages.
Notice of Allowance dated Nov. 17, 2022, issued in connection with U.S. Appl. No. 17/486,222, filed Sep. 27, 2021, 10 pages.
Notice of Allowance dated Jul. 18, 2022, issued in connection with U.S. Appl. No. 17/222,151, filed Apr. 5, 2021, 5 pages.
Notice of Allowance dated Dec. 20, 2022, issued in connection with U.S. Appl. No. 16/806,747, filed Mar. 2, 2020, 5 pages.
Notice of Allowance dated Jan. 20, 2023, issued in connection with U.S. Appl. No. 16/915,234, filed Jun. 29, 2020, 6 pages.
Notice of Allowance dated Jun. 20, 2022, issued in connection with U.S. Appl. No. 16/947,895, filed Aug. 24, 2020, 7 pages.
Notice of Allowance dated Mar. 20, 2023, issued in connection with U.S. Appl. No. 17/562,412, filed Dec. 27, 2021, 9 pages.
Notice of Allowance dated Mar. 21, 2023, issued in connection with U.S. Appl. No. 17/353,254, filed Jun. 21, 2021, 8 pages.
Notice of Allowance dated Nov. 21, 2022, issued in connection with U.S. Appl. No. 17/454,676, filed Nov. 12, 2021, 8 pages.
Notice of Allowance dated Sep. 21, 2022, issued in connection with U.S. Appl. No. 17/128,949, filed Dec. 21, 2020, 8 pages.
Notice of Allowance dated Sep. 22, 2022, issued in connection with U.S. Appl. No. 17/163,506, filed Jan. 31, 2021, 13 pages.
Notice of Allowance dated Sep. 22, 2022, issued in connection with U.S. Appl. No. 17/248,427, filed Jan. 25, 2021, 9 pages.
Notice of Allowance dated Feb. 23, 2023, issued in connection with U.S. Appl. No. 17/532,674, filed Nov. 22, 2021, 10 pages.
Notice of Allowance dated Mar. 24, 2022, issued in connection with U.S. Appl. No. 16/378,516, filed Apr. 8, 2019, 7 pages.
Notice of Allowance dated Apr. 26, 2022, issued in connection with U.S. Appl. No. 17/896,129, filed Aug. 26, 2022, 8 pages.
Notice of Allowance dated Apr. 26, 2023, issued in connection with U.S. Appl. No. 17/658,717, filed Apr. 11, 2022, 11 pages.
Notice of Allowance dated Aug. 26, 2022, issued in connection with U.S. Appl. No. 17/145,667, filed Jan. 11, 2021, 8 pages.
Notice of Allowance dated Oct. 26, 2022, issued in connection with U.S. Appl. No. 17/486,574, filed Sep. 27, 2021, 11 pages.
Notice of Allowance dated Jun. 27, 2022, issued in connection with U.S. Appl. No. 16/812,758, filed Mar. 9, 2020, 16 pages.
Notice of Allowance dated Sep. 28, 2022, issued in connection with U.S. Appl. No. 17/444,043, filed Jul. 29, 2021, 17 pages.
Notice of Allowance dated Dec. 29, 2022, issued in connection with U.S. Appl. No. 17/327,911, filed May 24, 2021, 14 pages.
Notice of Allowance dated Jul. 29, 2022, issued in connection with U.S. Appl. No. 17/236,559, filed Apr. 21, 2021, 6 pages.
Notice of Allowance dated Mar. 29, 2023, issued in connection with U.S. Appl. No. 17/722,438, filed Apr. 18, 2022, 7 pages.
Notice of Allowance dated Mar. 30, 2023, issued in connection with U.S. Appl. No. 17/303,066, filed May 19, 2021, 7 pages.
Notice of Allowance dated Mar. 31, 2023, issued in connection with U.S. Appl. No. 17/303,735, filed Jun. 7, 2021, 19 pages.
Notice of Allowance dated Apr. 5, 2023, issued in connection with U.S. Appl. No. 17/549,253, filed Dec. 13, 2021, 10 pages.
Notice of Allowance dated Mar. 6, 2023, issued in connection with U.S. Appl. No. 17/449,926, filed Oct. 4, 2021, 8 pages.
Notice of Allowance dated Apr. 8, 2022, issued in connection with U.S. Appl. No. 16/813,643, filed Mar. 9, 2020, 7 pages.
Simon Doclo et al. Combined Acoustic Echo and Noise Reduction Using GSVD-Based Optimal-Filtering. In 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100), Aug. 6, 2002, 4 pages, [retrieved on Feb. 23, 2023], Retrieved from the Internet: URL: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C14&q=COMBINED+ACOUSTIC+ECHO+AND+NOISE+REDUCTION+USING+GSVD-BASED+OPTIMAL+FILTERING&btnG=.
Wikipedia. “The Wayback Machine”, Speech recognition software for Linux, Sep. 22, 2016, 4 pages, [retrieved on Mar. 28, 2022], Retrieved from the Internet: URL: https://web.archive.org/web/20160922151304/https://en.wikipedia.org/wiki/Speech_recognition_software_for_Linux.
Wolf et al. On the potential of channel selection for recognition of reverberated speech with multiple microphones. Interspeech, TALP Research Center, Jan. 2010, 5 pages.
Wölfel et al. Multi-source far-distance microphone selection and combination for automatic transcription of lectures, INTERSPEECH 2006—ICSLP, Jan. 2006, 5 pages.
Zhang et al. Noise Robust Speech Recognition Using Multi-Channel Based Channel Selection and Channel Weighting. The Institute of Electronics, Information and Communication Engineers, arXiv:1604.03276v1 [cs.SD] Jan. 1, 2010, 8 pages.
Related Publications (1)
Number Date Country
20220121418 A1 Apr 2022 US
Provisional Applications (1)
Number Date Country
62669385 May 2018 US
Continuations (1)
Number Date Country
Parent 16109375 Aug 2018 US
Child 17453632 US