Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. An interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. One plate may comprise a stationary layer deposited on a substrate, the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Embodiments” one will understand how the features of this invention provide advantages over other display devices.
In one embodiment, the invention comprises a method of actuating a MEMS display element, the MEMS display element comprising a portion of an array of MEMS display elements. The method may include actuating the MEMS display element with a potential difference of a first polarity during a first portion of a display write process, releasing said MEMS display element, and actuating the MEMS display element with a potential difference having a polarity opposite the first polarity during a second portion of the display write process. In one embodiment, the first portion of the display write process includes writing a first frame of display data to the array of MEMS display elements and the second portion of the display write process includes writing a second frame of display data to the array of MEMS display elements.
In another embodiment of the invention, a method of operating a MEMS element in an array of MEMS elements forming a display includes periodically applying a first potential difference to the MEMS element, the first potential difference having a magnitude sufficient to actuate the MEMS element, and having a polarity. The method may then periodically apply a second potential difference to the MEMS element, the second potential difference being of approximately equal magnitude and opposite polarity as the first potential difference. The first potential difference and the second potential difference are respectively applied to the MEMS element at defined times and for defined time durations that depend on a rate at which image data is written to MEMS elements of the array, and wherein the first and second potential differences are each applied to the MEMS element an approximately equal amount of time over a given period of display use. This method advantageously includes writing the same frame of data using both a potential differences of said first polarity and potential differences of said opposite polarity.
In another embodiment, a method of writing display data to an array of MEMS display elements includes actuating all MEMS elements in a portion of the array; and writing display data to the portion of the array. The portion may, for example, be a row of MEMS elements or the entire array of MEMS elements. The method may additionally include releasing all MEMS elements in the portion of the array prior to writing display data to the portion of the array.
In another embodiment, a method of writing display data to an array of MEMS display elements includes periodically actuating at least some elements of the MEMS elements with a potential difference greater than a potential difference used when actuating the MEMS elements during the process of writing display data to the MEMS elements.
In another embodiment, a system for writing data to an array of MEMS display elements includes a column driver and a row driver. The row driver and column driver are configured to periodically actuate at least some elements of the array with a potential difference greater than a potential difference used when actuating elements during a display writing process.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the invention may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the invention may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
The depicted portion of the pixel array in
The fixed layers 16a, 16b are electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more layers each of chromium and indium-tin-oxide onto a transparent substrate 20. The layers are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the deformable metal layers are separated from the fixed metal layers by a defined air gap 19. A highly conductive and reflective material such as aluminum may be used for the deformable layers, and these strips may form column electrodes in a display device.
With no applied voltage, the cavity 19 remains between the layers 14a, 16a and the deformable layer is in a mechanically relaxed state as illustrated by the pixel 12a in
In one embodiment, the processor 21 is also configured to communicate with an array controller 22. In one embodiment, the array controller 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a pixel array 30. The cross section of the array illustrated in
In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
In the
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
It is one aspect of the above described devices that charge can build on the dielectric between the layers of the device, especially when the devices are actuated and held in the actuated state by an electric field that is always in the same direction. For example, if the moving layer is always at a higher potential relative to the fixed layer when the device is actuated by potentials having a magnitude larger than the outer threshold of stability, a slowly increasing charge buildup on the dielectric between the layers can begin to shift the hysteresis curve for the device. This is undesirable as it causes display performance to change over time, and in different ways for different pixels that are actuated in different ways over time. As can be seen in the example of
This problem can be reduced by actuating the MEMS display elements with a potential difference of a first polarity during a first portion of the display write process, and actuating the MEMS display elements with a potential difference having a polarity opposite the first polarity during a second portion of the display write process. This basic principle is illustrated in
In
Frame N+1 is written in accordance with the table in
A wide variety of modifications of this scheme can be implemented. For example, Frame N and Frame N+1 can comprise different display data. Alternatively, it can be the same display data written twice to the array with opposite polarities. It can also be advantageous to dedicate some frames to setting the state of all or substantially all pixels to a released state, and/or setting the state of all or substantially all the pixels to an actuated state prior to writing desired display data. Setting all the pixels to a common state can be performed in a single row line time by, for example, setting all the columns to +5 V (or −5 V) and scanning all the rows simultaneously with a −5 V scan (or +5 V scan).
In one such embodiment, desired display data is written to the array in one polarity, all the pixels are released, and the same display data is written a second time with the opposite polarity. This is similar to the scheme illustrated in
In another embodiment, a row line time is used to actuate all the pixels of the array, a second line time is used to release all the pixels of the array, and then the display data (Frame N for example) is written to the display. In this embodiment, Frame N+1 can be preceded by an array actuation line time and an array release line time of opposite polarities to the ones preceding Frame N, and then Frame N+1 can be written. In some embodiments, an actuation line time of one polarity, a release line time of the same polarity, an actuation line time of opposite polarity, and a release line time of opposite polarity can precede every frame. These embodiments ensure that all or substantially all pixels are actuated at least once for every frame of display data, reducing differential aging effects as well as reducing charge buildup.
In some cases, it may be advantageous to use an extra high actuation voltage during the array actuation line times. For example, during the array actuation line times described above, the row scan voltages can be 7 V or 10 V instead of 5 V. In this embodiment, the highest voltages applied to the pixel occur during these “over-actuation” array actuation times, and not during display data updates. This can also help reduce differential aging effects for different pixels, some of which may change frequently during display updates, whereas others may change very infrequently during display updates, depending on the images being displayed.
It is also possible to perform these polarity reversals and actuation/release protocols on a row by row basis. In these embodiments, each row of a frame may be written more than once during the frame writing process. For example, when writing row 1 of Frame N, the pixels of row 1 could all be released, and the display data for row 1 can be written with positive polarity. The pixels of row 1 could be released a second time, and the row 1 display data written again with negative polarity. Actuating all the pixels of row 1 as described above for the whole array could also be performed. It will further be appreciated that the releases, actuations, and over-actuations may be performed at a lower frequency than every row write or every frame write during the display updating/refreshing process.
While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As one example, it will be appreciated that the test voltage driver circuitry could be separate from the array driver circuitry used to create the display. As with current sensors, separate voltage sensors could be dedicated to separate row electrodes. The scope of the invention is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims priority under 35 U.S.C. Section 119(e) to U.S. Provisional Patent Applications 60/606,223 filed on Aug. 31, 2004, and 60/604,896 filed on Aug. 27, 2004, which applications are hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3982239 | Sherr | Sep 1976 | A |
4403248 | te Velde | Sep 1983 | A |
4441791 | Hornbeck | Apr 1984 | A |
4459182 | te Velde | Jul 1984 | A |
4482213 | Piliavin et al. | Nov 1984 | A |
4500171 | Penz et al. | Feb 1985 | A |
4519676 | te Velde | May 1985 | A |
4566935 | Hornbeck | Jan 1986 | A |
4571603 | Hornbeck et al. | Feb 1986 | A |
4596992 | Hornbeck | Jun 1986 | A |
4615595 | Hornbeck | Oct 1986 | A |
4662746 | Hornbeck | May 1987 | A |
4681403 | te Velde et al. | Jul 1987 | A |
4709995 | Kuribayashi et al. | Dec 1987 | A |
4710732 | Hornbeck | Dec 1987 | A |
4856863 | Sampsell et al. | Aug 1989 | A |
4859060 | Katagiri et al. | Aug 1989 | A |
4954789 | Sampsell | Sep 1990 | A |
4956619 | Hornbeck | Sep 1990 | A |
4982184 | Kirkwood | Jan 1991 | A |
5018256 | Hornbeck | May 1991 | A |
5028939 | Hornbeck et al. | Jul 1991 | A |
5037173 | Sampsell et al. | Aug 1991 | A |
5055833 | Hehlen et al. | Oct 1991 | A |
5061049 | Hornbeck | Oct 1991 | A |
5078479 | Vuilleumier | Jan 1992 | A |
5079544 | DeMond et al. | Jan 1992 | A |
5083857 | Hornbeck | Jan 1992 | A |
5096279 | Hornbeck et al. | Mar 1992 | A |
5099353 | Hornbeck | Mar 1992 | A |
5124834 | Cusano et al. | Jun 1992 | A |
5142405 | Hornbeck | Aug 1992 | A |
5142414 | Koehler et al. | Aug 1992 | A |
5162787 | Thompson et al. | Nov 1992 | A |
5168406 | Nelson | Dec 1992 | A |
5170156 | DeMond et al. | Dec 1992 | A |
5172262 | Hornbeck | Dec 1992 | A |
5179274 | Sampsell | Jan 1993 | A |
5192395 | Boysel et al. | Mar 1993 | A |
5192946 | Thompson et al. | Mar 1993 | A |
5206629 | DeMond et al. | Apr 1993 | A |
5212582 | Nelson | May 1993 | A |
5214419 | DeMond et al. | May 1993 | A |
5214420 | Thompson et al. | May 1993 | A |
5216537 | Hornbeck | Jun 1993 | A |
5226099 | Mignardi et al. | Jul 1993 | A |
5227900 | Inaba et al. | Jul 1993 | A |
5231532 | Magel et al. | Jul 1993 | A |
5233385 | Sampsell | Aug 1993 | A |
5233456 | Nelson | Aug 1993 | A |
5233459 | Bozler et al. | Aug 1993 | A |
5254980 | Hendrix et al. | Oct 1993 | A |
5272473 | Thompson et al. | Dec 1993 | A |
5278652 | Urbanus et al. | Jan 1994 | A |
5280277 | Hornbeck | Jan 1994 | A |
5287096 | Thompson et al. | Feb 1994 | A |
5296950 | Lin et al. | Mar 1994 | A |
5305640 | Boysel et al. | Apr 1994 | A |
5312513 | Florence et al. | May 1994 | A |
5323002 | Sampsell et al. | Jun 1994 | A |
5325116 | Sampsell | Jun 1994 | A |
5327286 | Sampsell et al. | Jul 1994 | A |
5331454 | Hornbeck | Jul 1994 | A |
5339116 | Urbanus et al. | Aug 1994 | A |
5365283 | Doherty et al. | Nov 1994 | A |
5411769 | Hornbeck | May 1995 | A |
5444566 | Gale et al. | Aug 1995 | A |
5446479 | Thompson et al. | Aug 1995 | A |
5448314 | Heimbuch et al. | Sep 1995 | A |
5452024 | Sampsell | Sep 1995 | A |
5454906 | Baker et al. | Oct 1995 | A |
5457493 | Leddy et al. | Oct 1995 | A |
5457566 | Sampsell et al. | Oct 1995 | A |
5459602 | Sampsell | Oct 1995 | A |
5461411 | Florence et al. | Oct 1995 | A |
5488505 | Engle | Jan 1996 | A |
5489952 | Gove et al. | Feb 1996 | A |
5497172 | Doherty et al. | Mar 1996 | A |
5497197 | Gove et al. | Mar 1996 | A |
5499062 | Urbanus | Mar 1996 | A |
5506597 | Thompson et al. | Apr 1996 | A |
5515076 | Thompson et al. | May 1996 | A |
5517347 | Sampsell | May 1996 | A |
5523803 | Urbanus et al. | Jun 1996 | A |
5526051 | Gove et al. | Jun 1996 | A |
5526172 | Kanack | Jun 1996 | A |
5526688 | Boysel et al. | Jun 1996 | A |
5535047 | Hornbeck | Jul 1996 | A |
5548301 | Kornher et al. | Aug 1996 | A |
5551293 | Boysel et al. | Sep 1996 | A |
5552924 | Tregilgas | Sep 1996 | A |
5552925 | Worley | Sep 1996 | A |
5563398 | Sampsell | Oct 1996 | A |
5567334 | Baker et al. | Oct 1996 | A |
5570135 | Gove et al. | Oct 1996 | A |
5578976 | Yao | Nov 1996 | A |
5581272 | Conner et al. | Dec 1996 | A |
5583688 | Hornbeck | Dec 1996 | A |
5589852 | Thompson et al. | Dec 1996 | A |
5597736 | Sampsell | Jan 1997 | A |
5598565 | Reinhardt | Jan 1997 | A |
5600383 | Hornbeck | Feb 1997 | A |
5602671 | Hornbeck | Feb 1997 | A |
5606441 | Florence et al. | Feb 1997 | A |
5608468 | Gove et al. | Mar 1997 | A |
5610438 | Wallace et al. | Mar 1997 | A |
5610624 | Bhuva | Mar 1997 | A |
5610625 | Sampsell | Mar 1997 | A |
5612713 | Bhuva et al. | Mar 1997 | A |
5619061 | Goldsmith et al. | Apr 1997 | A |
5619365 | Rhoads et al. | Apr 1997 | A |
5619366 | Rhoads et al. | Apr 1997 | A |
5629790 | Neukermans et al. | May 1997 | A |
5633652 | Kanbe et al. | May 1997 | A |
5636052 | Arney et al. | Jun 1997 | A |
5638084 | Kalt | Jun 1997 | A |
5638946 | Zavracky | Jun 1997 | A |
5646768 | Kaeiyama | Jul 1997 | A |
5650881 | Hornbeck | Jul 1997 | A |
5654741 | Sampsell et al. | Aug 1997 | A |
5657099 | Doherty et al. | Aug 1997 | A |
5659374 | Gale, Jr. et al. | Aug 1997 | A |
5665997 | Weaver et al. | Sep 1997 | A |
5745193 | Urbanus et al. | Apr 1998 | A |
5745281 | Yi et al. | Apr 1998 | A |
5754160 | Shimizu et al. | May 1998 | A |
5771116 | Miller et al. | Jun 1998 | A |
5784189 | Bozler et al. | Jul 1998 | A |
5784212 | Hornbeck | Jul 1998 | A |
5808780 | McDonald | Sep 1998 | A |
5818095 | Sampsell | Oct 1998 | A |
5828367 | Kuga | Oct 1998 | A |
5835255 | Miles | Nov 1998 | A |
5842088 | Thompson | Nov 1998 | A |
5867302 | Fleming et al. | Feb 1999 | A |
5912758 | Knipe et al. | Jun 1999 | A |
5943158 | Ford et al. | Aug 1999 | A |
5959763 | Bozler et al. | Sep 1999 | A |
5966235 | Walker et al. | Oct 1999 | A |
5986796 | Miles | Nov 1999 | A |
6028690 | Carter et al. | Feb 2000 | A |
6038056 | Florence et al. | Mar 2000 | A |
6040937 | Miles | Mar 2000 | A |
6049317 | Thompson et al. | Apr 2000 | A |
6055090 | Miles | Apr 2000 | A |
6061075 | Nelson et al. | May 2000 | A |
6099132 | Kaeriyama | Aug 2000 | A |
6100872 | Aratani et al. | Aug 2000 | A |
6113239 | Sampsell et al. | Sep 2000 | A |
6147790 | Meier et al. | Nov 2000 | A |
6160833 | Floyd et al. | Dec 2000 | A |
6180428 | Peeters et al. | Jan 2001 | B1 |
6201633 | Peeters et al. | Mar 2001 | B1 |
6232936 | Gove et al. | May 2001 | B1 |
6275326 | Bhalla et al. | Aug 2001 | B1 |
6282010 | Sulzbach et al. | Aug 2001 | B1 |
6295154 | Laor et al. | Sep 2001 | B1 |
6304297 | Swan | Oct 2001 | B1 |
6323982 | Hornbeck | Nov 2001 | B1 |
6327071 | Kimura | Dec 2001 | B1 |
6356085 | Ryat et al. | Mar 2002 | B1 |
6356254 | Kimura | Mar 2002 | B1 |
6429601 | Friend et al. | Aug 2002 | B1 |
6433917 | Mei et al. | Aug 2002 | B1 |
6447126 | Hornbeck | Sep 2002 | B1 |
6465355 | Horsley | Oct 2002 | B1 |
6466358 | Tew | Oct 2002 | B2 |
6473274 | Maimone et al. | Oct 2002 | B1 |
6480177 | Doherty et al. | Nov 2002 | B2 |
6496122 | Sampsell | Dec 2002 | B2 |
6501107 | Sinclair et al. | Dec 2002 | B1 |
6507330 | Handschy et al. | Jan 2003 | B1 |
6507331 | Schlangen et al. | Jan 2003 | B1 |
6543286 | Garverick et al. | Apr 2003 | B2 |
6545335 | Chua et al. | Apr 2003 | B1 |
6548908 | Chua et al. | Apr 2003 | B2 |
6549338 | Wolverton et al. | Apr 2003 | B1 |
6552840 | Knipe | Apr 2003 | B2 |
6574033 | Chui et al. | Jun 2003 | B1 |
6589625 | Kothari et al. | Jul 2003 | B1 |
6593934 | Liaw et al. | Jul 2003 | B1 |
6600201 | Hartwell et al. | Jul 2003 | B2 |
6606175 | Sampsell et al. | Aug 2003 | B1 |
6625047 | Coleman, Jr. | Sep 2003 | B2 |
6630786 | Cummings et al. | Oct 2003 | B2 |
6632698 | Ives | Oct 2003 | B2 |
6636187 | Tajima et al. | Oct 2003 | B2 |
6643069 | Dewald | Nov 2003 | B2 |
6650455 | Miles | Nov 2003 | B2 |
6666561 | Blakley | Dec 2003 | B1 |
6674090 | Chua et al. | Jan 2004 | B1 |
6674562 | Miles | Jan 2004 | B1 |
6680792 | Miles | Jan 2004 | B2 |
6710908 | Miles et al. | Mar 2004 | B2 |
6741377 | Miles | May 2004 | B2 |
6741384 | Martin et al. | May 2004 | B1 |
6741503 | Farris et al. | May 2004 | B1 |
6747785 | Chen et al. | Jun 2004 | B2 |
6762873 | Coker et al. | Jul 2004 | B1 |
6775174 | Huffman et al. | Aug 2004 | B2 |
6778155 | Doherty et al. | Aug 2004 | B2 |
6781643 | Watanabe et al. | Aug 2004 | B1 |
6787384 | Okumura | Sep 2004 | B2 |
6787438 | Nelson | Sep 2004 | B1 |
6788520 | Behin et al. | Sep 2004 | B1 |
6794119 | Miles | Sep 2004 | B2 |
6811267 | Allen et al. | Nov 2004 | B1 |
6813060 | Garcia et al. | Nov 2004 | B1 |
6819469 | Koba | Nov 2004 | B1 |
6822628 | Dunphy et al. | Nov 2004 | B2 |
6829132 | Martin et al. | Dec 2004 | B2 |
6853129 | Cummings et al. | Feb 2005 | B1 |
6855610 | Tung et al. | Feb 2005 | B2 |
6859218 | Luman et al. | Feb 2005 | B1 |
6861277 | Monroe et al. | Mar 2005 | B1 |
6862022 | Slupe | Mar 2005 | B2 |
6862029 | D'Souza et al. | Mar 2005 | B1 |
6867896 | Miles | Mar 2005 | B2 |
6870581 | Li et al. | Mar 2005 | B2 |
6903860 | Ishii | Jun 2005 | B2 |
7034783 | Gates et al. | Apr 2006 | B2 |
7110158 | Miles | Sep 2006 | B2 |
7123216 | Miles | Oct 2006 | B1 |
7161728 | Sampsell et al. | Jan 2007 | B2 |
20010003487 | Miles | Jun 2001 | A1 |
20010026250 | Inoue et al. | Oct 2001 | A1 |
20010043171 | Van Gorkom et al. | Nov 2001 | A1 |
20010046081 | Hayashi et al. | Nov 2001 | A1 |
20010051014 | Behin et al. | Dec 2001 | A1 |
20020000959 | Colgan et al. | Jan 2002 | A1 |
20020005827 | Kobayashi | Jan 2002 | A1 |
20020012159 | Tew | Jan 2002 | A1 |
20020015215 | Miles | Feb 2002 | A1 |
20020024711 | Miles | Feb 2002 | A1 |
20020036304 | Ehmke et al. | Mar 2002 | A1 |
20020050882 | Conklin | May 2002 | A1 |
20020054424 | Miles et al. | May 2002 | A1 |
20020075226 | Lippincott | Jun 2002 | A1 |
20020075555 | Miles | Jun 2002 | A1 |
20020093722 | Chan et al. | Jul 2002 | A1 |
20020097133 | Charvet et al. | Jul 2002 | A1 |
20020101769 | Garverick et al. | Aug 2002 | A1 |
20020126364 | Miles | Sep 2002 | A1 |
20020179421 | Williams et al. | Dec 2002 | A1 |
20020186108 | Hallbjorner | Dec 2002 | A1 |
20030004272 | Power | Jan 2003 | A1 |
20030043157 | Miles | Mar 2003 | A1 |
20030072070 | Miles | Apr 2003 | A1 |
20030122773 | Washio et al. | Jul 2003 | A1 |
20030137215 | Cabuz | Jul 2003 | A1 |
20030137521 | Zehner et al. | Jul 2003 | A1 |
20030189536 | Ruigt | Oct 2003 | A1 |
20030202264 | Weber et al. | Oct 2003 | A1 |
20030202265 | Reboa et al. | Oct 2003 | A1 |
20030202266 | Ring et al. | Oct 2003 | A1 |
20040008396 | Stappaerts | Jan 2004 | A1 |
20040022044 | Yasuoka et al. | Feb 2004 | A1 |
20040027701 | Ishikawa | Feb 2004 | A1 |
20040051929 | Sampsell et al. | Mar 2004 | A1 |
20040058532 | Miles et al. | Mar 2004 | A1 |
20040080807 | Chen et al. | Apr 2004 | A1 |
20040145049 | McKinnell et al. | Jul 2004 | A1 |
20040145553 | Sala et al. | Jul 2004 | A1 |
20040147056 | McKinnell et al. | Jul 2004 | A1 |
20040160143 | Shreeve et al. | Aug 2004 | A1 |
20040174583 | Chen et al. | Sep 2004 | A1 |
20040179281 | Reboa | Sep 2004 | A1 |
20040212026 | Van Brocklin et al. | Oct 2004 | A1 |
20040217378 | Martin et al. | Nov 2004 | A1 |
20040217919 | Pichl et al. | Nov 2004 | A1 |
20040218251 | Piehl et al. | Nov 2004 | A1 |
20040218334 | Martin et al. | Nov 2004 | A1 |
20040218341 | Martin et al. | Nov 2004 | A1 |
20040223204 | Mao et al. | Nov 2004 | A1 |
20040227493 | Van Brocklin et al. | Nov 2004 | A1 |
20040240032 | Miles | Dec 2004 | A1 |
20040240138 | Martin et al. | Dec 2004 | A1 |
20040245588 | Nikkel et al. | Dec 2004 | A1 |
20040263944 | Miles et al. | Dec 2004 | A1 |
20050001828 | Martin et al. | Jan 2005 | A1 |
20050012577 | Pillans et al. | Jan 2005 | A1 |
20050038950 | Adelmann | Feb 2005 | A1 |
20050057442 | Way | Mar 2005 | A1 |
20050068583 | Gutkowski et al. | Mar 2005 | A1 |
20050069209 | Damera-Venkata et al. | Mar 2005 | A1 |
20050116924 | Sauvante et al. | Jun 2005 | A1 |
20050206991 | Chui et al. | Sep 2005 | A1 |
20050286113 | Miles | Dec 2005 | A1 |
20050286114 | Miles | Dec 2005 | A1 |
20060044246 | Mignard | Mar 2006 | A1 |
20060044298 | Mignard et al. | Mar 2006 | A1 |
20060044928 | Chui et al. | Mar 2006 | A1 |
20060056000 | Mignard | Mar 2006 | A1 |
20060066542 | Chui | Mar 2006 | A1 |
20060066559 | Chui et al. | Mar 2006 | A1 |
20060066560 | Gally et al. | Mar 2006 | A1 |
20060066561 | Chui et al. | Mar 2006 | A1 |
20060066594 | Tyger | Mar 2006 | A1 |
20060066597 | Sampsell | Mar 2006 | A1 |
20060066598 | Floyd | Mar 2006 | A1 |
20060066601 | Kothari | Mar 2006 | A1 |
20060066937 | Chui | Mar 2006 | A1 |
20060066938 | Chui | Mar 2006 | A1 |
20060067648 | Chui et al. | Mar 2006 | A1 |
20060067653 | Gally et al. | Mar 2006 | A1 |
20060077505 | Chui et al. | Apr 2006 | A1 |
20060077520 | Chui et al. | Apr 2006 | A1 |
20060103613 | Chui | May 2006 | A1 |
20060250335 | Stewart et al. | Nov 2006 | A1 |
20060250350 | Kothari et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
0 295 802 | Dec 1988 | EP |
0295802 | Dec 1988 | EP |
0300754 | Jan 1989 | EP |
0608056 | Jan 1989 | EP |
0318050 | May 1989 | EP |
0 417 523 | Mar 1991 | EP |
0 467 048 | Jan 1992 | EP |
0570906 | Nov 1993 | EP |
0 306 308 | Apr 1994 | EP |
0655725 | May 1995 | EP |
0 667 548 | Aug 1995 | EP |
0725380 | Aug 1996 | EP |
0852371 | Jul 1998 | EP |
0911794 | Apr 1999 | EP |
1 017 038 | Jul 2000 | EP |
1 146 533 | Oct 2001 | EP |
1 239 448 | Sep 2002 | EP |
1 280 129 | Jan 2003 | EP |
1343190 | Sep 2003 | EP |
1345197 | Sep 2003 | EP |
1381023 | Jan 2004 | EP |
1 414 011 | Apr 2004 | EP |
1473691 | Nov 2004 | EP |
2401200 | Nov 2004 | GB |
2004-29571 | Jan 2004 | JP |
WO 9530924 | Nov 1995 | WO |
WO 9717628 | May 1997 | WO |
WO 9952006 | Oct 1999 | WO |
WO 0173937 | Oct 2001 | WO |
WO 02089103 | Nov 2002 | WO |
WO 03007049 | Jan 2003 | WO |
WO 03015071 | Feb 2003 | WO |
WO 03044765 | May 2003 | WO |
WO 03060940 | Jul 2003 | WO |
WO 03069413 | Aug 2003 | WO |
WO 03073151 | Sep 2003 | WO |
WO 03079323 | Sep 2003 | WO |
WO 03090199 | Oct 2003 | WO |
WO 2004006003 | Jan 2004 | WO |
WO 2004026757 | Apr 2004 | WO |
WO 2004026757 | Apr 2004 | WO |
WO 2004049034 | Jun 2004 | WO |
WO 2004054088 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060057754 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
60606223 | Aug 2004 | US | |
60604896 | Aug 2004 | US |