Scientists and engineers often employ geophysical surveys for exploration, archeological studies, and engineering projects. Geophysical surveys can provide information about underground structures, including formation boundaries, rock types, and the presence or absence of fluid reservoirs. Such information greatly aids searches for water, geothermal reservoirs, and mineral deposits such as hydrocarbons and ores. Oil companies in particular often invest in extensive seismic and electromagnetic surveys to select sites for exploratory oil wells.
Seismic and electromagnetic surveys can be performed on land or in water. Marine surveys usually employ sensors below the water's surface, e.g., in the form of long cables or “streamers” towed behind a ship, or cables resting on the ocean floor. A typical streamer includes sensors positioned at spaced intervals along its length. Several streamers are often positioned in parallel over a survey region.
For seismic surveys, an underwater seismic wave source, such as an air gun, produces pressure waves that travel through the water and into the underlying earth. When such waves encounter changes in acoustic impedance (e.g., at boundaries between strata), some of the wave energy is reflected. The seismic sensors in the streamer(s) detect the seismic reflections and produce output signals. The sensor output signals are recorded, and later interpreted to infer structure of, fluid content of, and/or composition of rock formations in the earth's subsurface.
Similarly, for electromagnetic surveys, a underwater electrodes generate current flows in the water and the subsurface formations. Such current flows cause voltage drops to build and decay across subsurface formations and interfaces, thereby producing electric fields that can be sensed by antennas or electrodes in an underwater streamer. The sensor output signals are recorded, and later interpreted to infer structure of, fluid content of, and/or composition of rock formations in the earth's subsurface.
Conventional marine geophysical survey streamers may include hundreds, or even thousands, of sensors that are concurrently recording and communicating high resolution digital data to the ship and drawing power from the ship as they operate. The wiring that is typically employed to provide power and support communication may become a limiting factor as attempts are made to provide ever-longer streamers with improved performance. Though the use of more wiring can be offset by increasing the diameter of the streamer cable (so as to maintain a neutral buoyancy), the increased diameter tends to cause increased drag, to cause streamers to occupy substantially more room on the ship, and to make handling more difficult.
A better understanding of the various disclosed system and method embodiments can be obtained when the following detailed description is considered in conjunction with the drawings, in which:
a is a schematic of multiple streamer segments in an illustrative streamer cable;
b is a detailed view of an illustrative streamer segment;
c shows wireless communication between a router and sensor;
a is another detailed view of an illustrative streamer segment;
b shows an illustrative view of a data acquisition huh;
The issues identified in the background are at least in part addressed by the disclosed systems and methods for providing wireless communication in a geophysical survey streamer. At least some embodiments of a disclosed survey method include towing geophysical survey streamers in a body of water and using sensors within the streamer to collect measurements that are then conveyed along the streamer to a recording station using at least one wireless transmission link. In some implementations at least one sensor is coupled to a wireless transceiver in a streamer to transmit geophysical signal measurement data along the streamer to a wireless base station. The base station receives the wirelessly transmitted measurement data and communicates it to a central recording station. Each segment of the streamer may contain a base station to collect wireless data from the sensors in that segment, and each base station may be coupled to the central recording station by wiring (e.g., copper or fiber optic). Other implementations employ ranges of sensors wired to local transceivers that form a peer-to-peer wireless network for communicating data to the central recording station.
To assist the reader's understanding of the disclosed systems and methods, we first describe the context for their use and operation. Accordingly,
The streamers 24A-24D are towed via a harness that produces a desired arrangement of the streamers 24A-24D. The harness includes multiple interconnected cables, and a pair of controllable paravanes 30A and 30B connected to opposite sides of the harness. As the ship 12 tows the harness through the water 14, the paravanes 30A and 30B pull the sides of the harness in opposite directions, transverse to a direction of travel of the ship 12. Depth-controllers may also be provided along the length of the streamer to keep the streamer array largely horizontal.
The seismic source 20 produces acoustic waves 32 under the control of the data recording and control system 18, e.g., at regular intervals or at selected locations. The seismic source 20 may be or include, for example, an air gun, a vibratory source, or another form of seismic energy generator. The acoustic waves 32 travel through the water 14 and into a subsurface 36 below a bottom surface 34. When the acoustic waves 32 encounter changes in acoustic impedance (e.g., at boundaries between strata), some of the wave energy is reflected. In
Sensor units of the sensor array 22, housed in the streamer sections 26 of the streamers 24A-24D, detect these seismic reflections and produce output signals. The output signals produced by the sensor units are recorded by the data recording and control system 18 aboard the ship 12. The recorded signals are later interpreted to infer structure of, fluid content of and/or composition of rock formations in the subsurface 36.
There are often thousands of detectors in a given sensor array 22. A modular construction, e.g., with substantially identical and interchangeable sections 26, greatly simplifies handling, maintenance, and repair. If a problem develops with one of the streamer sections 26, the problematic streamer section 26 can be replaced by any other spare streamer section 26. The wiring that is typically employed to provide power and support communication may become a limiting factor as attempts are made to provide ever-longer streamers with improved performance. Accordingly, streamers 24 may be modified to employ wireless communications so as to reduce wiring requirements.
The wireless base stations 306 are coupled to the data transport backbone to communicate data to the recording and control system 18 and optionally to receive commands and configuration information from the recording and control system. As illustrated in
The sensor units 308 operate to acquire the seismic signal data, to buffer it as needed, and to communicate the acquired signal data to the base station 306. In some embodiments the sensor units can accept commands to adjust their operating parameters, including internal clock timing, sampling frequency, bit resolution of the samples, compression quality, communication format, and so on. To acquire the data, the sensor units may include hydrophones, geophones, accelerometers, gyroscopes, inertial sensors, strain sensors, magnetic field sensors, or other types of transducers that suitable for detecting seismic waves.
It is contemplated that in at least some embodiments, the sensor units may be individual digital transducers. Examples of suitable digital transducers include those described by C. P. Lewis. “Simulation of a micromachined digital accelerometer . . . ”, UKACC International Conference on Control '96 (Conf. Publ. No. 427), v1, p 205-209, September 1996. The sigma-delta output of such transducers can be used to directly modulate a radio frequency carrier signal, or used to determine a register value that is periodically read by the wireless transceiver and transmitted to a base station.
Power can be supplied to the sensor units in a number of ways. In some embodiments, the sensor units are connected to the backbone to receive power. In other embodiments, the sensor units are inductively or capacitively coupled to the backbone to receive power without being directly wired to the backbone. In yet other embodiments, the sensor units are battery powered. Some embodiments include energy harvesters that convert motion or vibration into electrical power. Many of these embodiments enable the sensor units to be modular units that can be easily replaced without requiring significant rewiring effort and/or re-sealing of the segment casing.
The streamer segments can employ any one of a number of wireless communication protocols to communicate data from the sensors to the base stations. For instance, some embodiments would employ the 2.4 GHz Zigbee standard, which incorporates the Institute of Electrical and Electronics Engineers (IEEE) standard 802.15.4 physical radio specification (ratified in 2003). The specification is a packet-based radio protocol designed for low-cost, low-power devices. The protocol allows devices to communicate in a variety of network topologies and can have battery life lasting several years. The basic framework conceives a 10-meter communications range with a transfer rate of 250 kbit/s.
Other embodiments may employ the Rubee (IEEE 1902.1) communications protocol. Rubee is a bidirectional, peer-to-peer standard, designed to perform in harsh environments. Rubee employs the near-field component of a low frequency carrier (131 kHz) for communication, and it is expected to be suitable for use in low-power devices. Because RuBee uses long wavelengths and works in the near field (under 50 feet) it is possible to simultaneously transmit and receive from many adjacent antennas without interference, providing the signals are synchronized.
Still other embodiments may employ the Bluetooth standard or one of the IEEE 802.11 (“WiFi”) standards, both of which are commonly employed for wireless computer networks. These standards all provide for communication carrier frequencies above 2.4 GHz, making their wavelengths less than 10 cm or so. Whichever communications standard is chosen, the wireless signal is expected to be contained within and channeled by the segment. The water is expected to be conductive enough to contain the radiated signal within the streamer, but if desired the streamer can be designed with a high refractive index and/or a conductive sheath to further enhance containment of the wireless signals.
Because the wireless signals propagate inside the streamer, they do not suffer the high degree of attenuation that would otherwise be expected for wireless signals transmitted underwater, particularly in a salt water environment. The use of wireless signals to communicate data along the cable reduces wiring requirements, enabling a consequent reduction in weight and diameter, which in turn reduces the stiffness of the streamer and also enables longer streamers to be assembled.
Each hub 402 supports a set of analog-to-digital converters 404 that convert analog measurement signals into digital form. A set of seismic sensors 406 is wired to each analog-to-digital converter 404. Depending on the design, each set of sensors 406 may be wired in parallel to provide a single analog signal to each converter 404. Alternatively, the sensor signals may be time multiplexed so that the converter 404 samples each signal in turn. As before, the sensors 406 may be hydrophones, single or multi-axis motion sensors (e.g., geophones, accelerometers, gyroscopes, inertial sensors), strain sensors, field sensors, or some combination thereof. When wired in parallel, the sensors are expected to provide improved signal-to-noise ratio at the expense of spatial resolution. Conversely, when the sensor signals are individually sampled, improved spatial resolution is obtained at the cost of some reduction in signal to noise ratio.
In an illustrative embodiment, one streamer segment includes 12 sensor groups, each sensor group extending for approximately 12 meters and including between 4 and 40 sensors. The maximum sampling rate is expected to be around 1 kHz, with each sample having up to 24 bit resolution. With the use of wireless communication, less wiring is needed within the streamer casing. It is contemplated that the cable diameter can be reduced from 64 mm to 48 mm.
To further reduce wiring requirements, the wireless sensor units 308 or the hubs 402 may be powered by an energy harvesting device.
These status measurements are supplied to a power management circuit 514 in the sensor node which uses these measurements to determine the operating parameters of the sensor node electronics and thereby manage their power requirements. A power switching circuit 512 operates under control of the power management circuit 514 to deliver power to those portions of the sensor node electronics 511 that the power management circuit 514 selects based on the amount of stored energy and the rate at which additional energy is being harvested. With the built-in power management algorithm, the power management circuit 514 makes decision to either turn on or off the power switching 512 and control and optimize the functions of the smart regulator 508.
Once assembled, the wireless sensor units are installed in the cable segment in block 606. Some cable embodiments provide sockets into which the wireless sensor units can be inserted, thereby enabling straightforward maintenance and repair procedures. Other cable embodiments have the wireless sensor units integrated before the streamer casing is installed. Once the streamer segments have been completed, the segments are coupled end-to-end in block 608 to form a complete streamer which can be deployed in block 610 to collect seismic survey data. The sensor units detect and digitize data in response to seismic shots, and in block 612 they communicate that data wirelessly to the base stations, which in turn communicate the data along the backbone to the recording system on the ship.
While specific system and method embodiments have been described above, it should be understood that they are illustrative and not intended to limit the disclosure or the claims to the specific embodiments described and illustrated. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. For example, the streamers may be electromagnetic survey streamers rather than seismic survey streamers. The streamers can rest on the ocean floor (or indeed, on dry land) instead of being towed. Some segments of a given streamer may employ wireless communications while others do not. Other protocols can be employed besides those described herein. It is intended that the following claims be interpreted to embrace all such variations and modifications.
The present application relates to co-pending U.S. application Ser. No. ______ (Atty Dkt PGS-10-36), titled “Systems and Methods for Energy Harvesting in a Geophysical Survey Streamer” and filed by inventor S. Rune Tenghamn on the same day as the present application.