Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material

Information

  • Patent Grant
  • 8770284
  • Patent Number
    8,770,284
  • Date Filed
    Friday, April 19, 2013
    11 years ago
  • Date Issued
    Tuesday, July 8, 2014
    10 years ago
Abstract
Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material. The systems and methods include drilling the wellbore and determining that the wellbore has intersected a portion of the subterranean structure that includes the marker material by detecting the marker material. The systems and methods also may include distributing the marker material within the subterranean structure, aligning the marker material within the subterranean structure, determining one or more characteristics of the marker material, ceasing the drilling, repeating the method, and/or producing a hydrocarbon from the subterranean structure. The systems and methods further may include forming an electrical connection between an electric current source and a granular resistive heater that forms a portion of the subterranean structure, forming the granular resistive heater, and/or forming the subterranean structure.
Description
FIELD OF THE DISCLOSURE

The present disclosure is directed generally to systems and methods of detecting, or determining, an intersection between a wellbore and a subterranean structure that includes a marker material.


BACKGROUND OF THE DISCLOSURE

Accurate detection of an intersection between a subterranean structure and a wellbore that is configured to intersect the subterranean structure may improve, or enhance, well drilling capabilities. These enhanced well drilling capabilities may decrease well drilling costs, decrease costs associated with the formation and/or development of the subterranean structure, and/or provide for the development of improved well drilling technologies.


As an illustrative, non-exclusive example, hydraulic fracturing may be utilized to form a relatively large, relatively planar subterranean structure, such as a hydraulic fracture, within a subterranean formation. This hydraulic fracture, or fracture, may include planar dimensions that are on the order of tens to hundreds of meters; however, a thickness of the fracture may only be a few millimeters.


Subsequent to formation of the fracture, it may be desirable to provide a supplemental material thereto. This may include focused delivery of the supplemental material to a target, or desired, region of the fracture to provide for accurate placement of the supplemental material and/or to decrease a potential for waste of the supplemental material. Furthermore, it may be desirable to provide the supplemental material to a portion, or region, of the fracture that is spaced apart from a stimulation well that was utilized to create the fracture by drilling another wellbore that intersects the subterranean structure. However, the reduced thickness of the fracture in such spaced-apart portions, or regions, increases the difficulty of accurately detecting intersection of the additional wellbore with the fracture. Thus, there exists a need for systems and methods for accurate detection of the intersection between such a wellbore with the subterranean fracture and/or subterranean structure.


SUMMARY OF THE DISCLOSURE

Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material. These systems and methods include drilling the wellbore and determining that the wellbore has intersected a portion of the subterranean structure that includes the marker material by detecting the marker material. The systems and methods also may include distributing the marker material within the subterranean structure, aligning the marker material within the subterranean structure, determining one or more characteristics of the marker material, ceasing the drilling, repeating the method, and/or producing a hydrocarbon from the subterranean structure. The systems and methods further may include forming an electrical connection between an electric current source and a granular resistive heater that forms a portion of the subterranean structure, forming the granular resistive heater, and/or forming the subterranean structure.


In some embodiments, the drilling may include controlling the drilling based, at least in part, on the detecting. In some embodiments, the controlling may include a control system. In some embodiments, the detecting may include detecting any suitable characteristic of the marker material, detecting a proximity of the marker material to a detector, and/or remotely detecting the marker material with the detector. In some embodiments, the distributing may include flowing the marker material into the subterranean structure.


In some embodiments, forming the electrical connection between the electric current source and the granular resistive heater may include detecting an intersection between an electrode well and the granular resistive heater, providing a supplemental material through the electrode well and to a portion of the granular resistive heater, forming an electrical connection between the supplemental material and the portion of the granular resistive heater, and/or forming an electrical connection between the supplemental material and an electrical conduit that is configured to convey the electric current between the electric current source and the granular resistive heater. In some embodiments, forming the granular resistive heater may include creating a fracture within a subterranean formation, supplying a proppant that includes a granular resistive heating material to the fracture, and/or forming the electrical connection between the granular resistive heater and the electric current source.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic cross-sectional view of illustrative, non-exclusive examples of a drilling operation that may utilize the systems and methods according to the present disclosure.



FIG. 2 is a schematic top view of illustrative, non-exclusive examples of a subterranean structure that may be intersected by a plurality of wellbores according to the present disclosure.



FIG. 3 is a schematic cross-sectional detail showing illustrative, non-exclusive examples of an electrical connection according to the present disclosure between a subterranean structure that includes a granular resistive heater and an electrical conduit.



FIG. 4 is a schematic cross-sectional view of illustrative, non-exclusive examples of the use of one or more packers to focus, or target, delivery of a supplemental material to a subterranean structure.



FIG. 5 is a flowchart depicting methods according to the present disclosure of detecting an intersection of a wellbore with a subterranean structure.



FIG. 6 is a flowchart depicting methods according to the present disclosure of forming an electrical connection between a granular resistive heater and an electric current source.



FIG. 7 is a flowchart depicting methods according to the present disclosure of forming a subterranean structure that includes a granular resistive heater.





DETAILED DESCRIPTION AND BEST MODE OF THE DISCLOSURE


FIG. 1 is a schematic cross-sectional view of illustrative, non-exclusive examples of a drilling operation 20 and/or a hydrocarbon production operation 21 that may utilize the systems and methods according to the present disclosure. In FIG. 1, a plurality of wellbores 30 are configured to provide mechanical, electrical, and/or fluid communication between a surface region 40 and a subterranean structure 50, such as a granular resistive heater 52, that is formed within a subterranean region 45 and that includes a marker material 100. Wellbores 30 additionally or alternatively may be referred to as, and/or as forming a portion of, wells 30.


As illustrative, non-exclusive examples, wellbores 30 may include, be utilized as, and/or be a stimulation well 32 that is configured to provide a stimulant fluid to a subterranean formation 80 and/or to subterranean structure 50 thereof, an electrode well 34 that is configured to provide an electrical connection between an electric current source and the subterranean structure, and/or a hydrocarbon well 38 that is configured to produce hydrocarbons 82 from subterranean formation 80 and/or subterranean structure 50 thereof. As an illustrative, non-exclusive example, subterranean formation 80 may include any suitable oil shale, tar sands, and/or organic-rich rock formation that may contain and/or include one or more hydrocarbons 82, such as kerogen and/or bitumen, and wellbores 30 may be utilized to stimulate the subterranean formation and/or to produce hydrocarbons 82 from the subterranean formation.


As used herein, the phrase “subterranean structure” may refer to any suitable structure that is present within subterranean region 45 and which includes marker material 100 distributed therein. It is within the scope of the present disclosure that at least a portion of subterranean structure 50 may be constructed, may include material deposited from surface region 40 via a wellbore 30, and/or may be man-made. Additionally or alternatively, it is also within the scope of the present disclosure that at least a portion of subterranean structure 50 may be naturally occurring. Whether the subterranean structure is man-made or naturally occurring, marker material 100 is not naturally occurring within the subterranean structure and/or is not naturally occurring within the subterranean structure at the concentrations that are utilized herein. Instead, the marker material is purposefully placed, directed, localized, situated, spread, dispersed, broadcast, dispensed, and/or distributed within the subterranean structure as part of, and/or in conjunction with, the systems and methods that are disclosed herein.


As shown in FIG. 1 at 140, a well 30 in the form of a stimulation well 32 may be utilized to provide a stimulation fluid through perforations 39 in a casing 31 thereof and into subterranean formation 80. The stimulation fluid may create one or more fractures 60 within the subterranean formation. Fracture(s) 60 may form a portion of and/or define an outer boundary of subterranean structure 50.


Subsequent to formation of fractures 60, and as discussed in more detail herein, a proppant material 62, such as which may be and/or include a granular resistive heating material 53, may be provided to the fracture to maintain fracture 60 in an open configuration; and cement 64 may be utilized to hold, maintain, and/or otherwise affix at least a portion of proppant material 62 in place such that the proppant material may resist displacement from fracture 60 due to fluid flow therethrough and/or pressure differentials thereacross. The granular resistive heater may be in electrical communication with an electric current source, which may provide electric current to the granular resistive heater to heat subterranean formation 80. To provide for supply of electric current to, and withdrawal of electric current from, the granular resistive heater, it may be desirable to drill at least one, and often a plurality of electrode wells 34, each of which may provide an electrical connection between the granular resistive heater and the electric current source. In order to improve the performance of the granular resistive heater and/or to reduce the costs associated with forming the granular resistive heater, it may be desirable to provide for accurate determination of an intersection point 90 between electrode well 34 and granular resistive heater 52. Intersection 90 may additionally or alternatively be referred to herein as an intersection region and/or intersection point.


Additionally or alternatively, it also may be desirable to obtain a measure of a thickness 58 of the granular resistive heater in a region that is proximal to the electrode well, to compare such a thickness 58 to a thickness 56 of the granular resistive heater in a region that is proximal to the stimulation well, and/or to drill electrode wells 34 such that thickness 58 at intersection point 90 is within a target, or desired, thickness range. Illustrative, non-exclusive examples of stimulation well-proximal thickness 56 according to the present disclosure include thicknesses of at least 3 mm, at least 4 mm, at least 5 mm, at least 6 mm, at least 7 mm, or at least 8 mm, as well as thicknesses of less than 12 mm, less than 11 mm, less than 10 mm, less than 9 mm, less than 8 mm, less than 7 mm, less than 6 mm, or less than 5 mm. Illustrative, non-exclusive examples of electrode well-proximal thickness 58 according to the present disclosure include thicknesses of at least 0.25 mm, at least 0.5 mm, at least 0.75 mm, at least 1 mm, at least 1.25 mm, at least 1.5 mm, at least 1.75 mm, at least 2 mm, at least 2.25 mm, or at least 2.5 mm, and additionally or alternatively include thicknesses of less than 5 mm, less than 4 mm, less than 3.5 mm, less than 3 mm, less than 2.75 mm, less than 2.5 mm, less than 2.25 mm, less than 2 mm, less than 1.75 mm, less than 1.5 mm, less than 1.25 mm, or less than 1 mm. The systems and methods disclosed herein are not limited to the above illustrative, non-exclusive examples, and it is within the scope of the present disclosure that the systems and methods may be used with regions that have thicknesses that are within and/or outside of these non-exclusive examples.


The granular resistive heater 52 may include any suitable size and/or dimensions. As illustrative, non-exclusive examples, a length (or other maximum dimension) of the granular resistive heater may be at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 110, at least 125, or at least 150 meters. Additionally or alternatively, a width (or other transverse dimension relative to the length) of the granular resistive heater may be at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55, at least 60, or at least 70 meters. The preceding discussion of the length and width of the granular resistive heater may additionally or alternatively be referred to as the height and width, width and height, and/or maximum and minimum transverse dimensions of the granular resistive heater. Similarly, the granular resistive heater may include any suitable shape, an illustrative, non-exclusive example of which includes a planar, or at least substantially planar, shape. Illustrative, non-exclusive examples of granular resistive heaters, stimulation wells, and/or electrode wells that may be utilized with the system and methods according to the present disclosure are disclosed in U.S. Patent Application Ser. No. 61/555,940, the complete disclosure of which is hereby incorporated by reference.


During formation of wellbores 30, and as illustrated at 150 in FIG. 1, a drilling rig 22 including a drill string 24 may be utilized to create wellbore 30 using a drill bit 26. Drill bit 26 may remove cuttings 102 from a terminal end 36, which also may be referred to herein as terminal depth 36, of wellbore 30, and the cuttings may be conveyed through wellbore 30 to surface region 40 in a drilling fluid 101. As shown in solid lines in FIG. 1, wellbore 30 may have, or include, a current terminal depth 36 at a given time during formation of the wellbore. Subsequently, and as shown in dash-dot lines in FIG. 1, terminal depth 36 of wellbore 30 may be increased by drilling operation 20 to a future terminal depth that is greater than the current terminal depth.


The systems and methods disclosed herein may be configured to control the operation of drilling rig 22, drill string 24, and/or drill bit 26, such as to control terminal depth 36 of wellbore 30 and/or to detect an intersection, or intersection point, of wellbore 30 with subterranean structure 50. As an illustrative, non-exclusive example, drill string 24 may include a detector 120 that is configured to detect the intersection of the wellbore with the subterranean structure. As an illustrative, non-exclusive example, detector 120 may be configured to detect marker material 100 and/or to generate an intersection signal responsive to detection of the marker material.


As another illustrative, non-exclusive example, and as also shown in FIG. 1, detector 120 may be located within surface region 40, in communication with drilling rig 22, and/or associated with drilling rig 22. As an illustrative, non-exclusive example, detector 120 may be configured to (1) detect the presence of marker material 100 within drilling fluid 101 and/or cuttings 102 that flow to surface region 40 from wellbore 30 and to (2) generate the intersection signal responsive thereto. As another illustrative, non-exclusive example, detector 120 may be configured to detect a separation distance 122 between the detector and the marker material, between surface region 40 and the marker material, between drilling rig 22 and the marker material, and/or between drill bit 26 and the marker material.


As shown in dashed lines in FIG. 1, drilling operation 20 and/or hydrocarbon production operation 21 may include a control system 130 that is configured to control the operation of drilling rig 22 and/or drill string 24 thereof. As an illustrative, non-exclusive example, and when detector 120 is configured to detect the presence of marker material 100, control system 130 may be configured to cease drilling wellbore 30 responsive to receipt of the intersection signal. As another illustrative, non-exclusive example, and when detector 120 is configured to detect separation distance 122, control system 130 may be configured to cease drilling wellbore 30 and/or to generate the intersection signal responsive to detecting that terminal depth 36 of wellbore 30 is equal to, or within a threshold distance of, separation distance 122.


Control system 130 may include any suitable structure that is configured to control the operation of drilling rig 22 and/or drill string 24 thereof. As illustrative, non-exclusive examples, the control system may include and/or be an electronic controller, an automated controller, and/or a manually actuated controller. When control system 130 includes an electronic and/or automated controller, the control system may be configured to generate the intersection signal, and/or to receive the intersection signal from, detector 120 and automatically control the operation of drilling rig 22 responsive thereto. Additionally or alternatively, and when control system 130 includes a manually actuated controller, the control system may include an indicator that may indicate to a user that wellbore 30 has intersected subterranean structure 50, and the user may control the operation of the drilling rig based thereon.


Detector 120 may include any suitable structure that is configured to detect the presence of marker material 100 and/or the separation distance between the detector and the marker material. As an illustrative, non-exclusive example, and when the detector is configured to detect marker material 100 that is proximal to and/or in contact with the detector, the detector may include a logging-while-drilling transducer 124 that is located on the drill string. It is within the scope of the present disclosure that the logging-while-drilling transducer may be located upon and/or otherwise associated with or coupled to any suitable portion of the drill string. As illustrative, non-exclusive examples, the logging-while-drilling transducer may be located within a threshold distance of drill bit 26 and/or a terminal end of the drill string. Illustrative, non-exclusive examples of threshold distances according to the present disclosure include threshold distances of less than 1 meter, less than 0.75 meters, less than 0.5 meters, less than 0.25 meters, or less than 0.1 meters. As another illustrative, non-exclusive example, and when detector 120 is configured to detect marker material 100 that is proximal to and/or in contact with the detector, the detector may be configured to detect the presence and/or concentration of marker material 100 within cuttings 102 and/or drilling fluid 101.


As yet another illustrative, non-exclusive example, and when detector 120 is configured to detect separation distance 122 and/or to remotely detect the marker material, the detector may include any suitable receiver that is configured to detect any suitable signal emitting or otherwise emanating or propagating from the marker material. Additionally or alternatively, detector 120 and/or control system 130 also may include any suitable transmitter that is configured to provide an excitation signal to marker material 100, with the excitation signal causing the emission of the signal from the marker material. As illustrative, non-exclusive examples, detector 120 may be configured to provide a signal electric field, a signal magnetic field, and/or signal electromagnetic radiation to the marker material over the separation distance and to receive a resultant electric field, a resultant magnetic field, and/or resultant electromagnetic radiation from the marker material over the separation distance. Illustrative, non-exclusive examples of separation distances according to the present disclosure include separation distances of greater than 1 meter, greater than 5 meters, greater than 10 meters, greater than 25 meters, greater than 50 meters, greater than 100 meters, greater than 250 meters, greater than 500 meters, or greater than 1,000 meters, as well as separation distances of less than 10,000 meters, less than 7,500 meters, less than 5,000 meters, less than 2,500 meters, less than 1,000 meters, less than 750 meters, less than 500 meters, or less than 250 meters.


Marker material may be present within the subterranean structure at any suitable concentration and/or any suitable concentration distribution. As illustrative, non-exclusive examples, the concentration of the marker material within the subterranean structure may be less than 5 volume %, less than 3 volume %, less than 2 volume %, less than 1 volume %, less than 0.75 volume %, less than 0.5 volume %, less than 0.25 volume %, less than 0.1 volume %, less than 0.05 volume %, less than 0.01 volume %, or less than 0.005 volume %. Additionally or alternatively, the concentration of the marker material within the subterranean structure may be greater than 0.001 volume %, greater than 0.005 volume %, greater than 0.01 volume %, greater than 0.05 volume %, greater than 0.1 volume %, greater than 0.25 volume %, or greater than 0.5 volume %.


As discussed in more detail herein with reference to the schematic illustration shown in FIG. 3, it is within the scope of the present disclosure that marker material 100 may include a plurality of discrete marker bodies that may include any suitable shape and/or distribution of shapes. As illustrative, non-exclusive examples, at least a portion of the plurality of discrete marker material particles may include a spherical structure, an at least substantially spherical structure, and/or an elongate structure. When the marker material includes a plurality of discrete marker bodies, the detector may be configured to generate the intersection signal responsive to detecting a portion of the plurality of discrete marker bodies.


Marker material 100, and/or dimensions and/or flow characteristic thereof, may be selected based, at least in part, on a target, or desired, distribution of the plurality of discrete marker bodies within the subterranean structure, a density of a fluid that may be present within the subterranean structure, a viscosity of a fluid that may be present within the subterranean structure, and/or an average pore size within the subterranean structure. As illustrative, non-exclusive examples, a shape, volume, density, and/or settling velocity of the plurality of discrete marker material particles may be selected based, at least in part, on the desired distribution. As another illustrative, non-exclusive example, the plurality of discrete marker material particles may be selected such that an average characteristic dimension, such as an average diameter, equivalent diameter, and/or length, may be within a desired range of values. Illustrative, non-exclusive examples of such average characteristic dimensions include average characteristic dimensions that are less than 250, less than 200, less than 150, less than 125, less than 100, less than 75, less than 50, less than 25, less than 10, less than 5, less than 2, less than 1, less than 0.5, or even less than or equal to 0.1 micrometers, as well as average characteristic dimensions that are greater than 0.05, greater than 0.1, greater than 1, greater than 2, greater than 5, greater than 10, greater than 20, greater than 25, or greater than 50 micrometers.


It is within the scope of the present disclosure that marker material 100 may include a first marker material and a second marker material that is different from the first marker material. It is also within the scope of the present disclosure that, as shown schematically in FIG. 2, first marker material 104 may be distributed in a different portion, or region, of subterranean structure 50 than second marker material 106. This may include the first marker material being distributed in a region, or ring, that surrounds the second marker material, as shown in FIG. 2, or vice versa.


When present, the first marker material and the second marker material may be distributed in different regions of the subterranean structure using any suitable system and/or method. As an illustrative, non-exclusive example, and as discussed in more detail herein, the first marker material may be injected into the subterranean structure prior to the second marker material. As another illustrative, non-exclusive example, one or more flow characteristics of the first marker material may be selected to be different from those of the second marker material, which may cause and/or produce a segregation of the marker materials within the subterranean structure. As a further illustrative, non-exclusive example, the first and second marker materials may be delivered to the subterranean structure using different wells.


When marker material 100 includes the first marker material and the second marker material, it is within the scope of the present disclosure that detector 120 may be configured to determine one or more characteristics of the marker material that may indicate and/or identify the marker material as the first marker material and/or the second marker material. As illustrative, non-exclusive examples, the detector may be configured to detect differences in the size, shape, and/or emission from the first marker material and the second marker material.


Marker material 100, first marker material 104, and/or second marker material 106 may include any suitable structure and/or material that is configured to mark, denote, and/or otherwise indicate the presence of subterranean structure 50 and/or the intersection of wellbore 30 with the subterranean structure. Illustrative, non-exclusive examples of marker material 100 according to the present disclosure include any suitable micromarker, radio frequency identification (RFID) device, wireless identification (WID) device, long wavelength (LW) device, active device, passive device, micromaterial, electromagnetic material, magnetic material, fluorescent material, radioactive material, and/or piezoelectric material.


As an illustrative, non-exclusive example, marker material 100 may include magnetite. When marker material 100 includes magnetite, and with reference to FIG. 1, it is within the scope of the present disclosure that detector 120 may include and/or be a bulk magnetic susceptibility meter that is configured to detect the magnetic susceptibility of one or more materials that may be proximal to the bulk magnetic susceptibility meter.


A magnetic susceptibility of magnetite, which is approximately 3,000,000 micro SI units, may be many orders of magnitude larger than a magnetic susceptibility of a remainder of the materials that may be present within subterranean region 45. As illustrative, non-exclusive examples, the magnetic susceptibility of magnetite may be at least 100, at least 250, at least 500, at least 750, at least 1,000, at least 5,000, at least 10,000, at least 15,000, at least 20,000, or at least 25,000 times larger than the magnetic susceptibility of the remainder of the materials that may be present within the subterranean region and/or a concentration-based average thereof. This large difference in magnetic susceptibility, which also may be referred to herein as a magnetic susceptibility contrast, may provide for accurate detection of relatively low concentrations of magnetite by detector 120.


When magnetic material 100 includes magnetite, the magnetite may be present within the subterranean structure as a plurality of discrete magnetite particles, each of which may include at least one north magnetic pole and at least one south magnetic pole. It is within the scope of the present disclosure that at least a coherent fraction of the plurality of discrete magnetite particles may be aligned within the subterranean structure with their north poles pointing within a threshold coherence angle of the same direction. As an illustrative, non-exclusive example, the threshold coherence angle may include an angle of less than 30 degrees, less than 25 degrees, less than 20 degrees, less than 15 degrees, less than 10 degrees, less than 5 degrees, less than 3 degrees, or less than 1 degree. As another illustrative, non-exclusive example, the coherent fraction may include at least 25%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, or at least 90% of the plurality of discrete magnetite particles.


It is within the scope of the present disclosure that at least a single domain fraction of the plurality of discrete magnetite particles may include only one magnetic domain. Illustrative, non-exclusive examples of the single domain fraction according to the present disclosure include single domain fractions of at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95%, or at least 99% of the plurality of discrete magnetite particles.


Additionally or alternatively, at least a multi-domain fraction of the plurality of discrete magnetite particles may include a plurality of magnetic domains. Illustrative, non-exclusive examples of the multi-domain fraction of the plurality of discrete magnetite particles include multi-domain fractions of less than 90%, less than 80%, less than 75%, less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 25%, less than 20%, less than 10%, or less than 5% of the plurality of discrete magnetite particles.


When the marker material includes the multi-domain fraction of the plurality of discrete magnetite particles, it is within the scope of the plurality of magnetic domains within each of the multi-domain magnetic particles may be aligned with one another to within a threshold alignment angle. Illustrative, non-exclusive examples of threshold alignment angles according to the present disclosure include threshold alignment angles of less than 30 degrees, less than 25 degrees, less than 20 degrees, less than 15 degrees, less than 10 degrees, less than 5 degrees, less than 3 degrees, or less than 1 degree. The plurality of magnetic domains may be aligned using any suitable system and/or method. As illustrative, non-exclusive examples, the plurality of magnetic domains may be aligned by heating the plurality of discrete magnetite particles, applying a magnetic field to the plurality of discrete magnetite particles to at least substantially align the plurality of magnetic domains, and cooling the plurality of discrete magnetite particles to maintain the plurality of magnetic domains in the at least substantially aligned configuration.


Subsequent to formation of wellbore 30, and as indicated at 160 in FIG. 1, wellbore 30 may be utilized as an electrode well 34 to provide an electric current through an electrical conduit 35 to granular resistive heater 52. As shown in dash-dot-dot lines, electrode well 34 may include and/or contain a supplemental material 54. As an illustrative, non-exclusive example, the electrode well may include a particulate conductor 55 that is configured to provide an electrical connection between electrical conduit 35 and granular resistive heater 52 and/or to more evenly distribute the electric current that flows through the electrical conductor into the granular resistive heater.


As discussed in more detail herein with reference to FIG. 4, it may be desirable to provide for accurate supply of supplemental material 54 to a portion of wellbore 30 that includes subterranean structure 50. As an illustrative, non-exclusive example, this may include supplying supplemental material 54 to the portion of the wellbore that includes granular resistive heater 52. This may be accomplished through accurate control of terminal depth 36 of wellbore 30 and/or accurate detection of intersection point 90. However, and as discussed in more detail herein, thickness 58 of the granular resistive heater in a region that is proximal to the electrode well may be only on the order of a few millimeters. Thus, it may be difficult to accurately detect intersection point 90 without the use of the systems and methods that are disclosed herein.


Additionally or alternatively, and as discussed in more detail herein, it may be desirable to determine, or approximate, thickness 58 of the granular resistive heater in a region that is proximal to the electrode well in order to determine, or evaluate, an effectiveness of the electrode well at supplying the electric current to the granular resistive heater and/or to evaluate the need for additional electrode well(s) and/or the location(s) thereof. As an illustrative, non-exclusive example, if thickness 58 is less than a target, or threshold, thickness, the granular resistive heater may be too thin to effectively heat subterranean formation 80 and/or the portion of the granular resistive heater that is proximal to the electrode well may be too thin to adequately conduct the electric current to a remainder of the granular resistive heater. Under these conditions, a new electrode well may be drilled to replace and/or supplement the current electrode well. This new electrode well may be drilled at a location that is closer to stimulation well 32 in an effort to intersect granular resistive heater 52 at a thicker location. As another illustrative, non-exclusive example, and if thickness 58 is greater than a target, or threshold, thickness, it may be desirable to drill a new electrode well at a location that is farther from stimulation well 32 in an effort to increase the overall size and effectiveness of the granular resistive heater.



FIG. 2 is a schematic top view of illustrative, non-exclusive examples of subterranean structure 50 that may be intersected by a plurality of wellbores 30 according to the present disclosure. FIG. 2 illustrates that, as discussed in more detail herein, a stimulation well 32 may be present within a central region, or zone, of subterranean structure 50, and may be utilized to create a fracture 60. Fracture 60 may contain proppant 62, in the form of and/or including granular resistive heating material 53, which may form granular resistive heater 52. Subterranean structure 50 also may include marker material 100 that may be utilized to detect the intersection point between electrode wells 34 and the subterranean structure.


As also discussed in more detail herein, and as shown in dashed lines in FIG. 2, marker material 100 may include a first marker material 104 and a second marker material 106 that may be distributed in different zones, or regions, of the subterranean structure. A plurality of electrode wells 34 may provide electric current to and/or remove electric current from granular resistive heater 52, and supplemental material 54 may be proximal to and/or surround electrode wells 34 to provide for uniform supply of the electric current to the granular resistive heater. In addition, and as also shown in dashed lines in FIG. 2, any wellbore 30, including stimulation well(s) 32 and/or electrode well(s) 34 also may be, include, and/or be utilized as hydrocarbon wells 38, which also may be referred to herein as production wells 38.



FIG. 3 is a schematic cross-sectional view of illustrative, non-exclusive examples of an electrical connection 37 between a subterranean structure 50 that includes a granular resistive heater 52 and an electrical conduit 35. As schematically depicted in FIG. 3, granular resistive heater 52 may include a granular resistive heating material 53, which also may function and/or be referred to as a proppant 62, and a marker material 100 in the form of a plurality of discrete marker bodies. The granular resistive heating material may include any suitable size and/or characteristic dimension. As an illustrative, non-exclusive example, an average characteristic dimension of the granular resistive heating material may be at least 50, at least 75, at least 80, at least 90, at least 100, at least 110, at least 120, or at least 125 micrometers. Additionally or alternatively, the average characteristic dimension may less than 200, less than 175, less than 150, less than 125, or less than 100 micrometers.


In the illustrative, non-exclusive example of FIG. 3, marker material 100 is shown schematically as being present within interstitial spaces between individual granular resistive heating material 53 and/or proppant 62 particles. As discussed in more detail herein, such a configuration may exist when marker material 100 is separate from proppant 62 and provided to the subterranean structure concurrently with and/or subsequent to proppant 62. Additionally or alternatively, and as indicated in FIG. 3 at 103, it is also within the scope of the present disclosure that the marker material may form a portion of, be incorporated into, and/or be proppant 62. When the marker material is separate from proppant 62 and provided to the subterranean structure subsequent to the proppant, it is within the scope of the present disclosure that the average characteristic dimension of the plurality of discrete marker material particles, illustrative, non-exclusive examples of which are discussed in more detail herein, may be less than an average pore size of the interstitial spaces that are present within the granular resistive heater.


As discussed in more detail herein, and subsequent to formation of wellbore 30 that is associated with electrode well 34, supplemental material 54 may be provided to a region of the wellbore that is in fluid communication with granular resistive heater 52. The supplemental material may form an electrical connection between electrical conduit 35 and granular resistive heating material 53 of the granular resistive heater, thereby decreasing a resistance to electric current flow and/or increasing a uniformity of electric current flow therebetween.



FIG. 4 is a schematic cross-sectional view of illustrative, non-exclusive examples of wellbores 30 that include one or more packers 28 to focus, or target, delivery of supplemental material 54 to subterranean structure 50 that may be present within subsurface region 45 and/or subterranean formation 80. As an illustrative, non-exclusive example, and as indicated in FIG. 4 at 170, when terminal depth 36 of wellbore 30 extends below subterranean structure 50, a packer 172 may be placed within the wellbore and below the subterranean structure to limit a flow of supplemental material 54 therepast. In addition, a second packer 174 may be placed within the wellbore and above the subterranean structure and a fluid conduit 29 may be utilized to provide the supplemental material directly, or at least substantially directly, to the subterranean structure.


While the use of packers 172 and 174 may facilitate accurate delivery of the supplemental material to the subterranean structure, it may be time-consuming and/or comparatively expensive to locate the packers within wellbore 30. In addition, it may be difficult to determine a desired location for the packers, since a distance between terminal depth 36 and subterranean structure 50 may be unknown and/or difficult to determine.


In contrast, and as indicated in FIG. 4 at 180, the systems and methods disclosed herein may provide for accurate determination of intersection point 90 between wellbore 30 and subterranean structure 50. Thus, supplemental material 54 may be provided to the subterranean structure without the need for packer 172. In addition, a location for packer 174 may be accurately determined since a distance between terminal depth 36 and subterranean structure 50 is known. Furthermore, and when loss of supplemental material 54 through wellbore 30 is less than a threshold level, it is within the scope of the present disclosure that supplemental material 54 may be provided to subterranean structure 50 without the use of packer 174 and/or fluid conduit 29.



FIG. 5 is a flowchart depicting methods 200 according to the present disclosure of detecting an intersection of a wellbore with a subterranean structure. The methods may include selecting a marker material at 205, distributing the marker material within the subterranean structure at 210, distributing a second marker material within the subterranean structure at 215 and/or aligning the marker material within the subterranean structure at 220. The methods further may include drilling the wellbore at 225 and detecting an intersection, or intersection point, of the wellbore with the subterranean structure at 230. The methods further may include determining a character of the marker material that is present at the intersection point at 235, ceasing drilling the wellbore at 240, repeating the method at 245, and/or producing a hydrocarbon from the subterranean structure at 250.


Selecting the marker material at 205 may include the use of any suitable system, method, and/or criteria to select the marker material that may be distributed within the subterranean structure. Illustrative, non-exclusive examples of marker materials according to the present disclosure are discussed in more detail herein. As an illustrative, non-exclusive example, the selecting may include selecting the type, configuration, and/or materials of construction of the marker material. As another illustrative, non-exclusive example, the selecting may include selecting a shape, volume, density, and/or settling velocity of the plurality of discrete marker material particles that are included in the marker material based, at least in part, on a desired distribution of the discrete marker material particles within the subterranean structure, a density of a fluid that is present within the subterranean structure, a viscosity of the fluid that is present within the subterranean structure, and/or an average pore size within the subterranean structure.


Distributing the marker material within the subterranean structure at 210 may include the use of any suitable system and/or method to disperse, spread, and/or distribute the marker material within the subterranean structure. As an illustrative, non-exclusive example, the distributing may include injecting the marker material into the subterranean structure, such as through any suitable fluid conduit and/or casing. As another illustrative, non-exclusive example, the distributing may include injecting a slurry that includes the marker material and/or water into the subterranean structure. As another illustrative, non-exclusive example, the distributing may include injecting the marker material into the subterranean structure from a stimulation well that may be utilized to form at least a portion of the subterranean structure. It is within the scope of the present disclosure that the distributing may include producing or otherwise providing any suitable concentration of the marker material within the subterranean structure, including the illustrative, non-exclusive examples of which that are discussed in more detail herein.


As also discussed, the marker material may be incorporated into and/or form a portion of a proppant that is present within the subterranean structure. When the marker material is incorporated into the proppant, the distributing may include distributing the marker material with the proppant. Additionally or alternatively, and as also discussed in more detail herein, the marker material may be separate from the proppant. When the marker material is separate from the proppant, the distributing may include distributing the marker material subsequent to supplying the proppant to the subterranean structure.


Although it is within the scope of the present disclosure that the marker material may include only a single type of marker material, the marker material also may include a first marker material and a second marker material. When the marker material includes the first marker material and the second marker material, the methods further may include distributing the second marker material at 215. The distributing may include distributing the first marker material into a different portion of the subterranean structure than the second marker material and/or distributing the first marker material in a ring around the second marker material. As illustrative, non-exclusive examples, this may include injecting the first marker material and the second marker material into the subterranean structure at different locations, injecting the first marker material into the subterranean structure at a different time than the second marker material, and/or selecting one or more flow properties of the first marker material to be different from one or more flow properties of the second marker material such that the marker materials naturally concentrate within different portions of the subterranean structure.


When first and second different marker materials are utilized, one or more properties of the first marker material may differ from a corresponding property of the second marker material. As illustrative, non-exclusive examples, a shape, volume, density, settling velocity, size, material of construction, excitation mode, and/or emission of the first marker material may be selected to be different from a corresponding property of the second marker material.


Aligning the marker material at 220 may include the use of any suitable system and/or method to align at least a portion of the plurality of discrete marker material particles that may be present within the subterranean structure. As an illustrative, non-exclusive example, a portion of the plurality of discrete marker material particles may include and/or be an elongate structure that includes a longitudinal axis, and the aligning may include aligning the longitudinal axis of the portion of the plurality of discrete marker material particles. As discussed, it is within the scope of the present disclosure that the aligning may include aligning the longitudinal axis of the portion of the plurality of discrete marker material particles along a common axis and/or aligning the longitudinal axis of the portion of the plurality of discrete marker material particles within and/or parallel to a common plane.


As illustrative, non-exclusive examples, the aligning may include flowing the marker material through the subterranean structure, flowing a fluid past the marker material after the marker material is present within the subterranean structure, applying an electric field to the marker material within the subterranean structure, applying a magnetic field to the marker material within the subterranean structure, and/or self-alignment of the marker material within the subterranean structure. When the aligning is utilized, a coherent fraction of the plurality of discrete marker material particles may be aligned to within a threshold coherence angle of the same direction. Illustrative, non-exclusive examples of the coherent fraction and/or the threshold coherence angle are discussed in more detail herein.


It is within the scope of the present disclosure that the aligning may improve and/or increase a sensitivity of the detecting at 230. As an illustrative, non-exclusive example, the aligning may improve and/or increase a coherence of one or more electric, magnetic, and/or electromagnetic fields that may be associated with the marker material and/or utilized by the detector during the detecting. When the marker material includes magnetite, the aligning may include aligning the magnetite into a coherent, or at least substantially coherent layer within the subterranean structure. A magnetic field strength of the coherent layer of magnetite may be much larger than a magnetic field strength of the discrete, or individual, magnetite particles that are present within the magnetite when they are not aligned. Thus, a detector that is configured to detect magnetic field strength and/or magnetic susceptibility may detect the subterranean structure with higher accuracy and/or greater resolution when the magnetite forms a coherent layer due to the increased magnetic field strength.


Drilling the wellbore at 225 may include the use of any suitable system and/or method to drill the wellbore. As illustrative, non-exclusive examples, and as discussed in more detail herein, the drilling may include the use of a drilling rig, a drill string, and/or a drill bit to drill the wellbore. Any suitable control system and/or control strategy may be utilized to control the drilling.


Detecting the intersection of the wellbore with the subterranean structure at 230 may include the use of any suitable system and/or method to detect the intersection point between the wellbore and the subterranean structure. As an illustrative, non-exclusive example, and as discussed in more detail herein, the detecting may include detecting the marker material with a detector that is attached to and/or forms a portion of the drill string, an illustrative, non-exclusive example of which includes a logging-while-drilling transducer. When the marker material is detected with a logging-while-drilling transducer, the logging-while-drilling transducer may be located near the drill bit that is associated with the drill string and/or near a terminal end of the drill string. As illustrative, non-exclusive examples, the logging-while-drilling transducer may be less than 1 meter, less than 0.75 meters, less than 0.5 meters, less than 0.25 meters, or less than 0.1 meters from the drill bit and/or the terminal end of the drill string. When the marker material includes magnetite, the logging-while-drilling transducer may include a bulk susceptibility meter that is configured to detect a bulk magnetic susceptibility of cuttings that are produced during the drilling.


As another illustrative, non-exclusive example, and as also discussed in more detail herein, the detecting may include remotely detecting the marker material. As illustrative, non-exclusive examples, the remotely detecting may include supplying a signal electric field, a signal magnetic field, and/or signal electromagnetic radiation to the marker material and/or receiving a resultant electric field, a resultant magnetic field, and/or resultant electromagnetic radiation from the marker material over a separation distance between the marker material and the detector. Illustrative, non-exclusive examples of separation distances according to the present disclosure are discussed in more detail herein.


Determining the character of the marker material at 235 may include the use of any suitable system and/or method to determine any suitable property of the marker material. As an illustrative, non-exclusive example, the determining may include detecting a concentration of the marker material. As another illustrative, non-exclusive example, and when the marker material includes the first marker material and the second marker material, the determining may include detecting an identity of the marker material and/or detecting a ratio of a concentration of the first marker material to a concentration of the second marker material.


Ceasing drilling the wellbore at 240 may include ceasing the drilling responsive, at least in part, to detecting the intersection at 230 and/or detecting the marker material. It is within the scope of the present disclosure that, as discussed in more detail herein, the ceasing may include ceasing such that a terminal depth of the wellbore is within a threshold distance of a target portion of the subterranean structure. Illustrative, non-exclusive examples of threshold distances according to the present disclosure include threshold distances of less than 1,000 millimeters (mm), less than 500 mm, less than 250 mm, less than 100 mm, less than 50 mm, less than 25 mm, less than 10 mm, less than 5 mm, less than 4 mm, less than 3 mm, less than 2 mm, less than 1 mm, less than 0.5 mm, or less than 0.1 mm. Illustrative, non-exclusive examples of target portions of the subterranean structure include a top surface, a bottom surface, a midline, and/or a central region of the subterranean structure.


Repeating the method at 245 may include repeating at least drilling the wellbore at 225 and detecting the intersection at 230 based on any suitable criteria. As an illustrative, non-exclusive example, the repeating may include drilling a second wellbore responsive, at least in part, to the detecting at 230 and/or the determining at 235.


Producing hydrocarbons from the subterranean structure at 250 may include the use of any suitable system and/or method to pump and/or otherwise convey one or more hydrocarbons from the subterranean structure. As illustrative, non-exclusive examples, the producing may include generating a liquid and/or gaseous hydrocarbon within the subterranean formation and/or the subterranean structure and/or pumping the one or more hydrocarbons from the subterranean formation and/or the subterranean structure to surface region 40.



FIG. 6 is a flowchart depicting methods 300 according to the present disclosure of forming an electrical connection between a granular resistive heater that is present within a subterranean structure and an electric current source. The methods include detecting an intersection of a wellbore with the subterranean structure at 305 and may include placing one or more packers within the wellbore at 310. The methods further include providing a particulate conductor through the wellbore and to a portion of the granular resistive heater at 315, forming an electrical connection between the particulate conductor and the granular resistive heater at 320, and forming an electrical connection between the particulate conductor and the electric current source at 325. The methods further many include repeating the method at 330 and/or heating the subterranean formation with the granular resistive heater at 335.


Detecting the intersection of the wellbore with the subterranean structure at 305 may include the use of any suitable system and/or method to determine that the wellbore has intersected, contacted, and/or is in fluid communication with the subterranean structure. As an illustrative, non-exclusive example, the detecting may include performing methods 200 to detect the intersection of the wellbore with the subterranean structure.


Placing one or more packers within the wellbore at 310 may include the use of any suitable packer to occlude flow of fluid into one or more portions of the wellbore and/or to maintain a fluid that is provided to the wellbore within a target, or desired, portion of the wellbore. As an illustrative, non-exclusive example, the placing may include placing the one or more packers within the wellbore and adjacent to the subterranean structure. As another illustrative, non-exclusive example, the placing may include placing a packer uphole from the subterranean structure and/or placing a packer downhole from the subterranean structure.


Providing the supplemental material to the granular resistive heater at 315 may include providing any suitable supplemental material to any suitable portion of the granular resistive heater. As an illustrative, non-exclusive example, and as discussed in more detail herein, the providing may include providing the supplemental material to a portion of the granular resistive heater that is proximal to the wellbore. As another illustrative, non-exclusive example, the providing may include flowing the particulate conductor into the portion of the granular resistive heater that is proximal to the wellbore. As another illustrative, non-exclusive example, the providing may include pumping a slurry that includes the supplemental material into the wellbore. As yet another illustrative, non-exclusive example, and when the methods include placing one or more packers in the wellbore at 310, the providing may include providing the supplemental material to a portion of the wellbore that is bounded by at least one of the one or more packers and which includes the subterranean structure.


The supplemental material may include any suitable material that is configured to provide an electrical connection between the granular resistive heater and the electric current source, illustrative, non-exclusive examples of which include a particulate conductor, carbon, graphite, a metallic material, a metal particulate, and/or metal hairs/strands. Similarly, the supplemental material may include any suitable size, average size, and/or size distribution. As an illustrative, non-exclusive example, and as discussed in more detail herein, the granular resistive heater may include a porous structure that includes an average pore size and an average characteristic dimension of the supplemental material may be less than the average pore size.


Forming electrical connections at 320 and 325 may include the use of any suitable structure to form an electrical connection between the granular resistive heater and the electric current source. As illustrative, non-exclusive examples, the forming may include flowing the supplemental material into a portion of the granular resistive heater such that a portion of the supplemental material is in electrical communication with the portion of the granular resistive heater, filling a portion of the wellbore with the supplemental material, and/or placing an electrical conduit in electrical communication with both the supplemental material and the electric current source.


Repeating the method at 330 may include repeating the method to form a second (and/or subsequent) well and/or wellbore that may be utilized to form a second electrical connection between the electric current source and the granular resistive heater. It is within the scope of the present disclosure that the two (or more) wellbores may be spaced apart from each another. As illustrative, non-exclusive examples, a stimulation well may be at least substantially between the two or more wellbores. As another illustrative, non-exclusive example, the wellbores may be located on at least substantially opposite sides of the granular resistive heater or otherwise distributed in a spaced relation therein.


Heating the subterranean formation at 335 may include providing an electric current to the granular resistive heater from the electric current source, generating heat with the granular resistive heater due to the flow of electric current therethrough, and/or conducting the heat that is generated by the granular resistive heater into the subterranean formation. It is within the scope of the present disclosure that the heating may include performing a shale oil retort process, a shale oil heat treating process, a hydrogenation process, a thermal dissolution process, and/or an in situ shale oil conversion process within the subterranean formation. It is also within the scope of the present disclosure that the heating may include converting a hydrocarbon, such as kerogen and/or bitumen, that is present within the subterranean formation into a liquid hydrocarbon, a gaseous hydrocarbon, and/or shale oil that may be produced from the subterranean formation by one or more production wells.



FIG. 7 is a flowchart depicting methods 400 according to the present disclosure of forming a subterranean structure that includes a granular resistive heater. The methods may include drilling one or more stimulation wells at 405 and providing a fracturing fluid to the one or more stimulation wells at 410. The methods further include creating one or more fractures within the subterranean formation 415, supplying a proppant to the one or more fractures to form the granular resistive heater 420, distributing a marker material within the fracture and/or the granular resistive heater at 425, and/or forming an electrical connection between an electric current source and the granular resistive heater at 430.


Drilling one or more stimulation wells at 405 may include the use of any suitable system and/or method to drill a stimulation well into the subterranean formation. The one or more stimulation wells may be configured to provide a stimulant fluid to the subterranean formation to stimulate production from the subterranean formation.


Providing the fracturing fluid to the one or more stimulation wells at 410 may include providing any suitable fluid that is configured to stimulate the subterranean formation. As an illustrative, non-exclusive example, the providing may include increasing a hydraulic pressure within a portion of the subterranean formation and/or creating the one or more fractures within the subterranean formation at 415.


It is within the scope of the present disclosure that each of the one or more fractures may include any suitable orientation and/or be of any suitable size. As illustrative, non-exclusive examples, the one or more fractures may include at least substantially vertical and/or at least substantially horizontal fractures. As another illustrative, non-exclusive example, the one or more fractures may include at least substantially planar fractures.


Supplying the proppant to the one or more fractures at 420 may include supplying any suitable proppant that is configured to maintain the one or more fractures in an open configuration. As an illustrative, non-exclusive example, the proppant may include a porous structure that is configured to provide for fluid flow therethrough. As another illustrative, non-exclusive example, the proppant may include a granular resistive heating material that forms a portion of the granular resistive heater. As another illustrative, non-exclusive example, the granular resistive heating material may include a resistive material that is configured to generate heat when an electric current is passed therethrough, an illustrative, non-exclusive example of which includes calcined petroleum coke.


Distributing the marker material within the fracture at 425 may include the use of any suitable system and/or method to distribute the marker material. As an illustrative, non-exclusive example, and as discussed in more detail herein, the distributing may include distributing a first marker material and a second marker material into the fracture. As another illustrative, non-exclusive example, the distributing may include distributing the first marker material into a different portion of the fracture than the second marker material. As yet another illustrative, non-exclusive example, and when the methods include creating a plurality of fractures, the distributing may include distributing the first marker material into a first fracture of the plurality of fractures and distributing the second marker material into a second fracture of the plurality of fractures.


As discussed in more detail herein, it is within the scope of the present disclosure that the marker material may be separate from the proppant. When the marker material is separate from the proppant, the marker material may be configured, designed, and/or selected to have a settling velocity that is within a threshold difference of a settling velocity of the proppant. Illustrative, non-exclusive examples of threshold differences according to the present disclosure include threshold differences of less than 50%, less than 40%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, less than 5%, or less than 1%. When a density of the marker material is significantly different from a density of the proppant, the marker material may be incorporated into a matrix material to form a composite marker material that includes a density that provides the desired settling velocity.


Additionally or alternatively, and as also discussed in more detail herein, it is also within the scope of the present disclosure that the marker material may form a portion of the proppant. When the marker material forms a portion of the proppant, the supplying at 420 also may include and/or may be performed concurrently with the distributing at 425.


Forming the electrical connection between the electric current source and the granular resistive heater at 430 may include the formation of any suitable electrode well that may be configured to provide the electrical connection. As an illustrative, non-exclusive example, the forming may include detecting an intersection of a wellbore that is associated with the electrode well and the granular resistive heater using methods 200 and/or forming the electrical connection between the granular resistive heater and the electric current source using methods 300.


In the present disclosure, several of the illustrative, non-exclusive examples have been discussed and/or presented in the context of flow diagrams, or flow charts, in which the methods are shown and described as a series of blocks, or steps. Unless specifically set forth in the accompanying description, it is within the scope of the present disclosure that the order of the blocks may vary from the illustrated order in the flow diagram, including with two or more of the blocks (or steps) occurring in a different order and/or concurrently. It is also within the scope of the present disclosure that the blocks, or steps, may be implemented as logic, which also may be described as implementing the blocks, or steps, as logics. In some applications, the blocks, or steps, may represent expressions and/or actions to be performed by functionally equivalent circuits or other logic devices. The illustrated blocks may, but are not required to, represent executable instructions that cause a computer, processor, and/or other logic device to respond, to perform an action, to change states, to generate an output or display, and/or to make decisions.


As used herein, the term “and/or” placed between a first entity and a second entity means one of (1) the first entity, (2) the second entity, and (3) the first entity and the second entity. Multiple entities listed with “and/or” should be construed in the same manner, i.e., “one or more” of the entities so conjoined. Other entities may optionally be present other than the entities specifically identified by the “and/or” clause, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, a reference to “A and/or B,” when used in conjunction with open-ended language such as “comprising” may refer, in one embodiment, to A only (optionally including entities other than B); in another embodiment, to B only (optionally including entities other than A); in yet another embodiment, to both A and B (optionally including other entities). These entities may refer to elements, actions, structures, steps, operations, values, and the like.


As used herein, the phrase “at least one,” in reference to a list of one or more entities should be understood to mean at least one entity selected from any one or more of the entity in the list of entities, but not necessarily including at least one of each and every entity specifically listed within the list of entities and not excluding any combinations of entities in the list of entities. This definition also allows that entities may optionally be present other than the entities specifically identified within the list of entities to which the phrase “at least one” refers, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) may refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including entities other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including entities other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other entities). In other words, the phrases “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C” and “A, B, and/or C” may mean A alone, B alone, C alone, A and B together, A and C together, B and C together, A, B and C together, and optionally any of the above in combination with at least one other entity.


In the event that any patents, patent applications, or other references are incorporated by reference herein and define a term in a manner or are otherwise inconsistent with either the non-incorporated portion of the present disclosure or with any of the other incorporated references, the non-incorporated portion of the present disclosure shall control, and the term or incorporated disclosure therein shall only control with respect to the reference in which the term is defined and/or the incorporated disclosure was originally present.


As used herein the terms “adapted” and “configured” mean that the element, component, or other subject matter is designed and/or intended to perform a given function. Thus, the use of the terms “adapted” and “configured” should not be construed to mean that a given element, component, or other subject matter is simply “capable of” performing a given function but that the element, component, and/or other subject matter is specifically selected, created, implemented, utilized, programmed, and/or designed for the purpose of performing the function. It is also within the scope of the present disclosure that elements, components, and/or other recited subject matter that is recited as being adapted to perform a particular function may additionally or alternatively be described as being configured to perform that function, and vice versa.


Illustrative, non-exclusive examples of systems and methods according to the present disclosure are presented in the following enumerated paragraphs. It is within the scope of the present disclosure that an individual step of a method recited herein, including in the following enumerated paragraphs, may additionally or alternatively be referred to as a “step for” performing the recited action.


A1. A method of detecting an intersection of a well that includes a wellbore with a subterranean structure, wherein the subterranean structure includes a marker material distributed therein, the method comprising:


drilling the wellbore; and


determining that the wellbore has intersected a portion of the subterranean structure that includes the marker material, wherein the determining includes detecting the marker material.


A2. The method of paragraph A1, wherein the method further includes ceasing the drilling the wellbore, wherein the ceasing is responsive, at least in part, to the detecting.


A3. The method of paragraph A2, wherein the wellbore includes a terminal depth, and further wherein the ceasing includes ceasing the drilling such that the terminal depth of the wellbore is within 1,000 millimeters (mm), within 500 mm, within 250 mm, within 100 mm, within 50 mm, within 25 mm, within 10 mm, within 5 mm, within 4 mm, within 3 mm, within 2 mm, within 1 mm, within 0.5 mm, or within 0.1 mm of a target portion of the subterranean structure, optionally wherein the target portion includes a top surface, a bottom surface, or a central region of the subterranean structure.


A4. The method of any of paragraphs A1-A3, wherein the method further includes distributing the marker material within the subterranean structure.


A5. The method of paragraph A4, wherein the distributing includes injecting the marker material into the subterranean structure, optionally wherein the injecting includes injecting a slurry including the marker material and a liquid into the subterranean structure, and further optionally wherein the liquid includes water.


A6. The method of any of paragraphs A4-A5, wherein the distributing includes injecting the marker material into the subterranean structure from a stimulation well.


A7. The method of any of paragraphs A4-A6, wherein the distributing includes distributing the marker material into the subterranean structure such that a concentration of the marker material within the subterranean structure is less than 5 volume %, less than 3 volume %, less than 2 volume %, less than 1 volume %, less than 0.75 volume %, less than 0.5 volume %, less than 0.25 volume %, less than 0.1 volume %, less than 0.05 volume %, less than 0.01 volume %, or less than 0.005 volume %, and optionally greater than 0.001 volume %, greater than 0.005 volume %, greater than 0.01 volume %, greater than 0.05 volume %, greater than 0.1 volume %, greater than 0.25 volume %, or greater than 0.5 volume %.


A8. The method of any of paragraphs A4-A7, wherein the distributing includes at least one of distributing the marker material within a proppant that forms a portion of the subterranean structure and distributing the marker material with the proppant to form a portion of the subterranean structure.


A9. The method of paragraph A8, wherein the proppant includes a granular resistive heating material.


A10. The method of any of paragraphs A4-A9, wherein the marker material includes a plurality of discrete marker material particles, wherein at least a portion of the plurality of discrete marker material particles includes an elongate structure with a longitudinal axis, and further wherein the distributing includes aligning the longitudinal axis of the portion of the plurality of discrete marker material particles, wherein the aligning includes at least one of aligning the longitudinal axis of the portion of discrete marker material particles along a common axis and aligning the longitudinal axis of the portion of discrete marker material particles parallel to a common plane.


A11. The method of paragraph A10, wherein the aligning includes at least one of flowing the marker material through the subterranean structure, flowing a fluid past the marker material after the marker material is present within the subterranean structure, applying an electric field to the marker material within the subterranean structure, applying a magnetic field to the marker material within the subterranean structure, and self-alignment of the marker material within the subterranean structure.


A12. The method of any of paragraphs A1-A11, wherein the marker material includes magnetite, and further wherein the detecting includes detecting the magnetite, optionally wherein detecting the magnetite includes detecting a bulk magnetic susceptibility of cuttings that are produced while drilling the wellbore, and further optionally wherein the cuttings are produced at a terminal end of the wellbore.


A13. The method of paragraph A12, wherein the magnetite includes a plurality of discrete magnetite particles, wherein each of the plurality of discrete magnetite particles includes a plurality of magnetic poles including at least a north magnetic pole and a south magnetic pole.


A14. The method of paragraph A13, wherein the method includes aligning the plurality of discrete magnetite particles within the subterranean structure such that a coherent fraction of the plurality of discrete magnetite particles is aligned with their north poles pointing within a threshold coherence angle of the same direction, optionally wherein the coherent fraction includes at least 25%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, or at least 90% of the plurality of discrete magnetite particles, and further optionally wherein the threshold coherence angle includes an angle of less than 30 degrees, less than 25 degrees, less than 20 degrees, less than 15 degrees, less than 10 degrees, less than 5 degrees, less than 3 degrees, or less than 1 degree.


A15. The method of any of paragraphs A13-A14, wherein each of the plurality of discrete magnetite particles in a single domain fraction of the plurality of discrete magnetite particles includes only one magnetic domain, and optionally wherein the single domain fraction includes at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95%, or at least 99% of the plurality of discrete magnetite particles.


A16. The method of any of paragraphs A13-A15, wherein each of the plurality of discrete magnetite particles in a multi-domain fraction of the plurality of discrete magnetite particles includes a plurality of magnetic domains, and optionally wherein the multi-domain fraction includes less than 90%, less than 80%, less than 75%, less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 25%, less than 20%, less than 10%, or less than 5% of the plurality of discrete magnetite particles.


A17. The method of paragraph A16, wherein the plurality of magnetic domains are aligned with one another to within a threshold alignment angle, optionally wherein the threshold alignment angle is less than 30 degrees, less than 25 degrees, less than 20 degrees, less than 15 degrees, less than 10 degrees, less than 5 degrees, less than 3 degrees, or less than 1 degree.


A18. The method of paragraph A17, wherein the method further includes aligning the plurality of magnetic domains to within the threshold alignment angle, optionally wherein the aligning includes heating the plurality of discrete magnetite particles, applying a magnetic field to the plurality of discrete magnetite particles, and cooling the plurality of discrete magnetite particles, and further optionally wherein the cooling includes cooling at least substantially concurrently with applying the magnetic field.


A19. The method of any of paragraphs A1-A18, wherein the detecting includes detecting the marker material with a logging-while-drilling transducer.


A20. The method of paragraph A19, wherein the logging-while-drilling transducer is located on a drill string utilized for drilling the wellbore, optionally wherein the logging-while-drilling transducer is within a threshold distance of at least one of a drill bit that is associated with the drill string and a terminal end of the drill string, and further optionally wherein the threshold distance is less than 1 meter, less than 0.75 meters, less than 0.5 meters, less than 0.25 meters, or less than 0.1 meters.


A21. The method of any of paragraphs A1-A20, wherein the wellbore forms a portion of a hydrocarbon well that is configured to convey a hydrocarbon from a subterranean formation that includes the subterranean structure to a surface region.


A22. The method of paragraph A21, wherein the method further includes producing a hydrocarbon from the subterranean formation.


A23. The method of any of paragraphs A1-A22, wherein the marker material includes a plurality of discrete marker bodies, and further wherein the detecting includes detecting at least a portion of the plurality of discrete marker bodies.


A24. The method of paragraph A23, wherein the method includes selecting at least one of a shape, a volume, a density, and a settling velocity of the plurality of discrete marker bodies based, at least in part, upon a desired distribution of the plurality of discrete marker bodies within the subterranean structure, and optionally wherein the selecting is based, at least in part, on a density of a fluid present within the subterranean structure, a viscosity of the fluid present within the subterranean structure, and an average pore size within the subterranean structure.


A25. The method of any of paragraphs A23-A24, wherein an average characteristic dimension of the plurality of discrete marker bodies is less than 250, less than 200, less than 150, less than 125, less than 100, less than 75, less than 50, less than 25, less than 10, less than 5, less than 2, less than 1, less than 0.5, or less than or equal to 0.1 micrometers, and optionally wherein an average characteristic dimension of the plurality of discrete marker bodies is greater than 0.05, greater than 0.1, greater than 1, greater than 2, greater than 5, greater than 10, greater than 20, greater than 25, or greater than 50 micrometers.


A26. The method of any of paragraphs A23-A25, wherein the plurality of discrete marker bodies includes a plurality of elongate marker bodies.


A27. The method of any of paragraphs A23-A26 when dependent from paragraph A5, wherein the marker material includes a first marker material and a second marker material.


A28. The method of paragraph A27, wherein the distributing includes distributing the first marker material in a different portion of the subterranean structure than the second marker material, optionally by at least one of injecting the first marker material and the second marker material into the subterranean structure at different locations, injecting the first marker material at a different time than the second marker material, and selecting a flow property of the first marker material within the subterranean structure to be different form a flow property of the second marker material within the subterranean structure.


A29. The method of any of paragraphs A27-A28, wherein the detecting includes determining a characteristic of the marker material that is present at an intersection point between the wellbore and the subterranean structure, and optionally wherein the characteristic of the marker material includes at least one of an identity of the marker material, a concentration of the marker material, and a ratio of a concentration of the first marker material to a concentration of the second marker material.


A30. The method of paragraph A29, wherein the method further includes drilling a second wellbore at a second location, wherein the second location is selected based, at least in part, on the determining.


A31. The method of any of paragraphs A27-A30, wherein the distributing includes providing the first marker material to the subterranean structure prior to providing the second marker material to the subterranean structure.


A32. The method of any of paragraphs A27-A31, wherein the distributing includes selecting a property of the first marker material to be different from a property of the second marker material, and optionally wherein the property includes at least one of a shape, a volume, a density, a settling velocity, a size, a material of construction, an excitation mode, and an emission.


A33. The method of any of paragraphs A27-A32, wherein the distributing includes creating a ring of the first marker material around the second marker material within the subterranean structure.


A34. The method of any of paragraphs A1-A33, wherein the marker material includes at least one of a micromarker, an RFID device, a WID device, an LW device, an active device, a passive device, a micromaterial, an electromagnetic material, a fluorescent material, a radioactive material, and a piezoelectric material.


A35. The method of any of paragraphs A1-A34, wherein the detecting includes remotely detecting the marker material.


A36. The method of paragraph A35, wherein remotely detecting the marker material includes providing at least one of a signal electric field, a signal magnetic field, and signal electromagnetic radiation to the marker material over a separation distance and receiving at least one of a resultant electric field, a resultant magnetic field, and resultant electromagnetic radiation from the marker material over the separation distance, optionally wherein the separation distance is greater than 1 meter, greater than 5 meters, greater than 10 meters, greater than 25 meters, greater than 50 meters, greater than 100 meters, greater than 250 meters, greater than 500 meters, or greater than 1,000 meters, and further optionally wherein the separation distance is less than 10,000 meters, less than 7,500 meters, less than 5,000 meters, less than 2,500 meters, less than 1,000 meters, less than 750 meters, less than 500 meters, or less than 250 meters.


A37. The method of any of paragraphs A1-A36, wherein the detecting includes detecting the marker material by examining cuttings that are produced during the drilling.


A38. The method of paragraph A37, wherein the examining is at least one of performed in a surface region associated with the wellbore and performed proximal to a terminal end of the wellbore.


B1. A method of forming an electrical connection between an electric current source and a granular resistive heater that forms a portion of a subterranean structure, the method comprising:


detecting an intersection of a wellbore with the subterranean structure using the method of any of paragraphs A1-A38;


providing a supplemental material to a portion of the granular resistive heater that is proximal to the wellbore;


forming an electrical connection between the supplemental material and the granular resistive heater; and


forming an electrical connection between the supplemental material and an electrical conduit that is configured to convey an electrical current between the granular resistive heater and the electric current source.


B2. The method of paragraph B1, wherein the supplemental material includes at least one of a particulate conductor, carbon, graphite, a metallic material, a metal particulate, and metal hairs, and optionally wherein providing the supplemental material includes pumping a slurry that includes the supplemental material into the wellbore.


B3. The method of any of paragraphs B1-B2, wherein the granular resistive heater forms a porous structure including an average pore size, and further wherein an average characteristic dimension of the supplemental material is less than the average pore size.


B4. The method of any of paragraphs B1-B3, wherein the method further includes placing one or more packers within the wellbore and adjacent to the subterranean structure.


B5. The method of paragraph B4, wherein the placing includes placing a packer uphole from the subterranean structure, and optionally wherein the placing includes placing a second packer downhole from the subterranean structure.


B6. The method of paragraph B4, wherein the placing includes placing a packer downstream from the subterranean structure.


B7. The method of any of paragraphs B4-B6, wherein providing the supplemental material includes providing the supplemental material to a portion of the wellbore that is bounded by at least one of the one or more packers and includes the subterranean structure.


B8. The method of any of paragraphs B1-B7, wherein the well is a first well, and further wherein the method includes repeating the method to form a second electrical connection between the electric current source and the granular resistive heater with a second well.


B9. The method of paragraph B8, wherein the first well is spaced apart from the second well, optionally wherein a stimulation well is at least substantially between the first well and the second well, and further optionally wherein the first well and the second well are located on at least substantially opposite sides of the granular resistive heater.


C1. A method of forming a granular resistive heater, wherein the granular resistive heater forms a portion of a subterranean structure that is present within a subterranean formation, the method comprising:


creating a fracture within the subterranean formation;


supplying a proppant to the fracture, wherein the proppant includes a porous structure that is configured to provide for fluid flow through the fracture, and further wherein the proppant includes a granular resistive heating material that forms the granular resistive heater;


distributing a marker material within the fracture; and


forming an electrical connection between an electric current source and the granular resistive heater using the method of any of paragraphs A1-B9.


C2. The method of paragraph C1, wherein the method further includes drilling a stimulation well into the subterranean formation.


C3. The method of any of paragraphs C1-C2, wherein the creating includes providing a fracturing fluid to a/the stimulation well.


C4. The method of any of paragraphs C1-C3, wherein the method further includes cementing at least a portion of the proppant in place within the subterranean structure.


C5. The method of any of paragraphs C1-C4, wherein the method includes creating a plurality of fractures within the subterranean formation.


C6. The method of paragraph C5, wherein the plurality of fractures is associated with a/the stimulation well.


C7. The method of any of paragraphs C5-C6, wherein the method includes drilling a plurality of stimulation wells, and further wherein the creating a plurality of fractures includes creating a fracture that is associated with each of the plurality of stimulation wells.


C8. The method of any of paragraphs C5-C7, wherein at least a first portion of the plurality of fractures includes a different marker material than a second portion of the plurality of fractures.


C9. The method of any of paragraphs C1-C8, wherein creating the fracture includes creating at least one of a vertical fracture and a horizontal fracture.


C10. The method of any of paragraphs C1-C9, wherein the marker material is separate from the proppant.


C11. The method of paragraph C10, wherein the marker material is configured to have a settling velocity that is within a threshold difference of a settling velocity of the proppant, optionally wherein the threshold difference is less than 50%, less than 40%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, less than 5%, or less than 1%.


C12. The method of any of paragraphs C10-C11, wherein the marker material forms a portion of a composite marker structure that includes a matrix material.


C13. The method of any of paragraphs C1-C9, wherein the marker material forms a portion of the proppant, and further wherein supplying the proppant includes providing the marker material concurrently with the proppant.


C14. The method of any of paragraphs C1-C13, wherein a portion of the granular resistive heater that is proximal to a/the stimulation well that is utilized to create the fracture includes an average stimulation well-proximal thickness, optionally wherein the average stimulation well-proximal thickness is at least 3 mm, at least 4 mm, at least 5 mm, at least 6 mm, at least 7 mm, or at least 8 mm and further optionally wherein the average stimulation well-proximal thickness is less than 12 mm, less than 11 mm, less than 10 mm, less than 9 mm, less than 8 mm, less than 7 mm, less than 6 mm, or less than 5 mm.


C15. The method of any of paragraphs C1-C14, wherein a portion of the granular resistive heater that is proximal to the wellbore includes an average wellbore-proximal thickness, optionally wherein the average wellbore-proximal thickness is at least 0.25 mm, at least 0.5 mm, at least 0.75 mm, at least 1 mm, at least 1.25 mm, at least 1.5 mm, at least 1.75 mm, at least 2 mm, at least 2.25 mm, or at least 2.5 mm and further optionally wherein the average wellbore-proximal thickness is less than 5 mm, less than 4 mm, less than 3.5 mm, less than 3 mm, less than 2.75 mm, less than 2.5 mm, less than 2.25 mm, less than 2 mm, less than 1.75 mm, less than 1.5 mm, less than 1.25 mm, or less than 1 mm.


C16. The method of any of paragraphs C1-C15, wherein the granular resistive heating material includes a resistive material that is configured to generate heat when an electric current is conducted therethrough, and optionally wherein the granular resistive heating material includes calcined petroleum coke.


C17. The method of any of paragraphs C1-C16, wherein the granular resistive heating material includes a plurality of discrete heating material bodies, optionally wherein an average characteristic dimension of the plurality of discrete heating material bodies is at least 50, at least 75, at least 80, at least 90, at least 100, at least 110, at least 120, or at least 125 micrometers, and further optionally wherein the average characteristic dimension of the plurality of discrete heating material bodies is less than 200, less than 175, less than 150, less than 125, or less than 100 micrometers.


C18. The method of any of paragraphs C1-C17, wherein a length of the granular resistive heater is at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 110, at least 125, or at least 150 meters.


C19. The method of any of paragraphs C1-C18, wherein a width of the granular resistive heater is at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55, at least 60, or at least 70 meters.


C20. The method of any of paragraphs C1-C19, wherein the granular resistive heater is at least substantially planar.


D1. The method of any of paragraphs A1-C20, wherein the subterranean structure is present within a/the subterranean formation, and further wherein the subterranean formation contains a hydrocarbon.


D2. The method of paragraph D1, wherein the subterranean formation contains at least one of oil shale, tar sands, and organic-rich rock.


D3. The method of any of paragraphs D1-D2, wherein the hydrocarbon includes at least one of kerogen and bitumen.


D4. The method of any of paragraphs D1-D2 when dependent from any of paragraphs B1-C20, wherein the method further includes heating the subterranean formation with the granular resistive heater.


D5. The method of paragraph D4, wherein the heating includes performing at least one of a shale oil retort process, a shale oil heat treating process, a hydrogenation reaction, a thermal dissolution process, and an in situ shale oil conversion process within the subterranean formation.


D6. The method of any of paragraphs D4-D5, wherein the heating includes converting the hydrocarbon into at least one of a liquid hydrocarbon, a gaseous hydrocarbon, and shale oil.


D7. The use of any of the methods of any of paragraphs D1-D6 to produce hydrocarbons from the subterranean formation.


D8. Hydrocarbons produced by the method of any of paragraphs D1-D7.


D9. The method of any of paragraphs A1-D8, wherein the subterranean structure includes a man-made subterranean structure.


E1. A system configured to detect an intersection of a wellbore with a subterranean structure, the system comprising:


a marker material distributed within the subterranean structure; a drill string configured to drill the wellbore;


a detector configured to generate an intersection signal responsive to detecting the marker material; and


a control system configured to control the operation of the drill string responsive, at least in part, to the intersection signal.


E2. The system of paragraph E1, wherein the control system includes at least one of a manually actuated control system, an automated control system, and a controller configured to perform the method of any of paragraphs A1-C18.


E3. The system of any of paragraphs E1-E2, wherein the detector includes a logging-while-drilling transducer that is located on the drill string, optionally wherein the logging-while-drilling transducer is within a threshold distance of at least one of a drill bit that is associated with the drill string and a terminal end of the drill string, and further optionally wherein the threshold distance is less than 1 meter, less than 0.75 meters, less than 0.5 meters, less than 0.25 meters, or less than 0.1 meters.


E4. The system of any of paragraphs E1-E3, wherein the detector includes a remote detector that is configured to remotely detect the marker material.


E5. The system of paragraph E4, wherein the remote detector is configured to provide at least one of a signal electric field, a signal magnetic field, and signal electromagnetic radiation to the marker material over a separation distance and receive at least one of a resultant electric field, a resultant magnetic field, and resultant electromagnetic radiation from the marker material over the separation distance, optionally wherein the separation distance is greater than 1 meter, greater than 5 meters, greater than 10 meters, greater than 25 meters, greater than 50 meters, greater than 100 meters, greater than 250 meters, greater than 500 meters, or greater than 1,000 meters, and further optionally wherein the separation distance is less than 10,000 meters, less than 7,500 meters, less than 5,000 meters, less than 2,500 meters, less than 1,000 meters, less than 750 meters, less than 500 meters, or less than 250 meters.


E6. The system of any of paragraphs E1-E5, wherein the detector includes a surface-based detector that is configured to examine cuttings that are produced while the wellbore is drilled.


E7. The system of any of paragraphs E1-E6, wherein the marker material includes magnetite, and further wherein the detector includes a bulk magnetic susceptibility meter.


E8. The system of paragraph E7, wherein the magnetite includes a plurality of discrete magnetite particles, wherein each of the plurality of discrete magnetite particles includes a plurality of magnetic poles including at least a north magnetic pole and a south magnetic pole.


E9. The system of any paragraph E8, wherein a coherent fraction of the plurality of discrete magnetite particles is aligned within the subterranean structure with their north poles pointing within a threshold coherence angle of the same direction, optionally wherein the coherent fraction includes at least 25%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, or at least 90% of the plurality of discrete magnetite particles, and further optionally wherein the threshold coherence angle includes an angle of less than 30 degrees, less than 25 degrees, less than 20 degrees, less than 15 degrees, less than 10 degrees, less than 5 degrees, less than 3 degrees, or less than 1 degree.


E10. The system of any of paragraphs E8-E9, wherein each of the plurality of discrete magnetite particles in a single domain fraction of the plurality of discrete magnetite particles includes only one magnetic domain, and optionally wherein the single domain fraction includes at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95%, or at least 99% of the plurality of discrete magnetite particles.


E11. The system of any of paragraphs E8-E10, wherein each of the plurality of discrete magnetite particles in a multi-domain fraction of the plurality of discrete magnetite particles includes a plurality of magnetic domains, and optionally wherein the multi-domain fraction includes less than 90%, less than 80%, less than 75%, less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 25%, less than 20%, less than 10%, or less than 5% of the plurality of discrete magnetite particles.


E12. The system of paragraph E11, wherein the plurality of magnetic domains are aligned with one another to within a threshold alignment angle, optionally wherein the threshold alignment angle is less than 30 degrees, less than 25 degrees, less than 20 degrees, less than 15 degrees, less than 10 degrees, less than 5 degrees, less than 3 degrees, or less than 1 degree.


E13. The system of any of paragraphs E1-E12, wherein the marker material includes a plurality of discrete marker bodies, and further wherein the detector is configured to generate the intersection signal responsive to detecting at least a portion of the plurality of discrete marker bodies.


E14. The system of paragraph E13, wherein at least one of a shape, a volume, a density, and a settling velocity of the plurality of discrete marker bodies is selected based, at least in part, upon at least one of a desired distribution of the plurality of discrete marker bodies within the subterranean structure, a density of a fluid present within the subterranean structure, a viscosity of the fluid present within the subterranean structure, and an average pore size within the subterranean structure.


E15. The system of any of paragraphs E13-E14, wherein an average characteristic dimension of the plurality of discrete marker bodies is less than 250, less than 200, less than 150, less than 125, less than 100, or less than 75 micrometers, and optionally greater than 2, greater than 5, greater than 10, greater than 20, greater than 25, or greater than 50 micrometers.


E16. The system of any of paragraphs E13-E15, wherein the plurality of discrete marker bodies includes a plurality of elongate marker bodies.


E17. The system of any of paragraphs E13-E16, wherein the marker material includes a first marker material and a second marker material, optionally wherein the first marker material is distributed in a different portion of the subterranean structure than the second marker material, and further optionally wherein the detector is configured to determine which of the first marker material and the second marker material is present at an intersection point between the wellbore and the subterranean structure.


E18. The system of paragraph E17, wherein the first marker material is distributed within the subterranean structure in a ring around the second marker material.


E19. The system of any of paragraphs E1-E18, wherein the marker material includes at least one of a micromarker, an RFID device, a WID device, an LW device, an active device, a passive device, a micromaterial, an electromagnetic material, a fluorescent material, a radioactive material, and a piezoelectric material.


E20. The system of any of paragraphs E1-E19, wherein the system includes the wellbore.


E21. The system of any of paragraphs E1-E20, wherein the wellbore forms a portion of a hydrocarbon well that is configured to convey a hydrocarbon from a subterranean formation that includes the subterranean structure to a surface region.


E22. The system of any of paragraphs E1-E21, wherein the subterranean structure is present within a/the subterranean formation, and further wherein the subterranean formation contains a hydrocarbon.


E23. The system of paragraph E22, wherein the subterranean formation contains at least one of oil shale, tar sands, and organic-rich rock.


E24. The system of any of paragraphs E22-E23, wherein the hydrocarbon includes at least one of kerogen and bitumen.


E25. The system of any of paragraphs E1-E24 when used as part of at least one of a shale oil retort process, a shale oil heat treating process, a hydrogenation reaction, a thermal dissolution process, and an in situ shale oil conversion process within a/the subterranean formation.


E26. The system of any of paragraphs E1-E25, wherein the subterranean structure includes a man-made subterranean structure, and optionally wherein the system includes the subterranean structure.


F1. The use of any of the methods of any of paragraphs A1-D9 with any of the systems of any of paragraphs E1-E26.


F2. The use of any of the systems of any of paragraphs E1-E26 with any of the methods of any of paragraphs A1-D9.


F3. The use of any of the methods of any of paragraphs A1-D9 or any of the systems of any of paragraphs E1-E26 as part of at least one of a shale oil retort process, a shale oil heat treating process, a hydrogenation reaction, a thermal dissolution process, and an in situ shale oil conversion process.


F4. The use of any of the methods of any of paragraphs A1-D9 or any of the systems of any of paragraphs E1-E26 to drill a well.


F5. The use of any of the methods of any of paragraphs A1-D9 or any of the systems of any of paragraphs E1-E26 to form an electrical connection between a granular resistive heater that is present within a subterranean structure and an electric current source.


F6. The use of any of the methods of any of paragraphs A1-D9 or any of the systems of any of paragraphs E1-E26 to heat a subterranean formation.


F7. The use of a marker material as an indicator to detect an intersection of a wellbore with a subterranean structure.


F8. The use of a bulk magnetic susceptibility meter to detect an intersection of a wellbore with a subterranean structure by detecting at least one of a presence of magnetite within the wellbore and a proximity of magnetite to the wellbore.


PCT1. A method of detecting an intersection of a well that includes a wellbore with a subterranean structure, wherein the subterranean structure includes a marker material distributed therein, the method comprising:


drilling the wellbore; and


determining that the wellbore has intersected a portion of the subterranean structure that includes the marker material, wherein the determining includes detecting the marker material.


PCT2. The method of paragraph PCT1, wherein the method further includes ceasing the drilling the wellbore, wherein the ceasing is responsive, at least in part, to the detecting.


PCT3. The method of paragraph PCT2, wherein the wellbore includes a terminal depth, and further wherein the ceasing includes ceasing the drilling such that the terminal depth of the wellbore is within 25 mm of a target portion of the subterranean structure.


PCT4. The method of any of paragraphs PCT1-PCT3, wherein the method further includes distributing the marker material within the subterranean structure, wherein the distributing includes injecting the marker material into the subterranean structure from a stimulation well.


PCT5. The method of any of paragraphs PCT1-PCT4, wherein the marker material includes magnetite, and further wherein the detecting includes detecting a bulk magnetic susceptibility of cuttings that are produced while drilling the wellbore.


PCT6. The method of any of paragraphs PCT1-PCT5, wherein the detecting includes detecting the marker material with a logging-while-drilling transducer.


PCT7. The method of any of paragraphs PCT1-PCT6, wherein the wellbore forms a portion of a hydrocarbon well that is configured to convey a hydrocarbon from a subterranean formation that includes the subterranean structure to a surface region, and further wherein the method includes producing a hydrocarbon from the subterranean formation. PCT8. The method of any of paragraphs PCT1-PCT7, wherein the marker material includes a plurality of discrete marker bodies, and further wherein the detecting includes detecting at least a portion of the plurality of discrete marker bodies.


PCT9. The method of any of paragraphs PCT1-PCT8, wherein the marker material includes a first marker material and a second marker material, wherein the method includes distributing the first marker material in a different portion of the subterranean structure than the second marker material, wherein the detecting includes determining a characteristic of the marker material that is present at an intersection point between the wellbore and the subterranean structure, wherein the characteristic of the marker material includes at least one of an identity of the marker material, a concentration of the marker material, and a ratio of a concentration of the first marker material to a concentration of the second marker material, and further wherein the method includes drilling a second wellbore at a second location, wherein the second location is selected based, at least in part, on the determining.


PCT10. A method of forming an electrical connection between an electric current source and a granular resistive heater that forms a portion of a subterranean structure, the method comprising:


detecting an intersection of a wellbore with the subterranean structure using the method of any of paragraphs PCT1-PCT9;


providing a supplemental material to a portion of the granular resistive heater that is proximal to the wellbore;


forming an electrical connection between the supplemental material and the granular resistive heater; and


forming an electrical connection between the supplemental material and an electrical conduit that is configured to convey an electrical current between the granular resistive heater and the electric current source.


PCT11. A method of forming a granular resistive heater, wherein the granular resistive heater forms a portion of a subterranean structure that is present within a subterranean formation, the method comprising:


creating a fracture within the subterranean formation;


supplying a proppant to the fracture, wherein the proppant includes a porous structure that is configured to provide for fluid flow through the fracture, and further wherein the proppant includes a granular resistive heating material that forms the granular resistive heater;


distributing a marker material within the fracture; and


forming an electrical connection between an electric current source and the granular resistive heater using the method of any of paragraphs PCT1-PCT10.


PCT12. The method of paragraph PCT11, wherein a length of the granular resistive heater is at least 50 meters, wherein a width of the granular resistive heater is at least 25 meters, and further wherein the granular resistive heater is at least substantially planar.


PCT13. The method of any of paragraphs PCT11-PCT12, wherein the method further includes heating the subterranean formation with the granular resistive heater, wherein the heating includes performing at least one of a shale oil retort process, a shale oil heat treating process, a hydrogenation reaction, a thermal dissolution process, and an in situ shale oil conversion process within the subterranean formation, and further wherein the heating includes converting the hydrocarbon into at least one of a liquid hydrocarbon, a gaseous hydrocarbon, and shale oil.


PCT14. A system configured to detect an intersection of a wellbore with a subterranean structure, the system comprising:


a marker material distributed within the subterranean structure;


a drill string configured to drill the wellbore;


a detector configured to generate an intersection signal responsive to detecting the marker material, wherein the detector includes a logging-while-drilling transducer that is located on the drill string, and further wherein the logging-while-drilling transducer is less than 1 meter from at least one of a drill bit that is associated with the drill string and a terminal end of the drill string; and


a control system configured to control the operation of the drill string responsive, at least in part, to the intersection signal.


PCT15. The system of paragraph PCT14, wherein the marker material includes magnetite, and further wherein the detector includes a bulk magnetic susceptibility meter.


INDUSTRIAL APPLICABILITY

The systems and methods disclosed herein are applicable to the oil and gas industry.


It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.


It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower, or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.

Claims
  • 1. A method of forming an electrical connection between an electric current source and a granular resistive heater that forms a portion of a subterranean structure, the method comprising: detecting an intersection of a wellbore with the subterranean structure by drilling the wellbore and determining that the wellbore has intersected a portion of the subterranean structure that includes a marker material, wherein the determining includes detecting the marker material;providing a supplemental material to a portion of the granular resistive heater that is proximal to the wellbore;forming a first electrical connection between the supplemental material and the granular resistive heater; andforming a second electrical connection between the supplemental material and an electrical conduit that is configured to convey an electrical current between the granular resistive heater and the electric current source.
  • 2. The method of claim 1, further comprising ceasing the drilling the wellbore, wherein the ceasing is responsive to the detecting the intersection.
  • 3. The method of claim 2, wherein the wellbore includes a terminal depth, and wherein the ceasing includes ceasing the drilling such that a terminal depth of the wellbore is within 25 mm of a target portion of the subterranean structure.
  • 4. The method of claim 1, further comprising distributing the marker material within the subterranean structure, wherein the distributing includes injecting the marker material into the subterranean structure from a stimulation well.
  • 5. The method of claim 4, wherein a concentration of the marker material within the subterranean structure is less than 1 volume %.
  • 6. The method of claim 4, wherein the marker material includes a plurality of discrete marker material particles, wherein at least a portion of the plurality of discrete marker material particles includes an elongate structure with a longitudinal axis, and wherein the distributing includes aligning the longitudinal axis, wherein the aligning includes at least one of aligning the longitudinal axis along a common axis and aligning the longitudinal axis parallel to a common plane.
  • 7. The method of claim 6, wherein the aligning includes at least one of flowing the marker material through the subterranean structure, flowing a fluid past the marker material after the marker material is present within the subterranean structure, applying an electric field to the marker material within the subterranean structure, applying a magnetic field to the marker material within the subterranean structure, and self-alignment of the marker material within the subterranean structure.
  • 8. The method of claim 1, wherein the marker material includes magnetite, and wherein the detecting the intersection includes detecting a bulk magnetic susceptibility of cuttings that are produced while drilling the wellbore.
  • 9. The method of claim 8, wherein the magnetite includes discrete magnetite particles, wherein each of the discrete magnetite particles includes magnetic poles including at least a north magnetic pole and a south magnetic pole, and wherein the method further comprises aligning the discrete magnetite particles within the subterranean structure such that a coherent fraction of the discrete magnetite particles is aligned with their north poles pointing within a threshold coherence angle of a same direction, wherein the coherent fraction includes at least 50% of the discrete magnetite particles, and wherein the threshold coherence angle is less than 20 degrees.
  • 10. The method of claim 9, wherein each of the discrete magnetite particles in a single domain fraction of the discrete magnetite particles includes only one magnetic domain, wherein the single domain fraction includes at least 75% of the discrete magnetite particles.
  • 11. The method of claim 9, wherein each of the discrete magnetite particles in a multi-domain fraction of the discrete magnetite particles includes magnetic domains, wherein the multi-domain fraction includes less than 50% of the discrete magnetite particles, and wherein the magnetic domains are aligned with one another to within a threshold alignment angle.
  • 12. The method of claim 1, wherein the detecting the intersection includes detecting the marker material with a logging-while-drilling transducer.
  • 13. The method of claim 12, wherein the logging-while-drilling transducer is located on a drill string, and wherein the logging-while-drilling transducer is less than 1 meter from at least one of a drill bit that is associated with the drill string and a terminal end of the drill string.
  • 14. The method of claim 1, wherein the wellbore forms a portion of a hydrocarbon well that is configured to convey a hydrocarbon from a subterranean formation that includes the subterranean structure to a surface region, and wherein the method further comprises producing a hydrocarbon from the subterranean formation.
  • 15. The method of claim 1, wherein the marker material includes discrete marker bodies, and wherein the detecting the intersection includes detecting at least a portion of the discrete marker bodies.
  • 16. The method of claim 1, wherein the marker material includes a first marker material and a second marker material, and wherein the method further comprises distributing the first marker material in a different portion of the subterranean structure than the second marker material.
  • 17. The method of claim 16, wherein the detecting the intersection includes determining a characteristic of the marker material that is present at an intersection point between the wellbore and the subterranean structure, wherein the characteristic of the marker material includes at least one of an identity of the marker material, a concentration of the marker material, and a ratio of a concentration of the first marker material to a concentration of the second marker material.
  • 18. The method of claim 17, further comprising drilling a second wellbore at a second location, wherein the second location is selected based on the determining.
  • 19. The method of claim 16, wherein the distributing includes creating a ring of the first marker material around the second marker material within the subterranean structure.
  • 20. The method of claim 1, wherein the supplemental material includes at least one of carbon, graphite, a metallic material, a metal particulate, and metal hairs.
  • 21. The method of claim 1, wherein the well is a first well, and wherein the method further comprises repeating the method to form a second electrical connection between the electric current source and the granular resistive heater with a second well.
  • 22. A method of forming a granular resistive heater, wherein the granular resistive heater forms a portion of a subterranean structure that is present within a subterranean formation, the method comprising: creating a fracture within the subterranean formation;supplying a proppant to the fracture, wherein the proppant includes a porous structure that is configured to provide for fluid flow through the fracture, and wherein the proppant includes a granular resistive heating material that forms the granular resistive heater;distributing a marker material within the fracture; andforming an electrical connection between an electric current source and the granular resistive heater using the method of claim 1.
  • 23. The method of claim 22, wherein a portion of the granular resistive heater that is proximal to a stimulation well includes an average stimulation well-proximal thickness, wherein the average stimulation well-proximal thickness is at least 3 mm and less than 12 mm.
  • 24. The method of claim 22, wherein the portion of the granular resistive heater that is proximal to the wellbore includes an average wellbore-proximal thickness, wherein the average wellbore-proximal thickness is at least 0.5 mm and less than 3 mm.
  • 25. The method of claim 22, wherein the granular resistive heating material includes discrete heating material bodies, and wherein an average characteristic dimension of the discrete heating material bodies is at least 50 micrometers and less than 200 micrometers.
  • 26. The method of claim 22, wherein a length of the granular resistive heater is at least 50 meters, wherein a width of the granular resistive heater is at least 25 meters, and wherein the granular resistive heater is at least substantially planar.
  • 27. The method of claim 22, further comprising heating the subterranean formation with the granular resistive heater, wherein the heating includes performing at least one of a shale oil retort process, a shale oil heat treating process, a hydrogenation reaction, a thermal dissolution process, and an in situ shale oil conversion process within the subterranean formation, and wherein the heating includes converting the hydrocarbon into at least one of a liquid hydrocarbon, a gaseous hydrocarbon, and shale oil.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the priority benefit of U.S. Provisional Patent Application 61/642,811 filed May 4, 2012 entitled Systems and Methods Of Detecting an Intersection Between A Wellbore and A Subterranean Structure That Includes A Marker Material, the entirety of which is incorporated by reference herein.

US Referenced Citations (529)
Number Name Date Kind
363419 Poetsch May 1887 A
895612 Baker Aug 1908 A
1342780 Vedder Jun 1920 A
1422204 Hoover et al. Jul 1922 A
1666488 Crawshaw Apr 1928 A
1701884 Hogle Feb 1929 A
1872906 Doherty Aug 1932 A
2033560 Wells Mar 1936 A
2033561 Wells Mar 1936 A
2534737 Rose Dec 1950 A
2584605 Merriam et al. Feb 1952 A
2634961 Ljungstrom Apr 1953 A
2732195 Ljungstrom Jan 1956 A
2777679 Ljungstrom Jan 1957 A
2780450 Ljungstrom Feb 1957 A
2795279 Sarapuu Jun 1957 A
2812160 West et al. Nov 1957 A
2813583 Marx et al. Nov 1957 A
2847071 De Priester Aug 1958 A
2887160 De Priester May 1959 A
2895555 De Priester Jul 1959 A
2923535 Ljungstrom Feb 1960 A
2944803 Hanson Jul 1960 A
2952450 Purre Sep 1960 A
2974937 Kiel Mar 1961 A
3004601 Bodine Oct 1961 A
3013609 Brink Dec 1961 A
3095031 Eurenius et al. Jun 1963 A
3106244 Parker Oct 1963 A
3109482 O'Brien Nov 1963 A
3127936 Eurenius Apr 1964 A
3137347 Parker Jun 1964 A
3149672 Orkiszewski et al. Sep 1964 A
3170815 White Feb 1965 A
3180411 Parker Apr 1965 A
3183675 Schroeder May 1965 A
3183971 McEver et al. May 1965 A
3194315 Rogers Jul 1965 A
3205942 Sandberg Sep 1965 A
3225829 Chown et al. Dec 1965 A
3228869 Irish Jan 1966 A
3241611 Dougan Mar 1966 A
3241615 Brandt et al. Mar 1966 A
3254721 Smith et al. Jun 1966 A
3256935 Nabor et al. Jun 1966 A
3263211 Heidman Jul 1966 A
3267680 Schlumberger Aug 1966 A
3271962 Dahms et al. Sep 1966 A
3284281 Thomas Nov 1966 A
3285335 Reistle, Jr. Nov 1966 A
3288648 Jones Nov 1966 A
3294167 Vogel Dec 1966 A
3295328 Bishop Jan 1967 A
3323840 Mason et al. Jun 1967 A
3358756 Vogel Dec 1967 A
3372550 Schroeder Mar 1968 A
3376403 Mircea Apr 1968 A
3382922 Needham May 1968 A
3400762 Peacock et al. Sep 1968 A
3436919 Shock et al. Apr 1969 A
3439744 Bradley Apr 1969 A
3455392 Prats Jul 1969 A
3461957 West Aug 1969 A
3468376 Slusser et al. Sep 1969 A
3494640 Coberly et al. Feb 1970 A
3500913 Nordgren et al. Mar 1970 A
3501201 Closmann et al. Mar 1970 A
3502372 Prats Mar 1970 A
3513914 Vogel May 1970 A
3515213 Prats Jun 1970 A
3516495 Patton Jun 1970 A
3521709 Needham Jul 1970 A
3528252 Gail Sep 1970 A
3528501 Parker Sep 1970 A
3547193 Gill Dec 1970 A
3559737 Ralstin Feb 1971 A
3572838 Templeton Mar 1971 A
3592263 Nelson Jul 1971 A
3599714 Messman Aug 1971 A
3602310 Halbert Aug 1971 A
3613785 Closmann et al. Oct 1971 A
3620300 Crowson Nov 1971 A
3642066 Gill Feb 1972 A
3661423 Garret May 1972 A
3692111 Breithaupt et al. Sep 1972 A
3695354 Dilgren et al. Oct 1972 A
3700280 Papadopoulos et al. Oct 1972 A
3724225 Mancini et al. Apr 1973 A
3724543 Bell et al. Apr 1973 A
3729965 Gartner May 1973 A
3730270 Allred May 1973 A
3739851 Beard Jun 1973 A
3741306 Papadopoulos Jun 1973 A
3759328 Ueber et al. Sep 1973 A
3759329 Ross Sep 1973 A
3759574 Beard Sep 1973 A
3779601 Beard Dec 1973 A
3880238 Tham et al. Apr 1975 A
3882937 Robinson May 1975 A
3882941 Pelofsky May 1975 A
3888307 Closmann Jun 1975 A
3924680 Terry Dec 1975 A
3943722 Ross Mar 1976 A
3948319 Pritchett Apr 1976 A
3950029 Timmins Apr 1976 A
3958636 Perkins May 1976 A
3967853 Closmann et al. Jul 1976 A
3978920 Bandyopadhyay Sep 1976 A
3999607 Pennington et al. Dec 1976 A
4003432 Paull et al. Jan 1977 A
4005750 Shuck Feb 1977 A
4007786 Schlinger Feb 1977 A
4008762 Fisher et al. Feb 1977 A
4008769 Chang Feb 1977 A
4014575 French et al. Mar 1977 A
4030549 Bouck Jun 1977 A
4037655 Carpenter Jul 1977 A
4043393 Fisher et al. Aug 1977 A
4047760 Ridley Sep 1977 A
4057510 Crouch et al. Nov 1977 A
4065183 Hill et al. Dec 1977 A
4067390 Camacho et al. Jan 1978 A
4069868 Terry Jan 1978 A
4071278 Carpenter et al. Jan 1978 A
4093025 Terry Jun 1978 A
4096034 Anthony Jun 1978 A
4125159 Vann Nov 1978 A
4140180 Bridges et al. Feb 1979 A
4148359 Laumbach et al. Apr 1979 A
4149595 Cha Apr 1979 A
4160479 Richardson et al. Jul 1979 A
4163475 Cha et al. Aug 1979 A
4167291 Ridley Sep 1979 A
4169506 Berry Oct 1979 A
4185693 Crumb et al. Jan 1980 A
4186801 Madgavkar et al. Feb 1980 A
4193451 Dauphine Mar 1980 A
4202168 Acheson et al. May 1980 A
4239283 Ridley Dec 1980 A
4241952 Ginsburgh Dec 1980 A
4246966 Stoddard et al. Jan 1981 A
4250230 Terry Feb 1981 A
4265310 Britton et al. May 1981 A
4271905 Redford et al. Jun 1981 A
4272127 Hutchins Jun 1981 A
4285401 Erickson Aug 1981 A
RE30738 Bridges et al. Sep 1981 E
4318723 Holmes et al. Mar 1982 A
4319635 Jones Mar 1982 A
4320801 Rowland et al. Mar 1982 A
4324291 Wong et al. Apr 1982 A
4340934 Segesman Jul 1982 A
4344485 Butler Aug 1982 A
4344840 Kunesh Aug 1982 A
4353418 Hoekstra et al. Oct 1982 A
4358222 Landau Nov 1982 A
4362213 Tabor Dec 1982 A
4368921 Hutchins Jan 1983 A
4369842 Cha Jan 1983 A
4372615 Ricketts Feb 1983 A
4375302 Kalmar Mar 1983 A
4384614 Justheim May 1983 A
4396211 McStravick et al. Aug 1983 A
4397502 Hines Aug 1983 A
4401162 Osborne Aug 1983 A
4412585 Bouck Nov 1983 A
4417449 Hegarty et al. Nov 1983 A
4449585 Bridges et al. May 1984 A
4468376 Suggitt Aug 1984 A
4470459 Copland Sep 1984 A
4472935 Acheson et al. Sep 1984 A
4473114 Bell et al. Sep 1984 A
4474238 Gentry et al. Oct 1984 A
4476926 Bridges et al. Oct 1984 A
4483398 Peters et al. Nov 1984 A
4485869 Sresty et al. Dec 1984 A
4487257 Dauphine Dec 1984 A
4487260 Pittman et al. Dec 1984 A
4495056 Venardos Jan 1985 A
4511382 Valencia et al. Apr 1985 A
4532991 Hoekstra et al. Aug 1985 A
4533372 Valencia et al. Aug 1985 A
4537067 Sharp et al. Aug 1985 A
4545435 Bridges et al. Oct 1985 A
4546829 Martin et al. Oct 1985 A
4550779 Zakiewicz Nov 1985 A
4552214 Forgac et al. Nov 1985 A
4567945 Segalman Feb 1986 A
4585063 Venardos et al. Apr 1986 A
4589491 Perkins May 1986 A
4589973 Minden May 1986 A
4602144 Vogel Jul 1986 A
4607488 Karinthi et al. Aug 1986 A
4626665 Fort Dec 1986 A
4633948 Closmann Jan 1987 A
4634315 Owen et al. Jan 1987 A
4637464 Forgac et al. Jan 1987 A
4640352 Vanmeurs et al. Feb 1987 A
4671863 Tejeda Jun 1987 A
4694907 Stahl et al. Sep 1987 A
4704514 Van Egmond et al. Nov 1987 A
4705108 Little et al. Nov 1987 A
4706751 Gonduin Nov 1987 A
4730671 Perkins Mar 1988 A
4737267 Pao et al. Apr 1988 A
4747642 Gash et al. May 1988 A
4754808 Harmon et al. Jul 1988 A
4776638 Hahn Oct 1988 A
4779680 Sydansk Oct 1988 A
4815790 Rosar et al. Mar 1989 A
4817711 Jeambey Apr 1989 A
4828031 Davis May 1989 A
4860544 Krieg et al. Aug 1989 A
4886118 Van Meurs et al. Dec 1989 A
4923493 Valencia et al. May 1990 A
4926941 Glandt et al. May 1990 A
4928765 Nielson May 1990 A
4929341 Thirumalachar et al. May 1990 A
4954140 Kawashima et al. Sep 1990 A
4974425 Krieg et al. Dec 1990 A
5016709 Combe et al. May 1991 A
5036918 Jennings et al. Aug 1991 A
5050386 Krieg et al. Sep 1991 A
5051811 Williams et al. Sep 1991 A
5055030 Schirmer Oct 1991 A
5055180 Klaila Oct 1991 A
5082055 Hemsath Jan 1992 A
5085276 Rivas et al. Feb 1992 A
5117908 Hofmann Jun 1992 A
5120338 Potts, Jr. et al. Jun 1992 A
5217076 Masek Jun 1993 A
5236039 Edelstein Aug 1993 A
5255742 Mikus Oct 1993 A
5275063 Steiger et al. Jan 1994 A
5277062 Blauch et al. Jan 1994 A
5297420 Gilliland Mar 1994 A
5297626 Vinegar et al. Mar 1994 A
5305829 Kumar Apr 1994 A
5325918 Berryman et al. Jul 1994 A
5346307 Ramirez et al. Sep 1994 A
5372708 Gewertz Dec 1994 A
5377756 Northrop et al. Jan 1995 A
5392854 Vinegar et al. Feb 1995 A
5411089 Vinegar et al. May 1995 A
5416257 Peters May 1995 A
5539853 Jamaluddin et al. Jul 1996 A
5620049 Gipson et al. Apr 1997 A
5621844 Bridges Apr 1997 A
5621845 Bridges et al. Apr 1997 A
5635712 Scott et al. Jun 1997 A
5661977 Shnell Sep 1997 A
5724805 Golomb et al. Mar 1998 A
5730550 Andersland et al. Mar 1998 A
5838634 Jones et al. Nov 1998 A
5844799 Joseph et al. Dec 1998 A
5868202 Hsu Feb 1999 A
5899269 Wellington et al. May 1999 A
5905657 Celniker May 1999 A
5907662 Buettner May 1999 A
5938800 Verrill et al. Aug 1999 A
5956971 Cole et al. Sep 1999 A
6015015 Luft et al. Jan 2000 A
6016867 Gregoli et al. Jan 2000 A
6023554 Vinegar et al. Feb 2000 A
6055803 Mastronarde et al. May 2000 A
6056057 Vinegar et al. May 2000 A
6079499 Mikus et al. Jun 2000 A
6112808 Isted Sep 2000 A
6148602 Demetri Nov 2000 A
6148911 Gipson et al. Nov 2000 A
6158517 Hsu Dec 2000 A
6246963 Cross et al. Jun 2001 B1
6247358 Dos Santos Jun 2001 B1
6319395 Kirkbride et al. Nov 2001 B1
6328104 Graue Dec 2001 B1
6409226 Slack et al. Jun 2002 B1
6434435 Tubel et al. Aug 2002 B1
6434436 Adamy et al. Aug 2002 B1
6480790 Calvert et al. Nov 2002 B1
6540018 Vinegar et al. Apr 2003 B1
6547956 Mukherjee et al. Apr 2003 B1
6581684 Wellington et al. Jun 2003 B2
6585046 Neuroth et al. Jul 2003 B2
6589303 Lokhandwale et al. Jul 2003 B1
6591906 Wellington et al. Jul 2003 B2
6607036 Ranson et al. Aug 2003 B2
6609735 DeLange et al. Aug 2003 B1
6609761 Ramey et al. Aug 2003 B1
6659650 Joki et al. Dec 2003 B2
6659690 Abadi Dec 2003 B1
6668922 Ziauddin et al. Dec 2003 B2
6684644 Mittricker et al. Feb 2004 B2
6684948 Savage Feb 2004 B1
6708758 de Rouffignac et al. Mar 2004 B2
6709573 Smith Mar 2004 B2
6712136 de Rouffignac et al. Mar 2004 B2
6715546 Vinegar et al. Apr 2004 B2
6722429 de Rouffignac et al. Apr 2004 B2
6740226 Mehra et al. May 2004 B2
6742588 Wellington et al. Jun 2004 B2
6745831 De Rouffignac et al. Jun 2004 B2
6745832 Wellington et al. Jun 2004 B2
6745837 Wellington et al. Jun 2004 B2
6752210 de Rouffignac et al. Jun 2004 B2
6754588 Cross et al. Jun 2004 B2
6764108 Ernst et al. Jul 2004 B2
6782947 de Rouffignac et al. Aug 2004 B2
6796139 Briley et al. Sep 2004 B2
6820689 Sarada Nov 2004 B2
6832485 Surgarmen et al. Dec 2004 B2
6854929 Vinegar et al. Feb 2005 B2
6858049 Mittricker Feb 2005 B2
6877555 Karanikas et al. Apr 2005 B2
6880633 Wellington et al. Apr 2005 B2
6887369 Moulton et al. May 2005 B2
6896053 Berchenko et al. May 2005 B2
6896707 O'Rear et al. May 2005 B2
6913078 Shahin et al. Jul 2005 B2
6915850 Vinegar et al. Jul 2005 B2
6918442 Wellington et al. Jul 2005 B2
6918443 Wellington et al. Jul 2005 B2
6918444 Passey et al. Jul 2005 B2
6923155 Gottemoller et al. Aug 2005 B2
6923257 Wellington et al. Aug 2005 B2
6923258 Wellington et al. Aug 2005 B2
6929067 Vinegar et al. Aug 2005 B2
6932155 Vinegar et al. Aug 2005 B2
6948562 Wellington et al. Sep 2005 B2
6951247 De Rouffignac et al. Oct 2005 B2
6953087 de Rouffignac et al. Oct 2005 B2
6964300 Vinegar et al. Nov 2005 B2
6969123 Vinegar et al. Nov 2005 B2
6988549 Babcock Jan 2006 B1
6991032 Berchenko et al. Jan 2006 B2
6991033 Wellington et al. Jan 2006 B2
6994160 Wellington et al. Feb 2006 B2
6994169 Zhang et al. Feb 2006 B2
6997518 Vinegar et al. Feb 2006 B2
7001519 Linden et al. Feb 2006 B2
7004247 Cole et al. Feb 2006 B2
7004251 Ward et al. Feb 2006 B2
7004985 Wallace et al. Feb 2006 B2
7011154 Maher et al. Mar 2006 B2
7013972 Vinegar et al. Mar 2006 B2
7028543 Hardage et al. Apr 2006 B2
7032660 Vinegar et al. Apr 2006 B2
7036583 de Rouffignac et al. May 2006 B2
7040397 de Rouffignac et al. May 2006 B2
7040399 Wellington et al. May 2006 B2
7043920 Viteri et al. May 2006 B2
7048051 McQueen May 2006 B2
7051807 Vinegar et al. May 2006 B2
7051811 de Rouffignac et al. May 2006 B2
7055600 Messier et al. Jun 2006 B2
7063145 Veenstra et al. Jun 2006 B2
7066254 Vinegar et al. Jun 2006 B2
7073578 Vinegar et al. Jul 2006 B2
7077198 Vinegar et al. Jul 2006 B2
7077199 Vinegar et al. Jul 2006 B2
7090013 Wellington Aug 2006 B2
7093655 Atkinson Aug 2006 B2
7096942 de Rouffignac et al. Aug 2006 B1
7096953 de Rouffignac et al. Aug 2006 B2
7100994 Vinegar et al. Sep 2006 B2
7103479 Patwardhan et al. Sep 2006 B2
7104319 Vinegar et al. Sep 2006 B2
7121341 Vinegar et al. Oct 2006 B2
7121342 Vinegar et al. Oct 2006 B2
7124029 Jammes et al. Oct 2006 B2
7143572 Ooka et al. Dec 2006 B2
7165615 Vinegar et al. Jan 2007 B2
7181380 Dusterhoft et al. Feb 2007 B2
7198107 Maguire Apr 2007 B2
7219734 Bai et al. May 2007 B2
7225866 Berchenko et al. Jun 2007 B2
7243618 Gurevich Jul 2007 B2
7255727 Monereau et al. Aug 2007 B2
7322415 de St. Remey Jan 2008 B2
7331385 Symington et al. Feb 2008 B2
7353872 Sandberg Apr 2008 B2
7357180 Vinegar et al. Apr 2008 B2
7405243 Lowe et al. Jul 2008 B2
7441603 Kaminsky et al. Oct 2008 B2
7461691 Vinegar et al. Dec 2008 B2
7472748 Gdanski et al. Jan 2009 B2
7484561 Bridges Feb 2009 B2
7516785 Kaminsky Apr 2009 B2
7516786 Dallas et al. Apr 2009 B2
7516787 Kaminsky Apr 2009 B2
7546873 Kim et al. Jun 2009 B2
7549470 Vinegar et al. Jun 2009 B2
7556095 Vinegar Jul 2009 B2
7591879 Sundaram et al. Sep 2009 B2
7604054 Hocking Oct 2009 B2
7617869 Carney et al. Nov 2009 B2
7631691 Symington et al. Dec 2009 B2
7637984 Adamopoulos Dec 2009 B2
7644993 Kaminsky et al. Jan 2010 B2
7647971 Kaminsky Jan 2010 B2
7647972 Kaminsky Jan 2010 B2
7654320 Payton Feb 2010 B2
7669657 Symington et al. Mar 2010 B2
7743826 Harris et al. Jun 2010 B2
7798221 Vinegar et al. Sep 2010 B2
7832483 Trent Nov 2010 B2
7857056 Kaminsky et al. Dec 2010 B2
7860377 Vinegar et al. Dec 2010 B2
7905288 Kinkead Mar 2011 B2
8087460 Kaminsky Jan 2012 B2
8127865 Watson et al. Mar 2012 B2
8176982 Gil et al. May 2012 B2
8356935 Arora et al. Jan 2013 B2
8540020 Stone et al. Sep 2013 B2
8596355 Kaminsky et al. Dec 2013 B2
8608249 Vinegar et al. Dec 2013 B2
8616280 Kaminsky et al. Dec 2013 B2
8622127 Kaminsky Jan 2014 B2
8662175 Karanikas et al. Mar 2014 B2
20010049342 Passey et al. Dec 2001 A1
20020013687 Ortoleva Jan 2002 A1
20020023751 Neuroth et al. Feb 2002 A1
20020029882 Rouffignac et al. Mar 2002 A1
20020049360 Wellington et al. Apr 2002 A1
20020077515 Wellington et al. Jun 2002 A1
20020099504 Cross et al. Jul 2002 A1
20030070808 Allison Apr 2003 A1
20030080604 Vinegar et al. May 2003 A1
20030085570 Ernst et al. May 2003 A1
20030111223 Rouffignac et al. Jun 2003 A1
20030131994 Vinegar et al. Jul 2003 A1
20030131995 de Rouffignac et al. Jul 2003 A1
20030178195 Agee et al. Sep 2003 A1
20030183390 Veenstra et al. Oct 2003 A1
20030192691 Vinegar et al. Oct 2003 A1
20030196788 Vinegar et al. Oct 2003 A1
20030196789 Wellington Oct 2003 A1
20030209348 Ward et al. Nov 2003 A1
20030213594 Wellington et al. Nov 2003 A1
20040020642 Vinegar et al. Feb 2004 A1
20040040715 Wellington et al. Mar 2004 A1
20040140095 Vinegar et al. Jul 2004 A1
20040198611 Atkinson Oct 2004 A1
20040200618 Piekenbrock Oct 2004 A1
20040211557 Cole et al. Oct 2004 A1
20050051327 Vinegar et al. Mar 2005 A1
20050194132 Dudley et al. Sep 2005 A1
20050211434 Gates et al. Sep 2005 A1
20050211569 Botte et al. Sep 2005 A1
20050229491 Loffler Oct 2005 A1
20050252656 Maguire Nov 2005 A1
20050252832 Doyle et al. Nov 2005 A1
20050252833 Doyle et al. Nov 2005 A1
20050269077 Sandberg Dec 2005 A1
20050269088 Vinegar et al. Dec 2005 A1
20060021752 de St. Remey Feb 2006 A1
20060100837 Symington et al. May 2006 A1
20060102345 McCarthy et al. May 2006 A1
20060106119 Guo et al. May 2006 A1
20060199987 Kuechler et al. Sep 2006 A1
20060213657 Berchenko et al. Sep 2006 A1
20070000662 Symington et al. Jan 2007 A1
20070023186 Kaminsky et al. Feb 2007 A1
20070045265 McKinzie, II Mar 2007 A1
20070045267 Vinegar et al. Mar 2007 A1
20070084418 Gurevich Apr 2007 A1
20070095537 Vinegar May 2007 A1
20070102359 Lombardi et al. May 2007 A1
20070131415 Vinegar et al. Jun 2007 A1
20070137869 MacDougall et al. Jun 2007 A1
20070144732 Kim et al. Jun 2007 A1
20070209799 Vinegar et al. Sep 2007 A1
20070246994 Kaminsky et al. Oct 2007 A1
20080087420 Kaminsky et al. Apr 2008 A1
20080087421 Kaminsky Apr 2008 A1
20080087422 Kobler et al. Apr 2008 A1
20080087426 Kaminsky Apr 2008 A1
20080087427 Kaminsky et al. Apr 2008 A1
20080087428 Symington et al. Apr 2008 A1
20080127632 Finkenrath Jun 2008 A1
20080173443 Symington et al. Jul 2008 A1
20080185145 Carney et al. Aug 2008 A1
20080207970 Meurer et al. Aug 2008 A1
20080230219 Kaminsky Sep 2008 A1
20080271885 Kaminsky Nov 2008 A1
20080283241 Kaminsky et al. Nov 2008 A1
20080289819 Kaminsky et al. Nov 2008 A1
20080290719 Kaminsky et al. Nov 2008 A1
20080314593 Vinegar et al. Dec 2008 A1
20090032251 Cavender et al. Feb 2009 A1
20090038795 Kaminsky et al. Feb 2009 A1
20090050319 Kaminsky et al. Feb 2009 A1
20090101346 Vinegar et al. Apr 2009 A1
20090101348 Kaminsky Apr 2009 A1
20090107679 Kaminsky Apr 2009 A1
20090133935 Kinkead May 2009 A1
20090145598 Symington et al. Jun 2009 A1
20090200290 Cardinal et al. Aug 2009 A1
20090211754 Verret et al. Aug 2009 A1
20090308608 Kaminsky et al. Dec 2009 A1
20100038083 Bicerano Feb 2010 A1
20100078169 Symington et al. Apr 2010 A1
20100089575 Kaminsky et al. Apr 2010 A1
20100089585 Kaminsky Apr 2010 A1
20100095742 Symington et al. Apr 2010 A1
20100101793 Symington et al. Apr 2010 A1
20100133143 Roes et al. Jun 2010 A1
20100218946 Symington et al. Sep 2010 A1
20100276983 Dunn et al. Nov 2010 A1
20100282460 Stone et al. Nov 2010 A1
20100307744 Cochet et al. Dec 2010 A1
20100314108 Crews et al. Dec 2010 A1
20100319909 Symington et al. Dec 2010 A1
20110000221 Minta et al. Jan 2011 A1
20110000671 Hershkowitz et al. Jan 2011 A1
20110146981 Diehl Jun 2011 A1
20110146982 Kaminsky et al. Jun 2011 A1
20110257944 Du et al. Oct 2011 A1
20110290490 Kaminsky et al. Dec 2011 A1
20110309834 Homan et al. Dec 2011 A1
20120012302 Vogel et al. Jan 2012 A1
20120267110 Meurer et al. Oct 2012 A1
20120325458 El-Rabaa et al. Dec 2012 A1
20130043029 Vinegar et al. Feb 2013 A1
20130106117 Sites May 2013 A1
20130112403 Meurer et al. May 2013 A1
20130277045 Parsche Oct 2013 A1
20130292114 Lin et al. Nov 2013 A1
20130292177 Meurer et al. Nov 2013 A1
20130319662 Alvarez et al. Dec 2013 A1
Foreign Referenced Citations (32)
Number Date Country
994694 Aug 1976 CA
1288043 Aug 1991 CA
2377467 Jan 2001 CA
2560223 Mar 2007 CA
0387846 Sep 1990 EP
0866212 Sep 1998 FR
855408 Nov 1960 GB
1454324 Nov 1976 GB
1463444 Feb 1977 GB
1 478 880 Jul 1977 GB
1501310 Feb 1978 GB
1559948 Jan 1980 GB
1595082 Aug 1981 GB
WO 8201408 Apr 1982 WO
WO 9006480 Jun 1990 WO
WO 9967504 Dec 1999 WO
WO 0178914 Oct 2001 WO
WO 0181505 Nov 2001 WO
WO 02085821 Oct 2002 WO
WO 03035811 May 2003 WO
WO 2005010320 Feb 2005 WO
WO 2005045192 May 2005 WO
WO 2005091883 Oct 2005 WO
WO 2006115943 Nov 2006 WO
WO2007033371 Mar 2007 WO
WO2007050445 May 2007 WO
WO 2007050479 May 2007 WO
WO2010011402 Jan 2010 WO
WO2010047859 Apr 2010 WO
WO2011116148 Sep 2011 WO
WO2011153339 Dec 2011 WO
WO2014028834 Feb 2014 WO
Non-Patent Literature Citations (135)
Entry
Anderson, R., et al (2003) “Power Generation with 100% Carbon Capture Sequestration” 2nd Annual Conference on Carbon Sequestration, Alexandria, VA.
Bridges, J.E., (2007) “Wind Power Energy Storage for in Situ Shale Oil Recovery With Minimal CO2 Emissions”, IEEE Transactions on Energy Conversion, vol. 22, No. 1 Mar. 2007, pp. 103-109.
Fox, J. P., et al. (1979) “Partitioning of major, minor, and trace elements during simulated in situ oil shale retorting in a controlled-state retort”, Twelfth Oil Shale Symposium Proceedings, Colorado School of Mines, Golden Colorado, Apr. 18-20, 1979.
Garland, T. R., et al. (1979) “Influence of irrigation and weathering reactions on the composition of percolates from retorted oil shale in field lysimeters”, Twelfth Oil Shale Symposium Proceedings, Colorado School of Mines, Golden Colorado, Apr. 18-20, 1979, pp. 52-57.
Kilkelly, M. K., et al. (1981), “Field Studies on Paraho Retorted Oil Shale Lysimeters: Leachate, Vegetation, Moisture, Salinity and Runoff, 1977-1980”, prepared for Industrial Environmental Research Laboratory, U. S. Environmental Protection Agency, Cincinnati, OH.
Nordin, J. S, et al. (1988), “Groundwater studies at Rio Blanco Oil Shale Company's retort 1 at Tract C-a”, DOE/MC/11076-2458.
Poulson, R. E., et al. (1985), “Organic Solute Profile of Water from Rio Blanco Retort 1”, DOE/FE/60177-2366.
Rio Blanco Oil Shale Company, (1986), “MIS Retort Abandonment Program” Jun. 1986 Pumpdown Operation.
Robson, S. G. et al., (1981), “Hydrogeochemistry and simulated solute transport, Piceance Basin, northwestern Colorado”, U. S. G. S. Prof. Paper 1196.
Stanford University, (2008) “Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques”, Prepared for U.S. Department of Energy, National Energy Technology Laboratory, DOE Award No. DE-FC26-04NT15526, Mar. 28, 2008.
Taylor, O. J., (1987), “Oil Shale, Water Resources and Valuable Minerals of the Piceance Basin, Colorado: The Challenge and Choices of Development”. U. S. Geol. Survey Prof. Paper 1310, pp. 63-76.
Ali, A.H.A, et al, (2003) “Watching Rocks Change—Mechanical Earth Modeling”, Oilfield Review, pp. 22-39.
Allred, (1964) “Some Characteristic Properties of Colorado Oil Shale Which May Influence In Situ Processing,” Quarterly Colo. School of Mines, 1st Symposium Oil Shale, v.59. No. 3, pp. 47-75.
Asquith, G., et al., (2004) Basic Well Log Analysis, Second Ed., Chapter 1, pp. 1-20.
Ball, J.S., et al. (1949) “Composition of Colorado Shale-Oil Naphtha”, Industrial and Engineering Chemistry, vol. 41, No. 3 pp. 581-587.
Barnes, A. L. et al. (1968) “Quarterly of the Colorado School of Mines” Fifth Symposium on Oil Shale, v. 63(4), Oct. 1968, pp. 827-852.
Bastow, T.P., (1998) Sedimentary Processes Involving Aromatic Hydrocarbons >>. Thesis (PhD in Applied Chemistry) Curtin University of Technology (Australia), December, p. 1-92.
Baugman, G. L. (1978) Synthetic Fuels Data Handbook, Second Edition, Cameron Engineers Inc. pp. 3-145.
Berry, K. L., et al. (1982) “Modified in situ retorting results of two field retorts”, Gary, J. H., ed., 15th Oil Shale Symp., CSM, pp. 385-396.
Blanton, T. L. et al, (1999) “Stress Magnitudes from Logs: Effects of Tectonic Strains and Temperature”, SPE Reservoir Eval. & Eng. 2, vol. 1, February, pp. 62-68.
Boyer, H. E. et al. (1985) “Chapter 16: Heat-Resistant Materials,” Metals Handbook, American Society for Metals, pp. 6-1 and 16-25.
Brandt, A. R., “Converting Oil Shale to Liquid Fuels: Energy Inputs and Greenhouse Gas Emissions of the Shell in Situ Conversion Process,” Environ. Sci. Technol. 2008, 42, pp. 7489-7495.
Brandt, H. et al. (1965) “Stimulating Heavy Oil Reservoirs With Downhole Air-Gas Burners,” World Oil, (Sep. 1965), pp. 91-95.
Bridges, J. E., et al. (1983) “The IITRI in situ fuel recovery process”, J. Microwave Power, v. 18, pp. 3-14.
Burnham, A. K. et al. (1983) “High-Pressure Pyrolysis of Green River Oil Shale” in Geochemistry and Chemistry of Oil Shales: ACS Symposium Series, pp. 335-351.
Burwell, E. L. et al. (1970) “Shale Oil Recovery by In-Situ Retorting—A Pilot Study” Journal of Petroleum Engr., Dec. 1970, pp. 1520-1524.
Charlier, R. et al, (2002) “Numerical Simulation of the Coupled Behavior of Faults During the Depletion of a High-Pressure/High-Temperature Reservoir”, Society of Petroleum Engineers, SPE 78199, pp. 1-12.
Chute, F. S., and Vermeulen, F. E., (1988) “Present and potential applications of electromagnetic heating in the in situ recovery of oil”, AOSTRA J. Res., v. 4, pp. 19-33.
Chute, F. S. and Vermeulen, F.E., (1989) “Electrical heating of reservoirs”, Hepler, L., and Hsi, C., eds., AOSTRA Technical Handbook on Oil Sands, Bitumens, and Heavy Oils, Chapt. 13, pp. 339-376.
Cipolla, C.L., et al. (1994), “Practical Application of in-situ Stress Profiles”, Society of Petroleum Engineers, SPE 28607, pp. 487-499.
Cook, G. L. et al. (1968) “The Composition of Green River Shale Oils” United Nations Symposium of the Development and Utilization of Oil Shale Resources, pp. 3-23.
Covell, J. R., et al. (1984) “Indirect in situ retorting of oil shale using the TREE process”, Gary, J. H., ed., 17th Oil Shale Symposium Proceedings, Colorado School of Mines, pp. 46-58.
Cummins, J. J. et al. (1972) Thermal Degradation of Green River Kerogen at 150 to 350C: Rate of Product Formation, Report of Investigation 7620, US Bureau of Mines, 1972, pp. 1-15.
Day, R. L., (1998) “Solution Mining of Colorado Nahcolite, Wyoming State Geological Survey Public Information Circular 40,” Proceedings of the First International Soda Ash Conference, V.II (Rock Springs, Wyoming, Jun. 10-12) pp. 121-130.
DePriester, C. et al. (1963) “Well Stimulation by Downhole Gas-Air Burner,” Jml. Petro Tech., (Dec. 1963), pp. 1297-1302.
Domine, F. et al. (2002) “Up to What Temperature is Petroleum Stable? New Insights from a 5200 Free Radical Reactions Model”, Organic Chemistry, 33, pp. 1487-1499.
Dougan, P. M. et al. (1981) “BX In Situ Oil Shale Project,” Colorado School of Mines; Fourteenth Oil Shale Symposium Proceedings, 1981, pp. 118-127.
Dougan, P. M. (1979) “The BX In Situ Oil Shale Project,” Chem. Engr. Progress, pp. 81-84.
Duncan, D. C., (1967) “Geologic Setting of Oil Shale Deposits and World Prospects,” in Proceedings of the Seventh World Petroleum Congress, v.3, Elsevier Publishing, pp. 659-667.
Dunks, G. et al. (1983) “Electrochemical Studies of Molten Sodium Carbonate,” Inorg. Chem., 22, pp. 2168-2177.
Dusseault, M.B. (1998) “Casing Shear: Causes, Cases, Cures”, Society of Petroleum Engineers, SPE 48,864 pp. 337-349.
Dyni, J. R., (1974) “Stratigraphy and Nahcolite Resources of the Saline Facies of the Green River Formation in Northwest Colorado,” in D.K. Murray (ed.), Guidebook to the Energy Resources of the Piceance Creek Basin Colorado, Rocky Mountain Association of Geologists, Guidebook, pp. 111-122.
Fainberg, V. et al. (1998) “Integrated Oil Shale Processing Into Energy and Chemicals Using Combined-Cycle Technology,” Energy Sources, v.20.6, pp. 465-481.
Farouq Ali, S. M., (1994), “Redeeming features of in situ combustion”, DOE/NIPER Symposium on In Situ Combustion Practices—Past, Present, and Future Application, Tulsa, OK, Apr. 21-22, No. ISC 1, p. 3-8.
Fisher, S. T. (1980) “A Comparison of Eleven Processes for Production of Energy from the Solid Fossil Fuels of North America,” SPE 9098, pp. 1-27.
Fox, J. P, (1980) “Water-related Impacts of In-Situ Oil Shale Processing,” California Univ., Berkeley, Lawrence Berkeley Lab, Chapters 6-7.
Fredrich, J. T. et al, (1996) “Three-Dimensional Geomechanical Simulation of Reservoir Compaction and Implications for Well Failures in the Belridge Diatomite”, Society of Petroleum Engineers SPE 36698, pp. 195-210.
Fredrich, J. T. et al, (2000) “Geomechanical Modeling of Reservoir Compaction, Surface Subsidence, and Casing Damage at the Belridge Diatomite Field”, SPE Reservoir Eval. & Eng.3, vol. 4, August, pp. 348-359.
Fredrich, J. T. et al, (2003) “Stress Perturbations Adjacent to Salt Bodies in the Deepwater Gulf of Mexico”, Society of Petroleum Engineers SPE 84554, pp. 1-14.
Frederiksen, S. et al, (2000) “A Numerical Dynamic Model for the Norwegian-Danish Basin”, Tectonophysics, 343, 2001, pp. 165-183.
Freund, H. et al., (1989) “Low-Temperature Pyrolysis of Green River Kerogen”, The American Association of Petroleum Geologists Bulletin, v. 73, No. 8 (August) pp. 1011-1017.
Gatens III, J. M. et al, (1990) “In-Situ Stress Tests and Acoustic Logs Determine Mechanical Properties and Stress Profiles in the Devonian Shales”, SPE Formation Evaluation SPE 18523, pp. 248-254.
Garthoffner, E. H., (1998), “Combustion front and burned zone growth in successful California ISC projects”, SPE 46244, pp. 1-11.
Greaves, M., et al. (1994) “In situ combustion (ISC) processes: 3D studies of vertical and horizontal wells”, Europe Comm. Heavy Oil Technology in a Wider Europe Symposium, Berlin, Jun. 7-8, p. 89-112.
Hansen, K. S. et al, (1989) “Earth Stress Measurements in the South Belridge Oil Field, Kern County, California”, SPE Formation Evaluation, December pp. 541-549.
Hansen, K. S. et al, (1993) “Finite-Element Modeling of Depletion-Induced Reservoir Compaction and Surface Subsidence in the South Belridge Oil Field, California”, SPE 26074, pp. 437-452.
Hansen, K. S. et al, (1995) “Modeling of Reservoir Compaction and Surface Subsidence at South Belridge”, SPE Production & Facilities, August pp. 134-143.
Hardy, M. et al. (2003) “Solution Mining of Nahcolite at the American Soda Project, Piceance Creek, Colorado,” SME Annual Mtg., Feb. 24-26, Cincinnati, Ohio, Preprint 03-105.
Hardy, M., et al. (2003) “Solution Mining of Nahcolite at American Soda's Yankee Gulch Project,” Mining Engineering, Oct. 2003, pp. 23-31.
Henderson, W, et al. (1968) “Thermal Alteration as a Contributory Process to the Genesis of Petroleum”, Nature vol. 219, pp. 1012-1016.
Hilbert, L. B. et al, (1999) “Field-Scale and Wellbore Modeling of Compaction-Induced Casing Failures”, SPE Drill. & Completion, 14(2), June pp. 92-101.
Hill, G.R. et al. (1967) “The Characteristics of a Low Temperature In Situ Shale Oil,” 4th Symposium on Oil Shale, Quarterly of the Colorado School of Mines, v.62(3), pp. 641-656.
Hill, G. R. et al. (1967) “Direct Production of a Low Pour Point High Gravity Shale Oil”, I&EC Product Research and Development, 6(1), Mar. pp. 52-59.
Holditch, S. A., (1989) “Pretreatment Formation Evaluation”, Recent Advances in Hydraulic Fracturing, SPE Monograph vol. 12, Chapter 2 (Henry L. Doherty Series), pp. 39-56.
Holmes, A. S. et al. (1982) “Process Improves Acid Gas Separation,” Hydrocarbon Processing, pp. 131-136.
Holmes, A. S. et al. (1983) “Pilot Tests Prove Out Cryogenic Acid-Gas/Hydrocarbon Separation Processes,” Oil & Gas Journal, pp. 85-91.
Humphrey, J. P. (1978) “Energy from in situ processing of Antrim oil shale”, DOE Report FE-2346-29.
Ingram, L. L. et al. (1983) “Comparative Study of Oil Shales and Shale Oils from the Mahogany Zone, Green River Formation (USA) and Kerosene Creek Seam, Rundle Formation (Australia),” Chemical Geology, 38, pp. 185-212.
Ireson, A. T. (1990) “Review of the Soluble Salt Process for In-Situ Recovery of Hydrocarbons from Oil Shale with Emphasis on Leaching and Possible Beneficiation,” 23rd Colorado School of Mines Oil Shale Symposium (Golden, Colorado), 152-161.
Jacobs, H. R. (1983) “Analysis of the Effectiveness of Steam Retorting of Oil Shale”, AIChE Symposium Series—Heat Transfer—Seattle 1983 pp. 373-382.
Johnson, D. J. (1966) “Decomposition Studies of Oil Shale,” University of Utah, May 1966.
Katz, D.L. et al. (1978) “Predicting Phase Behavior of Condensate/Crude-Oil Systems Using Methane Interaction Coefficients, J. Petroleum Technology”, pp. 1649-1655.
Kenter, C. J. et al, (2004) “Geomechanics and 4D: Evaluation of Reservoir Characteristics from Timeshifts in the Overburden”, Gulf Rocks 2004, 6th North America Rock Mechanics Symposium (NARMS): Rock Mechanics Across Borders and Disciplines, Houston, Texas, Jun. 5-9, ARMA/NARMS 04-627.
Kuo, M. C. T. et al (1979) “Inorganics leaching of spent shale from modified in situ processing,” J. H. Gary (ed.) Twelfth Oil Shale Symposium Proceedings, Colorado School of Mines, Golden CO., Apr. 18-20, pp. 81-93.
Laughrey, C. D. et al. (2003) “Some Applications of Isotope Geochemistry for Determining Sources of Stray Carbon Dioxide Gas,” Environmental Geosciences, 10(3), pp. 107-122.
Lekas, M. A. et al. (1991) “Initial evaluation of fracturing oil shale with propellants for in situ retorting—Phase 2”, DOE Report DOE/MC/11076-3064.
Le Pourhiet, L. et al, (2003) “Initial Crustal Thickness Geometry Controls on the Extension in a Back Arc Domain: Case of the Gulf of Corinth”, Tectonics, vol. 22, No. 4, pp. 6-1-6-14.
Lundquist, L. (1951) “Refining of Swedish Shale Oil”, Oil Shale Cannel Coal Conference, vol./Issue: 2, pp. 621-627.
Marotta, A. M. et al, (2003) “Numerical Models of Tectonic Deformation at the Baltica-Avalonia Transition Zone During the Paleocene Phase of Inversion”, Tectonophysics, 373, pp. 25-37.
Miknis, F.P, et al (1985) “Isothermal Decomposition of Colorado Oil Shale”, DOE/FE/60177-2288 (DE87009043) May 1985.
Mohammed, Y.A., et al (2001) “A Mathematical Algorithm for Modeling Geomechanical Rock Properties of the Khuff and PreKhuff Reservoirs in Ghawar Field”, Society of Petroleum Engineers SPE 68194, pp. 1-8.
Molenaar, M. M. et al, (2004) “Applying Geo-Mechanics and 4D: ‘4D In-Situ Stress’ as a Complementary Tool for Optimizing Field Management”, Gulf Rocks 2004, 6th North America Rock Mechanics Symposium (NARMS): Rock Mechanics Across Borders and Disciplines, Houston, Texas, Jun. 5-9, ARMA/NARMS 04-639, pp. 1-7.
Moschovidis, Z. (1989) “Interwell Communication by Concurrent Fracturing—a New Stimulation Technique”, Journ. of Canadian Petro. Tech. 28(5), pp. 42-48.
Motzfeldt, K. (1954) “The Thermal Decomposition of Sodium Carbonate by the Effusion Method,” Jml. Phys. Chem., v. LIX, pp. 139-147.
Mut, Stephen (2005) “The Potential of Oil Shale,” Shell Oil Presentation at National Academies, Trends in Oil Supply Demand, in Washington, DC, Oct. 20-21, 2005, 11 pages.
Needham, et al (1976) “Oil Yield and Quality from Simulated In-Situ Retorting of Green River Oil Shale”, Society of Petroleum Engineers of American Institute of Mining, Metallurgical and Petroleum Engineers, Inc. SPE 6069.
Newkirk, A. E. et al. (1958) “Drying and Decomposition of Sodium Carbonate,” Anal. Chem., 30(5), pp. 982-984.
Nielsen, K. R., (1995) “Colorado Nahcolite: A Low Cost Source of Sodium Chemicals,” 7th Annual Canadian Conference on Markets for Industrial Minerals, (Vancouver, Canada, Oct. 17-18) pp. 1-9.
Nottenburg, R.N. et al. (1979) “Temperature and stress dependence of electrical and mechanical properties of Green River oil shale,” Fuel, 58, pp. 144-148.
Nowacki, P. (ed.), (1981) Oil Shale Technical Handbook, Noyes Data Corp. pp. 4-23, 80-83 & 161-183.
Pattillo, P. D. et al, (1998) “Reservoir Compaction and Seafloor Subsidence at Valhall”, SPE 47274, 1998, pp. 377-386.
Pattillo, P. D. et al, (2002) “Analysis of Horizontal Casing Integrity in the Valhall Field”, SPE 78204, pp. 1-10.
Persoff, P. et al. (1979) “Control strategies for abandoned in situ oil shale retorts,” J. H. Gary (ed.), 12th Oil Shale Symposium Proceedings, Colorado School of Mines, Golden, CO., Apr. 18-20, pp. 72-80.
Peters, G., (1990) “The Beneficiation of Oil Shale by the Solution Mining of Nahcolite,” 23rd Colorado School of Mines Oil Shale Symposium (Golden, CO) pp. 142-151.
Plischke, B., (1994) “Finite Element Analysis of Compaction and Subsidence—Experience Gained from Several Chalk Fields”, Society of Petroleum Engineers, SPE 28129, 1994, pp. 795-802.
Prats, M. et al. (1975) “The Thermal Conductivity and Diffusivity of Green River Oil Shales”, Journal of Petroleum Technology, pp. 97-106, Jan. 1975.
Prats, M., et al. (1977) “Soluble-Salt Processes for In-Situ Recovery of Hydrocarbons from Oil Shale,” Journal of Petrol. Technol., pp. 1078-1088.
Rajeshwar, K. et al. (1979) “Review: Thermophysical Properties of Oil Shales”, Journal of Materials Science, v.14, pp. 2025-2052.
Ramey, M. et al. (2004) “The History and Performance of Vertical Well Solution Mining of Nahcolite (NaHCO3) in the Piceance Basin, Northwestern, Colorado, USA,” Solution Mining Research Institute: Fall 2004 Technical Meeting (Berlin, Germany).
Reade Advanced Materials; 2006 About.com Electrical resistivity of materials. [Retrieved on Oct. 15, 2009] Retrieved from internet: URL:http://www.reade.com/Particle%5FBriefings/elec%5Fres.html. Entire Document.
Riva, D. et al. (1998) “Suncor down under: the Stuart Oil Shale Project”, Annual Meeting of the Canadian Inst. of Mining, Metallurgy, and Petroleum, Montreal, May 3-7.
Rupprecht, R. (1979) “Application of the Ground-Freezing Method to Penetrate a Sequence of Water-Bearing and Dry Formations—Three Construction Cases,” Engineering Geology, 13, pp. 541-546.
Ruzicka, D.J. et al. (1987) “Modified Method Measures Bromine Number of Heavy Fuel Oils”, Oil & Gas Journal, 85(31), Aug. 3, pp. 48-50.
Salamonsson, G. (1951) “The Ljungstrom In Situ Method for Shale-Oil Recovery,” 2nd Oil Shale and Cannel Coal Conference, 2, Glasgow, Scotland, Inst. of Petrol., London, pp. 260-280.
Sahu, D. et al. (1988) “Effect of Benzene and Thiophene on Rate of Coke Formation During Naphtha Pyrolysis”, Canadian Journ. of Chem. Eng., 66, Oct. pp. 808-816.
Sandberg, C. R. et al. (1962) “In-Situ Recovery of Oil from Oil Shale—A Review and Summary of Field and Laboratory Studies,” RR62.039FR, Nov. 1962.
Sierra, R. et al. (2001) “Promising Progress in Field Application of Reservoir Electrical Heating Methods,” SPE 69709, SPE Int'l Thermal Operations and Heavy Oil Symposium, Venezuela, Mar. 2001, 17 pages.
Siskin, M. et al. (1995) “Detailed Structural Characterization of the Organic Material in Rundel Ramsay Crossing and Green River Oil Shales,” Kluwer Academic Publishers, pp. 143-158.
Smart, K. J. et al, (2004) “Integrated Structural Analysis and Geomechanical Modeling: an Aid to Reservoir Exploration and Development”, Gulf Rocks 2004, 6th North America Rock Mechanics Symposium (NARMS): Rock Mechanics Across Borders and Disciplines, Houston, Texas, Jun. 5-9, ARMA/NARMS 04-470.
Smith, F. M. (1966) “A Down-hole Burner—Versatile Tool for Well Heating,” 25th Tech. Conf. on Petroleum Production, Pennsylvania State Univ., pp. 275-285.
Sresty, G. C.; et al. (1982) “Kinetics of Low-Temperature Pyrolysis of Oil Shale by the IITRI RF Process,” Colorado School of Mines; Fifteenth Oil Shale Symposium Proceedings, Aug. 1982, pp. 411-423.
Stevens, A. L., and Zahradnik, R. L. (1983) “Results from the simultaneous processing of modified in situ retorts 7& 8”, Gary, J. H., ed., 16th Oil Shale Symp., CSM, p. 267-280.
Stoss, K. et al. (1979) “Uses and Limitations of Ground Freezing With Liquid Nitrogen,” Engineering Geology, 13, pp. 485-494.
Symington, W.A., et al (2006) ExxonMobil's electrofrac process for in situ oil shale conversion 26th Oil Shale Symposium, Colorado School of Mines.
Syunyaev, Z.I. et al. (1965) “Change in the Resistivity of Petroleum Coke on Calcination,” Chemistry and Technology of Fuels and Oils, 1(4), pp. 292-295.
Templeton, C. C. (1978) “Pressure-Temperature Relationship for Decomposition of Sodium Bicarbonate from 200 to 600° F.,” J. of Chem. and Eng. Data, 23(1), pp. 7-8.
Thomas, A. M. (1963) “Thermal Decomposition of Sodium Carbonate Solutions,” J. of Chem. and Eng. Data, 8(1), pp. 51-54.
Thomas, G. W. (1964) “A Simplified Model of Conduction Heating in Systems of Limited Permeability,” Soc.Pet. Engineering Journal, Dec. 1964, pp. 335-344.
Thomas, G. W. (1966) “Some Effects of Overburden Pressure on Oil Shale During Underground Retorting,” Society of Petroleum Engineers Journal, pp. 1-8, Mar. 1966.
Tihen, S. S. et al. (1967) “Thermal Conductivity and Thermal Diffusivity of Green River Oil Shale,” Thermal Conductivity: Proceedings of the Seventh Conference (Nov. 13-16, 1967), NBS Special Publication 302, pp. 529-535, 1968.
Tisot, P. R. et al. (1970) “Structural Response of Rich Green River Oil Shales to Heat and Stress and Its Relationship to Induced Permeability,” Journal of Chemical Engineering Data, v. 15(3), pp. 425-434.
Tisot, P. R. et al. (1971) “Structural Deformation of Green River Oil Shale as It Relates to In Situ Retorting,” US Bureau of Mines Report of Investigations 7576, 1971.
Tisot, P. R. (1975) “Structural Response of Propped Fractures in Green River Oil Shale as It Relates to Underground Retorting,” US Bureau of Mines Report of Investigations 8021.
Tissot, B. P., and Welte, D. H. (1984) Petroleum Formation and Occurrence, New York, Springer-Verlag, p. 160-174, 175-198 and 254-266.
Tissot, B. P., and Welte, D. H. (1984) Petroleum Formation and Occurrence, New York, Springer-Verlag, p. 267-289 and 470-492.
Turta, A., (1994), “In situ combustion—from pilot to commercial application”, DOE/NIPER Symposium on In Situ Combustion Practices—Past, Present, and Future Application, Tulsa, OK, Apr. 21-22, No. ISC 3, p. 15-39.
Tyner, C. E. et al. (1982) “Sandia/Geokinetics Retort 23: a horizontal in situ retorting experiment”, Gary, J. H., ed., 15th Oil Shale Symp., CSM, p. 370-384.
Tzanco, E. T., et al. (1990), “Laboratory Combustion Behavior of Countess B Light Oil”, Petroleum Soc. of CIM and SPE, Calgary, Jun. 10-13, No. CIM/SPE 90-63, p. 63.1-63.16.
Veatch, Jr. R.W. and Martinez, S.J., et al. (1990) “Hydraulic Fracturing: Reprint Series No. 28”, Soc. of Petroleum Engineers SPE 14085, Part I, Overview.
Warpinski, N.R., (1989) “Elastic and Viscoelastic Calculations of Stresses in Sedimentary Basins”, SPE Formation Evaluation, vol. 4, pp. 522-530.
Yen, T. F. et al. (1976) Oil Shale, Amsterdam, Elsevier, p. 216-267.
Yoon, E. et al. (1996) “High-Temperature Stabilizers for Jet Fuels and Similar Hydrocarbon Mixtures. 1. Comparative Studies of Hydrogen Donors”, Energy & Fuels, 10, pp. 806-811.
Oil & Gas Journal, 1998, “Aussie oil shale project moves to Stage 2”, Oct. 26, p. 42.
“Encyclopedia of Chemical Technology” (4th ed.), Alkali and Chlorine Products, pp. 1025-1039 (1998).
Vermeulen, F.E., et al. (1983) “Electromagnetic Techniques in the In-Situ Recovery of Heavy Oils”, Journal of Microwave Power, 18(1) pp. 15-29.
Related Publications (1)
Number Date Country
20130292177 A1 Nov 2013 US
Provisional Applications (1)
Number Date Country
61642811 May 2012 US