Systems and methods for wall support and/or straightening

Information

  • Patent Grant
  • 10612254
  • Patent Number
    10,612,254
  • Date Filed
    Tuesday, February 27, 2018
    6 years ago
  • Date Issued
    Tuesday, April 7, 2020
    4 years ago
  • Inventors
  • Original Assignees
    • SUPPORTWORKS, INC. (Omaha, NE, US)
  • Examiners
    • Canfield; Robert
    • Gitlin; Matthew J
    Agents
    • Suiter Swantz pc llo
Abstract
System and methods for supporting and/or straightening a building wall are provided. The systems and methods utilize a pivot bracket.
Description
INTRODUCTION

Building walls, such as foundation walls below grade, are subjected to external forces from soil, hydrostatic pressures, and/or plant root system growth. These forces or pressures can cause foundation walls to bow or lean. In some instances, these forces are applied on plots where there is only a small distance from the wall at issue and another adjacent structure, environmental obstacles, or a given property line.


It is with respect to these and other general considerations that aspects disclosed herein have been made. Also, although relatively specific problems may be discussed, it should be understood that the aspects should not be limited to solving the specific problems identified in the background or elsewhere in this disclosure.


SUMMARY

In summary, the disclosure generally relates to systems and methods for supporting and/or straightening a building wall. The systems and methods as disclosed herein utilize a pivot bracket and/or a plate. The systems and methods as disclosed herein apply a compression load to a floor support structure during the supporting and/or straightening of a wall.


In one aspect, the disclosure is directed to a support system. The support system includes a beam, a pivot bracket, a force application mechanism, and a plate. The beam has a first end and a second end. The beam is configured to support a building wall located between a first floor and a second floor. The first end of the beam is configured to couple to the first floor. The pivot bracket includes a cam surface and a rotational coupling. The pivot bracket is configured to pivotably couple to a floor support structure of the second floor utilizing the rotational coupling. The force application mechanism interacts with the pivot bracket and engages the second end of the beam. The plate is configured to couple to the floor support structure of the second floor and is positioned to mechanically link with the cam surface of the pivot bracket.


In another aspect, the disclosure is directed to a method for supporting and/or straightening a building wall. The method includes:


aligning a beam with a first end and a second end along the building wall between a first floor and a second floor;


coupling the first end of the beam to the first floor;


coupling a pivot bracket including a cam surface and a rotation coupling to a floor support structure of the second floor utilizing the rotation coupling;


positioning a plate to mechanically link with the cam surface of the pivot bracket to form a positioned plate;


coupling the positioned plate to the floor support structure of the second floor;


positioning a force application mechanism to interact with the pivot bracket and to engage the second end of the beam; and


actuating the force application mechanism to apply a force to the second end of the beam.


In yet another aspect, the disclosure is directed to a support system. The support system includes a bean, a pivot bracket, a force application mechanism, and a plate. The beam has a first end and a second end. The pivot bracket includes a receptacle, a cam surface, and a rotational coupling. The force application mechanism is placed through the receptacle of the pivot bracket until the force application mechanism engages with the second end of the beam. The plate is positioned to mechanically link with the cam surface of the pivot bracket.


This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended as an aid in determining the scope of the claimed subject matter.


These and other features and advantages will be apparent from a reading of the following detailed description and a review of the associated drawings. It is to be understood that both the foregoing general description and the following detailed description are illustrative only and are not restrictive of the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive examples or aspects are described with reference to the following Figures.



FIGS. 1A-1C are schematic diagrams illustrating a support system for supporting and/or straightening a building wall, in accordance with an aspect of the disclosure.



FIGS. 2A-2C are schematic diagrams illustrating a support system for supporting and/or straightening a building wall, in accordance with an aspect of the disclosure.



FIG. 3A is a side view illustrating a pivot bracket of the support system, in accordance with an aspect of the disclosure.



FIG. 3B is an isometric front view illustrating the pivot bracket in FIG. 3A of the support system, in accordance with an aspect of the disclosure.



FIG. 4 is a bottom view of the pivot bracket attached to a replica floor support structure with block inserts, in accordance with an aspect of the disclosure.



FIG. 5A is a schematic diagram illustrating a side view of a pivot bracket attached to a replica floor support structure with block inserts showing an application of directional force to the pivot bracket, in accordance with an aspect of the disclosure.



FIG. 5B is a schematic diagram illustrating a side view of the pivot bracket attached to the replica floor support structure from FIG. 5A showing a gap created under the front surface of the pivot bracket formed in response to the application of the directional force on the pivot bracket, in accordance with an aspect of the disclosure.



FIG. 6 is a bottom view illustrating an example plate for a support system, in accordance with an aspect of the disclosure.



FIG. 7 is a partial bottom view illustrating a pivot bracket rotationally coupled to replica block inserts and engaged with a plate directly attached to replica first and second floor joists, in accordance with aspects of disclosure.



FIG. 8 is a partial, isometric view illustrating an example of an installed support system for supporting and/or straightening a building wall, in accordance with aspects of the disclosure.



FIG. 9 is a flow diagram illustrating a method for supporting and/or straightening a wall, in accordance with an aspect of the disclosure.



FIG. 10 is top view illustrating two different axes of the I-beam, in accordance with an aspect of the disclosure.



FIGS. 11A-11B are schematic diagrams illustrating partial, bottom views of a parallel joist floor support structure and a support system in different stages of installation, in accordance with aspects of disclosure.



FIG. 11C is a schematic diagram illustrating a partial, side cross-sectional view of FIG. 11B, in accordance with aspects of the disclosure



FIGS. 12A-12B are schematic diagrams illustrating partial, bottom views of a perpendicular joist support structure and a support system in different stages of installation, in accordance with aspects of the disclosure.



FIG. 12C is a schematic diagram illustrating a partial, side cross-sectional view of FIG. 12B, in accordance with aspects of the disclosure.





DETAILED DESCRIPTION

As discussed above, forces from soil, hydrostatic pressures, and/or plant root systems can cause a foundation wall below grade to bow or lean. Several different types of systems are currently utilized to reinforce and straighten a wall that is bowing or leaning. Some systems utilize a beam or support vertically aligned along the bowed or leaning wall. In these systems, the beam is anchored or otherwise secured to the foundation and to the underside of the upper floor. However, these previously utilized systems provide flawed load transfer from the beam to the underside of the floor. For example, the previously utilized systems apply an eccentric load to the distribution member.


Therefore, the systems and methods disclosed herein support and/or straighten a leaning or bowed wall by applying a direct compression load to the distribution member. The systems and methods disclosed herein utilize a pivot bracket and/or a plate for a direct transfer of the load to the distribution member, which spreads the load to the rest of the floor structure.


In the following detailed description, references are made to the accompanying drawings that form a part hereof, and in which are shown by way of illustrations specific embodiments, aspects, or examples. These aspects or examples may be combined, other aspects or examples may be utilized, and structural changes may be made without departing from the spirit or scope of the present disclosure. The following detailed description is therefore not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims and their equivalents.


Referring now to the drawings, in which like numerals represent like elements through the several figures, various aspects of the disclosure will be described. FIGS. 1A-1C and 2A-2C are schematic diagrams illustrating a support system 100 for supporting and/or straightening a building wall 102, in accordance with an aspect of the disclosure. The support system 100 for supporting and/or straightening a building wall 102 includes a beam 104, a pivot bracket 108, a force application mechanism 112, and a plate 115. The beam may be made of one or more different materials, such as iron, steel, aluminum, etc., or any suitable material for supporting a bowing and/or leaning wall. The beam may be in any suitable size or shape for supporting a leaning and/or bowing wall, such as round, rectangular, square, triangular, etc. For example, the beam 104 may be a steel I-beam with a cross-section as illustrated in FIG. 10. FIG. 10 also illustrates two different axes of the I-beam.


In some aspects, the system 100 for supporting and/or straightening a building wall 102 also includes one or more block inserts 116, one or more attachment mechanisms 114, a holding bracket 110, and/or a base bracket 106. The building wall 102 runs between a first floor 118 and a second floor 120. The first floor 118 and/or the second floor 120 may include a floor support structure 122. The floor support structure may be on the underside of the first floor 118 and/or the second floor 120. In some aspects, the floor support structure 122 includes one or more joist 124. The floor support structure 122, such as floor joists 124, may run perpendicular or parallel to the bowed or leaning building wall 102 depending upon the second floor configuration. Accordingly, the floor support structure 122, such as floor joists 124, may run perpendicular or parallel to the Y-axis of the beam 104 depending upon second floor configuration.


In some aspects, the building wall 102 starts at a top side of a first floor 118 and runs to the floor support structure 122 of a second floor 120. However, this configuration is exemplary only and is not meant to be limiting. The building wall 102 may be configured to run from any portion of a first floor 118 to any portion of a second floor 120. In some aspects, the building wall 102 is a foundation wall that is below grade as illustrated in FIGS. 1A-1C and 2A-2C. As such, in these aspects, earth 130 and/or soil 130 is located on the exterior side 126 of the building wall 102. The beam 104 is positioned next to the interior side 128 of a leaning or bowing building wall 102. In some aspects, the building wall 102 bows or leans due to external forces pushing against the building wall 102 and causes a crack to form in the building wall 102.


The support system 100 prevents any further inward bowing and/or leaning of building wall 102. In some aspects, if conditions are favorable, the support system 100 will straighten a bowed and/or leaning wall 102 over time. For example, as the soil 130 exterior to the building wall 102 dries out or shrinks, the support system 100 will push the building wall 102 back into the area from where the expanded soil 130 had receded.



FIGS. 1A and 2A are schematic diagrams illustrating a support system 100 after an initial installation, in accordance with an aspect of the disclosure. FIGS. 1B and 2B are schematic diagrams illustrating the system 100 as shown in FIGS. 1A and 2A after the force application mechanism 112 has been tightened, extended, or positioned to apply a force to the beam 104, in accordance with an aspect of the disclosure. The force application mechanism 112 may be a jack, a compression pin, scissor jack, a wedge, a dowel, a bolt, a hydraulic pump, etc. This list is exemplary and is not meant to be limiting. The force application mechanism may be any physical structure utilized to apply a force on the support system 100. As discussed above, the beam 104 includes two ends, such a first end 150 and second end 152. Each end 150 and 152 is positioned at one of the floors 118 and 120 during installation of the support system 100. In some aspects, the force application mechanism 112, such as a bolt, is positioned to force an end 152 of the beam 104 up against or closer to the building wall 102. The beam 104 may be configured to support a building wall 102 located between a first floor 118 and second floor 120. The tightening, positioning, extension, and/or or rotation of the force application mechanism 112 causes the support system 100 to apply a constant load to the building wall 102. As discussed above, the constant load may be transferred by the support system 100 by direct force to the load distribution plate 115 then to the floor support structure of the second floor 120. FIGS. 1C and 2C are a schematic diagram illustrating the system 100 shown in FIGS. 1B and 2B after a predetermined amount of time has passed from the loading of the force application mechanism 112 to allow the support system 100 to straighten the building wall 102, in accordance with an aspect of the disclosure.


The first end 150 of the beam 104 is coupled to the first floor 118. In some aspects, the first end 150 is coupled to the first floor utilizing a base bracket 106 and an attachment mechanism 114 as illustrated in FIGS. 1A-1C. The term “couple” or “coupled” as utilized herein refers to a direct attachment of items or to an indirect attachment of to two items through an intermediate piece. An attachment mechanism 114 as utilized herein refers to any suitable system for attaching one component to another, such as welding, adhesive, bolts, screws, nails, pins, anchors, concrete, etc. As illustrated by FIGS. 1A-1C, the base bracket 106 may be welded to the beam 104, which is attached to the floor 118 utilizing a screw or bolt. In some aspects, the base bracket 106 is directly fixed or attached to an end 150 of the beam 104 and a floor 118. In other aspects, the base bracket 106 is in an integral part of the beam 104. In other aspects, the base bracket 106 is indirectly fixed or attached to an end 150 of the beam 104 and/or a floor 118.


In alternative aspects, the beam 104 is coupled to the first floor 118 by embedding the beam 104 into the first floor 118 as illustrated in FIGS. 2A-2C. The beam 104 may be embedding into the first floor 118 by inserting the first end 150 of the beam 104 into a hole in the first floor 118. The hole may be dug or created in the first floor 118 for the beam 104. In further aspects, the first end 150 of the beam 104 may be secured to the hole in the first floor 118 utilizing an attachment mechanism, such as bolts, concrete, welding, or asphalt. In other aspects, the end of the beam 104 is not secured to the first floor 118 and/or the hole and is instead just placed inside the hole. This list of couplings between the beam 104 and the first floor 118 is exemplary and is not meant to be limiting. As understood by a person of skill in the art, any suitable system or method for coupling the beam 104 to a floor 118 may be utilized herein.


The beam 104 is extended up or aligned with the wall 102. In some aspects, the beam 104 is extended as flush as can be given the bowed or leaning wall 102 as illustrated in FIGS. 1A and 2A. In some aspects, the second end 152 of the beam 104 is coupled to the second floor 120 and/or pivot bracket 108. In some aspects, the second end 152 of the beam 104 is coupled to the second floor 120 utilizing a holding bracket 110, a pivot bracket 108, and/or a force application mechanism 112. In other aspects, the second end 152 of the beam 104 is not coupled to the second floor 152, but instead interacts with or engages a force application mechanism 112. While these aspects show the first end 150 and the first floor 118 being on the bottom and the second floor 120 and second end 152 being on the top, the first floor 118 and/or the first end 150 may be on the top or bottom depending upon the configuration of the beam 104 and/or building. An attachment mechanism 114 may be utilized to attach the holding bracket 110 to the second end 152 of the beam 104. In other aspects, the holding bracket 110 is an integral part of the beam 104. In some aspects, the holding bracket 110 is directly attached to the beam 104. The holding bracket 110 may include a structure, such as a notch or bolt receptacle, for receiving an end of the force application mechanism 112. In some aspects, the structure is configured to receive an end of the force application mechanism 112, such as a bolt.


In other aspects, a holding bracket 110 is not utilized by the support system 100. In these aspects, the beam 104 utilizes another mechanism, such as an attachment mechanism 114, to couple to the second end of the beam 152 to the second floor 120. In alternative aspects, the second end of the beam may be embedded into the second floor 120. Further, in these aspects, the force application mechanism 112 may also couple to, engage, or mechanically engage with the second end 152 of the beam 104 utilizing any suitable mechanism, including no mechanism, as known by a person of skill in the art, such as a notch, a mechanical linkage, bolts, etc. As understood by a person of skill in the art, any suitable system or method for coupling the beam 104 to a floor 120 may be utilized herein. Alternatively, as discussed above, the second end 152 of the beam 104 is not coupled to the second floor 120.


As discussed above, the floor 120 includes a floor support structure 122, such as one or more joist 124 as illustrated by FIGS. 11A-12C. The configuration of the floor support structure 122 with respect to the leaning or bowed wall 102 may affect how the support system 100 is installed. For example, the floor support structure 122 may include one or more floor joist 124 that run parallel to the wall 102. FIGS. 11A-11B are schematic diagrams illustrating partial, bottom views of a parallel joist floor support structure and the support system in different stages of installation, in accordance with aspects of disclosure. FIG. 11C is a schematic diagram illustrating a partial, side cross-sectional view of FIG. 11B, in accordance with aspects of the disclosure. In this configuration, one or more block inserts 116 may be inserted between the first and second joists and then attached via an attachment mechanism 114 to the floor support structure 122, such as the first and second joists as illustrated in FIGS. 11A-11C. In these aspects, the one or more block inserts may extend from the first joist to the second joist or extend a portion of the length from the first floor joist to the second floor joist. In the example provided in FIGS. 11A-11C, a plurality of block inserts 116 run perpendicular to the wall 102. Accordingly, in this example, the plurality of block inserts 116 run perpendicular to the joists 124 and/or the floor support structure 122. For example, the replica block inserts 116 illustrated in FIGS. 4, 5A, 5B, and 7 would run perpendicular with the wall 102 if they were actually installed. Additionally, the block inserts 116 illustrated in FIG. 8 also run perpendicular to the wall 102.


In other configurations, the floor support structure 122 may include one or more floor joist 124 that run perpendicular to the wall 102. FIGS. 12A-12B are schematic diagrams illustrating partial, bottom views of a perpendicular joist support structure and the support system in different stages of installation, in accordance with aspects of the disclosure. FIG. 12C is a schematic diagram illustrating a partial, side cross-sectional view of FIG. 12B, in accordance with aspects of the disclosure. In these aspects, one or more block inserts 116 may be inserted or installed adjacent to a first joist 124 and then attached via an attachment mechanism 114 to the floor support structure 122, such as the first joist as illustrated in FIGS. 12A-12C. In these aspects, the one or more block inserts may extend the length of the first floor joist or extend along a portion of the length of the first floor joist. In the example provided in FIGS. 12A-12C, a single block insert 116 runs perpendicular to the wall. Accordingly, in this example, the single block insert runs 116 run parallel to the joists 124 and/or the floor support structure 122.


The block inserts 116 may be utilized by the support system 100 to provide additional areas to attach the plate 115 and/or pivot bracket 108. In some aspects, the block inserts 116 may be utilized by the support system 100 to help provide load transfer from the beam 104 to the second floor 120. In some aspects, a block insert 116 may be a wood member. The wood member may be a wooden board, such as 2×4. These examples are not meant to be limiting. The block insert 116 may be made of any suitable material, size and/or shape for use with support system 100.


In further aspects, two block inserts 116 may be positioned side-by-side lengthwise to extend the distance between the first and second joists of the floor 120 as illustrated by reference number 180 in FIG. 11A. In alternative aspects, block inserts 116 are not utilized by the support system 100.


Unlike previously utilized support systems, the support system 100 as disclosed herein includes a pivot bracket 108. FIGS. 3A and 3B are different views illustrating the pivot bracket 108 of the support system 100, in accordance with an aspect of the disclosure. The pivot bracket 108 may include a cam surface 136 and/or a rotational coupling 132. In some aspects, the pivot bracket also includes a receptacle 134. In some aspects, the receptacle 134 is a nut or opening for receiving the force application mechanism 112. For example, the receptacle 134 may be a weld nut, a flange nut, a T-nut, a notch, etc. In other aspects, the pivot bracket 108 does not include a receptacle 134. In these aspects, for example, a surface on the pivot bracket 108 may engage or interact with the force application mechanism 112 to receive a load from actuation of the force application of the force application mechanism 112.


In some aspects, the pivot bracket 108 includes two parallel sides 160A, 160B that extend from a front face 162. The parallel sides 160A and 160B may be mirror copies of each other. In some aspects, the front face 162 includes the receptacle 134. The receptacle 134 may be threaded to receive the force application mechanism 112. In other aspects, as discussed above, the pivot bracket 108 does not include a receptacle 134.


Each of the two parallel sides 160A and 160B may include a cam surface 136 and the rotational coupling 132 or apertures for receiving a pivot pin or bolt 138 or any other suitable attachment mechanism for the rotational coupling. The cam surfaces 136 are on the back surface 164 of the pivot bracket 108 and may be on a side opposite the front face 162. In some aspects, each of the parallel sides 160A and 160B is L-shaped as illustrated in FIG. 3A. In some aspects, the font edges 166 of the parallel sides 160A include a notch 168.


The pivot bracket 108 is coupled to the second floor 120. In some aspects, the pivot bracket 108 is directly attached to the floor 120 utilizing the rotational coupling 132. In further aspects, the pivot bracket 108 is directly attached to a floor support structure 122, such as a joist 124, of the second floor 120. In some aspects, the pivot bracket 108 is directly attached to a floor support structure 122, such as a joist 124, and an insert block 116. In other aspects, the pivot bracket 108 is indirectly attached to the floor 120. In further aspects, the pivot bracket 108 is indirectly attached to a floor support structure 122, such as a joist 124, of the second floor 120. For example, in some aspects, the pivot bracket 108 may be directly attached to the block inserts 116 for indirect attachment to the floor 120. In another example, the pivot bracket 108 is directly attached to a connector and/or another bracket for indirect attachment to the floor support structure of the second floor 120.



FIG. 4 is a bottom view of the pivot bracket 108 attached to a replica floor support structure 122 with block inserts 116. In this replica, the model joists 124 represent the underside of the floor 120. In this replica, two blocks inserts 116A and 116B are positioned lengthwise and side-by-side between and attached to the first floor joist 124A and second floor joists 124B and a third insert block 116C is positioned between and attached to the second floor joist 124B and a third floor joist 124C. The replica shown in FIG. 4 illustrates floor joists 124 that would run parallel to wall 102 and block inserts 116 that run perpendicular to wall 102.


The rotational coupling 132 is utilized to couple the pivot bracket 108 to the floor 120 via an attachment mechanism, such as a bolt or pin 138. The bolt or pin 138 may be threaded or partially threaded. The rotational coupling 132 allows the pivot bracket 108 to rotate around the attachment mechanism 114. The force application mechanism 112 is positioned to interact with pivot bracket 108 and to engage the beam 104. In some aspects, the force application mechanism interacts with the front face 162 of the pivot bracket 108. Accordingly, upon actuation of the force application mechanism 112, the force application mechanism 112 applies a force to the second end of the beam 104. This force pushes the beam 104 towards the building wall 102 and a directional force 149 (shown as an arrow) is exerted upon the pivot bracket 108 as illustrated in FIGS. 5A and 5B. FIG. 5A is schematic diagram illustrating a side view of a pivot bracket 108 attached to a replica floor support structure with block inserts 116 showing an application of directional force 149 to the pivot bracket 108, in accordance with an aspect of the disclosure. FIG. 5B is a schematic diagram illustrating a side view of the pivot bracket 108 attached to the replica floor support structure with block inserts 116 from FIG. 5A showing a gap 155 created under the front surface 162 of the pivot bracket 108 created formed in response to the application of directional force 149 to the pivot bracket, in accordance with an aspect of the disclosure. This force 149 may cause the pivot bracket 108 to pivot or rotate around the attachment mechanism 114 in the rotational coupling 132 of the pivot bracket 108 in a direction that causes the pivot bracket 108 to push against, engage, or mechanically engage the installed plate 115.


The support system 100 also includes a plate 115. FIG. 6 is a bottom view illustrating an example plate 115 for support system 100, in accordance with aspects of the disclosure. The plate 115 is coupled directly or indirectly to the floor 120. The plate 115 is positioned to mechanically link with a cam surface 136 of the pivot bracket 108 as illustrate by FIG. 7. FIG. 7 is a bottom view illustrating a pivot bracket 108 rotationally coupled to replica block inserts 116 and engaged with plate 115 directly attached to replica first and second floor joists 124, in accordance with aspects of disclosure. The plate 115 includes a follower surface 142 that interacts with cam surface 136 of the pivot bracket 108. The follower surface 142 is contacted by the cam surface 136 as a force 149 applied from the force application mechanism 112 rotates the pivot bracket 108. The cam surface 136 pushes against and/or slides along the follower surface 142 of the plate 115. In some aspects, the follower surface 142 is a surface created by tabs 140 or wings on the plate 115. The tabs 140 may be mirror opposites of each other. The tabs 140 may allow the plate 115 to consistently bear on the pivot bracket 108 as the pivot bracket 108 rotates even if there is some construction tolerance. Further, the tabs 140 may allow for easier and/or fast installation of the plate 115. The pivoting action of the pivot bracket 108 puts a direct compression load on the plate 115 as the pivot bracket 108 bears on the follower surface 142 of the plate 115. As such, no or very little moment is induced on the plate 115 and/or the support structure 122 of the floor 120. Accordingly, the support system 100 induces less moment on the support structure 122 of the floor 120 when compared to previously utilized systems that did not include a pivot bracket 108.


Once positioned, the plate 115 may be directly or indirectly coupled to the floor 120 utilizing an attachment mechanism 114, such as screws, nails, anchors, etc. The attachment mechanism 114 may extend through the plate 115 via attachment apertures 144. The attachment apertures 144 may be spaced across the length 146 of the plate 115. In other aspects, the attachment apertures 144 may be spaced across a portion of the plate 115. In some aspects, the plate 115 is directly attached to the floor support structure 122 of floor 120, such as to a first and second joist 124. In other aspects, the plate 115 is directly attached to the block inserts 116, which are directly attached to the support structure 122 of floor 120, such as to a first and second joist 124. In further aspects, the plate 115 is directly or indirectly attached to one or more block inserts 116 and/or to one or more floor joists 124.


In some aspects, the plate 115 is configured to have a length 146 that spans or extends past at least two floor joists 124 or at least two block inserts 116 positioned between at least one different floor joist. In some aspects, the plate 115 is elongated and extends across multiple floor joists 124 and/or block inserts 116.


Further, because the pivot bracket 108 applies the load to the plate 115 by means of tangential contact due to rotation, the depth 148 of the plate 115 can be minimized to prevent any significant impact on height clearance of the upper floor hanging structure. As such, the plate 115 may also be configured to have a depth 148 from 1/16th of an inch to ½ inch. However, any suitable depth 148 for the plate 115 for use with the support system 100 may be utilized. Further, the plate 115 may have any suitable size or shape. For example, the width 147 of the plate 115 may extend across the width of two insert blocks 116 that are positioned lengthwise and side-by-side. In another example, the width 147 of the plate 115 may extend across the width of an insert blocks 116 and an adjacent floor joist 124. In other examples, the plate 115 may have a width that is less than one or more adjacent floor joists 124 and/or block inserts 116. FIG. 8 is a picture illustrating an example of an installed support system 100, in accordance with aspects of the disclosure. In some aspects, the plate 115 may have a width 147 from 1 inch to 4 inches. However, any suitable width 147 for the plate 115 for use with the support system 100 may be utilized.



FIG. 9 is a flow diagram illustrating a method 400 for supporting and/or straightening a wall. Method 400 supports and/or straightens a leaning or bowed wall by applying a direct compression load to the distribution member. Method 400 utilizes a pivot bracket and/or a plate. In some aspect, method 400 utilizes a pivot bracket and/or a plate for a direct transfer of the load to the distribution member, which spreads the load to the rest of the floor structure.


Method 400 begins at operation 402. At operation 402, a beam is aligned with a building wall that needs support and/or straightening between a first floor and a second floor. The beam includes a first end and a second end. In some aspects, the second end of the beam includes an integral holding bracket. In other aspects, a holding bracket is attached to the second end of the beam utilizing an attachment mechanism, such as being welded or bolted to the second end of the beam. In further aspects, the second end of the beam does not include a holding bracket. The second end of the beam may or may not be coupled to the second floor. In further aspects, the second end of the beam is positioned to engage, contact or mechanical engage with a force application mechanism.


Method 400 also includes operation 404. At operation 404, the first end of the beam is coupled to a first floor. In some aspects, the first end may be coupled to the first floor utilizing a base bracket and an attachment mechanism at operation 404. For example, the beam is bolted to the bracket and the base bracket is bolted to the first floor. In other examples, the base bracket is an integral part of the beam. In other aspects, the first end may be coupled to the first floor by embedding the first end of the beam into the first floor.


In some aspects, method 400 includes operation 406. At operation 406, one or more block inserts are attached to a second floor. In some aspects, the second floor includes a floor support structure, such as joists. In these aspects, the block inserts may be positioned in the floor support structure and directly or indirectly coupled to the floor support structure utilizing one or more attachment mechanisms.


At operation 408, a pivot bracket is coupled to a second floor utilizing a rotational coupling. The pivot bracket may include a cam surface and/or a rotational coupling. In some aspects, the pivot bracket also includes a receptacle. In some aspects, the pivot bracket is coupled to the floor support structure of the second floor at operation 408. In some aspects, the pivot bracket is directly attached to the floor support structure at operation 408. In other aspects, the pivot bracket is indirectly attached to the floor support structure by being directly attached to one or more block inserts at operation 408. In other aspects, the pivot bracket is directly attached to both a floor support structure of the floor and one more block inserts.


At operation 410, a plate is positioned to mechanically link with a cam surface of the pivot bracket to form a positioned plate. Next, at operation 412, the positioned plate is coupled directly or indirectly to the second floor. The plate may be coupled to the second floor utilizing an attachment mechanism. In some aspects, the plate is coupled to a floor support structure of the second floor at operation 412. In some aspects, the plate is directly attached to the floor support structure at operation 412. In other aspects, the plate is indirectly attached to the floor support structure by being directly attached to a plurality of insert blocks at operation 412. In some aspects, if the plate is attached to the floor support structure, the pivot bracket is attached to an insert block. In other aspects, if the plate is attached to a plurality of insert blocks, the pivot bracket is attached to the floor support structure.


Next, method 400 includes operation 414. At operation 414, a force application mechanism is positioned to interact with the pivot bracket and engage the second end of the beam. For example, in some aspects at operation 414, the force application mechanism is inserted through a receptacle of the pivot bracket until the force application mechanism couples, abuts, engages, or mechanically engages with the second end of the beam. In other aspects, the force application mechanism abuts, engages or mechanically engages, and/or contacts a surface of the pivot bracket, such as the front face of the pivot bracket, at one end and is applied or extended until the other end of the force application mechanism engages the second end of the beam. In some aspects, the force application system is received by a structure, such as bolt receptacle or notch, on the second end of the beam or on a holding bracket attached to a second end of the beam. In other aspects, the force application mechanism abuts, engages, and/or contacts a surface of the second end of the beam.


After operation 414, operation 416 is performed. At operation 416, the force application mechanism is actuated (e.g., loaded, rotated, tightened, positioned and/or extended) to apply a force to the second end of the beam. The force application mechanism may be loaded, rotated, tightened, positioned and/or extended until the second end of the beam is pushed up against the building wall at operation 414. In other aspects, the force application mechanism is loaded, rotated, tightened, positioned and/or extended to push the second end of the beam closer to the building wall at operation 414. In these aspects, the force application mechanism may be further loaded, rotated, tightened, positioned and/or extended after a predetermined amount of time to push the second end of the beam closer to the building wall at operation 414. As the force application mechanism is actuated, the force application mechanism applies a force on the beam and the pivot bracket. This application of force on the pivot bracket causes the pivot bracket to rotate and to abut, couple, engage, or mechanically engage or interact with the positioned plate. The pivoting action of the pivot bracket puts a direct compression load on the plate as the pivot bracket bears on the follower surface of the plate. As such, no or very little moment is induced on the plate and/or the support structure of the floor. Accordingly, the method 400 induces less moment on the support structure of the floor when compared to previously utilized systems that did not include a pivot bracket. Further, method 400 provides for a direct transfer of the load to the distribution member by utilizing the pivot bracket and/or plate, which spread the load to the rest of the floor structure.


Aspects of the present disclosure, for example, are described above with reference to block diagrams and/or operational illustrations of methods and systems, according to aspects of the disclosure. The functions/acts noted in the blocks may occur out of the order as shown in any flowchart. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved. For example, operations 402, 406, and/or 408 may be performed in any order, at overlapping times, or simultaneously. In a further example, operations 410 and 412 could be performed before operation 408. In this example, the pivot bracket is positioned to ensure that a mechanical link is formed between the pivot bracket and the positioned plate during method 400. In another example, operations 402 and 404 could be the last operations performed during method 400.


This disclosure described some aspects of the present technology with reference to the accompanying drawings, in which only some of the possible aspects were described. Other aspects can, however, be embodied in many different forms and the specific aspects disclosed herein should not be construed as limited to the various aspects of the disclosure set forth herein. Rather, these exemplary aspects were provided so that this disclosure was thorough and complete and fully conveyed the scope of the other possible aspects to those skilled in the art. For example, aspects of the various aspects disclosed herein may be modified and/or combined without departing from the scope of this disclosure.


The description and illustration of one or more aspects provided in this application are not intended to limit or restrict the scope of the disclosure as claimed in any way. The embodiments, examples, and details provided in this application are considered sufficient to convey possession and enable others to make and use the best mode of claimed disclosure. The claims should not be construed as being limited to any embodiment, example, aspect, or detail provided in this application. Regardless of whether shown and described in combination or separately, the various features (both structural and methodological) are intended to be selectively included or omitted to produce an embodiment with a particular set of features. Having been provided with the description and illustration of the present application, one skilled in the art may envision variations, modifications, and alternate embodiments falling within the spirit of the broader aspects of the general inventive concept embodied in this application that do not depart from the broader scope of the claims.

Claims
  • 1. A support system comprising: a beam with a first end and a second end, the beam configured to support a building wall located between a first floor and a second floor; wherein the first end of the beam is configured to couple to the first floor;a pivot bracket including a cam surface and a rotational coupling, the pivot bracket configured to pivotably couple to a floor support structure of the second floor utilizing the rotational coupling;a force application mechanism interacts with the pivot bracket and engages the second end of the beam; anda plate configured to couple to the floor support structure of the second floor and positioned to mechanically link with the cam surface of the pivot bracket, wherein the force application mechanism applies force to the pivot bracket and causes the pivot bracket to rotate, pivoting action of the pivot bracket causes the cam surface of the pivot bracket to put a direct compression load on a follower surface of the plate.
  • 2. The support system of claim 1, wherein the plate configured to couple to the floor support structure of the second floor comprises: a direct attachment of the plate to a floor joist.
  • 3. The support system of claim 1, further comprising: one or more block inserts coupled to the plate.
  • 4. The support system of claim 3, wherein the plate configured to couple to the floor support structure of the second floor comprises: a direct attachment of the plate to a first block insert of the one or more block inserts.
  • 5. The support system of claim 3, wherein the pivot bracket is configured to pivotably couple to the floor support structure of the second floor utilizing the rotational coupling comprises: a direct attachment of the rotational coupling to a first block insert of the one or more block inserts.
  • 6. The support system of claim 1, wherein the pivot bracket configured to pivotably couple to the floor support structure of the second floor utilizing the rotational coupling comprises: a direct attachment of the rotational coupling to the floor support structure.
  • 7. The support system of claim 1, wherein the pivot bracket configured to pivotably couple to the floor support structure of the second floor utilizing the rotational coupling comprises: a direct attachment of the rotational coupling to a first floor joist of the floor support structure.
  • 8. The support system of claim 1, further comprising: one or more block inserts configured to be inserted between and attached to a first floor joist and a second floor joist of the floor support structure.
  • 9. The support system of claim 8, wherein the pivot bracket configured to pivotably couple to the floor support structure of the second floor utilizing the rotational coupling comprises: a direct attachment of the rotational coupling to the one or more block inserts.
  • 10. The support system of claim 1, further comprising: a block insert adjacent to a floor joist of the floor support structure, and wherein the pivot bracket configured to pivotably couple to the floor support structure of the second floor utilizing the rotational coupling comprises: a direct attachment of the rotational coupling to the block insert and to the floor joist.
  • 11. The support system of claim 1, wherein a pivot bracket further includes a receptacle, and wherein the receptacle of the pivot bracket receives the force application mechanism.
  • 12. The support system of claim 1, wherein the plate has a depth from 1/16.sup.th to ½ inches.
  • 13. The support system of claim 1, wherein the plate has a width of 1 to 4 inches.
  • 14. The support system of claim 1, wherein the first end of the beam is coupled to the first floor utilizing a base bracket and an attachment mechanism.
  • 15. The support system of claim 1, wherein the first end of the beam is coupled to the first floor by embedding the first end of the beam into a hole in the first floor.
  • 16. The support system of claim 1, further comprising: a holding bracket, the holding bracket attached to the second end of the beam, wherein the holding bracket includes a structure for receiving an end of the force application mechanism.
  • 17. A support system comprising: a beam with a first end and a second end;a pivot bracket including a receptacle, a cam surface, and a rotational coupling;a force application mechanism placed through the receptacle of the pivot bracket until the force application mechanism engages with the second end of the beam; anda plate positioned to mechanically link with the cam surface of the pivot bracket, wherein the force application mechanism applies force to the pivot bracket and causes the pivot bracket to rotate, pivoting action of the pivot bracket causes the cam surface of the pivot bracket to put a direct compression load on a follower surface of the plate.
  • 18. The method of claim 17, further comprising: one or more block inserts attached to at least one of the plate and the pivot bracket.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. provisional patent application Ser. No. 64/464,802, filed Feb. 28, 2017, and entitled “SYSTEMS AND METHODS FOR WALL SUPPORT AND/OR STRAIGHTENING,” which application is incorporated herein by reference in its entirety.

US Referenced Citations (182)
Number Name Date Kind
377940 Johnson Feb 1888 A
587274 Rue Jul 1897 A
1346736 Allee Jul 1920 A
2319303 Crawford May 1943 A
2684824 Hillberg Jul 1954 A
2786242 Stephens Mar 1957 A
2850254 Houseworth Sep 1958 A
2914147 Millard Nov 1959 A
2982321 Hancock May 1961 A
2986246 Lester May 1961 A
3030061 Jennings Apr 1962 A
3095666 Killen Jul 1963 A
3147570 Shanton Sep 1964 A
3304672 Bakke Feb 1967 A
3341995 Docken Sep 1967 A
3537093 Perret Oct 1970 A
3537220 Ellis Nov 1970 A
3817006 Williams Jun 1974 A
3850193 Guzzo Nov 1974 A
3874625 Hansen Apr 1975 A
4021905 Benton May 1977 A
4048771 Thistlethwaite Sep 1977 A
4068427 Camardo Jan 1978 A
4075800 Molick Feb 1978 A
4083156 Tye Apr 1978 A
4189891 Johnson Feb 1980 A
4268066 Davis May 1981 A
4288899 Mckee Sep 1981 A
4304078 Meriwether, Jr. Dec 1981 A
4353194 Norton Oct 1982 A
4365451 Nelson Dec 1982 A
4408429 Neal Oct 1983 A
4435646 Coleman Mar 1984 A
4452019 Ikuo Jun 1984 A
4452028 Norton Jun 1984 A
4465648 Kiriyama Aug 1984 A
4472883 Ortega Sep 1984 A
4563852 Achtenberg Jan 1986 A
4575980 Shuler Mar 1986 A
4669704 Abraham Jun 1987 A
4752214 Justus Jun 1988 A
4757651 Crites Jul 1988 A
4763878 Abraham Aug 1988 A
4872634 Gillaspy Oct 1989 A
4888926 Lutz, III Dec 1989 A
4893784 Abraham Jan 1990 A
4895335 Oliver Jan 1990 A
4930285 Ward Jun 1990 A
4937989 Miyares Jul 1990 A
4970835 Harmon Nov 1990 A
5048243 Ward Sep 1991 A
5048796 Maldonado Sep 1991 A
5120162 Parker Jun 1992 A
5154539 Mccown, Sr. Oct 1992 A
5234287 Rippe, Jr. Aug 1993 A
5246311 West Sep 1993 A
5277003 Myers Jan 1994 A
5399055 Dutton, Jr. Mar 1995 A
5401120 Hussey Mar 1995 A
5433556 Freeman, III Jul 1995 A
5496081 Rice Mar 1996 A
5535556 Hughes, Jr. Jul 1996 A
5564242 Larsen Oct 1996 A
5575591 Vanderklaauw Nov 1996 A
5586355 Metz Dec 1996 A
5586416 Hess, III Dec 1996 A
5620038 Decola Apr 1997 A
5653077 Carnicello Aug 1997 A
5694723 Parker Dec 1997 A
5771643 Parker Jun 1998 A
5794393 Fearn Aug 1998 A
5797227 Garza Tamez Aug 1998 A
5806274 Wurtz Sep 1998 A
5829220 Zumeta Nov 1998 A
5845450 Larsen Dec 1998 A
5857300 Gates Jan 1999 A
5875606 Jensen Mar 1999 A
5884439 Hess, III Mar 1999 A
5890334 Hughes, Jr. Apr 1999 A
5913787 Edwards Jun 1999 A
5943830 Truitt Aug 1999 A
5956906 Berich Sep 1999 A
5970664 Janesky Oct 1999 A
5974755 Pouwels Nov 1999 A
5983587 Limonad Nov 1999 A
5992126 Ashton Nov 1999 A
6023901 Jensen Feb 2000 A
6044613 Crafts Apr 2000 A
6047504 Dusenberry Apr 2000 A
6073405 Kasai Jun 2000 A
6079905 Ruiz Jun 2000 A
6112475 Truitt Sep 2000 A
6141932 Tarrant Nov 2000 A
6142710 Holland, Jr. Nov 2000 A
6145260 Morton Nov 2000 A
6173809 Cole Jan 2001 B1
6193442 May Feb 2001 B1
6230448 Oliver May 2001 B1
6230468 Klaus May 2001 B1
6256940 Mackarvich Jul 2001 B1
6269606 Mccown Aug 2001 B1
6354050 Pankoski Mar 2002 B1
6357190 Florentine Mar 2002 B1
6389766 Jackson May 2002 B1
6416254 Carlson Jul 2002 B1
6418684 Morton Jul 2002 B1
6450480 Massile Sep 2002 B2
6460305 Vanhaitsma Oct 2002 B1
6484460 Vanhaitsma Nov 2002 B2
6539677 Lanka Apr 2003 B1
6632048 Greenberg Oct 2003 B2
6662505 Heady Dec 2003 B2
6676335 Hickman Jan 2004 B1
6692595 Wheatley Feb 2004 B2
6698710 Vanderwerf Mar 2004 B1
6746741 Wheatley Jun 2004 B2
6763636 Dimitrijevic Jul 2004 B2
6767167 Rials Jul 2004 B1
6769222 Billante Aug 2004 B2
6846537 Wheatley Jan 2005 B2
6877284 Thompson Apr 2005 B2
6931805 Gregory Aug 2005 B2
7117648 Pryor Oct 2006 B1
RE39839 Wheatley Sep 2007 E
7380372 Resch Jun 2008 B2
7407004 Kugemoto Aug 2008 B2
7419335 Cohen Sep 2008 B1
7478508 Peterson Jan 2009 B2
7681361 Jendusa Mar 2010 B1
7681367 Morton Mar 2010 B2
7721488 Bennett May 2010 B1
7726093 Morton Jun 2010 B2
7735268 Zidar Jun 2010 B1
7743585 Wheatley Jun 2010 B2
7765764 Zambelli Aug 2010 B2
7774995 Zidar, Jr. Aug 2010 B1
7788859 Trotter Sep 2010 B2
7823354 Wheatley Nov 2010 B2
7861469 Heady Jan 2011 B2
8136317 Mccown Mar 2012 B1
8142102 Wheatley Mar 2012 B2
8201380 Hargest Jun 2012 B2
8209935 Heady Jul 2012 B2
8312682 Trotter Nov 2012 B2
8367569 Wheatley Feb 2013 B2
8584431 Secrest Nov 2013 B2
8590213 Scarfo Nov 2013 B2
8590259 Trinko Nov 2013 B2
8607525 Trotter Dec 2013 B2
8720154 Horne May 2014 B1
8820013 Fennell Sep 2014 B2
8925267 Kirby Jan 2015 B1
9034775 Wheatley May 2015 B2
9091090 Kirby Jul 2015 B1
9194126 Gill Nov 2015 B2
9222252 Williams Dec 2015 B1
9422734 Heady Aug 2016 B1
9909278 Morton Mar 2018 B2
20020062612 Heady May 2002 A1
20030131543 Hansort Jul 2003 A1
20030131555 Heady Jul 2003 A1
20030192280 Billante Oct 2003 A1
20040105727 Jones Jun 2004 A1
20050086889 Shock Apr 2005 A1
20050138870 Ishimura Jun 2005 A1
20050204673 Reed Sep 2005 A1
20060080926 Resch Apr 2006 A1
20060137278 Heady Jun 2006 A1
20070227082 Morton Oct 2007 A1
20070272353 Wheatley Nov 2007 A1
20090057518 Russell Mar 2009 A1
20090071085 Wheatley Mar 2009 A1
20090071096 Morton Mar 2009 A1
20090078843 Trotter Mar 2009 A1
20090193736 Halfon Aug 2009 A1
20090263572 Wheatley Oct 2009 A1
20100095603 Defilipp Apr 2010 A1
20110232207 Duke Sep 2011 A1
20120204512 Trinko Aug 2012 A1
20150204092 Crumley Jul 2015 A1
20150267424 Reisdorff Sep 2015 A1
20160153207 Ozum Jun 2016 A1
Foreign Referenced Citations (8)
Number Date Country
2199071 Jun 1988 GB
7197526 Aug 1995 JP
10168970 Jun 1998 JP
11256726 Sep 1999 JP
199635023 Nov 1996 WO
2001042572 Jun 2001 WO
2002053844 Jul 2002 WO
2008048619 Mar 2008 WO
Non-Patent Literature Citations (10)
Entry
Beams—Foundation Repair, Hydro Armor, https://www.youtube.com/watch?v=zpHwINImQv8, found Dec. 22, 2016, 1 page.
Foundation Repair, U.S. Waterproofing, http://www.uswaterproofing.com/services/structural-foundation-repair, found Dec. 22, 2016, 4 pages.
Foundation Repair, BQ Basement Systems, https://www.bqbasementsystems.com/foundation-repair.html, found Dec. 22, 2016, 7 pages.
Greenbaum, The Force Wall Stabilizer, The Basement Doctor, https://www.mybasementdoctor.com/products/foundation-repair/the-force-wall-stabilizer.html, found Dec. 22, 2016, 6 pages.
Iyer, Smart Jack Support System, Ayers Basement System, https://www.ayersbasementsystems.com/foundation-repair/photo-gallery/3631-album-foundation-stabilization-in-fremont-mi.html%20-%20ad-image-2, found Dec. 22, 2016, 5 pages.
Johnson et al., Securing the Floor Joist Hardware, Innovative Basement Systems, https://www.innovativebasementsystems.com/foundation-repair/foundation-repair-products/wall-repair-system.html, found Dec. 22, 2016, 11 pages.
Straightening Cracked and Bowed Basement Walls, Master Dry, https://www.masterdry.com/foundation-repair/foundation-repair-services/wall-straightening.html, found Dec. 22, 2016, 5 pages.
Wall Bracing, Pankey Foundation Repair, http://www.pankeyfoundation.com/wall-bracing.html, found Dec. 22, 2016, 1 page.
Wall Repair System, Foundation Specialties, Inc., https://www.foundationspecialties.com/foundation-repair-products/wall-repair-system.html, found Dec. 22, 2016, 7 pages.
Wall Straightening, Dry-Mich, https://www.drymich.com/foundation-repair/foundation-services/wall-straightening.html, found Dec. 22, 2016, 8 pages.
Related Publications (1)
Number Date Country
20180245361 A1 Aug 2018 US
Provisional Applications (1)
Number Date Country
62464802 Feb 2017 US