The present technology is generally related to a wireless networking, and more specifically, but not by way of limitation to a wireless repeater that is configured to be positioned on a window. The wireless repeater provides an access point/interface between outdoor hotspots that broadcast in 5 GHz frequency and indoor clients that use 2.4 GHz frequency.
According to some embodiments, the present technology is directed to a repeater device, comprising: (a) an enclosure that is configured to be mounted to a window that divides an outdoor area from an indoor area, the enclosure housing: (b) a 5 GHz WiFi client radio coupled with a high order MIMO (multiple input, multiple output) antenna, the high order MIMO antenna transmitting and receiving data from a 5 GHz access point located in the outdoor area; and (c) a 2.4 GHz WiFi access point radio coupled with a MIMO (multiple input, multiple output) antenna, the MIMO antenna transmitting and receiving data from 2.4 GHz UEs (User Equipment) located in the indoor area.
According to other embodiments, the present technology is directed to a repeater device, comprising: (a) an enclosure that is configured to be mounted to a window that divides an outdoor area from an indoor area, the enclosure housing: (b) a first radio operating on a first frequency, the radio coupled with a first antenna, the first antenna transmitting and receiving data from an outdoor access point located in the outdoor area; and (c) an access point radio coupled with a second antenna, the second antenna transmitting to and receiving data from UEs located in the indoor area using a second frequency.
According to other embodiments, the present technology is directed to a repeater device, comprising: (a) an enclosure that is configured to be mounted to a window that divides an outdoor area from an indoor area, the enclosure housing: (b) a first radio operating on a first frequency, the radio coupled with a first antenna, the first antenna receiving data from an outdoor access point located in the outdoor area; (c) a microprocessor that converts the data from the first frequency to a second frequency and data from the second frequency to the first frequency; (d) an interface for coupling with a wireless router, the wireless router transmitting the converted data to UEs located in the indoor area using the second frequency.
Certain embodiments of the present technology are illustrated by the accompanying figures. It will be understood that the figures are not necessarily to scale and that details not necessary for an understanding of the technology or that render other details difficult to perceive may be omitted. It will be understood that the technology is not necessarily limited to the particular embodiments illustrated herein.
In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosure. It will be apparent, however, to one skilled in the art, that the disclosure may be practiced without these specific details. In other instances, structures and devices are shown in block diagram form only in order to avoid obscuring the disclosure.
In general, the present technology is directed to a repeater device that functions as a communications gateway between outdoor hotspots, which operate at 5 GHz, and indoor UEs that utilize 2.4 GHz frequency for communication. Broadly, the present technology functions as a WiFi-to-home network gateway.
This repeater device provides a communications gateway that comprises a first radio that operates a first frequency and a second radio that operates on a second frequency. The repeater device includes a microprocessor that is configured to receive and convert data packets having the first frequency into data packets having the second frequency. The repeater device then transmits the converted packets to 2.4 GHz UEs in an indoor area.
Broadly, the microprocessor is configured to convert data packets from 5 GHz to 2.4 GHz and from 2.4 GHz to 5 GHz as needed. For example, data packets received from the 5 GHz WiFi hotspot are converted into 2.4 GHz data packets that are transmitted to UEs in the indoor area.
Similarly, data packets received from the UEs in 2.4 GHz frequency are converted into 5 GHz data packets that are transmitted to the 5 GHz WiFi hotspot. Again, the 5 GHz and 2.4 GHz frequencies are merely example frequencies that can be used. The repeater device can be configured to convert data packets between any two different frequencies and facilitate transmission of the converted data packets between outdoor hotspots and indoor UEs.
With increasing deployment of Metro Wi-Fi hotspots in outdoor settings, it is desirable to leverage that infrastructure for indoor use. In the past, attempts to connect from indoor clients to outdoor access points have been marginally successful. This lack of success is due, in part, to low power clients having low gain antennas that have difficulty coupling with outdoor Wi-Fi hotspots. These connectivity issues are compounded when the path between the indoor client and the outdoor access point is obstructed. For example, obstructions can cause a SNR (signal to noise) in the wireless that is marginal, resulting in a slow transmission speed and high latency due to excessive packet re-transmission. That is, when the SNR is marginal to low, packets transmitted between the indoor clients and outdoor access points are lost and must be re-transmitted.
Referring now to
In one embodiment, the repeater 300 comprises a 5 GHz Wi-Fi client (e.g., node) radio 305, a microprocessor 310, memory 315, a 2.4 GHz Wi-Fi access point radio 320, power conditioning circuitry 325, a 4×4 MIMO (multiple input, multiple output) antenna 335, and a 2×2 MIMO antenna 340.
The 5 GHz Wi-Fi client radio 305 comprises a directional antenna that is positioned toward the outside of the window to pick-up the signal from the 5 GHz access point. A high-order MIMO radio, such as the 4×4 MIMO antenna 335 is desirable in the 5 GHz WiFi client radio 305, as antenna beam-forming provided by a high order MIMO radio allows the maximum gain to be steered in a direction that is advantageous for the 5 GHz access point to which the repeater 300 is coupled. The maximum gain point need not be fixed necessarily normal to the window plane.
Data packets received by the 5 GHz WiFi client radio 305 are processed through a microprocessor 310, and then relayed to a 2.4 GHz Wi-Fi access point radio 320.
With antenna gain toward the inside of the home or office, the 2.4 GHz Wi-Fi access point radio 320 re-transmits the data packets to wireless devices, such as 2.4 GHz User Equipment (UE) that have 2.4 GHz client radios. In the reverse direction, upstream packets from the 2.4 GHz UEs are received by the 2.4 GHz Wi-Fi access point radio 320 of the repeater, over the 2.4 GHz wireless link, processed through the microprocessor 310, and re-transmitted to the 5 GHz access point over the 5 GHz wireless link.
Logic for converting the 5 GHz data packets to 2.4 GHz data packets, and vice-versa is stored in memory 315, as well as beam-forming logic. The microprocessor 310 executes the logic stored in memory 315 to accomplish functions such as beam-forming and data packet conversion, as needed.
In one embodiment, the repeater 300 is enclosed in a plastic enclosure 302 that allows the 2.4 GHz signals (2.4 GHz WiFi Access Point Antenna Pattern 210) and 5 GHz signals (5 GHz WiFi Client Radio Antenna Pattern 215) to reach the respective radios with minimal loss. It is mounted to a window using double-sided adhesive tape 220, allowing it to be removed later, but providing adequate strength for reliable attachment. Other suitable methods for attaching the repeater 300 to a window or other portion of a structure are also likewise contemplated for use in accordance with the present technology.
In one embodiment, the window separates an outdoor area 225 from an indoor area 230. The 5 GHz access point is position in the outdoor area and the 2.4 GHz UEs are positioned in the indoor area. The 4×4 MIMO antenna 335 transmits and receives data from a 5 GHz access point located in the outdoor area, while the 2×2 MIMO antenna 340 transmits and receives data from a 2.4 GHz UEs located in the indoor area. In one embodiment, the repeater 300 is positioned on the inside of the window within the indoor area. For example, the 5 GHz access point is located in an outside area such as a street lamp, an antenna tower, a building top or other common outdoor location/structure.
The 4×4 MIMO antenna 335 is disposed proximate an outdoor facing surface 304 of the enclosure of the repeater 300. Also, the 2×2 MIMO antenna 340 is disposed proximate an indoor facing surface 306 of the enclosure of the repeater 300.
As illustrated in
A data cable such as CAT5E is used to connect the repeater 300 to a power-over-Ethernet wall adapter, such as wall adapter 350, which adapts AC power to low-voltage DC power to operate one or more radios. The data cable coupling the repeater with the wall adapter can comprise a PoE (power over Ethernet) cable. For context, PoE uses an 8-conductor cable that carries both power and Ethernet over four twisted pairs.
The data cable from the repeater 300 could alternatively be a simple two-conductor version and the wall adapter can be a simple AC power converter such as those used for other DC-powered devices. The repeater 300 can use the power conditioning circuitry 325 to adapt the AC power to DC power.
Referring now to
In some embodiments, the repeater can couple with a dual-band wireless router (e.g., both 2.4 GHz and 5 GHz). The distance between the repeater and the wireless router allows a 5 GHz client and a 5 GHz access point to coexist, without synchronization, provided they are on different channels and far enough apart. This would not be feasible when the client and access point are within the same enclosure though.
In some embodiments, the repeater device 300 (and more specifically the microprocessor) can be configured to provide firewall or other similar security features. That is, the repeater device 300 provides the ability to create a private network within the indoor area using the 2.4 GHz Wi-Fi access point radio 320. Indeed, there may be numerous 2.4 GHz UEs that are joined to the private network created by the repeater device 300. Thus, the repeater device 300 employs network security features to prevent access to the private network from other users that may be using the 5 GHz access point. Similarly, the repeater device 300 can selectively prevent network traffic created on the private network from being transmitted over the 5 GHz network of the 5 GHz access point. Therefore, the repeater device 300 is advantageously capable of providing network address translation functionality to bridge communications between the 5 GHz network of the 5 GHz access point and the private network created for the UEs.
The second 5 GHz Wi-Fi access point radio 320 can therefore electrically and communicatively couple with the components positioned within the enclosure 302, such as the microprocessor 310 using a power over Ethernet cable 360, or other similar physical power and data connection that would be known to one of ordinary skill in the art. The wall adapter 350 that comprises the second 5 GHz Wi-Fi access point radio 320 and power over Ethernet adapter 355 can be referred to as a PoE gateway.
According to some embodiments, the repeaters described herein can be configured to reduce or eliminate interference on 5 GHz channels. For example, the repeaters can implement a PoE gateway as described above which coordinates with the 5 GHz outdoor access point on a roof of a house, to coordinate 5 GHz channels so as to not cause interference. For example, the microprocessor of the repeater can be configured to pick a new channel when instructed by the 5 GHz access point and dynamically maintaining this function as the outdoor access point may change channels over time.
This methodology is distinguished from clear channel selection methods where an AP or other wireless networking device will scan for an optimal clear channel upon boot up or initialization and/or periodically.
In one embodiment, the 5 GHz Wi-Fi client radio 305 receives data from the 5 GHz access point on a first channel. The microprocessor 310 will utilize the first channel and instruct the second 5 GHz Wi-Fi access point radio 320 to utilize the first channel until instructed to change channels.
According to some embodiments, the 5 GHz access point may determine to select a new channel. For example, if another outdoor access point or other wireless AP in the area begins to utilize portions of the frequency spectrum currently utilized by the 5 GHz outdoor access point, the outdoor access point may selectively change the portion of the spectrum that it utilizes by selecting a new or updated channel.
The outdoor access point transmits a channel change signal that is received by the repeater 300. The repeater 300 receives the channel change signal using the 5 GHz Wi-Fi client radio 305. The microprocessor 310 detects the channel change request and then transmits a request to change of the first channel used by the first radio (5 GHz Wi-Fi client radio 305) and the second 5 GHz Wi-Fi access point radio 320 (also referred to as an access point radio) to a second channel. The UEs communicating with the second 5 GHz Wi-Fi access point radio 320 will detect the channel change and adjust their communication procedures as necessary. In sum, the channel change process includes propagation of a channel change request from the outdoor access point to the window mounted repeater that includes the 5 GHz WiFi client radio 305. The 5 GHz Wi-Fi client radio propagates the channel change request to the second 5 GHz Wi-Fi access point radio 320 disposed in a wall adapter. The channel change request is then propagated out to the UEs that are communicatively coupled with the second 5 GHz WiFi access point radio 320.
To be sure, the 5 GHz Wi-Fi Client Radio 305 can be collocated in the same enclosure with the second 5 GHz Wi-Fi access point radio 320, such as in enclosure 302 as in embodiments disclosed above. In other embodiments, the 5 GHz Wi-Fi Client Radio 305 can be disposed with the enclosure 302 while the second 5 GHz Wi-Fi access point radio 320 is disposed within the wall adapter 350.
In another example embodiment, the wall adapter 350 of
In the following description, for purposes of explanation and not limitation, specific details are set forth, such as particular embodiments, procedures, techniques, etc. in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” or “according to one embodiment” (or other phrases having similar import) at various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Furthermore, depending on the context of discussion herein, a singular term may include its plural forms and a plural term may include its singular form. Similarly, a hyphenated term (e.g., “on-demand”) may be occasionally interchangeably used with its non-hyphenated version (e.g., “on demand”), a capitalized entry (e.g., “Software”) may be interchangeably used with its non-capitalized version (e.g., “software”), a plural term may be indicated with or without an apostrophe (e.g., PE's or PEs), and an italicized term (e.g., “N+1”) may be interchangeably used with its non-italicized version (e.g., “N+1”). Such occasional interchangeable uses shall not be considered inconsistent with each other.
Also, some embodiments may be described in terms of “means for” performing a task or set of tasks. It will be understood that a “means for” may be expressed herein in terms of a structure, such as a processor, a memory, an I/O device such as a camera, or combinations thereof. Alternatively, the “means for” may include an algorithm that is descriptive of a function or method step, while in yet other embodiments the “means for” is expressed in terms of a mathematical formula, prose, or as a flow chart or signal diagram.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It is noted at the outset that the terms “coupled,” “connected”, “connecting,” “electrically connected,” etc., are used interchangeably herein to generally refer to the condition of being electrically/electronically connected. Similarly, a first entity is considered to be in “communication” with a second entity (or entities) when the first entity electrically sends and/or receives (whether through wireline or wireless means) information signals (whether containing data information or non-data/control information) to the second entity regardless of the type (analog or digital) of those signals. It is further noted that various figures (including component diagrams) shown and discussed herein are for illustrative purpose only, and are not drawn to scale.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The descriptions are not intended to limit the scope of the invention to the particular forms set forth herein. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments.
This application is a continuation of U.S. application Ser. No. 14/848,202, titled “Wi-Fi Hotspot Repeater”, filed on Sep. 8, 2015, which claims the priority benefit of U.S. Provisional Patent Application Ser. No. 62/047,640, filed on Sep. 8, 2014, titled “Wi-Fi Hotspot Repeater”, all of which are hereby incorporated by reference herein in their entirety, including all references cited therein.
Number | Name | Date | Kind |
---|---|---|---|
2735993 | Humphrey | Feb 1956 | A |
3182129 | Clark et al. | May 1965 | A |
D227476 | Kennedy | Jun 1973 | S |
4188633 | Frazita | Feb 1980 | A |
4402566 | Powell et al. | Sep 1983 | A |
D273111 | Hirata et al. | Mar 1984 | S |
4543579 | Teshirogi | Sep 1985 | A |
4562416 | Sedivec | Dec 1985 | A |
4626863 | Knop et al. | Dec 1986 | A |
4835538 | McKenna et al. | May 1989 | A |
4866451 | Chen | Sep 1989 | A |
4893288 | Maier et al. | Jan 1990 | A |
4903033 | Tsao et al. | Feb 1990 | A |
4986764 | Eaby et al. | Jan 1991 | A |
5015195 | Piriz | May 1991 | A |
5087920 | Tsurumaru et al. | Feb 1992 | A |
5226837 | Cinibulk et al. | Jul 1993 | A |
5231406 | Sreenivas | Jul 1993 | A |
D346598 | McCay et al. | May 1994 | S |
D355416 | McCay et al. | Feb 1995 | S |
5389941 | Yu | Feb 1995 | A |
5491833 | Hamabe | Feb 1996 | A |
5513380 | Ivanov et al. | Apr 1996 | A |
5539361 | Davidovitz | Jul 1996 | A |
5561434 | Yamazaki | Oct 1996 | A |
D375501 | Lee et al. | Nov 1996 | S |
5580264 | Aoyama et al. | Dec 1996 | A |
5684495 | Dyott et al. | Nov 1997 | A |
D389575 | Grasfield et al. | Jan 1998 | S |
5724666 | Dent | Mar 1998 | A |
5742911 | Dumbrill et al. | Apr 1998 | A |
5746611 | Brown et al. | May 1998 | A |
5764696 | Barnes et al. | Jun 1998 | A |
5797083 | Anderson | Aug 1998 | A |
5831582 | Muhlhauser et al. | Nov 1998 | A |
5966102 | Runyon | Oct 1999 | A |
5995063 | Somoza et al. | Nov 1999 | A |
6014372 | Kent et al. | Jan 2000 | A |
6067053 | Runyon et al. | May 2000 | A |
6137449 | Kildal | Oct 2000 | A |
6140962 | Groenenboom | Oct 2000 | A |
6176739 | Denlinger et al. | Jan 2001 | B1 |
6216266 | Eastman et al. | Apr 2001 | B1 |
6271802 | Clark et al. | Aug 2001 | B1 |
6304762 | Myers et al. | Oct 2001 | B1 |
D455735 | Winslow | Apr 2002 | S |
6421538 | Byrne | Jul 2002 | B1 |
6716063 | Bryant et al. | Apr 2004 | B1 |
6754511 | Halford et al. | Jun 2004 | B1 |
6847653 | Smiroldo | Jan 2005 | B1 |
D501848 | Uehara et al. | Feb 2005 | S |
6853336 | Asano et al. | Feb 2005 | B2 |
6864837 | Runyon et al. | Mar 2005 | B2 |
6877277 | Kussel et al. | Apr 2005 | B2 |
6962445 | Zimmel et al. | Nov 2005 | B2 |
7075492 | Chen et al. | Jul 2006 | B1 |
D533899 | Ohashi et al. | Dec 2006 | S |
7173570 | Wensink et al. | Feb 2007 | B1 |
7187328 | Tanaka et al. | Mar 2007 | B2 |
7193562 | Shtrom et al. | Mar 2007 | B2 |
7212162 | Jung et al. | May 2007 | B2 |
7212163 | Huang et al. | May 2007 | B2 |
7245265 | Kienzle et al. | Jul 2007 | B2 |
7253783 | Chiang et al. | Aug 2007 | B2 |
7264494 | Kennedy et al. | Sep 2007 | B2 |
7281856 | Grzegorzewska et al. | Oct 2007 | B2 |
7292198 | Shtrom et al. | Nov 2007 | B2 |
7306485 | Masuzaki | Dec 2007 | B2 |
7316583 | Mistarz | Jan 2008 | B1 |
7324057 | Argaman et al. | Jan 2008 | B2 |
D566698 | Choi et al. | Apr 2008 | S |
7362236 | Hoiness | Apr 2008 | B2 |
7369095 | Hirtzlin et al. | May 2008 | B2 |
7380984 | Wuester | Jun 2008 | B2 |
7431602 | Corona | Oct 2008 | B2 |
7436373 | Lopes et al. | Oct 2008 | B1 |
7498896 | Shi | Mar 2009 | B2 |
7498996 | Shtrom et al. | Mar 2009 | B2 |
7507105 | Peters et al. | Mar 2009 | B1 |
7522095 | Wasiewicz et al. | Apr 2009 | B1 |
7542717 | Green, Sr. et al. | Jun 2009 | B2 |
7581976 | Liepold et al. | Sep 2009 | B2 |
7586891 | Masciulli | Sep 2009 | B1 |
7616959 | Spenik et al. | Nov 2009 | B2 |
7646343 | Shtrom et al. | Jan 2010 | B2 |
7675473 | Kienzle et al. | Mar 2010 | B2 |
7675474 | Shtrom et al. | Mar 2010 | B2 |
7726997 | Kennedy et al. | Jun 2010 | B2 |
7778226 | Rayzman et al. | Aug 2010 | B2 |
7857523 | Masuzaki | Dec 2010 | B2 |
7903040 | Gevorgian et al. | Mar 2011 | B2 |
7929914 | Tegreene | Apr 2011 | B2 |
RE42522 | Zimmel et al. | Jul 2011 | E |
8009646 | Lastinger et al. | Aug 2011 | B2 |
8069465 | Bartholomay et al. | Nov 2011 | B1 |
8111678 | Lastinger et al. | Feb 2012 | B2 |
8254844 | Kuffner et al. | Aug 2012 | B2 |
8270383 | Lastinger et al. | Sep 2012 | B2 |
8275265 | Kobyakov et al. | Sep 2012 | B2 |
8325695 | Lastinger et al. | Dec 2012 | B2 |
8339327 | Schadler et al. | Dec 2012 | B2 |
D674787 | Tsuda et al. | Jan 2013 | S |
8345651 | Lastinger et al. | Jan 2013 | B2 |
8385305 | Negus et al. | Feb 2013 | B1 |
8425260 | Seefried et al. | Apr 2013 | B2 |
8482478 | Hartenstein | Jul 2013 | B2 |
8515434 | Narendran et al. | Aug 2013 | B1 |
8515495 | Shang et al. | Aug 2013 | B2 |
D694740 | Apostolakis | Dec 2013 | S |
8777660 | Chiarelli et al. | Jul 2014 | B2 |
8792759 | Benton et al. | Jul 2014 | B2 |
8827729 | Gunreben et al. | Sep 2014 | B2 |
8836601 | Sanford et al. | Sep 2014 | B2 |
8848389 | Kawamura et al. | Sep 2014 | B2 |
8870069 | Bellows | Oct 2014 | B2 |
8872715 | Lea et al. | Oct 2014 | B2 |
8935122 | Stisser | Jan 2015 | B2 |
9001689 | Hinman et al. | Apr 2015 | B1 |
9019874 | Choudhury et al. | Apr 2015 | B2 |
9077071 | Shtrom et al. | Jul 2015 | B2 |
9107134 | Belser et al. | Aug 2015 | B1 |
9130305 | Ramos et al. | Sep 2015 | B2 |
9161387 | Fink et al. | Oct 2015 | B2 |
9179336 | Fink et al. | Nov 2015 | B2 |
9191081 | Hinman et al. | Nov 2015 | B2 |
D752566 | Hinman et al. | Mar 2016 | S |
9295103 | Fink et al. | Mar 2016 | B2 |
9362629 | Hinman et al. | Jun 2016 | B2 |
9391375 | Bales et al. | Jul 2016 | B1 |
9407012 | Shtrom et al. | Aug 2016 | B2 |
9431702 | Hartenstein | Aug 2016 | B2 |
9504049 | Hinman et al. | Nov 2016 | B2 |
9531114 | Ramos et al. | Dec 2016 | B2 |
9537204 | Cheng et al. | Jan 2017 | B2 |
9577340 | Fakharzadeh et al. | Feb 2017 | B2 |
9693388 | Fink et al. | Jun 2017 | B2 |
9780892 | Hinman et al. | Oct 2017 | B2 |
9843940 | Hinman et al. | Dec 2017 | B2 |
9871302 | Hinman et al. | Jan 2018 | B2 |
9888485 | Hinman et al. | Feb 2018 | B2 |
9930592 | Hinman | Mar 2018 | B2 |
9949147 | Hinman et al. | Apr 2018 | B2 |
9986565 | Fink et al. | May 2018 | B2 |
9998246 | Hinman et al. | Jun 2018 | B2 |
10028154 | Elson | Jul 2018 | B2 |
10090943 | Hinman et al. | Oct 2018 | B2 |
10096933 | Ramos et al. | Oct 2018 | B2 |
10117114 | Hinman et al. | Oct 2018 | B2 |
10186786 | Hinman et al. | Jan 2019 | B2 |
10200925 | Hinman | Feb 2019 | B2 |
10257722 | Hinman et al. | Apr 2019 | B2 |
10425944 | Fink et al. | Sep 2019 | B2 |
10447417 | Hinman et al. | Oct 2019 | B2 |
10511074 | Eberhardt et al. | Dec 2019 | B2 |
10595253 | Hinman | Mar 2020 | B2 |
10616903 | Hinman et al. | Apr 2020 | B2 |
10714805 | Eberhardt et al. | Jul 2020 | B2 |
10742275 | Hinman | Aug 2020 | B2 |
10749263 | Eberhardt et al. | Aug 2020 | B2 |
10785608 | Fink et al. | Sep 2020 | B2 |
10790613 | Ramos et al. | Sep 2020 | B2 |
10812994 | Hinman et al. | Oct 2020 | B2 |
10863507 | Fink et al. | Dec 2020 | B2 |
10938110 | Hinman et al. | Mar 2021 | B2 |
10958332 | Hinman | Mar 2021 | B2 |
11069986 | Sanford et al. | Jul 2021 | B2 |
11251539 | Hinman | Feb 2022 | B2 |
11289821 | Sanford et al. | Mar 2022 | B2 |
11404796 | Sanford et al. | Aug 2022 | B2 |
11482789 | Hinman et al. | Oct 2022 | B2 |
20010033600 | Yang et al. | Oct 2001 | A1 |
20020102948 | Stanwood et al. | Aug 2002 | A1 |
20020159434 | Gosior et al. | Oct 2002 | A1 |
20030013452 | Hunt et al. | Jan 2003 | A1 |
20030027577 | Brown et al. | Feb 2003 | A1 |
20030169763 | Choi | Sep 2003 | A1 |
20030222831 | Dunlap | Dec 2003 | A1 |
20030224741 | Sugar et al. | Dec 2003 | A1 |
20040002357 | Benveniste | Jan 2004 | A1 |
20040029549 | Fikart | Feb 2004 | A1 |
20040110469 | Judd | Jun 2004 | A1 |
20040120277 | Holur et al. | Jun 2004 | A1 |
20040155819 | Martin et al. | Aug 2004 | A1 |
20040196812 | Barber | Oct 2004 | A1 |
20040196813 | Ofek et al. | Oct 2004 | A1 |
20040240376 | Wang et al. | Dec 2004 | A1 |
20040242274 | Corbett et al. | Dec 2004 | A1 |
20050012665 | Runyon et al. | Jan 2005 | A1 |
20050032479 | Miller et al. | Feb 2005 | A1 |
20050058111 | Hung et al. | Mar 2005 | A1 |
20050124294 | Wentink | Jun 2005 | A1 |
20050141459 | Li et al. | Jun 2005 | A1 |
20050143014 | Li et al. | Jun 2005 | A1 |
20050152323 | Bonnassieux et al. | Jul 2005 | A1 |
20050195758 | Chitrapu | Sep 2005 | A1 |
20050227625 | Diener | Oct 2005 | A1 |
20050254442 | Proctor, Jr. | Nov 2005 | A1 |
20050271056 | Kaneko | Dec 2005 | A1 |
20050275527 | Kates | Dec 2005 | A1 |
20060025072 | Pan | Feb 2006 | A1 |
20060056344 | Roy | Mar 2006 | A1 |
20060072518 | Pan et al. | Apr 2006 | A1 |
20060098592 | Proctor, Jr. et al. | May 2006 | A1 |
20060099940 | Pfleging et al. | May 2006 | A1 |
20060132359 | Chang et al. | Jun 2006 | A1 |
20060132602 | Muto et al. | Jun 2006 | A1 |
20060172578 | Parsons | Aug 2006 | A1 |
20060187952 | Kappes et al. | Aug 2006 | A1 |
20060211430 | Persico | Sep 2006 | A1 |
20060276073 | McMurray et al. | Dec 2006 | A1 |
20070001910 | Yamanaka et al. | Jan 2007 | A1 |
20070019664 | Benveniste | Jan 2007 | A1 |
20070035463 | Hirabayashi | Feb 2007 | A1 |
20070060158 | Medepalli et al. | Mar 2007 | A1 |
20070132643 | Durham et al. | Jun 2007 | A1 |
20070173199 | Sinha | Jul 2007 | A1 |
20070173260 | Love et al. | Jul 2007 | A1 |
20070202809 | Lastinger et al. | Aug 2007 | A1 |
20070210974 | Chiang | Sep 2007 | A1 |
20070223701 | Emeott et al. | Sep 2007 | A1 |
20070238482 | Rayzman et al. | Oct 2007 | A1 |
20070255797 | Dunn et al. | Nov 2007 | A1 |
20070268848 | Khandekar et al. | Nov 2007 | A1 |
20080109051 | Splinter et al. | May 2008 | A1 |
20080112380 | Fischer | May 2008 | A1 |
20080192707 | Xhafa et al. | Aug 2008 | A1 |
20080218418 | Gillette | Sep 2008 | A1 |
20080231541 | Teshirogi et al. | Sep 2008 | A1 |
20080242342 | Rofougaran | Oct 2008 | A1 |
20090046673 | Kaidar | Feb 2009 | A1 |
20090051597 | Wen et al. | Feb 2009 | A1 |
20090052362 | Meier et al. | Feb 2009 | A1 |
20090059794 | Frei | Mar 2009 | A1 |
20090075606 | Shtrom et al. | Mar 2009 | A1 |
20090096699 | Chiu et al. | Apr 2009 | A1 |
20090232026 | Lu | Sep 2009 | A1 |
20090233475 | Mildon et al. | Sep 2009 | A1 |
20090291690 | Guvenc et al. | Nov 2009 | A1 |
20090315792 | Miyashita et al. | Dec 2009 | A1 |
20100029282 | Stamoulis et al. | Feb 2010 | A1 |
20100034191 | Schulz | Feb 2010 | A1 |
20100039340 | Brown | Feb 2010 | A1 |
20100046650 | Jongren et al. | Feb 2010 | A1 |
20100067505 | Fein et al. | Mar 2010 | A1 |
20100085950 | Sekiya | Apr 2010 | A1 |
20100091818 | Sen et al. | Apr 2010 | A1 |
20100103065 | Shtrom et al. | Apr 2010 | A1 |
20100103066 | Shtrom et al. | Apr 2010 | A1 |
20100119002 | Hartenstein | May 2010 | A1 |
20100136978 | Cho et al. | Jun 2010 | A1 |
20100151877 | Lee et al. | Jun 2010 | A1 |
20100167719 | Sun | Jul 2010 | A1 |
20100171665 | Nogami | Jul 2010 | A1 |
20100171675 | Borja et al. | Jul 2010 | A1 |
20100177660 | Essinger | Jul 2010 | A1 |
20100189005 | Bertani et al. | Jul 2010 | A1 |
20100202613 | Ray et al. | Aug 2010 | A1 |
20100210147 | Hauser | Aug 2010 | A1 |
20100216412 | Rofougaran | Aug 2010 | A1 |
20100225529 | Landreth et al. | Sep 2010 | A1 |
20100238083 | Malasani | Sep 2010 | A1 |
20100304680 | Kuffner et al. | Dec 2010 | A1 |
20100311321 | Norin | Dec 2010 | A1 |
20100315307 | Syed et al. | Dec 2010 | A1 |
20100322219 | Fischer et al. | Dec 2010 | A1 |
20110006956 | McCown | Jan 2011 | A1 |
20110028097 | Memik et al. | Feb 2011 | A1 |
20110032159 | Wu et al. | Feb 2011 | A1 |
20110044186 | Jung et al. | Feb 2011 | A1 |
20110090129 | Weily et al. | Apr 2011 | A1 |
20110103309 | Wang et al. | May 2011 | A1 |
20110111715 | Buer et al. | May 2011 | A1 |
20110112717 | Resner | May 2011 | A1 |
20110133996 | Alapuranen | Jun 2011 | A1 |
20110170424 | Safavi | Jul 2011 | A1 |
20110172916 | Pakzad et al. | Jul 2011 | A1 |
20110182260 | Sivakumar et al. | Jul 2011 | A1 |
20110182277 | Shapira | Jul 2011 | A1 |
20110194644 | Liu et al. | Aug 2011 | A1 |
20110206012 | Youn et al. | Aug 2011 | A1 |
20110241969 | Zhang et al. | Oct 2011 | A1 |
20110243291 | McAllister et al. | Oct 2011 | A1 |
20110256874 | Hayama et al. | Oct 2011 | A1 |
20110291914 | Lewry et al. | Dec 2011 | A1 |
20120008542 | Koleszar et al. | Jan 2012 | A1 |
20120040700 | Gomes et al. | Feb 2012 | A1 |
20120057533 | Junell et al. | Mar 2012 | A1 |
20120093091 | Kang et al. | Apr 2012 | A1 |
20120115487 | Josso | May 2012 | A1 |
20120134280 | Rotvoid et al. | May 2012 | A1 |
20120139786 | Puzella et al. | Jun 2012 | A1 |
20120140651 | Nicoara et al. | Jun 2012 | A1 |
20120200449 | Bielas | Aug 2012 | A1 |
20120238201 | Du et al. | Sep 2012 | A1 |
20120263145 | Marinier et al. | Oct 2012 | A1 |
20120282868 | Hahn | Nov 2012 | A1 |
20120299789 | Orban et al. | Nov 2012 | A1 |
20120314634 | Sekhar | Dec 2012 | A1 |
20130003645 | Shapira et al. | Jan 2013 | A1 |
20130005350 | Campos et al. | Jan 2013 | A1 |
20130023216 | Moscibroda et al. | Jan 2013 | A1 |
20130044028 | Lea et al. | Feb 2013 | A1 |
20130063310 | Mak et al. | Mar 2013 | A1 |
20130064161 | Hedayat et al. | Mar 2013 | A1 |
20130082899 | Gomi | Apr 2013 | A1 |
20130095747 | Moshfeghi | Apr 2013 | A1 |
20130128858 | Zou et al. | May 2013 | A1 |
20130176902 | Wentink et al. | Jul 2013 | A1 |
20130182652 | Tong et al. | Jul 2013 | A1 |
20130195081 | Merlin et al. | Aug 2013 | A1 |
20130210457 | Kummetz | Aug 2013 | A1 |
20130223398 | Li et al. | Aug 2013 | A1 |
20130234898 | Leung et al. | Sep 2013 | A1 |
20130271319 | Trerise | Oct 2013 | A1 |
20130286950 | Pu | Oct 2013 | A1 |
20130286959 | Lou et al. | Oct 2013 | A1 |
20130288735 | Guo | Oct 2013 | A1 |
20130301438 | Li et al. | Nov 2013 | A1 |
20130322276 | Pelletier et al. | Dec 2013 | A1 |
20130322413 | Pelletier et al. | Dec 2013 | A1 |
20140024328 | Balbien et al. | Jan 2014 | A1 |
20140051357 | Steer et al. | Feb 2014 | A1 |
20140098748 | Chan et al. | Apr 2014 | A1 |
20140113676 | Hamalainen et al. | Apr 2014 | A1 |
20140145890 | Ramberg et al. | May 2014 | A1 |
20140154895 | Poulsen et al. | Jun 2014 | A1 |
20140185494 | Yang et al. | Jul 2014 | A1 |
20140191918 | Cheng et al. | Jul 2014 | A1 |
20140198867 | Sturkovich et al. | Jul 2014 | A1 |
20140206322 | Dimou et al. | Jul 2014 | A1 |
20140225788 | Schulz et al. | Aug 2014 | A1 |
20140233613 | Fink et al. | Aug 2014 | A1 |
20140235244 | Hinman | Aug 2014 | A1 |
20140240186 | Zhou et al. | Aug 2014 | A1 |
20140253378 | Hinman | Sep 2014 | A1 |
20140253402 | Hinman et al. | Sep 2014 | A1 |
20140254700 | Hinman et al. | Sep 2014 | A1 |
20140256166 | Ramos et al. | Sep 2014 | A1 |
20140320306 | Winter | Oct 2014 | A1 |
20140320377 | Cheng et al. | Oct 2014 | A1 |
20140328238 | Seok et al. | Nov 2014 | A1 |
20140341013 | Kumar | Nov 2014 | A1 |
20140355578 | Fink et al. | Dec 2014 | A1 |
20140355584 | Fink et al. | Dec 2014 | A1 |
20150002335 | Hinman et al. | Jan 2015 | A1 |
20150002354 | Knowles | Jan 2015 | A1 |
20150015435 | Shen et al. | Jan 2015 | A1 |
20150116177 | Powell et al. | Apr 2015 | A1 |
20150156642 | Sobczak et al. | Jun 2015 | A1 |
20150215952 | Hinman et al. | Jul 2015 | A1 |
20150244077 | Sanford | Aug 2015 | A1 |
20150256213 | Jan et al. | Sep 2015 | A1 |
20150256275 | Hinman et al. | Sep 2015 | A1 |
20150263816 | Hinman et al. | Sep 2015 | A1 |
20150319584 | Fink et al. | Nov 2015 | A1 |
20150321017 | Perryman et al. | Nov 2015 | A1 |
20150325945 | Ramos et al. | Nov 2015 | A1 |
20150327272 | Fink et al. | Nov 2015 | A1 |
20150365866 | Hinman et al. | Dec 2015 | A1 |
20160119018 | Lindgren et al. | Apr 2016 | A1 |
20160149634 | Kalkunte et al. | May 2016 | A1 |
20160149635 | Hinman et al. | May 2016 | A1 |
20160211583 | Lee et al. | Jul 2016 | A1 |
20160240929 | Hinman et al. | Aug 2016 | A1 |
20160338076 | Hinman et al. | Nov 2016 | A1 |
20160365666 | Ramos et al. | Dec 2016 | A1 |
20160366601 | Hinman et al. | Dec 2016 | A1 |
20170048647 | Jung et al. | Feb 2017 | A1 |
20170201028 | Eberhardt et al. | Jul 2017 | A1 |
20170238151 | Fink et al. | Aug 2017 | A1 |
20170294975 | Hinman et al. | Oct 2017 | A1 |
20170353245 | Vardarajan | Dec 2017 | A1 |
20180034166 | Hinman | Feb 2018 | A1 |
20180035317 | Hinman et al. | Feb 2018 | A1 |
20180083365 | Hinman et al. | Mar 2018 | A1 |
20180084563 | Hinman et al. | Mar 2018 | A1 |
20180102594 | Murdock et al. | Apr 2018 | A1 |
20180160353 | Hinman | Jun 2018 | A1 |
20180167105 | Vannucci et al. | Jun 2018 | A1 |
20180192305 | Hinman et al. | Jul 2018 | A1 |
20180199345 | Fink et al. | Jul 2018 | A1 |
20180241491 | Hinman et al. | Aug 2018 | A1 |
20190006789 | Ramos et al. | Jan 2019 | A1 |
20190115664 | Veihl et al. | Apr 2019 | A1 |
20190182686 | Hinman et al. | Jun 2019 | A1 |
20190214699 | Eberhardt et al. | Jul 2019 | A1 |
20190215745 | Hinman | Jul 2019 | A1 |
20190273326 | Sanford et al. | Sep 2019 | A1 |
20200015231 | Fink et al. | Jan 2020 | A1 |
20200036465 | Hinman et al. | Jan 2020 | A1 |
20200067164 | Eberhardt et al. | Feb 2020 | A1 |
20200083614 | Sanford et al. | Mar 2020 | A1 |
20210167510 | Hinman et al. | Jun 2021 | A1 |
20210273346 | Sanford et al. | Sep 2021 | A1 |
20220085520 | Hinman | Mar 2022 | A1 |
20220285855 | Sanford et al. | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
104335654 | Feb 2015 | CN |
303453662 | Nov 2015 | CN |
105191204 | Dec 2015 | CN |
105191204 | May 2019 | CN |
002640177 | Feb 2015 | EM |
1384285 | Jun 2007 | EP |
3208887 | Feb 2017 | EP |
3491697 | Jun 2019 | EP |
WO2014137370 | Sep 2014 | WO |
WO2014138292 | Sep 2014 | WO |
WO2014193394 | Dec 2014 | WO |
WO2015112627 | Jul 2015 | WO |
WO2017123558 | Jul 2017 | WO |
WO2018022526 | Feb 2018 | WO |
WO2019136257 | Jul 2019 | WO |
WO2019168800 | Sep 2019 | WO |
Entry |
---|
“Office Action”, European Patent Application No. 17835073.2, dated Feb. 21, 2022, 7 pages. |
“International Search Report” and “Written Opinion of the International Search Authority,” dated Nov. 26, 2013 in Patent Cooperation Treaty Application No. PCT/US2013/047406, filed Jun. 24, 2013, 9 pages. |
“International Search Report” and “Written Opinion of the International Search Authority,” dated Aug. 9, 2013 in Patent Cooperation Treaty Application No. PCT/US2013/043436, filed May 30, 2013, 13 pages. |
“International Search Report” and “Written Opinion of the International Search Authority,” dated Jul. 1, 2014 in Patent Cooperation Treaty Application No. PCT/US2014/020880, filed Mar. 5, 2014, 14 pages. |
“International Search Report” and “Written Opinion of the International Search Authority,” dated Jun. 29, 2015 in Patent Cooperation Treaty Application No. PCT/US2015/012285, filed Jan. 21, 2015, 15 pages. |
Hinman et al., U.S. Appl. No. 61/774,532, filed Mar. 7, 2013, 23 pages. |
“Office Action,” Chinese Design Patent Application 201530058063.8, dated Jun. 15, 2015, 1 page. |
“Notice of Allowance,”Chinese Design Patent Application 201530058063.8, dated Sep. 8, 2015, 3 pages. |
Weisstein, Eric, “Electric Polarization”, Wolfram Reasearch [online], Retrieved from the Internet [retrieved Mar. 23, 2017] <URL:http://scienceworld.wolfram.com/physics/ElectricPolarization.html>, 2007, 1 page. |
Liu, Lingjia et al., “Downlink MIMO in LTE-Advanced: SU-MIMO vs. MU-MIMO,” IEEE Communications Magazine, Feb. 2012, pp. 140-147. |
“International Search Report” and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2017/012884, dated Apr. 6, 2017, 9 pages. |
“Office Action,” Chinese Patent Application No. 201580000078.6, dated Nov. 3, 2017, 5 pages [10 pages including translation]. |
“International Search Report” and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2017/043560, dated Nov. 16, 2017, 11 pages. |
“Office Action,” Chinese Patent Application No. 201580000078.6, dated Jul. 30, 2018, 5 pages [11 pages including translation]. |
“Office Action,” Chinese Patent Application No. 201580000078.6, dated Oct. 31, 2018, 3 pages [6 pages including translation]. |
“Notice of Allowance,” Chinese Patent Application No. 201580000078.6, dated Feb. 11, 2019, 2 pages [4 pages including translation]. |
“International Search Report” and “Written Opinion of the International Search Authority,” dated Mar. 22, 2019 in Patent Cooperation Treaty Application No. PCT/US2019/012358, filed Jan. 4, 2019, 9 pages. |
FCC Regulations, 47 CFR § 15.407, 63 FR 40836, Jul. 31, 1998, as amended at 69 FR 2687, Jan. 20, 2004; 69 FR 54036, Sep. 7, 2004; pp. 843-846. |
“International Search Report” and “Written Opinion of the International Search Authority,” dated May 23, 2019 in Patent Cooperation Treaty Application No. PCT/US2019/019462, filed Feb. 25, 2019, 8 pages. |
Teshirogi, Tasuku et al., “Wideband Circularly Polarized Array Antenna with Sequential Rotations and Phase Shift of Elements,” Proceedings of the International Symposium on Antennas and Propagation, 1985, pp. 117-120. |
“Sector Antennas,” Radiowaves.com, [online], [retrieved Oct. 10, 2019], Retrieved from the Internet: <URL:https://www.radiowaves.com/en/products/sector-antennas>, 4 pages. |
KP Performance Antennas Search Results for Antennas, Sector, Single, [online], KPPerformance.com [retrieved Oct. 10, 2019], Retrieved from the Internet: <URL:https://www.kpperformance.com/search?Category=Antennas&Rfpsan99design=Sector&Rfpsan99option=Single&view_type=grid>, 6 pages. |
“Partial Supplemental European Search Report,” European Patent Application No. 17835073.2, dated Feb. 13, 2020, 17 pages. |
“Wireless Access Point,” Wikipedia.org, Jan. 6, 2020 [retrieved on Feb. 3, 2020], Retrieved from the Internet <https://en.wikipedia.org/wiki/Wireless_access_point>, 5 pages. |
“Extended European Search Report”, European Patent Application No. 17835073.2, dated Jun. 30, 2020, 15 pages. |
Haupt, R.T., “Antenna Arrays: A Computational Approach”, Chapter 5: Non-Planar Arrays; Wiley-IEEE Press (2010), pp. 287-338. |
Dowla, Farid et al., “RF and Wireless Technologies: Know It All”, Netherlands, Elsevier Science, 2008, p. 314. |
“Office Action”, European Patent Application No. 17835073.2, dated Jun. 1, 2021, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20210167842 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62047640 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14848202 | Sep 2015 | US |
Child | 17176880 | US |