Building walls, such as foundation walls below grade, are subjected to external forces from soil, hydrostatic pressures, and/or plant root system growth. These forces or pressures can cause foundation walls to bow or lean. In some instances, these forces are applied on plots where there is only a small distance from the wall at issue and another adjacent structure, environmental obstacles, or a given property line.
It is with respect to these and other general considerations that aspects disclosed herein have been made. Also, although relatively specific problems may be discussed, it should be understood that the aspects should not be limited to solving the specific problems identified in the background or elsewhere in this disclosure.
In summary, the disclosure generally relates to systems and methods for supporting and/or straightening a building wall. The systems and methods as disclosed herein utilize a pivot bracket and/or a plate. The systems and methods as disclosed herein apply a compression load to a floor support structure during the supporting and/or straightening of a wall.
In one aspect, the disclosure is directed to a support system. The support system includes a beam, a pivot bracket, a force application mechanism, and a plate. The beam has a first end and a second end. The beam is configured to support a building wall located between a first floor and a second floor. The first end of the beam is configured to couple to the first floor. The pivot bracket includes a cam surface and a rotational coupling. The pivot bracket is configured to pivotably couple to a floor support structure of the second floor utilizing the rotational coupling. The force application mechanism interacts with the pivot bracket and engages the second end of the beam. The plate is configured to couple to the floor support structure of the second floor and is positioned to mechanically link with the cam surface of the pivot bracket.
In another aspect, the disclosure is directed to a method for supporting and/or straightening a building wall. The method includes:
aligning a beam with a first end and a second end along the building wall between a first floor and a second floor;
coupling the first end of the beam to the first floor;
coupling a pivot bracket including a cam surface and a rotation coupling to a floor support structure of the second floor utilizing the rotation coupling;
positioning a plate to mechanically link with the cam surface of the pivot bracket to form a positioned plate;
coupling the positioned plate to the floor support structure of the second floor;
positioning a force application mechanism to interact with the pivot bracket and to engage the second end of the beam; and
actuating the force application mechanism to apply a force to the second end of the beam.
In yet another aspect, the disclosure is directed to a support system. The support system includes a bean, a pivot bracket, a force application mechanism, and a plate. The beam has a first end and a second end. The pivot bracket includes a receptacle, a cam surface, and a rotational coupling. The force application mechanism is placed through the receptacle of the pivot bracket until the force application mechanism engages with the second end of the beam. The plate is positioned to mechanically link with the cam surface of the pivot bracket.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended as an aid in determining the scope of the claimed subject matter.
These and other features and advantages will be apparent from a reading of the following detailed description and a review of the associated drawings. It is to be understood that both the foregoing general description and the following detailed description are illustrative only and are not restrictive of the claims.
Non-limiting and non-exhaustive examples or aspects are described with reference to the following Figures.
As discussed above, forces from soil, hydrostatic pressures, and/or plant root systems can cause a foundation wall below grade to bow or lean. Several different types of systems are currently utilized to reinforce and straighten a wall that is bowing or leaning. Some systems utilize a beam or support vertically aligned along the bowed or leaning wall. In these systems, the beam is anchored or otherwise secured to the foundation and to the underside of the upper floor. However, these previously utilized systems provide flawed load transfer from the beam to the underside of the floor. For example, the previously utilized systems apply an eccentric load to the distribution member.
Therefore, the systems and methods disclosed herein support and/or straighten a leaning or bowed wall by applying a direct compression load to the distribution member. The systems and methods disclosed herein utilize a pivot bracket and/or a plate for a direct transfer of the load to the distribution member, which spreads the load to the rest of the floor structure.
In the following detailed description, references are made to the accompanying drawings that form a part hereof, and in which are shown by way of illustrations specific embodiments, aspects, or examples. These aspects or examples may be combined, other aspects or examples may be utilized, and structural changes may be made without departing from the spirit or scope of the present disclosure. The following detailed description is therefore not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims and their equivalents.
Referring now to the drawings, in which like numerals represent like elements through the several figures, various aspects of the disclosure will be described.
In some aspects, the system 100 for supporting and/or straightening a building wall 102 also includes one or more block inserts 116, one or more attachment mechanisms 114, a holding bracket 110, and/or a base bracket 106. The building wall 102 runs between a first floor 118 and a second floor 120. The first floor 118 and/or the second floor 120 may include a floor support structure 122. The floor support structure may be on the underside of the first floor 118 and/or the second floor 120. In some aspects, the floor support structure 122 includes one or more joist 124. The floor support structure 122, such as floor joists 124, may run perpendicular or parallel to the bowed or leaning building wall 102 depending upon the second floor configuration. Accordingly, the floor support structure 122, such as floor joists 124, may run perpendicular or parallel to the Y-axis of the beam 104 depending upon second floor configuration.
In some aspects, the building wall 102 starts at a top side of a first floor 118 and runs to the floor support structure 122 of a second floor 120. However, this configuration is exemplary only and is not meant to be limiting. The building wall 102 may be configured to run from any portion of a first floor 118 to any portion of a second floor 120. In some aspects, the building wall 102 is a foundation wall that is below grade as illustrated in
The support system 100 prevents any further inward bowing and/or leaning of building wall 102. In some aspects, if conditions are favorable, the support system 100 will straighten a bowed and/or leaning wall 102 over time. For example, as the soil 130 exterior to the building wall 102 dries out or shrinks, the support system 100 will push the building wall 102 back into the area from where the expanded soil 130 had receded.
The first end 150 of the beam 104 is coupled to the first floor 118. In some aspects, the first end 150 is coupled to the first floor utilizing a base bracket 106 and an attachment mechanism 114 as illustrated in
In alternative aspects, the beam 104 is coupled to the first floor 118 by embedding the beam 104 into the first floor 118 as illustrated in
The beam 104 is extended up or aligned with the wall 102. In some aspects, the beam 104 is extended as flush as can be given the bowed or leaning wall 102 as illustrated in
In other aspects, a holding bracket 110 is not utilized by the support system 100. In these aspects, the beam 104 utilizes another mechanism, such as an attachment mechanism 114, to couple to the second end of the beam 152 to the second floor 120. In alternative aspects, the second end of the beam may be embedded into the second floor 120. Further, in these aspects, the force application mechanism 112 may also couple to, engage, or mechanically engage with the second end 152 of the beam 104 utilizing any suitable mechanism, including no mechanism, as known by a person of skill in the art, such as a notch, a mechanical linkage, bolts, etc. As understood by a person of skill in the art, any suitable system or method for coupling the beam 104 to a floor 120 may be utilized herein. Alternatively, as discussed above, the second end 152 of the beam 104 is not coupled to the second floor 120.
As discussed above, the floor 120 includes a floor support structure 122, such as one or more joist 124 as illustrated by
In other configurations, the floor support structure 122 may include one or more floor joist 124 that run perpendicular to the wall 102.
The block inserts 116 may be utilized by the support system 100 to provide additional areas to attach the plate 115 and/or pivot bracket 108. In some aspects, the block inserts 116 may be utilized by the support system 100 to help provide load transfer from the beam 104 to the second floor 120. In some aspects, a block insert 116 may be a wood member. The wood member may be a wooden board, such as 2×4. These examples are not meant to be limiting. The block insert 116 may be made of any suitable material, size and/or shape for use with support system 100.
In further aspects, two block inserts 116 may be positioned side-by-side lengthwise to extend the distance between the first and second joists of the floor 120 as illustrated by reference number 180 in
Unlike previously utilized support systems, the support system 100 as disclosed herein includes a pivot bracket 108.
In some aspects, the pivot bracket 108 includes two parallel sides 160A, 160B that extend from a front face 162. The parallel sides 160A and 160B may be mirror copies of each other. In some aspects, the front face 162 includes the receptacle 134. The receptacle 134 may be threaded to receive the force application mechanism 112. In other aspects, as discussed above, the pivot bracket 108 does not include a receptacle 134.
Each of the two parallel sides 160A and 160B may include a cam surface 136 and the rotational coupling 132 or apertures for receiving a pivot pin or bolt 138 or any other suitable attachment mechanism for the rotational coupling. The cam surfaces 136 are on the back surface 164 of the pivot bracket 108 and may be on a side opposite the front face 162. In some aspects, each of the parallel sides 160A and 160B is L-shaped as illustrated in
The pivot bracket 108 is coupled to the second floor 120. In some aspects, the pivot bracket 108 is directly attached to the floor 120 utilizing the rotational coupling 132. In further aspects, the pivot bracket 108 is directly attached to a floor support structure 122, such as a joist 124, of the second floor 120. In some aspects, the pivot bracket 108 is directly attached to a floor support structure 122, such as a joist 124, and an insert block 116. In other aspects, the pivot bracket 108 is indirectly attached to the floor 120. In further aspects, the pivot bracket 108 is indirectly attached to a floor support structure 122, such as a joist 124, of the second floor 120. For example, in some aspects, the pivot bracket 108 may be directly attached to the block inserts 116 for indirect attachment to the floor 120. In another example, the pivot bracket 108 is directly attached to a connector and/or another bracket for indirect attachment to the floor support structure of the second floor 120.
The rotational coupling 132 is utilized to couple the pivot bracket 108 to the floor 120 via an attachment mechanism, such as a bolt or pin 138. The bolt or pin 138 may be threaded or partially threaded. The rotational coupling 132 allows the pivot bracket 108 to rotate around the attachment mechanism 114. The force application mechanism 112 is positioned to interact with pivot bracket 108 and to engage the beam 104. In some aspects, the force application mechanism interacts with the front face 162 of the pivot bracket 108. Accordingly, upon actuation of the force application mechanism 112, the force application mechanism 112 applies a force to the second end of the beam 104. This force pushes the beam 104 towards the building wall 102 and a directional force 149 (shown as an arrow) is exerted upon the pivot bracket 108 as illustrated in
The support system 100 also includes a plate 115.
Once positioned, the plate 115 may be directly or indirectly coupled to the floor 120 utilizing an attachment mechanism 114, such as screws, nails, anchors, etc. The attachment mechanism 114 may extend through the plate 115 via attachment apertures 144. The attachment apertures 144 may be spaced across the length 146 of the plate 115. In other aspects, the attachment apertures 144 may be spaced across a portion of the plate 115. In some aspects, the plate 115 is directly attached to the floor support structure 122 of floor 120, such as to a first and second joist 124. In other aspects, the plate 115 is directly attached to the block inserts 116, which are directly attached to the support structure 122 of floor 120, such as to a first and second joist 124. In further aspects, the plate 115 is directly or indirectly attached to one or more block inserts 116 and/or to one or more floor joists 124.
In some aspects, the plate 115 is configured to have a length 146 that spans or extends past at least two floor joists 124 or at least two block inserts 116 positioned between at least one different floor joist. In some aspects, the plate 115 is elongated and extends across multiple floor joists 124 and/or block inserts 116.
Further, because the pivot bracket 108 applies the load to the plate 115 by means of tangential contact due to rotation, the depth 148 of the plate 115 can be minimized to prevent any significant impact on height clearance of the upper floor hanging structure. As such, the plate 115 may also be configured to have a depth 148 from 1/16th of an inch to ½ inch. However, any suitable depth 148 for the plate 115 for use with the support system 100 may be utilized. Further, the plate 115 may have any suitable size or shape. For example, the width 147 of the plate 115 may extend across the width of two insert blocks 116 that are positioned lengthwise and side-by-side. In another example, the width 147 of the plate 115 may extend across the width of an insert blocks 116 and an adjacent floor joist 124. In other examples, the plate 115 may have a width that is less than one or more adjacent floor joists 124 and/or block inserts 116.
Method 400 begins at operation 402. At operation 402, a beam is aligned with a building wall that needs support and/or straightening between a first floor and a second floor. The beam includes a first end and a second end. In some aspects, the second end of the beam includes an integral holding bracket. In other aspects, a holding bracket is attached to the second end of the beam utilizing an attachment mechanism, such as being welded or bolted to the second end of the beam. In further aspects, the second end of the beam does not include a holding bracket. The second end of the beam may or may not be coupled to the second floor. In further aspects, the second end of the beam is positioned to engage, contact or mechanical engage with a force application mechanism.
Method 400 also includes operation 404. At operation 404, the first end of the beam is coupled to a first floor. In some aspects, the first end may be coupled to the first floor utilizing a base bracket and an attachment mechanism at operation 404. For example, the beam is bolted to the bracket and the base bracket is bolted to the first floor. In other examples, the base bracket is an integral part of the beam. In other aspects, the first end may be coupled to the first floor by embedding the first end of the beam into the first floor.
In some aspects, method 400 includes operation 406. At operation 406, one or more block inserts are attached to a second floor. In some aspects, the second floor includes a floor support structure, such as joists. In these aspects, the block inserts may be positioned in the floor support structure and directly or indirectly coupled to the floor support structure utilizing one or more attachment mechanisms.
At operation 408, a pivot bracket is coupled to a second floor utilizing a rotational coupling. The pivot bracket may include a cam surface and/or a rotational coupling. In some aspects, the pivot bracket also includes a receptacle. In some aspects, the pivot bracket is coupled to the floor support structure of the second floor at operation 408. In some aspects, the pivot bracket is directly attached to the floor support structure at operation 408. In other aspects, the pivot bracket is indirectly attached to the floor support structure by being directly attached to one or more block inserts at operation 408. In other aspects, the pivot bracket is directly attached to both a floor support structure of the floor and one more block inserts.
At operation 410, a plate is positioned to mechanically link with a cam surface of the pivot bracket to form a positioned plate. Next, at operation 412, the positioned plate is coupled directly or indirectly to the second floor. The plate may be coupled to the second floor utilizing an attachment mechanism. In some aspects, the plate is coupled to a floor support structure of the second floor at operation 412. In some aspects, the plate is directly attached to the floor support structure at operation 412. In other aspects, the plate is indirectly attached to the floor support structure by being directly attached to a plurality of insert blocks at operation 412. In some aspects, if the plate is attached to the floor support structure, the pivot bracket is attached to an insert block. In other aspects, if the plate is attached to a plurality of insert blocks, the pivot bracket is attached to the floor support structure.
Next, method 400 includes operation 414. At operation 414, a force application mechanism is positioned to interact with the pivot bracket and engage the second end of the beam. For example, in some aspects at operation 414, the force application mechanism is inserted through a receptacle of the pivot bracket until the force application mechanism couples, abuts, engages, or mechanically engages with the second end of the beam. In other aspects, the force application mechanism abuts, engages or mechanically engages, and/or contacts a surface of the pivot bracket, such as the front face of the pivot bracket, at one end and is applied or extended until the other end of the force application mechanism engages the second end of the beam. In some aspects, the force application system is received by a structure, such as bolt receptacle or notch, on the second end of the beam or on a holding bracket attached to a second end of the beam. In other aspects, the force application mechanism abuts, engages, and/or contacts a surface of the second end of the beam.
After operation 414, operation 416 is performed. At operation 416, the force application mechanism is actuated (e.g., loaded, rotated, tightened, positioned and/or extended) to apply a force to the second end of the beam. The force application mechanism may be loaded, rotated, tightened, positioned and/or extended until the second end of the beam is pushed up against the building wall at operation 414. In other aspects, the force application mechanism is loaded, rotated, tightened, positioned and/or extended to push the second end of the beam closer to the building wall at operation 414. In these aspects, the force application mechanism may be further loaded, rotated, tightened, positioned and/or extended after a predetermined amount of time to push the second end of the beam closer to the building wall at operation 414. As the force application mechanism is actuated, the force application mechanism applies a force on the beam and the pivot bracket. This application of force on the pivot bracket causes the pivot bracket to rotate and to abut, couple, engage, or mechanically engage or interact with the positioned plate. The pivoting action of the pivot bracket puts a direct compression load on the plate as the pivot bracket bears on the follower surface of the plate. As such, no or very little moment is induced on the plate and/or the support structure of the floor. Accordingly, the method 400 induces less moment on the support structure of the floor when compared to previously utilized systems that did not include a pivot bracket. Further, method 400 provides for a direct transfer of the load to the distribution member by utilizing the pivot bracket and/or plate, which spread the load to the rest of the floor structure.
Aspects of the present disclosure, for example, are described above with reference to block diagrams and/or operational illustrations of methods and systems, according to aspects of the disclosure. The functions/acts noted in the blocks may occur out of the order as shown in any flowchart. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved. For example, operations 402, 406, and/or 408 may be performed in any order, at overlapping times, or simultaneously. In a further example, operations 410 and 412 could be performed before operation 408. In this example, the pivot bracket is positioned to ensure that a mechanical link is formed between the pivot bracket and the positioned plate during method 400. In another example, operations 402 and 404 could be the last operations performed during method 400.
This disclosure described some aspects of the present technology with reference to the accompanying drawings, in which only some of the possible aspects were described. Other aspects can, however, be embodied in many different forms and the specific aspects disclosed herein should not be construed as limited to the various aspects of the disclosure set forth herein. Rather, these exemplary aspects were provided so that this disclosure was thorough and complete and fully conveyed the scope of the other possible aspects to those skilled in the art. For example, aspects of the various aspects disclosed herein may be modified and/or combined without departing from the scope of this disclosure.
The description and illustration of one or more aspects provided in this application are not intended to limit or restrict the scope of the disclosure as claimed in any way. The embodiments, examples, and details provided in this application are considered sufficient to convey possession and enable others to make and use the best mode of claimed disclosure. The claims should not be construed as being limited to any embodiment, example, aspect, or detail provided in this application. Regardless of whether shown and described in combination or separately, the various features (both structural and methodological) are intended to be selectively included or omitted to produce an embodiment with a particular set of features. Having been provided with the description and illustration of the present application, one skilled in the art may envision variations, modifications, and alternate embodiments falling within the spirit of the broader aspects of the general inventive concept embodied in this application that do not depart from the broader scope of the claims.
This application claims the benefit of and priority to U.S. provisional patent application Ser. No. 64/464,802, filed Feb. 28, 2017, and entitled “SYSTEMS AND METHODS FOR WALL SUPPORT AND/OR STRAIGHTENING,” which application is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62464802 | Feb 2017 | US |