The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also correspond to implementations of the claimed technology.
The technology disclosed relates to creating an audit trail of data incorporation in user profiles by linking trust objects to fields of the user profiles. It also relates to maintaining an opt trail that captures user opt-ins by recording the circumstances in which the opt-in actions were performed. It further relates to measuring reputation of product models by assembling consumer feedback from online product reviews and service records of the product models.
The increased use of online social networks has resulted in more and more personal information being shared in the public domain, thus leading to the need to enhance the privacy of users of the online social networks. According to a study published in the June'13 issue of Computer magazine “The privacy management of 16 popular social networking sites, including Facebook and Twitter, is seriously deficient.” From the applicant's perspective, existing privacy controls offered by the online social networks lack the level traceability and transparency required to concurrently develop more user trust while enhancing user experience.
Another problem, particularly in the e-marketing arena, is that consumers will agree to receive advertising of a campaign, and upon receiving the advertising, will repudiate their consent. Currently, service providers receive millions of requests from users alleging that they did not opt-in to receiving certain content.
Furthermore, companies rely heavily on consumer feedback to develop their marketing, technical, and financial strategies. Since the social media revolution, it has become practical to implement techniques that capture consumer feedback on various online social networks, which can be further used by the companies to improve their products and services.
An opportunity arises to provide users with highly granular privacy controls and present them with information that leads to non-repudiation of their past opt-in actions. An opportunity also arises to make improved business and technology decisions based on feedback directly collected from the consumers. Improved user experience and engagement, higher user satisfaction and retention, and greater sales may result.
The included drawings are for illustrative purposes and serve only to provide examples of possible structures and process operations for one or more implementations of this disclosure. These drawings in no way limit any changes in form and detail that may be made by one skilled in the art without departing from the spirit and scope of this disclosure. A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.
The following detailed description is made with reference to the figures. Sample implementations are described to illustrate the technology disclosed, not to limit its scope, which is defined by the claims. Those of ordinary skill in the art will recognize a variety of equivalent variations on the description that follows.
The technology disclosed relates to creating audit trails of data incorporation, maintaining an opt trail that captures user opt-ins, and measuring reputation of product models by using computer-implemented systems. The technology disclosed can be implemented in the context of any computer-implemented system including a database system, a multi-tenant environment, or the like. Moreover, this technology can be implemented using two or more separate and distinct computer-implemented systems that cooperate and communicate with one another. This technology may be implemented in numerous ways, including as a process, a method, an apparatus, a system, a device, a computer readable medium such as a computer readable storage medium that stores computer readable instructions or computer program code, or as a computer program product comprising a computer usable medium having a computer readable program code embodied therein.
As used herein, the “identification” of an item of information does not necessarily require the direct specification of that item of information. Information can be “identified” in a field by simply referring to the actual information through one or more layers of indirection, or by identifying one or more items of different information which are together sufficient to determine the actual item of information. In addition, the term “specify” is used herein to mean the same as “identify.”
The technology disclosed can be applied to improve privacy management on online social networks. One consumer complaint relates to lack of drill down options that allow granular customization of privacy settings so as to control the information flow into different sections of user profiles. Presently, if consumers want to remove any unwanted data from a particular section of their profiles, they have to completely block the data source from feeding data to any of the sections of the profiles. This restricts their ability to customize their profiles and thus diminishes their user experience.
The technology disclosed records data incorporation events at multiple levels of user profiles—sections, databases, objects, and fields. Over time, collection of such events creates an audit trail that provides consumers with granular information relating to third-party data streaming into their social profiles. This granular information identifies the source, type, and origin of the third-parties. It further includes a privacy controller that provides granular control to the consumers over third-party access to their social profiles. Thus, allowing consumers to customize third-party data streaming on field-by-field basis by opting out of any use of a selected third-party to populate the fields of their social profiles.
Another feature of the technology disclosed is encouraging customers to reaffirm their consent to receive advertising of an advertising campaign, thereby reducing customer repudiation of opt-ins. Customers are constantly bombarded with so many opt-in requests that they usually have minimum or no recollection of their prior consent, even when the opt-in proposal was explicitly presented to them.
The technology disclosed captures the circumstances in which opt-in actions are performed. The circumstantial information is presented to customers to assist their recall of circumstances in which they agreed to receive advertising of an advertising campaign. For instance, if a customer opted in to a campaign while making an online purchase, the technology disclosed can provide the customer with information identifying the online purchase so as to remind him of the chain of events that led to his opt-in. The circumstantial information can include the time, date, location, content, medium and/or device of opt-in.
Online social networks have become the primary platforms where consumers express their opinions about products and services. Information gathered from these platforms is not only reliable but also detailed enough to drive meaningful analytics. The technology disclosed further relates to harnessing the immense amount of information available on the online social networks to gather consumer feedback on product models. It can then apply sentiment analysis on the consumer feedback and separately identify positive and negative feedback. Finally, it can calculate reputation metrics based on the identified positive and negative feedback so as to implement consumer faced reputation tracking of products.
Servers, Clients, and Databases
In some implementations, network(s) 115 can be any one or any combination of Local Area Network (LAN), Wide Area Network (WAN), WiFi, telephone network, wireless network, point-to-point network, star network, token ring network, hub network, peer-to-peer connections like Bluetooth, Near Field Communication (NFC), Z-Wave, ZigBee, or other appropriate configuration of data networks, including the Internet.
In some implementations, the engines can be of varying types including workstations, servers, computing clusters, blade servers, server farms, or any other data processing systems or computing devices. The engine can be communicably coupled to the databases via a different network connection. For example, privacy controller 122 can be coupled via the network 115 (e.g., the Internet), reputation engine 125 can be coupled via a direct network link, and trust engine 128 can be coupled by yet a different network connection.
In some implementations, databases can store information from one or more tenants into tables of a common database image to form a multi-tenant database system (MTS). A database image can include one or more database objects. In other implementations, the databases can be relational database management systems (RDBMSs), object oriented database management systems (OODBMSs), distributed file systems (DFS), no-schema database management systems, or any other data storing systems or computing devices.
User data store 105 holds business-to-business contacts that provide business information related to users such as names, addresses, job titles, industry types, territories, market segments, contact information, employer information, etc. In one implementation, user data store 105 can store web or database profiles of the users as a system of interlinked hypertext documents that can be accessed via the network 115 (e.g., the Internet). In another implementation, user data store 105 can also include standard profile information about leads, prospects and/or accounts. This standard profile information can be extracted from company websites, business registration sources such as Jigsaw, Hoovers, or D&B, business intelligence sources, and/or social networking websites like Yelp, Yellow Pages, etc.
Social data store 108 stores social media content assembled from different types of data sources. Social media content can include information about social media sources, social accounts, social personas, social profiles, social handles, social feeds, feed items, content shared, posts, etc. In one implementation, social media content can add social context to the business-to-business contacts stored in user data store 105. Conversely, business-to-business contacts can add business context to the social personas or profiles according to some other implementations.
Regarding different types of data sources, access controlled application programming interfaces (APIs) like Yahoo Boss, Facebook Open Graph, Twitter Firehose can provide real-time search data aggregated from numerous social media sources such as LinkedIn, Yahoo, Facebook, and Twitter. APIs can initialize sorting, processing and normalization of data. Public internet can provide data from public sources such as first hand websites, blogs, web search aggregators, and social media aggregators. Social networking sites can provide data from social media sources such as Twitter, Facebook, LinkedIn, and Klout.
Trust data engine 128 creates audit trails of data incorporation in user profiles by storing information that uniquely identifies each incorporation event in memory (trust data store 102). In some implementations, trust data engine 128 can create audit trails by linking trust objects to fields of the user profiles. The trust objects hold audit trail fields that include names of data sources, interface categories of the data sources, and/or origins of the data sources. In some implementations, the trust objects also include access control fields that specify field-by-field and party-by-party control over third party access to the fields of the user profiles.
Third parties are data sources that are external to the social networks in which the user profiles are hosted and supply data for incorporation in the user profiles. The access control fields specify users' engagement preferences and connection types with third parties. They also include statuses of data streams from third parties along with information identifying the third parties.
The trust objects also hold information that assists a target user to recall circumstances in which the target user opted into an advertising campaign. In one implementation, the trust objects can include audit trail fields that can capture user opt-ins on various communication channels such as voice, text, or paper.
Privacy controller 132 provides users access to trust objects linked to fields of their user profiles. In one implementation, privacy controller 132 can receive instructions that set user's preferences for field-by-field and party-by-party control over third party access. In another implementation, it can ensure that third parties comply with user's preferences by periodically checking the values in the audit trail fields. In yet another implementation, it can maintain a log of third party access on field-by-field basis.
Reputation engine 122 tracks and measures reputation of product models after sales of products in consumer markets. In one implementation, reputation engine 122 can append reputation objects to data objects that store information related to product lifecycles. In another implementation, it can assemble consumer feedback on the product models by applying sentiment analysis on social feeds (social data store 108) that mention the product models and service records 118 of the product models. It can further calculate reputation metrics for the product models based on the reputation objects, which can be stored in reputation store 112 and presented to product managers.
Reputation engine 122 can further calculate reputation metrics for the product models based on the reputation objects, which can be stored in reputation store 112 and presented to product managers. It can apply various natural language processing algorithms to stratify the consumer feedback as either positive or negative. For instance, it can include generating metadata annotations (e.g., paragraph identification, tokenization, sentence boundary detection, part-of-speech tagging, clause detection, phrase detection (chunking), syntactic analysis, word sense disambiguation, and semantic analysis, etc.) based upon the text of the consumer feedback.
In some implementations, sentiment analysis can include at least identifying occurrences within the one or more product mentions of semantic types corresponding to an expected word and resolving coreference and anaphora within the text of the one or more product mentions. In other implementations, sentiment analysis can also include identifying occurrences of at least one of synonyms, hypernyms, hyponyms, meronyms, and antonyms of the key words within the consumer feedback.
In some implementations, a sentiment resource can include at least one of: a list of positive and negative phrases and relative strengths of the positive and negative phrases; a list of emoticons and relative strengths of the emoticons; a list of shift phrases that strengthen or weaken relative sentiment and indicators of the strengths of the shift phrases; a list of negative indicators; and a list of modal verbs. In other implementations, the sentiment resource list can also include required part-of-speech tags associated with one or more of the list entries. The sentiment analysis can also include negation rules for inverting the sentiment associated with a phrase that are within the scope of predetermined negation elements.
In some implementations, sentiment analysis can include interpreting at least one of modal verbs and imperative statements as indications of negative sentiment. In other implementations, sentiment analysis can be supplemented with audio or video data corresponding to the feedback. The audio or video data can be used to determine sentiment based upon tone of voice or other social cues.
User Profile
Profile object 216 provides primary information that identifies a user and includes various fields that store biographic information about a user such as first name, last name, sex, birthday, work history, interests, and the like. The profile object 216 is further linked to other objects that provide supplementary information about the user. For instance, profile object 216 is linked to an event object 208 that stores information related to events subscribed, checked-in, or attended by the user. In one implementation, profile object 216 is linked to a feed object 218 that specifies various feeds items such as posts, comments, replies, mentions, etc. posted by the user or on user's profile.
In another implementation, profile object 216 is linked to a connection object 228 that provides information about other persons in the social network of the user. In one implementation, profile object 216 is linked to a group object 224 that identifies the groups the user is part of. In yet another implementation, profile object 216 is linked to a photo object 204 that identifies an image, which is uploaded, posted, or selected by the user. The photo object 204 is further linked to a photo album object 202 that categorizes the image and to a photo tag object 214 that describes the image.
In yet another implementation, schema 200 can have one or more of the following variables with certain attributes: USER_ID being CHAR (15 BYTE), IMAGES_ID being CHAR (15 BYTE), EVENT_ID being CHAR (15 BYTE), GROUP_ID being CHAR (15 BYTE), CONNECTION_ID being CHAR (15 BYTE), FEED_ITEM_ID being CHAR (15 BYTE), CREATED_BY being CHAR (15 BYTE), CREATED_DATE being DATE, and DELETED being CHAR (1 BYTE).
Trust Object
Trust objects are linked to fields of the user profile schema 200 by trust engine 128 to track data sources that stream content in the fields. As shown in
In another implementation, schema 300A can have one or more of the following variables with certain attributes: USER_ID being CHAR (15 BYTE), SOURCE_ID being CHAR (15 BYTE), OBJECT_ID being CHAR (15 BYTE), FIELD_ID being CHAR (15 BYTE), CREATED_BY being CHAR (15 BYTE), CREATED_DATE being DATE, and DELETED being CHAR (1 BYTE).
“SourceName” field identifies a data source like Yahoo Boss, Instagram, Flickr, or LinkedIn from which the photo album 202 or photo 204 is assembled. “SourceType” refers to a type of a data source such as access controlled application-programming interfaces (APIs), public internet, and/or social networking sites from which data is incorporated into the user profile schema 200. “Origin” field specifies the geographic location of a data source in terms of regions or other geographical classifications such as countries or states. In some implementations, “Origin” field can also identify a jurisdiction applicable to a particular geographic location such as CAN-SPAM regulation applicable to U.S.A.
The trust objects can include access control fields that specify field-by-field and party-by-party control over third party access to the fields of the user profile schema 200. The access control fields can identify engagement preferences (“EngagmentPreferences”) and connection type (“ConnectionType”) of the user with a third party. They also include statuses of data streams (StreamStatus”) from third parties along with information identifying the third parties (“StreamSource”).
“EngagementPreferences” field includes the opt-statuses of the user, specifying whether the user has opted-in or opted-out from engaging with a third-party. “ConnectionType” filed identifies the type of connection a user with a data source such as like, following, connected, not following, not connected, unlike, etc. “StreamStatus” field specifies whether data is currently streamed into the user profile schema 200 from a third-party and “StreamSource” field identifies the third-party from which the data is streamed.
In another implementation, schema 300B can have one or more of the following variables with certain attributes: USER_ID being CHAR (15 BYTE), SOURCE_ID being CHAR (15 BYTE), OBJECT_ID being CHAR (15 BYTE), FIELD_ID being CHAR (15 BYTE), CREATED_BY being CHAR (15 BYTE), CREATED_DATE being DATE, and DELETED being CHAR (1 BYTE).
In
Privacy Controller
Privacy controller 400 can take one of a number of forms, including a user interface, dashboard interface, engagement console, and other interface, such as a mobile interface, tablet interface, summary interface, or wearable interface. In some implementations, it can be hosted on a web-based or cloud-based privacy management application running on a computing device such as a personal computer, laptop computer, mobile device, and/or any other hand-held computing device. It can also be hosted on a non-social local application running in an on-premise environment. In one implementation, privacy controller 400 can be accessed from a browser running on a computing device. The browser can be Chrome, Internet Explorer, Firefox, Safari, and the like. In other implementations, privacy controller 400 can run as an engagement console on a computer desktop application.
Screen object action 402 provides a user with field-by-field and party-by-party control over third party access to the fields of the user profile schema 200 that are linked to trust objects. Through action 402, the user can escalate (“Edit”) a third-party's access to particular fields of the user profile schema 200 or prevent (“Del”) a third-party from streaming data to particular fields of the user profile schema 200. Additionally, screen objects profile field 404, source 406, source name 406, source type 410, and origin 412 can present the user with information stored in the audit trail fields.
Opt Trail Schema
Trust engine 128 connects a target user to an advertising campaign by linking trust object 506 to the target user's profile object 216. The trust object 506 stores opt trail fields that include information that assists the target user to recall circumstances in which the target user opted into the advertising campaign. In one implementation, the opt trail fields can uniquely specify the trust object 506 with “ObjectID*” field and further identify the advertising campaign with “CampaignID” field. The opt trail fields can also identify the type of opt-in action performed by the user through “OptType” field.
In another implementation, schema 500A can have one or more of the following variables with certain attributes: USER_ID being CHAR (15 BYTE), CAMPAIGN_ID being CHAR (15 BYTE), OBJECT_ID being CHAR (15 BYTE), ACTION_ID being CHAR (15 BYTE), CREATED_BY being CHAR (15 BYTE), CREATED_DATE being DATE, and
DELETED being CHAR (1 BYTE).
In another implementation, schema 500B can have one or more of the following variables with certain attributes: OPT_TYPE_ID being CHAR (15 BYTE), TIME_ID being CHAR (15 BYTE), DATE_ID being CHAR (15 BYTE), LOCATION_ID being CHAR (15 BYTE), BODY_ID being CHAR (15 BYTE), DEVICE_ID being CHAR (15 BYTE), OBJECT_ID being CHAR (15 BYTE), FIELD_ID being CHAR (15 BYTE), CREATED_BY being CHAR (15 BYTE), CREATED_DATE being DATE, and DELETED being CHAR (1 BYTE).
Reputation Object
Reputation engine 122 measures reputation of product models by appending reputation object 604 to a product model object 602 that tracks a product model after sales of associated products in consumer markets. In one implementation, reputation object 604 holds reputation track fields that can uniquely identify the reputation object 604 with “ObjectID*” field and further specify a count of the positive reviews (“PositiveReviewsCount”) and negative reviews (“NegativeReviewsCount”) about the product model.
In another implementation, schema 600A can have one or more of the following variables with certain attributes: MODEL_ID being CHAR (15 BYTE), POSITIVE_REVIEW_ID being CHAR (15 BYTE), NEGATIVE_REVIEW_ID being CHAR (15 BYTE), OBJECT_ID being CHAR (15 BYTE), FIELD_ID being CHAR (15 BYTE), CREATED_BY being CHAR (15 BYTE), CREATED_DATE being DATE, and DELETED being CHAR (1 BYTE).
In another implementation, schema 600B can have one or more of the following variables with certain attributes: MODEL_ID being CHAR (15 BYTE), FAMILY_ID being CHAR (15 BYTE), LOT_ID being CHAR (15 BYTE), METRIC_ID being CHAR (15 BYTE), HIERACRCHY_ID being CHAR (15 BYTE), OBJECT_ID being CHAR (15 BYTE), FIELD_ID being CHAR (15 BYTE), CREATED_BY being CHAR (15 BYTE), CREATED_DATE being DATE, and DELETED being CHAR (1 BYTE).
Reputation engine 122 can collect consumer feedback on product model 602 from various data sources 612 by assembling user generated content or crowd sourced reviews (social feeds, web mentions) that mention 616 the product model along with service records 608 of the product. Reputation engine 122 can further calculate a reputation metric 614 for the product model 602 based on the number, type, and/or content of the positive and negative reviews.
Flowchart of Creating an Audit Trail of Data Incorporation
At action 710, trust engine 118 maintains at least one trust object linked to fields of a user profile. The trust object holds audit trail fields that identify how data became incorporated in at least some fields of the user profile and access control fields that specify field-by-field and party-by-party control over third party access to the fields of the user profile. The audit trail fields include names of data sources, interface categories of the data sources, origins of the data sources, and a user's engagement preferences applicable to a particular data field of the user profile. The interface categories of the data sources include access controlled APIs, public Internet and social networking sites. The origins of the data sources identify geographic locations of the data sources. The user's engagement preferences applicable to a particular data field of the user profile specify whether the user has opted-in or opted-out of any use of a data source to populate the fields of the user profile.
At action 720, a privacy controller is provided that provides user access to information in the audit trail fields and also provides user control on a field-by-field and party-by-party basis over third party access to the fields of the user profile linked to the trust object. In one implementation, the privacy controller enables the user to opt out of any use of a selected data source to populate the fields of the user profile.
At action 730, instructions that set user's preferences for field-by-field and party-by-party control over the third party access are received and the trust object is updated responsive to the instructions. For instance, if the user chooses to hide content sourced in a particular user profile field by a particular data source, the trust engine 118 can update the access control fields to block stream of data by that particular data source in the particular user profile field.
Flowchart of Non-Repudiation of User Preferences
At action 810, trust engine 118 maintains opt trail fields in at one trust object linked to a user profile. The opt trail fields include information that assists the target user to recall circumstances in which the target user opted into the advertising campaign.
For voice opt-in, the opt trail fields include time and date of dispatch of call soliciting the voice opt-in, time, date and location of an opt-in action and information related to device from which the opt-in action took place. For voice opt-in, the opt trail fields further include transcript of conversation via which the voice opt-in was presented.
For SMS opt-in, the opt trail fields include time and date of dispatch of SMS soliciting the SMS opt-in, text of message body via which the SMS opt-in was presented, time, date and location of an opt-in action, and information related to device from which the opt-in action took place.
For email opt-in, the opt trail fields include time and date of dispatch of email soliciting the email opt-in, text of email body via which the email opt-in was presented, time, date and location of an opt-in action, and information related to device from which the opt-in action took place.
For website opt-in, the opt trail fields include unified resource locator of website on which the website opt-in occurred, history of target user's activity on the website on which the website opt-in occurred, copy of webpage via which the website opt-in was presented, time, date and location of an opt-in action, and information related to device from which the opt-in action took place.
For paper opt-in, the opt trail fields include information that identifies an event at which the paper opt-in occurred, particular medium via which the paper opt-in was presented, and time, date and location of an opt-in action.
At action 820, the information included in the opt trail fields is provided to the target across. In one implementation, this information can be provided to the target user across a user interface upon receiving non-repudiation requests. In another implementation, this information can be automatically forwarded to the target user immediately after an opt-in.
At action 830, instructions setting user's preferences for discontinuing receipt of advertising are received. In one implementation, the opt trail fields can be automatically updated to capture target user's opt-out and forwarded to organizers of the advertising campaign so as to prevent future attempts to engage with the target user.
Flowchart of Consumer Faced Reputation Tracking of Products
At action 910, reputation engine 122 appends reputation objects to data objects that track product models after sales of products in consumer markets. The reputation objects can include reputation track fields that identify the number, type and content of consumer feedback on the product models.
At action 920, reputation engine 122 assembles consumer feedback on the product models. It can achieve this by crawling different data sources including APIs, public Internet, and social networking sites and collecting online posts (feed items, web mentions) that mention the product models. It can also spider service records related to the product models to gather customer reviews. In one implementation, reputation engine 122 can issue a query on different data sources that specifies different ways the product models are spelled or referred to by consumers.
At action 930, reputation engine 122 automatically categorizes the received results or consumer feedback as being positive or negative by applying sentiment analysis that identifies the tones and sentiments of consumers. For instance, reputation engine 122 can use keywords such as “bad service”, “not working”, “hung up”, etc. to identify negative reviews. Similarly, it can find positive reviews on the product models by identifying textual appreciative content like “love”, “great”, “awesome”, or “recommend” and non-textual appreciative content such as emoticons, likes, stars, thumbs up, bonuses, ratings, badges, or ratings. In other implementations, it can categorize the consumer feedback based on ratings or scores.
At action 940, the fields of the reputation objects are updated to include the categorized consumer feedback. The positive and negative feedbacks can be separately stored for further processing by the reputation engine 122.
At action 950, reputation engine 122 calculates reputation metrics for the product models based on the number, type, and content of the positive and negative feedbacks. In one implementation, if the total number of the negative feedbacks is greater than the total number of positive feedback, then a particular product model can be identified as one that requires further attention in terms of its operability, bugs, or marketing. Furthermore, some type of feedbacks can be given more weight than others. For example, a video criticizing a product model may be given more weight than a post doing the same and thus the product model can be allocated more negative points in the reputation metric. Also, a lengthy and elaborate consumer feedback can be given more value or points as compared to a short and lukewarm feedback.
At action 960, the reputation engine 122 categorizes the product models into reputation hierarchies based on the reputation metrics. The reputation hierarchies stratify the products models into product families and product lots. In one implementation, the product models that were released earlier or on which great resources were spent can be higher in the hierarchy. In another implementation, the product models that have higher reputation can be placed higher.
For example, HP1234 model printers with 1492 serial number can have parent reputation levels while they were sitting in a retail store. Once they are sold, they can be moved from the “sales” step in the lifecycle to the “service” step. If the product fails, it can receive negative reputation points. If consumers “like” the product, it can receive positive reputation points. This individual reputation could trickle up the hierarchy and influence the HP1234 line reputation, and even further the HP Printer line or HP as a whole, in some implementations. The top parent can inherit the sum of all children in the hierarchy, which can be potentially weighted according to pre-defined criteria.
At action 970, the reputation engine 122 automatically updates reputation metrics of product models in a reputation hierarchy responsive to changes in reputation metrics of other product models in the reputation hierarchy. For instance, if the reputation of Salesforce's “Jigsaw” product model increases, then the reputation of Salesforce's “Data.com” product, of which “Jigsaw” is part, can be automatically increased.
Computer System
User interface input devices 1022 can include a keyboard; pointing devices such as a mouse, trackball, touchpad, or graphics tablet; a scanner; a touch screen incorporated into the display; audio input devices such as voice recognition systems and microphones; and other types of input devices. In general, use of the term “input device” is intended to include all possible types of devices and ways to input information into computer system 1010.
User interface output devices 1020 can include a display subsystem, a printer, a fax machine, or non-visual displays such as audio output devices. The display subsystem can include a cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD), a projection device, or some other mechanism for creating a visible image. The display subsystem can also provide a non-visual display such as audio output devices. In general, use of the term “output device” is intended to include all possible types of devices and ways to output information from computer system 1010 to the user or to another machine or computer system.
Storage subsystem 1024 stores programming and data constructs that provide the functionality of some or all of the modules and methods described herein. These software modules are generally executed by processor 1014 alone or in combination with other processors.
Memory subsystem 1026 used in the storage subsystem can include a number of memories including a main random access memory (RAM) 1030 for storage of instructions and data during program execution and a read only memory (ROM) 1032 in which fixed instructions are stored. A file storage subsystem 1028 can provide persistent storage for program and data files, and can include a hard disk drive, a floppy disk drive along with associated removable media, a CD-ROM drive, an optical drive, or removable media cartridges. The modules implementing the functionality of certain implementations can be stored by file storage subsystem 1028 in the storage subsystem 1024, or in other machines accessible by the processor.
Bus subsystem 1012 provides a mechanism for letting the various components and subsystems of computer system 1010 communicate with each other as intended. Although bus subsystem 1012 is shown schematically as a single bus, alternative implementations of the bus subsystem can use multiple busses.
Computer system 1010 can be of varying types including a workstation, server, computing cluster, blade server, server farm, or any other data processing system or computing device. Due to the ever-changing nature of computers and networks, the description of computer system 1010 depicted in
Particular Implementations
In one implementation, a method is described from the perspective of a server receiving messages from a user software. The method includes maintaining at least one trust object linked to fields of a user profile. The trust object holds audit trail fields that identify how data became incorporated in at least some fields of the user profile and access control fields that specify field-by-field and party-by-party control over third party access to the fields of the user profile. It also includes providing a privacy controller that providing user access to information in the audit trail fields for the user's own user profile and also provides user control on a field-by-field and party-by-party basis over third party access to the fields of the user profile linked to the trust object. It further includes receiving instructions that set user's preferences for field-by-field and party-by-party control over the third party access to the user's own user profile and updating the trust object responsive to the instructions.
This and other method described can be presented from the perspective of a mobile device and user software interacting with a server. From the mobile device perspective, the method maintains at least one trust object linked to fields of a user profile, relying on the server to configure trust object that holds audit trail fields, which identify how data became incorporated in at least some fields of the user profile and access control fields, which specify field-by-field and party-by-party control over third party access to the fields of the user profile. In some implementations, the mobile device provides an interface that displays a privacy controller, which provides user access to information in the audit trail fields and also provides user control on a field-by-field and party-by-party basis over third party access to the fields of the user profile linked to the trust object. The mobile device further receives instructions that set user's preferences for field-by-field and party-by-party control over the third party access and updating the trust object responsive to the instructions.
This method and other implementations of the technology disclosed can include one or more of the following features and/or features described in connection with additional methods disclosed. In the interest of conciseness, the combinations of features disclosed in this application are not individually enumerated and are not repeated with each base set of features. The reader will understand how features identified in this section can readily be combined with sets of base features identified as implementations such as trust object, opt trail schema, privacy controller, reputation object, etc.
The method further includes the privacy controller enabling the user to opt out of any use of a selected data source to populate the fields of the user profile. The audit trail fields include names of data sources, interface categories of the data sources, origins of the data sources, and a user's engagement preferences applicable to a particular data field of the user profile. The interface categories of the data sources include access controlled APIs, public Internet and social networking sites. The origins of the data sources identify geographic locations of the data sources. The user's engagement preferences applicable to a particular data field of the user profile specify whether the user has opted-in or opted-out of any use of a data source to populate the fields of the user profile.
Other implementations may include a non-transitory computer readable storage medium storing instructions executable by a processor to perform any of the methods described above. Yet another implementation may include a system including memory and one or more processors operable to execute instructions, stored in the memory, to perform any of the methods described above.
In another implementation, a method is described from the perspective of a server receiving messages from a user software. The method includes maintaining opt trail fields in at least one trust object linked to a user profile that connects a target user to an advertising campaign. The opt trail fields include information that assists the target user to recall circumstances in which the target user opted into the advertising campaign. It also includes providing information included in the opt trail fields to the target user. It further includes receiving instructions setting target user's preferences to continue or discontinue receipt of advertising of the advertising campaign.
This method and other implementations of the technology disclosed can include one or more of the following features and/or features described in connection with additional methods disclosed.
For voice opt-in, the opt trail fields include time and date of dispatch of call soliciting the voice opt-in, time, date and location of an opt-in action and information related to device from which the opt-in action took place. For voice opt-in, the opt trail fields further include transcript of conversation via which the voice opt-in was presented.
For SMS opt-in, the opt trail fields include time and date of dispatch of SMS soliciting the SMS opt-in, text of message body via which the SMS opt-in was presented, time, date and location of an opt-in action, and information related to device from which the opt-in action took place.
For email opt-in, the opt trail fields include time and date of dispatch of email soliciting the email opt-in, text of email body via which the email opt-in was presented, time, date and location of an opt-in action, and information related to device from which the opt-in action took place.
For website opt-in, the opt trail fields include unified resource locator of website on which the website opt-in occurred, history of target user's activity on the website on which the website opt-in occurred, copy of webpage via which the website opt-in was presented, time, date and location of an opt-in action, and information related to device from which the opt-in action took place.
For paper opt-in, the opt trail fields include information that identifies an event at which the paper opt-in occurred, particular medium via which the paper opt-in was presented, and time, date and location of an opt-in action.
Other implementations may include a non-transitory computer readable storage medium storing instructions executable by a processor to perform any of the methods described above. Yet another implementation may include a system including memory and one or more processors operable to execute instructions, stored in the memory, to perform any of the methods described above.
In yet another implementation, a method is described from the perspective of a server receiving messages from a user software. The method includes appending reputation objects to data objects that track product models after sales of products in consumer markets. It includes assembling consumer feedback on the product models, including receiving user generated content from online social networks that mentions the product models and receiving service records of the product models. It also includes automatically categorizing the consumer feedback based on sentiment analysis and updating fields of the reputation objects based on the consumer feedback on the product models. It further includes calculating reputation metrics for the product models based on the reputation objects.
This method and other implementations of the technology disclosed can include one or more of the following features and/or features described in connection with additional methods disclosed.
The method includes categorizing the product models into reputation hierarchies based on the reputation metrics, wherein the hierarchies stratify the products models into product families and product lots. It also includes automatically updating reputation metrics of products models in a reputation hierarchy responsive to changes in reputation metrics of other products models in the reputation hierarchy.
Other implementations may include a non-transitory computer readable storage medium storing instructions executable by a processor to perform any of the methods described above. Yet another implementation may include a system including memory and one or more processors operable to execute instructions, stored in the memory, to perform any of the methods described above.
While the present technology is disclosed by reference to the preferred implementations and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the technology and the scope of the following claims.
This application is a continuation of U.S. patent application Ser. No. 14/145,735, entitled “Systems and Methods of Audit Trailing of Data Incorporation”, filed on Dec. 31, 2013, which claims the benefit of: (I) U.S. provisional Patent Application No. 61/807,877, entitled, “System and Method for Social Trust Layer Origination Management,” filed on Apr. 3, 2013; and (II) U.S. provisional Patent Application No. 61/807,892, entitled, “System and Method for Reputation Object Hierarchy,” filed on Apr. 3, 2013. The related applications and the provisional applications are hereby incorporated by reference for all purposes. This Application is a continuation of U.S. patent application Ser. No. 14/145,735, entitled “Systems and Methods of Audit Trailing of Data Incorporation”, filed on Dec. 31, 2013, which is a continuation-in-part of US non-provisional patent application Ser. No. 13/791,295, entitled, “System And Method for Enhancing Trust for Person-Related Data Sources,” filed on Mar. 8, 2013, which application claims the benefit of U.S. provisional Patent Application No. 61/608,423, entitled “Social Key Legal and Compliance Layer,” filed on Mar. 8, 2012. The related applications and provisional applications are hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz | Mar 1997 | A |
5649104 | Carleton | Jul 1997 | A |
5715450 | Ambrose | Feb 1998 | A |
5761419 | Schwartz | Jun 1998 | A |
5819038 | Carleton | Oct 1998 | A |
5821937 | Tonelli | Oct 1998 | A |
5831610 | Tonelli | Nov 1998 | A |
5855020 | Kirsch | Dec 1998 | A |
5873096 | Lim | Feb 1999 | A |
5918159 | Fomukong | Jun 1999 | A |
5963953 | Cram | Oct 1999 | A |
6092083 | Brodersen | Jul 2000 | A |
6161149 | Achacoso | Dec 2000 | A |
6169534 | Raff el | Jan 2001 | B1 |
6178425 | Brodersen | Jan 2001 | B1 |
6189011 | Lim | Feb 2001 | B1 |
6216135 | Brodersen | Apr 2001 | B1 |
6233617 | Rothwein | May 2001 | B1 |
6266669 | Brodersen | Jul 2001 | B1 |
6295530 | Ritchie | Sep 2001 | B1 |
6324568 | Diec | Nov 2001 | B1 |
6324693 | Brodersen | Nov 2001 | B1 |
6336137 | Lee | Jan 2002 | B1 |
D454139 | Feldcamp | Mar 2002 | S |
6367077 | Brodersen | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen | Jun 2002 | B1 |
6434550 | Warner | Aug 2002 | B1 |
6446089 | Brodersen | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose | Apr 2003 | B2 |
6560461 | Fomukong | May 2003 | B1 |
6574635 | Stauber | Jun 2003 | B2 |
6577726 | Huang | Jun 2003 | B1 |
6601087 | Zhu | Jul 2003 | B1 |
6604117 | Lim | Aug 2003 | B2 |
6604128 | Diec | Aug 2003 | B2 |
6609150 | Lee | Aug 2003 | B2 |
6621834 | Scherpbier | Sep 2003 | B1 |
6654032 | Zhu | Nov 2003 | B1 |
6665648 | Brodersen | Dec 2003 | B2 |
6665655 | Warner | Dec 2003 | B1 |
6684438 | Brodersen | Feb 2004 | B2 |
6697824 | Bowman-Amuah | Feb 2004 | B1 |
6711565 | Subramaniam | Mar 2004 | B1 |
6724399 | Katchour | Apr 2004 | B1 |
6728702 | Subramaniam | Apr 2004 | B1 |
6728960 | Loomans | Apr 2004 | B1 |
6732095 | Warshavsky | May 2004 | B1 |
6732100 | Brodersen | May 2004 | B1 |
6732111 | Brodersen | May 2004 | B2 |
6754681 | Brodersen | Jun 2004 | B2 |
6763351 | Subramaniam | Jul 2004 | B1 |
6763501 | Zhu | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6772229 | Achacoso | Aug 2004 | B1 |
6782383 | Subramaniam | Aug 2004 | B2 |
6804330 | Jones | Oct 2004 | B1 |
6826565 | Ritchie | Nov 2004 | B2 |
6826582 | Chatterjee | Nov 2004 | B1 |
6826745 | Coker | Nov 2004 | B2 |
6829655 | Huang | Dec 2004 | B1 |
6842748 | Warner | Jan 2005 | B1 |
6850895 | Brodersen | Feb 2005 | B2 |
6850949 | Warner | Feb 2005 | B2 |
7062502 | Kesler | Jun 2006 | B1 |
7069231 | Cinarkaya | Jun 2006 | B1 |
7069497 | Desai | Jun 2006 | B1 |
7181758 | Chan | Feb 2007 | B1 |
7289976 | Kihneman | Oct 2007 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7356482 | Frankland | Apr 2008 | B2 |
7401094 | Kesler | Jul 2008 | B1 |
7412455 | Dillon | Aug 2008 | B2 |
7508789 | Chan | Mar 2009 | B2 |
7603483 | Psounis | Oct 2009 | B2 |
7620655 | Larsson | Nov 2009 | B2 |
7698160 | Beaven | Apr 2010 | B2 |
7779475 | Jakobson | Aug 2010 | B2 |
7851004 | Hirao | Dec 2010 | B2 |
7870012 | Katz | Jan 2011 | B2 |
8014943 | Jakobson | Sep 2011 | B2 |
8015495 | Achacoso | Sep 2011 | B2 |
8032297 | Jakobson | Oct 2011 | B2 |
8073850 | Steven | Dec 2011 | B1 |
8082301 | Ahlgren | Dec 2011 | B2 |
8095413 | Beaven | Jan 2012 | B1 |
8095594 | Beaven | Jan 2012 | B2 |
8209308 | Rueben | Jun 2012 | B2 |
8209333 | Hubbard | Jun 2012 | B2 |
8275836 | Douglas | Sep 2012 | B2 |
8423535 | Weissman | Apr 2013 | B2 |
8457545 | Chan | Jun 2013 | B2 |
8484111 | Sturgeon | Jul 2013 | B2 |
8490025 | Jakobson | Jul 2013 | B2 |
8504945 | Jakobson | Aug 2013 | B2 |
8510045 | Rueben | Aug 2013 | B2 |
8510664 | Rueben | Aug 2013 | B2 |
8566301 | Rueben | Oct 2013 | B2 |
8646103 | Jakobson | Feb 2014 | B2 |
8756275 | Jakobson | Jun 2014 | B2 |
8769004 | Jakobson | Jul 2014 | B2 |
8769017 | Jakobson | Jul 2014 | B2 |
9626523 | Isaacs | Apr 2017 | B2 |
20010044791 | Richter | Nov 2001 | A1 |
20020072951 | Lee | Jun 2002 | A1 |
20020082892 | Raff el | Jun 2002 | A1 |
20020129352 | Brodersen | Sep 2002 | A1 |
20020140731 | Subramaniam | Oct 2002 | A1 |
20020143997 | Huang | Oct 2002 | A1 |
20020162090 | Parnell | Oct 2002 | A1 |
20020165742 | Robins | Nov 2002 | A1 |
20030004971 | Gong | Jan 2003 | A1 |
20030018705 | Chen | Jan 2003 | A1 |
20030018830 | Chen | Jan 2003 | A1 |
20030066031 | Laane | Apr 2003 | A1 |
20030066032 | Ramachadran | Apr 2003 | A1 |
20030069936 | Warner | Apr 2003 | A1 |
20030070000 | Coker | Apr 2003 | A1 |
20030070004 | Mukundan | Apr 2003 | A1 |
20030070005 | Mukundan | Apr 2003 | A1 |
20030074418 | Coker | Apr 2003 | A1 |
20030120675 | Stauber | Jun 2003 | A1 |
20030126469 | King | Jul 2003 | A1 |
20030151633 | George | Aug 2003 | A1 |
20030159136 | Huang | Aug 2003 | A1 |
20030187921 | Diec | Oct 2003 | A1 |
20030189600 | Gune | Oct 2003 | A1 |
20030204427 | Gune | Oct 2003 | A1 |
20030206192 | Chen | Nov 2003 | A1 |
20030225730 | Warner | Dec 2003 | A1 |
20040001092 | Rothwein | Jan 2004 | A1 |
20040010489 | Rio | Jan 2004 | A1 |
20040015981 | Coker | Jan 2004 | A1 |
20040027388 | Berg | Feb 2004 | A1 |
20040128001 | Levin | Jul 2004 | A1 |
20040186860 | Lee | Sep 2004 | A1 |
20040193510 | Catahan | Sep 2004 | A1 |
20040199489 | Barnes-Leon | Oct 2004 | A1 |
20040199536 | Barnes-Leon | Oct 2004 | A1 |
20040199543 | Braud | Oct 2004 | A1 |
20040249854 | Barnes-Leon | Dec 2004 | A1 |
20040260534 | Pak | Dec 2004 | A1 |
20040260659 | Chan | Dec 2004 | A1 |
20040268299 | Lei | Dec 2004 | A1 |
20050050555 | Exley | Mar 2005 | A1 |
20050091098 | Brodersen | Apr 2005 | A1 |
20060021019 | Hinton | Jan 2006 | A1 |
20070220103 | Rogers | Sep 2007 | A1 |
20070261116 | Prafullchandra | Nov 2007 | A1 |
20080103879 | Armstrong | May 2008 | A1 |
20080109232 | Musgrove | May 2008 | A1 |
20080162496 | Postrel | Jul 2008 | A1 |
20080249972 | Dillon | Oct 2008 | A1 |
20090063415 | Chatfield | Mar 2009 | A1 |
20090063619 | Chijiiwa | Mar 2009 | A1 |
20090100342 | Jakobson | Apr 2009 | A1 |
20090132395 | Lam | May 2009 | A1 |
20090177744 | Marlow | Jul 2009 | A1 |
20090187465 | Leggetter | Jul 2009 | A1 |
20100088313 | Hoffman | Apr 2010 | A1 |
20100306185 | Smith | Dec 2010 | A1 |
20100325107 | Kenton | Dec 2010 | A1 |
20110113022 | Polychronidis | May 2011 | A1 |
20110218958 | Warshavsky | Sep 2011 | A1 |
20110247051 | Bulumulla | Oct 2011 | A1 |
20120042218 | Cinarkaya | Feb 2012 | A1 |
20120233103 | Ashrafi | Sep 2012 | A1 |
20120233137 | Jakobson | Sep 2012 | A1 |
20120290407 | Hubbard | Nov 2012 | A1 |
20130044130 | Geisner | Feb 2013 | A1 |
20130104251 | Moore | Apr 2013 | A1 |
20130212497 | Zelenko | Aug 2013 | A1 |
20130239170 | Ziemann | Sep 2013 | A1 |
20130247216 | Cinarkaya | Sep 2013 | A1 |
Entry |
---|
U.S. Appl. No. 14/145,735—Respones to Office Action dated May 15, 2015 filed Aug. 17, 2015, 17 pages. |
U.S. Appl. No. 14/145,735—Response to Final Office Action dated Nov. 13, 2015 filed Feb. 12, 2016,11 pages. |
U.S. Appl. No. 14/145,735—Response to Office Action dated Mar. 21, 2016 filed Jun. 17, 2016, 12 pages. |
U.S. Appl. No. 14/145,735—Response to Final Office Action dated Sep. 13, 2016 filed Nov. 16, 2016,10 pages. |
U.S. Appl. No. 14/145,735—Notice of Allowance dated Dec. 5, 2016, 27 pages. |
“The Force.com Multitenant Architecture”, salesforce.com whitepaper, 2008, 16 pages. |
U.S. Appl. No. 14/145,735, Non Final Office Action dated May 15, 2015, 15 pages. |
U.S. Appl. No. 14/145,735, Final Office Action dated Nov. 13, 2015, 16 pages. |
U.S. Appl. No. 14/145,735—Office Action dated Mar. 21, 2016, 22 pages. |
U.S. Appl. No. 14/145,735—Final Office Action dated Sep. 13, 2016, 23 pages. |
Number | Date | Country | |
---|---|---|---|
20170223135 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
61807877 | Apr 2013 | US | |
61807892 | Apr 2013 | US | |
61608423 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14145735 | Dec 2013 | US |
Child | 15489072 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13791295 | Mar 2013 | US |
Child | 14145735 | US |