The present invention relates to battery charging, and in particular, to electronic circuits, systems, and methods of charging a battery with a dynamic float voltage.
Batteries have long been used as a source of power for mobile electronic devices. Batteries provide energy in the form of electric currents and voltages that allow circuits to operate. However, the amount of energy stored in a battery is limited, and batteries lose power when the electronic devices are in use. When a battery's energy supply becomes depleted, the battery's voltage will start to fall from its rated voltage, and the electronic device relying on the battery for power will no longer operate properly. Such thresholds will be different for different types of electronic devices.
Many types of batteries are designed for a single use. Such batteries are discarded after the charge is depleted. However, some batteries are designed to be rechargeable. Rechargeable batteries typically require some form of battery charging system. Typical battery charging systems transfer power from a power source, such as an AC wall plug, into the battery. The recharging process typically includes processing and conditioning voltages and currents from the power source so that the voltages and currents supplied to the battery meet the particular battery's charging specifications. For example, if the voltages or currents supplied to the battery are too large, the battery can be damaged or even explode. On the other hand, if the voltages or currents supplied to the battery are too small, the charging process can be very inefficient or altogether ineffective. Inefficient use of the battery's charging specification can lead to very long charging times, for example. Additionally, if the charging process is not carried out efficiently, the battery's cell capacity (i.e., the amount of energy the battery can hold) may not be optimized. Moreover, inefficient charging can impact the battery's useful lifetime (i.e., number of charge/discharge cycles available from a particular battery).
Thus, it would be desirable to improve battery charging techniques. The present invention solves these and other problems by providing circuits, systems, and methods of charging a battery.
Embodiments of the present invention include electronic circuits, systems, and methods for charging a battery. In one embodiment, the present invention includes a method, which may be implemented by an integrated circuit, comprising charging the battery using a constant current until the voltage on the battery increases to a first voltage level, and charging the battery using a constant voltage, wherein the constant voltage is set to a second voltage level. The constant current charging transitions to constant voltage charging when the voltage on the battery reaches the first voltage level, where the first voltage level is greater than the second voltage level. Additional embodiments will be evident from the following detailed description and accompanying drawings, which provide a better understanding of the nature and advantages of the present invention.
Described herein are improved techniques for battery charging. In the following description, for purposes of explanation, numerous examples and specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one skilled in the art that the present invention as defined by the claims may include some or all of the features in these examples alone or in combination with other features described below, and may further include modifications and equivalents of the features and concepts described herein.
Embodiments of the present invention include systems and methods for decreasing the effective charge time of a battery. Example applications may be in charging Li-ion or Li-Polymer batteries. This method may use the minimum equivalent series resistance (ESR) of the battery pack, the minimum battery charge current of a battery charger integrated circuit (BQIC), or the ability to adjust the voltage applied to the battery to reduce the charge time. A method for a circuit to calculate the ESR of the battery dynamically is also disclosed.
Generally, Li-ion and Li-Polymer batteries may use the constant current-constant voltage (CC-CV) charging algorithm.
V
Cell
=V
Pack
−I
BQ,CC
R
ESR (Equation 1)
At the end of constant current mode, when the voltage on the battery pack increases to the transition voltage, the voltage on the battery cell will be less than the fully rated voltage due to the voltage drop across the ESR due to the constant current. For instance, for an ESR of 1 ohm and Battery Charge Current of 500 mA during CC mode, the cell voltage is 500 mV less than the pack voltage, meaning that CC charging can be extended by raising the float voltage (e.g., to 4.7V). Accordingly, embodiments of the present invention may increase the voltage at which the charge circuit transitions from constant current to constant voltage above the voltage at which the battery is traditionally considered fully charged. When the voltage on the battery pack reaches this new higher voltage, the system transitions from constant current mode to constant voltage mode. In constant voltage mode, a voltage at which the battery is considered fully charged is used. Accordingly, one embodiment of the present invention may use a first voltage for triggering the transition from constant current charging to constant voltage charging and a second voltage for constant voltage charging, where the first voltage is higher than the second voltage and where the second voltage is approximately the voltage at which the battery is considered fully charged. The first voltage may be higher than the second voltage by an amount approximately equal to the voltage drop across a series resistance between an input of the battery and the battery cell so that the voltage across the battery cell does not damage the cell. By remaining in CC mode for a longer period of time, where the charge entering the cell is higher, more charge is allowed to go into the battery per unit time, thereby reducing the effective charge time.
One embodiment of a charging algorithm may be based on characterization as shown below:
V
Float,new
=V
CELLMAX
+I
BQ,CC(min)
R
ESR(min), (Equation 2)
where Vfloat,new is the transition voltage that triggers activation of the constant voltage charging and deactivation of constant current charging. Vcellmax is the maximum battery cell voltage, and may be set at an example float voltage of 4.2 v used for constant voltage charging, for example. For instance, if the charge circuit is characterized as having a charge current of 500 mA±5 mA, then a value of 495 mA may be used. Similarly, if the battery is characterized as having a series resistance of 1 ohm±0.1 ohms, then a value of 0.9 ohms may be used. The transition voltage may then be set at a predetermined value of V=4.2+0.4455=4.66 volts, for example.
Another embodiment of the charging algorithm includes determining the battery resistance dynamically. For example, in one embodiment, the ESR, charge current, and new transition voltage can be determine by a charge circuit by separating the battery from the system load. Such a system is shown in
Vfloat, high=Vfloat, low+(VESR−Vcell) (Equation 3)
Where Vfloat, high is the voltage at which the charge circuit transitions from constant current to constant voltage charging, and Vfloat, low is the voltage used during the constant voltage mode charging (e.g., the voltage at which the battery is considered fully charged or the maximum tolerance voltage for the battery cell such as 4.2V). The magnitude of Ipulse may be equal to the value of the current used at the very end of constant current charging mode just prior to transitioning to constant voltage charging mode, for example. Additionally, Ipulse may be long enough to be considered DC and account for any series inductance, but short enough to ensure minimal additional charging has occurred on the battery cell. For example, Ipulse may be short enough in time so that an insufficient amount of Lithium has been extracted from the cathode and inserted into the anode. In one embodiment, charging the battery and powering the system may occur simultaneously. For example, when the pass PFET is turned off, the system may still be powered from DCIN, and the charge circuit may perform a charge cycle including the fast-mode of charging.
Using the techniques described above, embodiments of the invention may reduce overall charge time significantly (e.g., possibly approaching as much as 30% or possibly more) when compared to traditional CC-CV charging methods.
Embodiments of the present invention may be implemented in a system that uses a programmable float voltage, for example, and the float voltage can either be manipulated by a microcontroller or can be autonomously controlled by the charger circuits. For example, some embodiments may use programmable charge circuits or methods disclosed in commonly owned U.S. Pat. No. 7,528,574, filed Feb. 16, 2006, naming Kenneth C. Adkins and M. Abid Hussain as inventors, which is hereby incorporated herein by reference, and commonly owned U.S. patent application Ser. No. 11/356,561, filed Feb. 16, 2006, naming Kenneth C. Adkins, M. Abid Hussain, and Georgios Constantinos Paparrizos as inventors, which is also hereby incorporated herein by reference. It is to be understood that embodiments of the present invention may use a constant current scheme where the current is reduced as the voltage on the battery increases as set forth in U.S. patent application Ser. No. 11/356,561. In this case, the difference between the voltage used to trigger the transition from CC mode to CV mode and the float voltage used for CV mode may be equal to the constant current level just prior to the transition (i.e., the current value when the voltage across the battery pack reaches the transition voltage value) multiplied by the series resistance in the battery pack. Accordingly, it should be noted that constant current charging includes implementations where the constant current level changes over time, but where the current is used as a control parameter to control a regulator, such as a switching regulator, for example.
The above description illustrates various embodiments of the present invention along with examples of how aspects of the present invention may be implemented. The above examples and embodiments should not be deemed to be the only embodiments, and are presented to illustrate the flexibility and advantages of the present invention as defined by the following claims. For example, switching systems and methods with current sensing according to the present invention may include some or all of the innovative features described above. Based on the above disclosure and the following claims, other arrangements, embodiments, implementations and equivalents will be evident to those skilled in the art and may be employed without departing from the spirit and scope of the invention as defined by the claims.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/057,735, filed May 30, 2008, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61057735 | May 2008 | US |