This relates to systems and methods for synthesizing audible speech from text.
Today, many popular electronic devices, such as personal digital assistants (“PDAs”) and hand-held media players or portable electronic devices (“PEDs”), are battery powered and include various user interface components. Conventionally, such portable electronic devices include buttons, dials, or touchpads to control the media devices and to allow users to navigate through media assets, including, e.g., music, speech, or other audio, movies, photographs, interactive art, text, etc., resident on (or accessible through) the media devices, to select media assets to be played or displayed, and/or to set user preferences for use by the media devices. The functionality supported by such portable electronic devices is increasing. At the same time, these media devices continue to get smaller and more portable. Consequently, as such devices get smaller while supporting robust functionality, there are increasing difficulties in providing adequate user interfaces for the portable electronic devices.
Some user interfaces have taken the form of graphical user interfaces or displays which, when coupled with other interface components on the device, allow users to navigate and select media assets and/or set user preferences. However, such graphical user interfaces or displays may be inconvenient, small, or unusable. Other devices have completely done away with a graphical user display.
One problem encountered by users of portable devices that lack a graphical display relates to difficulty in identifying the audio content being presented via the device. This problem may also be encountered by users of portable electronic devices that have a graphical display, for example, when the display is small, poorly illuminated, or otherwise unviewable.
Thus, there is a need to provide users of portable electronic devices with non-visual identification of media content delivered on such devices.
Embodiments of the invention provide audible human speech that may be used to identify media content delivered on a portable electronic device, and that may be combined with the media content such that it is presented during display or playback of the media content. Such speech content may be based on data associated with, and identifying, the media content by recording the identifying information and combining it with the media content. For such speech content to be appealing and useful for a particular user, it may be desirable for it to sound as if it were spoken in normal human language, in an accent that is familiar to the user.
One way to provide such a solution may involve use of speech content that is a recording of an actual person's reading of the identifying information. However, in addition to being prone to human error, this approach would require significant resources in terms of dedicated man-hours, and may be too impractical for use in connection with distributing media files whose numbers can exceed hundreds of thousands, millions, or even billions. This is especially true for new songs, podcasts, movies, television shows, and other media items that are all made available for downloading in huge quantities every second of every day across the entire globe.
Accordingly, processors may alternatively be used to synthesize speech content by automatically extracting the data associated with, and identifying, the media content and converting it into speech. However, most media assets are typically fixed in content (i.e., existing personal media players do not typically operate to allow mixing of additional audio while playing content from the media assets). Moreover, existing portable electronic devices are not capable of synthesizing such natural-sounding high-quality speech. Although one may contemplate modifying such media devices so as to be capable of synthesizing and mixing speech with an original media file, such modification would include adding circuitry, which would increase the size and power consumption of the device, as well as negatively impact the device's ability to instantaneously playback media files.
Thus, other resources that are separate from the media devices may be contemplated in order to extract data identifying media content, synthesize it into speech, and mix the speech content with the original media file. For example, a computer that is used to load media content onto the device, or any other processor that may be connected to the device, may be used to perform the speech synthesis operation.
This may be implemented through software that utilizes processing capabilities to convert text data into synthetic speech. For example, such software may configure a remote server, a host computer, a computer that is synchronized with the media player, or any other device having processing capabilities, to convert data identifying the media content and output the resulting speech. This technique efficiently leverages the processing resources of a computer or other device to convert text strings into audio files that may be played back on any device. The computing device performs the processor intensive text-to-speech conversion so that the media player only needs to perform the less intensive task of playing the media file. These techniques are described in commonly-owned, co-pending patent application Ser. No. 10/981,993, filed on Nov. 4, 2004 (now U.S. Published Patent Application No. 2006/0095848), which is hereby incorporated by reference herein in its entirety.
However, techniques that rely on automated processor operations for converting text to speech are far from perfect, especially if the goal is to render accurate, high quality, normal human language sounding speech at fast rates. This is because text can be misinterpreted, characters can be falsely recognized, and the process of providing such rendering of high quality speech is resource intensive.
Moreover, users who download media content are nationals of all countries, and thus speak in different languages, dialects, or accents. Thus, speech based on a specific piece of text that identifies media content may be articulated to sound in what is almost an infinite number of different ways, depending on the native tongue of a speaker who is being emulated during the text-to-speech conversion. Making speech available in languages, dialects, or accents that sound familiar to any user across the globe is desirable if the product or service that is being offered is to be considered truly international. However, this adds to the challenges in designing automated text-to-speech synthesizers without sacrificing accuracy, quality, and speed.
Accordingly, an embodiment of the invention may provide a user of portable electronic devices with an audible recording for identifying media content that may be accessible through such devices. The audible recording may be provided for an existing device without having to modify the device, and may be provided at high and variable rates of speed. The audible recording may be provided in an automated fashion that does not require human recording of identifying information. The audible recording may also be provided to users across the globe in languages, dialects, and accents that sound familiar to these users.
Embodiments of the invention may be achieved using systems and methods for synthesizing text to speech that helps identify content in media assets using sophisticated text-to-speech algorithms. Speech may be selectively synthesized from text strings that are typically associated with, and that identify, the media assets. Portions of these strings may be normalized by substituting certain non-alphabetical characters with their most likely counterparts using, for example, (i) handwritten heuristics derived from a domain-script's knowledge, (ii) text-rewrite rules that are automatically or semi-automatically generated using ‘machine learning’ algorithms, or (iii) statistically trained probabilistic methods, so that they are more easily converted into human sounding speech. Such text strings may also originate in one or more native languages and may need to be converted into one or more other target languages that are familiar to certain users. In order to do so, the text's native language may be determined automatically from an analysis of the text. One way to do this is using N-gram analysis at the word and/or character levels. A first set of phonemes corresponding to the text string in its native language may then be obtained and converted into a second set of phonemes in the target language. Such conversion may be implemented using tables that map phonemes in one language to another according to a set of predetermined rules that may be context sensitive. Once the target phonemes are obtained, they may be used as a basis for providing a high quality, human-sounding rendering of the text string that is spoken in an accent or dialect that is familiar to a user, no matter the native language of the text or the user.
In order to produce such sophisticated speech at high rates and provide it to users of existing portable electronic devices, the above text-to-speech algorithms may be implemented on a server farm system. Such a system may include several rendering servers having render engines that are dedicated to implement the above algorithms in an efficient manner. The server farm system may be part of a front end that includes storage on which several media assets and their associated synthesized speech are stored, as well as a request processor for receiving and processing one or more requests that result in providing such synthesized speech. The front end may communicate media assets and associated synthesized speech content over a network to host devices that are coupled to portable electronic devices on which the media assets and the synthesized speech may be played back.
An embodiment is provided for a method for determining a native language of a text string associated with a media asset, the method comprising: undergoing one or more N-gram analyses at a word level to determine a plurality of probabilities of occurrence, each of which correspond to a probability of occurrence of the text string in a particular language, wherein the probability of occurrence of the text string in the particular language is based partly on a type of text string associated with the media asset; and determining that the native language of the text string is a language that is associated with the highest probability of occurrence out of the plurality of probabilities of occurrence.
The above and other embodiments of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
The invention relates to systems and methods for providing speech content that identifies a media asset through speech synthesis. The media asset may be an audio item such a music file, and the speech content may be an audio file that is combined with the media asset and presented before or together with the media asset during playback. The speech content may be generated by extracting metadata associated with and identifying the media asset, and by converting it into speech using sophisticated text-to-speech algorithms that are described below.
Speech content may be provided by user interaction with an on-line media store where media assets can be browsed, searched, purchased and/or acquired via a computer network. Alternatively, the media assets may be obtained via other sources, such as local copying of a media asset, such as a CD or DVD, a live recording to local memory, a user composition, shared media assets from other sources, radio recordings, or other media assets sources. In the case of a music file, the speech content may include information identifying the artist, performer, composer, title of song/composition, genre, personal preference rating, playlist name, name of album or compilation to which the song/composition pertains, or any combination thereof or of any other metadata that is associated with media content. For example, when the song is played on the media device, the title and/or artist information can be announced in an accent that is familiar to the user before the song begins. The invention may be implemented in numerous ways, including, but not limited to systems, methods, and/or computer readable media.
Several embodiments of the invention are discussed below with reference to
The user of host device 102 may access front end 104 (and optionally back end 107) through network 106. Upon accessing front end 104, the user may be able to acquire digital media assets from front end 104 and request that such media be provided to host device 102. Here, the user can request the digital media assets in order to purchase, preview, or otherwise obtain limited rights to them.
Front end 104 may include request processor 114, which can receive and process user requests for media assets, as well as storage 124. Storage 124 may include a database in which several media assets are stored, along with synthesized speech content identifying these assets. A media asset and speech content associated with that particular asset may be stored as part of or otherwise associated with the same file. Back end 107 may include rendering farm 126, which functions may include synthesizing speech from the data (e.g., metadata) associated with and identifying the media asset. Rendering farm 126 may also mix the synthesized speech with the media asset so that the combined content may be sent to storage 124. Rendering farm 126 may include one or more rendering servers 136, each of which may include one or multiple instances of render engines 146, details of which are shown in
Host device 102 may interconnect with front end 104 and back end 107 via network 106. Network 106 may be, for example, a data network, such as a global computer network (e.g., the World Wide Web). Network 106 may be a wireless network, a wired network, or any combination of the same.
Any suitable circuitry, device, system, or combination of these (e.g., a wireless communications infrastructure including communications towers and telecommunications servers) operative to create a communications network may be used to create network 106. Network 106 may be capable of providing communications using any suitable communications protocol. In some embodiments, network 106 may support, for example, traditional telephone lines, cable television, Wi-Fi™ (e.g., an 802.11 protocol), Ethernet, Bluetooth™, high frequency systems (e.g., 900 MHz, 2.4 GHz, and 5.6 GHz communication systems), infrared, transmission control protocol/internet protocol (“TCP/IP”) (e.g., any of the protocols used in each of the TCP/IP layers), hypertext transfer protocol (“HTTP”), BitTorrent™, file transfer protocol (“FTP”), real-time transport protocol (“RTP”), real-time streaming protocol (“RTSP”), secure shell protocol (“SSH”), any other communications protocol, or any combination thereof.
In some embodiments of the invention, network 106 may support protocols used by wireless and cellular telephones and personal e-mail devices (e.g., an iPhone™ available by Apple Inc. of Cupertino, Calif.). Such protocols can include, for example, GSM, GSM plus EDGE, CDMA, quadband, and other cellular protocols. In another example, a long range communications protocol can include Wi-Fi™ and protocols for placing or receiving calls using voice-over-internet protocols (“VOIP”) or local area network (“LAN”) protocols. In other embodiments, network 106 may support protocols used in wired telephone networks. Host devices 102 may connect to network 106 through a wired and/or wireless manner using bidirectional communications paths 103 and 105.
Portable electronic device 108 may be coupled to host device 102 in order to provide digital media assets that are present on host device 102 to portable electronic device 108. Portable electronic device 108 can couple to host device 102 over link 110. Link 110 may be a wired link or a wireless link. In certain embodiments, portable electronic device 108 may be a portable media player. The portable media player may be battery-powered and handheld and may be able to play music and/or video content. For example, portable electronic device 108 may be a media player such as any personal digital assistant (“PDA”), music player (e.g., an iPod™ Shuffle, an iPod™ Nano, or an iPod™ Touch available by Apple Inc. of Cupertino, Calif.), a cellular telephone (e.g., an iPhone™), a landline telephone, a personal e-mail or messaging device, or combinations thereof.
Host device 102 may be any communications and processing device that is capable of storing media that may be accessed through media device 108. For example, host device 102 may be a desktop computer, a laptop computer, a personal computer, or a pocket-sized computer.
A user can request a digital media asset from front end 104. The user may do so using iTunes™ available from Apple Inc., or any other software that may be run on host device 102 and that can communicate user requests to front end 104 through network 106 using links 103 and 105. In doing so, the request that is communicated may include metadata associated with the desired media asset and from which speech content may be synthesized using front end 104. Alternatively, the user can merely request from front end 104 speech content associated with the media asset. Such a request may be in the form of an explicit request for speech content or may be automatically triggered by a user playing or performing another operation on a media asset that is already stored on host device 102.
Once request processor 114 receives a request for a media asset or associated speech content, request processor 114 may verify whether the requested media asset and/or associated speech content is available in storage 124. If the requested content is available in storage 124, the media asset and/or associated speech content may be sent to request processor 114, which may relay the requested content to host device 102 through network 106 using links 105 and 103 or to a PED 108 directly. Such an arrangement may avoid duplicative operation and minimize the time that a user has to wait before receiving the desired content.
If the request was originally for the media asset, then the asset and speech content may be sent as part of a single file, or a package of files associated with each other, whereby the speech content can be mixed into the media content. If the request was originally for only the speech content, then the speech content may be sent through the same path described above. As such, the speech content may be stored together with (i.e., mixed into) the media asset as discussed herein, or it may be merely associated with the media asset (i.e., without being mixed into it) in the database on storage 124.
As described above, the speech and media contents may be kept separate in certain embodiments (i.e., the speech content may be transmitted in a separate file from the media asset). This arrangement may be desirable when the media asset is readily available on host device 102 and the request made to front end 104 is a request for associated speech content. The speech content may be mixed into the media content as described in commonly-owned, co-pending patent application Ser. No. 11/369,480, filed on Mar. 6, 2006 (now U.S. Published Patent Application No. 2006-0168150), which is hereby incorporated herein in its entirety.
Mixing the speech and media contents, if such an operation is to occur at all, may take place anywhere within front end 104, on host computer 102, or on portable electronic device 108. Whether or not the speech content is mixed into the media content, the speech content may be in the form of an audio file that is uncompressed (e.g., raw audio). This results in high-quality audio being stored in front end 104 of
If the speech content associated with the requested media asset is not available in storage 124, request processor 114 may send the metadata associated with the requested media asset to rendering farm 126 so that rendering farm 126 can synthesize speech therefrom. Once the speech content is synthesized from the metadata in rendering farm 126, the synthesized speech content may be mixed with the corresponding media asset. Such mixing may occur in rendering farm 126 or using other components (not shown) available in front end 104. In this case, request processor 114 may obtain the asset from storage 124 and communicate it to rendering farm or to whatever component is charged with mixing the asset with the synthesized speech content. Alternatively, rendering farm 126, or an other component, may communicate directly with storage 124 in order to obtain the asset with which the synthesized speech is to be mixed. In other embodiments, request processor 114 may be charged with such mixing.
From the above, it may be seen that speech synthesis may be initiated in response to a specific request from request processor 114 in response to a request received from host device 102. On the other hand, speech synthesis may be initiated in response to continuous addition of media assets onto storage 124 or in response to a request from the operator of front end 104. Such an arrangement may ensure that the resources of rendering farm 126 do not go unused. Moreover, having multiple rendering servers 136 with multiple render engines 146 may avoid any delays in providing synthesized speech content should additional resources be needed in case multiple requests for synthesized speech content are initiated simultaneously. This is especially true as new requests are preferably diverted to low-load servers or engines. In other embodiments of the invention, speech synthesis, or any portion thereof as shown in
To ensure that storage 124 does not overflow with content, appropriate techniques may be used to prioritize what content is deleted first and when such content is deleted. For example, content can be deleted on a first-in-first-out basis, or based on the popularity of content, whereby content that is requested with higher frequency may be assigned a higher priority or remain on storage 124 for longer periods of time than content that is requested with less frequency. Such functionality may be implemented using fading memories and time-stamping mechanisms, for example.
The following figures and description provide additional details, embodiments, and implementations of text-to-speech processes and operations that may be performed on text (e.g., titles, authors, performers, composers, etc.) associated with media assets (e.g., songs, podcasts, movies, television shows, audio books, etc.). Often, the media assets may include audio content, such as a song, and the associated text from which speech may be synthesized may include a title, author, performer, composers, genre, beats per minute, and the like. Nevertheless, as described above, it should be understood that neither the media asset nor the associated text is limited to audio data, and that like processing and operations can be used with other time-varying media types besides music such as podcasts, movies, television shows, and the like, as well as static media such as photographs, electronic mail messages, text documents, and other applications that run on the PED 108 or that may be available via an application store.
The first step in process 200 is the receipt of the text string to be synthesized into speech starting at step 201. Similarly, at step 203, the target language which represents the language or dialect in which the text string will be vocalized is received. The target language may be determined based on the request by the user for the media content and/or the associated speech content. The target language may or may not be utilized until step 208. For example, the target language may influence how text is normalized at step 204, as discussed further below in connection with
As described above in connection with
At step 202 of process 200, the native language of the text string (i.e., the language in which the text string has originated) may be determined. For example, the native language of a text string such as “La Vie En Rose,” which refers to the title of a song, may be determined to be French. Further details on step 202 are provided below in connection with
With respect to
After steps 202 and 204 of process 200 have occurred, the normalized text string may be used to determine a pronunciation of the text string in the target language at steps 206 and 208. This determination may be implemented using a technique that may be referred to as phoneme mapping, which may be used in conjunction with a table look up. Using this technique, one or more phonemes corresponding to the normalized text may be obtained in the text's native language at step 206. Those obtained phonemes are used to provide pronunciation of the phonemes in the target language at step 208. A phoneme is a minimal sound unit of speech that, when contrasted with another phoneme, affects the naming of words in a particular language. It is typically the smallest unit of sound that, when contrasted with another phoneme, affects the naming of words in a language. For example, the sound of the character “r” in the words “red,” “bring,” or “round” is a phoneme. Further details on steps 206 and 208 are provided below in connection with
It should be noted that certain normalized texts need not need a pronunciation change from one language to another, as indicated by the dotted line arrow bypassing steps 206 and 208. This may be true for text having a native language that corresponds to the target language. Alternatively, a user may wish to always hear text spoken in its native language, or may want to hear text spoken in its native language under certain conditions (e.g., if the native language is a language that is recognized by the user because it is either common or merely a different dialect of the user's native language). Otherwise, the user may specify conditions under which he or she would like to hear a version of the text pronounced in a certain language, accent, dialect, etc. These and other conditions may be specified by the user through preference settings and communicated to front end 104 of
Other situations may exist in which certain portions of text strings may be recognized by the system and may not, as a result, undergo some or all of steps 202 through 208. Instead, certain programmed rules may dictate how these recognized portions of text ought to be spoken such that when these portions are present, the same speech is rendered without having to undergo natural language detection, normalization, and/or phoneme mapping under certain conditions. For example, rendering farm 126 of
There may be other forms of selective text-to-speech synthesis that are implemented according to certain embodiments of the invention. For example, certain texts associated with media assets may be lengthy and users may not be interested in hearing a rendering of the entire string. Thus, only selected potions of texts may be synthesized based on certain rules. For example, pre-processor 602 of
One embodiment of selective text to speech synthesis may be provided for classical music (or other genres of) media assets that filters associated text and/or provides substitutions for certain fields of information. Classical music may be particularly relevant for this embodiment because composer information, which may be classical music's most identifiable aspect, is typically omitted in associated text. As with other types of media assets, classical music is typically associated with name and artist information, however, the name and artist information in the classical music genre is often irrelevant and uninformative.
The methods and techniques discussed herein with respect to classical music may also be broadly applied to other genres, for example, in the context of selecting certain associated text for use in speech synthesis, identifying or highlighting certain associated text, and other uses. For example, in a hip hop media asset, more than one artist may be listed in its associated text. Techniques described herein may be used to select one or more of the listed artists to be highlighted in a text string for speech synthesis. In another example, for a live music recording, techniques described herein may be used to identify a concert date, concert location, or other information that may be added or substituted in a text string for speech synthesis. Obviously, other genres and combinations of selected information may also use these techniques.
In a more specific example, a classical music recording may be identified using the following name: “Organ Concerto in B-Flat Major Op. 7, No. 1 (HWV 306): IV. Adagio ad libitum (from Harpsichord Sonata in G minor HHA IV, 17 No. 22, Larghetto).” A second classical music recording may be identified with the following artist: “Bavarian Radio Chorus, Dresden Philharmonic Childrens Chorus, Jan-Hendrik Rootering, June Anderson, Klaus Knig, Leningrad Members of the Kirov Orchestra, Leonard Bernstein, Members of the Berlin Radio Chorus, Members Of The New York Philharmonic, Members of the London Symphony Orchestra, Members of the Orchestre de Paris, Members of the Staatskapelle Dresden, Sarah Walker, Symphonieorchester des Bayerischen Rundfunks & Wolfgang Seeliger.” Although the lengthy name and artist information could be synthesized to speech, it would not be useful to a listener because it provides too much irrelevant information and fails to provide the most useful identifying information (i.e., the composer). In some instances, composer information for classical music media assets is available as associated text. In this case the composer information could be used instead of, or in addition to, name and artist information, for text to speech synthesis. In other scenarios, composer information may be swapped in the field for artist information, or the composer information may simply not be available. In these cases, associated text may be filtered and substituted with other identifying information for use in text to speech synthesis. More particularly, artist and name information may be filtered and substituted with composer information, as shown in process flow 220 of
Process 220 may use an original text string communicated to rendering farm 126 (
Turning to
An analysis of the text in the expanded and filtered text string remaining after step 230 may be performed to identify certain relevant details at step 235. For example, the text string may be analyzed to determine an associated composer name. This analysis may be performed by comparing the words in the text string to a list of composers in a look up table. Such a table may be stored in a memory (not shown) located remotely or anywhere in front end 104 (e.g., in one or more render engines 146, rendering servers 136, or anywhere else on rendering farm 126). The table may be routinely updated to include new composers or other details. Identification of a composer or other detail may be provided by comparing a part of, or the entire text string with a list of all or many common works. Such a list may be provided in the table. Comparison of the text string with the list may require a match of some portion of the words in the text string.
If only one composer is identified as being potentially relevant to the text string, confidence of its accuracy may be determined to be relatively high at step 240. On the other hand, if more than one composer is identified as being potentially relevant, confidence of each identified composer may be determined at step 240 by considering one or more factors. Some of the confidence factors may be based on correlations between composers and titles, other relevant information such as time of creation, location, source, and relative volume of works, or other factors. A specified confidence threshold may be used to evaluate at step 245 whether an identified composer is likely to be accurate. If the confidence of the identified composer exceeds the threshold, a new text string is created at step 250 using the composer information. Composer information may be used in addition to the original text string, or substituted with other text string information, such as name, artist, title, or other information. If the confidence of the identified composer does not meet the threshold at step 245, the original or standard text string may be used at step 255. The text string obtained using process 220 may be used in steps 206 (
Steps 206 and 208 may be performed using any one of render engines 146 of
Turning to
At step 302 of
In some embodiments, at optional step 304, for each word that is identified in step 302 from the text string, a decision may be made as to whether the word is in vocabulary (i.e., recognized as a known word by the rendering farm). To implement this step, a table that includes a list of words, unigrams, N-grams, character sets or ranges, etc., known in all known languages may be consulted. Such a table may be stored in a memory (not shown) located remotely or anywhere in front end 104 (e.g., in one or more render engines 146, rendering servers 136, or anywhere else on rendering farm 126). The table may be routinely updated to include new words, N-grams, etc.
If all the words are recognized (i.e., found in the table), then process 202 transitions to step 306 without undergoing N-gram analysis at the character level. Otherwise, an N-gram analysis at the character level may occur at step 304 for each word that is not found in the table. Once step 304 is completed, an N-gram analysis at the word level may occur at step 306. In certain embodiments of the invention, step 304 may be omitted, or step 306 may start before step 304. If a word is not recognized at step 306, an N-gram analysis according to step 304 may be undertaken for that word, before the process of step 306 may continue, for example.
As can be seen, steps 304 and 306 may involve what may be referred to as an N-gram analysis, which is a process that may be used to deduce the language of origin for a particular word or character sequence using probability-based calculations. Before discussing these steps further, an explanation of what is meant by the term N-gram in the context of the invention is warranted.
An N-gram is a sequence of words or characters having a length N, where N is an integer (e.g., 1, 2, 3, etc.). If N=1, the N-gram may be referred to as a unigram. If N=2, the N-gram may be referred to as a bigram. If N=3, the N-gram may be referred to as a trigram. N-grams may be considered on a word level or on a character level. On a word level, an N-gram may be a sequence of N words. On a character level, an N-gram may be a sequence of N characters.
Considering the text string “La Vie En Rose” on a word level, each one of the words “La,” “Vie,” “En,” and “Rose” may be referred to as a unigram. Similarly, each one of groupings “La Vie,” “Vie En,” and “En Rose” may be referred to as a bigram. Finally, each one of groupings “La Vie En” and “Vie En Rose” may be referred to as a trigram. Looking at the same text string on a character level, each one of “V,” “i,” and “e” within the word “Vie” may be referred to as a unigram. Similarly, each one of groupings “Vi” and “ie” may be referred to as a bigram. Finally, “Vie” may be referred to as a trigram.
At step 304, an N-gram analysis may be conducted on a character level for each word that is not in the aforementioned table. For a particular word that is not in the table, the probability of occurrence of the N-grams that pertain to the word may be determined in each known language. Preferably, a second table that includes probabilities of occurrence of any N-gram in all known languages may be consulted. The table may include letters from alphabets of all known languages and may be separate from, or part of, the first table mentioned above. For each language, the probabilities of occurrence of all possible N-grams making up the word may be summed in order to calculate a score that may be associated with that language. The score calculated for each language may be used as the probability of occurrence of the word in a particular language in step 306. Alternatively, the language that is associated with the highest calculated score may be the one that is determined to be the native language of the word. The latter is especially true if the text string consists of a single word.
For example, if one were to assume that the first table does not include the word “vie,” then the probability of occurrence of all possible unigrams, bigrams, and trigrams pertaining to the word and/or any combination of the same may be calculated for English, French, and any or all other known languages. The following demonstrates such a calculation. However, the following uses probabilities that are completely fabricated for the sake of demonstration. For example, assuming that the probabilities of occurrence of trigram “vie” in English and in French are 0.2 and 0.4, respectively, then it may be determined that the probability of occurrence of the word “vie” in English is 0.2 and that the probability of occurrence of the word “vie” in French is 0.4 in order to proceed with step 306 under a first scenario. Alternatively, it may be preliminarily deduced that the native language of the word “vie” is French because the probability in French is higher than in English under a second scenario.
Similarly, assuming that the probabilities of occurrence of bigrams “vi” and “ie” in English are 0.2 and 0.15, respectively, and that the probabilities of occurrence of those same bigrams in French are 0.1 and 0.3, respectively, then it may be determined that the probability of occurrence of the word “vie” in English is the sum, the average, or any other weighted combination, of 0.2 and 0.15, and that the probability of occurrence of the word “vie” in French is the sum, the average, or any other weighted combination, of 0.1 and 0.3 in order to proceed with step 306 under a first scenario. Alternatively, it may be preliminarily deduced that the native language of the word “vie” is French because the sum of the probabilities in French (i.e., 0.4) is higher than the sum of the probabilities in English (i.e., 0.35) under a second scenario.
Similarly, assuming that the probabilities of occurrence of unigrams “v,” “i,” and “e” in English are 0.05, 0.6, and 0.75, respectively, and that the probabilities of occurrence of those same unigrams in French are 0.1, 0.6, and 0.6, respectively, then it may be determined that the probability of occurrence of the word “vie” in English is the sum, the average, or any other weighted combination, of 0.05, 0.6, and 0.75, and that the probability of occurrence of the word “vie” in French is the sum, the average, or any other weighted combination, of 0.1, 0.6, and 0.6 in order to proceed with step 306 under a first scenario. Alternatively, it may be preliminarily deduced that the native language of the word “vie” is English because the sum of the probabilities in English (i.e., 1.4) is higher than the sum of the probabilities in French (i.e., 1.3) under a second scenario.
Instead of conducting a single N-gram analysis (i.e., either a unigram, a bigram, or a trigram analysis), two or more N-gram analyses may be conducted and the results may be combined in order to deduce the probabilities of occurrence in certain languages (under the first scenario) or the native language (under the second scenario). More specifically, if a unigram analysis, a bigram analysis, and a trigram analysis are all conducted, each of these N-gram sums yield a particular score for a particular language. These scores may be added, averaged, or weighted for each language. Under the first scenario, the final score for each language may be considered to be the probability of occurrence of the word in that language. Under the second scenario, the language corresponding to the highest final score may be deduced as being the native language for the word. The following exemplifies and details this process.
In the above example, the scores yielded using a trigram analysis of the word “vie” are 0.2 and 0.4 for English and French, respectively. Similarly, the scores yielded using a bigram analysis of the same word are 0.35 (i.e., 0.2+0.15) and 0.4 (i.e., 0.1+0.3) for English and French, respectively. Finally, the scores yielded using a unigram analysis of the same word are 1.4 (i.e., 0.05+0.6+0.75) and 1.3 (i.e., 0.1+0.6+0.6) for English and French, respectively. Thus, the final score associated with English may be determined to be 1.95 (i.e., 0.2+0.35+1.4), whereas the final score associated with French may be determined to be 2.1 (i.e., 0.4+0.4+1.3) if the scores are simply added. Alternatively, if a particular N-gram analysis is considered to be more reliable, then the individual scores may be weighted in favor of the score calculated using that N-gram.
Similarly, to come to a final determination regarding native language under any one of the second scenarios, the more common preliminary deduction may be adopted. In the above example, it may deduced that the native language of the word “vie” may be French because two preliminary deductions have favored French while only one preliminary deduction has favored English under the second scenarios. Alternatively, the scores calculated for each language from each N-gram analysis under the second scenarios may be weighted and added such that the language with the highest weighted score may be chosen. As yet another alternative, a single N-gram analysis, such as a bigram or a trigram analysis, may be used and the language with the highest score may be adopted as the language of origin.
At step 306, N-gram analysis may be conducted on a word level. In order to analyze the text string at step 306 on a word level, the first table that is consulted at step 304 may also be consulted at step 306. In addition to including a list of known words, the first table may also include the probability of occurrence of each of these words in each known language. As discussed above in connection with the first scenarios that may be adopted at step 304, in case a word is not found in the first table, the calculated probabilities of occurrence of a word in several languages may be used in connection with the N-gram analysis of step 306.
In order to determine the native language of the text string “La Vie En Rose” at step 306, the probability of occurrence of some or all possible unigrams, bigrams, trigrams, and/or any combination of the same may be calculated for English, French, and any or all other known languages on a word level. The following demonstrates such a calculation in order to determine the native language of the text string “La Vie En Rose.” However, the following uses probabilities that are completely fabricated for the sake of demonstration. For example, assuming that the probabilities of occurrence of trigram “La Vie En” in English and in French are 0.01 and 0.7 respectively, then it may be preliminarily deduced that the native language of the text string “La Vie En Rose” is French because the probability in French is higher than in English.
Similarly, assuming that the probabilities of occurrence of bigrams “La Vie,” “Vie En,” and “En Rose” in English are 0.02, 0.01, and 0.1, respectively, and that the probabilities of occurrence of those same bigrams in French are 0.4, 0.3, and 0.5, respectively, then it may be preliminarily deduced that the native language of the text string “La Vie En Rose” is French because the sum of the probabilities in French (i.e., 1.2) is higher than the sum of the probabilities in English (i.e., 0.13).
Similarly, assuming that the probabilities of occurrence of unigrams “La,” “Vie,” “En,” and “Rose” in English are 0.1, 0.2, 0.05, and 0.6, respectively, and that the probabilities of occurrence of those same unigrams in French are 0.6, 0.3, 0.2, and 0.4, respectively, then it may be preliminarily deduced that the native language of the text string “La Vie En Rose” is French because the sum of the probabilities in French (i.e., 1.5) is higher than the sum of the probabilities in English (i.e., 0.95).
In order to come to a final determination regarding native language at step 306, the more common preliminary deduction may be adopted. In the above example, it may deduced that the native language of the text string “La Vie En Rose” may be French because all three preliminary deductions have favored French. Alternatively, a single N-gram analysis such as a unigram, a bigram, or a trigram analysis may be used and the language with the highest score may be adopted as the native language. As yet another alternative, the scores calculated for each language from each N-gram analysis may be weighted and added such that the language with the highest weighted score may be chosen. In other words, instead of conducting a single N-gram analysis (i.e., either a unigram, a bigram, or a trigram analysis), two or more N-gram analyses may be conducted and the results may be combined in order to deduce the natural language. More specifically, if a unigram analysis, a bigram analysis, and a trigram analysis are all conducted, each of these N-gram sums yield a particular score for a particular language. These scores may be added, averaged, or weighted for each language, and the language corresponding to the highest final score may be deduced as being the natural language for the text string. The following exemplifies and details this process.
In the above example, the scores yielded using a trigram analysis of the text string “La Vie En Rose” are 0.01 and 0.7 for English and French, respectively. Similarly, the scores yielded using a bigram analysis of the same text string are 0.13 (i.e., 0.02+0.01+0.1) and 1.2 (i.e., 0.4+0.3+0.5) for English and French, respectively. Finally, the scores yielded using a unigram analysis of the same text string are 0.95 (i.e., 0.1+0.2+0.05+0.6) and 1.5 (i.e., 0.6+0.3+0.2+0.4) for English and French, respectively. Thus, the final score associated with English may be determined to be 1.09 (i.e., 0.01+0.13+0.95), whereas the final score associated with French may be determined to be 3.4 (i.e., 0.7+1.2+1.5) if the scores are simply added. Therefore, it may be finally deduced that the natural language of the text string “La Vie En Rose” is French because the final score in French is higher than the final score in English.
Alternatively, if a particular N-gram analysis is considered to be more reliable, then the individual scores may be weighted in favor of the score calculated using that N-gram. Optimum weights may be generated and routinely updated. For example, if trigrams are weighed twice as much as unigrams and bigrams, then the final score associated with English may be determined to be 1.1 (i.e., 2*0.01+0.13+0.95), whereas the final score associated with French may be determined to be 4.1 (i.e., 2*0.7+1.2+1.5). Again, it may therefore be finally deduced that the natural language of the text string “La Vie En Rose” is French because the final score in French is higher than the final score in English.
Depending on the nature or category of the text string, the probabilities of occurrence of N-grams used in the calculations of steps 304 and 306 may vary. For example, if the text string pertains to a music file, there may be a particular set of probabilities to be used if the text string represents a song/composition title. This set may be different than another set that is used if the text string represents the artist, performer, or composer. Thus the probability set used during N-gram analysis may depend on the type of metadata associated with media content.
Language may also be determined by analysis of a character set or range of characters in a text string, for example, when there are multiple languages in a text string.
Turning to
At step 402 of
For each non-alphabetical character identified at step 402, a determination may be made at step 404 as to what potential alphabetical character or string of characters may correspond to the non-alphabetical character. To do this, a lookup table that includes a list of non-alphabetical characters may be consulted. Such a table may include a list of alphabetical characters or string of characters that are known to potentially correspond to each non-alphabetical character. Such a table may be stored in a memory (not shown) located remotely or anywhere in front end 104 (e.g., in one or more render engines 146, rendering servers 136, or anywhere else on rendering farm 126). The table may be routinely updated to include new alphabetical character(s) that potentially correspond to non-alphabetic characters. In addition, a context-sensitive analysis for non-alphabetical characters may be used. For example, a dollar sign “$” in “$0.99” and “$hort” may be associated with the term “dollar(s)” when used with numbers, or with “S” when used in conjunction with letters. A table look up may be used for such context-sensitive analysis, or algorithms, or other methods.
Each alphabetical character or set of characters that are identified as potentially corresponding to the non-alphabetical character identified at step 402 may be tested at step 406. More specifically, the non-alphabetical character identified in a word at step 402 may be substituted for one corresponding alphabetical character or set of characters. A decision may be made as to whether the modified word (or test word) that now includes only alphabetical characters may be found in a vocabulary list at step 407. To implement step 407, a table such as the table discussed in connection with step 302, or any other appropriate table, may be consulted in order to determine whether the modified word is recognized as a known word in any known language. If there is one match of the test word with the vocabulary list, the matched word may be used in place of the original word.
If the test word matches more than one word in the vocabulary list, the table may also include probabilities of occurrence of known words in each known language. The substitute character(s) that yield a modified word having the highest probability of occurrence in any language may be chosen at step 408 as the most likely alphabetical character(s) that correspond to the non-alphabetical character identified at step 402. In other words, the test string having the highest probability of occurrence may be substituted for the original text string. If the unmodified word contains more than one non-alphabetical character, then all possible combinations of alphabetical characters corresponding to the one or more non-alphabetical characters may be tested at step 406 by substituting all non-alphabetical characters in a word, and the most likely substitute characters may be determined at step 408 based on which resulting modified word has the highest probability of occurrence.
In some instances, a test word or the modified text string may not match any words in the vocabulary at step 407. When this occurs, agglomeration and/or concatenation techniques may be used to identify the word. More specifically, at step 412, the test word may be analyzed to determine whether it matches any combination of words, such as a pair of words, in the vocabulary list. If a match is found, a determination of the likelihood of the match may be made at step 408. If more than one match is found, the table may be consulted for data indicating highest probability of occurrence of the words individually or in combination at step 408. At step 410, the most likely alphabetical character or set of characters may be substituted for the non-alphabetical character in the text string at step 410. The phonemes for the matched words may be substituted as described at step 208. Techniques for selectively stressing the phonemes and words may be used, such as those described in connection with process 700 (
If no match is found at step 412 between the test word and any agglomeration or concatenation of terms in the vocabulary list, at step 414, the original text string may be used, or the non-alphabetical character word may be removed. This may result in the original text string being synthesized into speech pronouncing the symbol or non-alphabetical character, or having a silent segment.
In some embodiments of the invention, the native language of the text string, as determined at step 202 may influence which substitute character(s) are selected at step 408. Similarly, the target language may additionally or alternatively influence which substitute character(s) may be picked at step 408. For example, if a word such as “n.” (e.g., which may be known to correspond to an abbreviation of a number) is found in a text string, characters “umber” or “umero” may be identified at step 404 as likely substitute characters in order to yield the word “number” in English or the word “numero” in Italian. The substitute characters that are ultimately selected at step 408 may be based on whether the native or target language is determined to be English or Italian. As another example, if a numerical character such as “3” is found in a text string, characters “three,” “drei,” “trois,” and “tres” may be identified at step 404 as likely substitute characters in English, German, French, and Spanish, respectively. The substitute characters that are ultimately selected at step 408 may be based on whether the native or target language is any one of these languages.
At step 410, the non-alphabetical character identified at step 402 may be replaced with the substitute character(s) chosen at step 408. Steps 402 through 410 may be repeated until there are no more non-alphabetical characters remaining in the text string. Some non-alphabetical characters may be unique to certain languages and, as such, may have a single character or set of alphabetical characters in the table that are known to correspond to the particular non-alphabetical character. In such a situation, steps 406 and 408 may be skipped and the single character or set of characters may be substituted for the non-alphabetical character at step 410.
The following is an example that demonstrates how the text string “P!NK” may be normalized in accordance with process 204 as follows. Non-alphabetical character “!” may be detected at step 402. At step 404, a lookup table operation may yield two potential alphabetical characters “I” and “L” as corresponding to non-alphabetical character “!” —and at steps 406-408, testing each of the potential corresponding characters may reveal that the word “PINK” has a higher likelihood of occurrence than the word “PLNK” in a known language. Thus, the most likely alphabetical character(s) that correspond to non-alphabetical character “!” is chosen as “I,” and the text string “P!NK” may be replaced by text string “PINK” for further processing. If a non-alphabetical character is not recognized at step 404 (e.g., there is no entry corresponding to the character in the table), it may be replaced with some character which, when synthesized into speech, is of a short duration, as opposed to replaced with nothing, which may result in a segment of silence.
In another example, the text string “H8PRIUS” may be normalized in accordance with process 204 as follows. Non-alphabetical character “8” may be detected at step 402. At step 404, a lookup table operation may yield two potential alphabetical characters “ATE” and “EIGHT” as corresponding to non-alphabetical character “8” —and at steps 406 and 407, testing each of the potential corresponding characters “HATEPRIUS” and “HEIGHTPRIUS” may reveal that neither word is found in the vocabulary list. At step 412, agglomeration and/or concatenation techniques are applied to the test strings “HATEPRIUS” and “HEIGHTPRIUS” to determine whether the test strings match any combination of words in the vocabulary list. This may be accomplished by splitting the test string into multiple segments to find a match, such as “HA TEPRIUS,” “HAT EPRIUS, “HATE PRIUS,” “HATEP RIUS,” “HAT EPRI US,” “HATEP RIUS,” “HE IGHT PRIUS,” etc. Other techniques may also be used. Matches may be found in the vocabulary list for “HATE PRIUS” and “HEIGHT PRIUS.” At step 408, the word pairs “HATE PRIUS” and “HEIGHT PRIUS” may be analyzed to determine the likelihood of correspondence of those words alone or in combination with the original text string by consulting a table. For example, a comparison of the sound of the number “8” may be made with the words “HATE” and “HEIGHT” to identify a likelihood of correspondence. Since “HATE” rhymes with “8,” the agglomeration of words “HATE PRIUS” may be determined to be the most likely word pair to correspond to “H8PRIUS.” The words (and phonemes for) “HATE PRIUS” may then be substituted at step 410 for “H8PRIUS.”
It is worth noting that, for the particular example provided above, it may be more logical to implement normalization step 204 before natural language detection step 202 in process 200. However, in other instances, it may be more logical to undergo step 202 before step 204. In yet other instances, process 200 may step through steps 202 and 204 before again going through step 202. This may help demonstrate why process 200 may be iterative in part, as mentioned above.
Turning to
At step 502 of
In addition to the actual phonemes that may be obtained for the text string, markup information related to the text string may also be obtained at step 502. Such markup information may include syllable boundaries, stress (i.e., pitch accent), prosodic annotation or part of speech, and the like. Such information may be used to guide the mapping of phonemes between languages as discussed further below.
For the native phoneme obtained at step 502, a determination may be made at step 504 as to what potential phoneme(s) in the target language may correspond to it. To do this, a lookup table mapping phonemes in the native language to phonemes in the target language according to certain rules may be consulted. One table may exist for any given pair of languages or dialects. For the purposes of the invention, a different dialect of the same language may be treated as a separate language. For example, while there may be a table mapping English phonemes (e.g., phonemes in American English) to Italian phonemes and vice versa, other tables may exist mapping British English phonemes to American English phonemes and vice versa. All such tables may be stored in a database on a memory (not shown) located remotely or anywhere in front end 104 (e.g., in one or more render engines 146, rendering servers 136, or anywhere else on rendering farm 126). These table may be routinely updated to include new phonemes in all languages.
An exemplary table for a given pair of languages may include a list of all phonemes known in a first language under a first column, as well as a list of all phonemes known in a second language under a second column. Each phoneme from the first column may map to one or more phonemes from the second column according to certain rules. Choosing the first language as the native language and the second language as the target language may call up a table from which any phoneme from the first column in the native language may be mapped to one or more phonemes from the second column in the target language.
For example, if it is desired to synthesize the text string “schul” (whose native language was determined to be German) such that the resulting speech is vocalized in English (i.e., the target language is set to English), then a table mapping German phonemes to English phonemes may be called up at step 504. The German phoneme “UH” obtained for this text string, for example, may map to a single English phoneme “UW” at step 504.
If only one target phoneme is identified at step 504, then that sole target phoneme may be selected as the target phoneme corresponding to the native phoneme obtained at step 502. Otherwise, if there is more than one target phoneme to which the native phoneme may map, then the most likely target phoneme may be identified at step 506 and selected as the target phoneme that corresponds to the native phoneme obtained at step 502.
In certain embodiments, the most likely target phoneme may be selected based on the rules discussed above that govern how phonemes in one language may map to phonemes in other language within a table. Such rules may be based on the placement of the native phoneme within a syllable, word, or neighboring words within the text string as shown in 516, the word or syllable stress related to the phoneme as shown in 526, any other markup information obtained at step 502, or any combination of the same. Alternatively, statistical analysis may be used to map to the target phoneme as shown in 536, heuristics may be used to correct an output for exceptions, such as idioms or special cases, or using any other appropriate method. If a target phoneme is not found at step 504, then the closest phoneme may be picked from the table. Alternatively, phoneme mapping at step 506 may be implemented as described in commonly-owned U.S. Pat. Nos. 6,122,616, 5,878,396, and 5,860,064, issued on Sep. 19, 2000, Mar. 2, 1999, and Jan. 12, 1999, respectively, each of which are hereby incorporated by reference herein in their entireties.
Repeating steps 502 through 506 for the entire text string (e.g., for each word in the text string) may yield target phonemes that can dictate how the text string is to be vocalized in the target language. This output may be fed to composer component 606 of
Additional processing for speech synthesis may also be provided by render engine 146 (
Process 700 may be performed using processing of associated text via pre-processor 602 (
Turning to
One or more connector terms may be selected at step 740 based on the identified letters (or syllables) by consulting a table and comparing the letters to a list of letters and associated phonemes in the table. Such a table may be stored in a memory (not shown) located remotely or anywhere in front end 104 (e.g., in one or more render engines 146, rendering servers 136, or anywhere else on rendering farm 126). The table may be routinely updated to include new information or other details. In addition, a version of the selected connector term may be identified by consulting the table. For example, “by” may be pronounced in several ways, one of which may sound more natural when inserted between the concatenated terms.
The connector term and relevant version of the connector term may be inserted in a modified text string at step 750 between the concatenated words. The modified text string may be delivered to the composer component 606 (
The systems and methods described herein may be used to provide text to speech synthesis for delivering information about media assets to a user. In use, the speech synthesis may be provided in addition to, or instead of, visual content information that may be provided using a graphical user interface in a portable electronic device. Delivery of the synthesized speech may be customized according to a user's preference, and may also be provided according to certain rules. For example, a user may select user preferences that may be related to certain fields of information to be delivered (e.g., artist information only), rate of delivery, language, voice type, skipping repeating words, and other preferences. Such selection may be made by the user via the PED 108 (
Process 800 may be implemented on a PED 108 using programming and processors on the PED. As shown, a speech synthesis segment may be obtained at step 820 by PED 108. The speech synthesis segment may be obtained via delivery from the front end 104 (
The PED may include programming capable of determining whether its user is listening to speech synthesis at step 830. For example, the PED may determine that selections are made by a user to listen to speech synthesis. In particular, a user may actively select speech synthesis delivery, or not actively omit speech synthesis delivery. User inputs may also be determined at step 840. User inputs may include, for example, skipping speech synthesis, fast forwarding through speech synthesis, or any other input. These inputs may be used to determine an appropriate segment delivery type. For example, if a user is fast forwarding through speech synthesized information, the rate of the delivery of speech synthesis may be increased. Increasing a rate of delivery may be performed using faster speech rates, shortening breaks or spaces between words, truncating phrases, or other techniques. In other embodiments, if the user fast forwards through speech synthesized information, it may be omitted for subsequent media items, or the next time the particular media item is presented to the user.
At step 850 repetitive text may be identified in the segment. For example, if a word has been used recently (such as in a prior or preceding artist in a collection of songs by the artist), the repeated word may be identified. In some embodiments, repeated words may be omitted from a segment delivered to a user. In other embodiments, a repeated word may be presented in a segment at a higher rate of speech, for example, using faster speech patterns and/or shorter breaks between words. In another embodiment, repeated phrases may be truncated.
Based on the user's use of speech synthesis identified at step 830, user's inputs determined at step 840, and repetitive text identified at step 850, a customized segment may be delivered to a user at step 860. User-customized segments may include a delivered segment that omits repeated words, changes a rate of delivery or playback of the segment, truncating phrases, or other changes. Combinations of changes may be made based on the user's use and inputs and segment terms, as appropriate.
As can be seen from the above, a number of systems and methods may be used alone or in combination for synthesizing speech from text using sophisticated text-to-speech algorithms. In the context of media content, such text may be any metadata associated with the media content that may be requested by users. The synthesized speech may therefore act as audible means that may help identify the media content to users. In addition, such speech may be rendered in high quality such that it sounds as if it were spoken in normal human language in an accent or dialect that is familiar to a user, no matter the native language of the text or the user. Not only are these algorithms efficient, they may be implemented on a server farm so as to be able to synthesize speech at high rates and provide them to users of existing portable electronic devices without having to modify these devices. Thus, the rate at which synthesized speech may be provided can be about one-twentieth of real time (i.e., a fraction of the length of the time a normal speaker would take to read the text that is desired to be converted).
Various configurations described herein may be combined without departing from the invention. The above-described embodiments of the invention are presented for purposes of illustration and not of limitation. The invention also can take many forms other than those explicitly described herein, and can be improved to render more accurate speech. For example, users may be given the opportunity to provide feedback to enable the server farm or front end operator to provide more accurate rendering of speech. For example, users may be able to provide feedback regarding what they believe to be the language of origin of particular text, the correct expansion of certain abbreviations in the text, and the desired pronunciation of certain words or characters in the text. Such feedback may be used to populate the various tables discussed above, override the different rules or steps described, and the like.
Accordingly, it is emphasized that the invention is not limited to the explicitly disclosed systems and methods, but is intended to include variations to and modifications thereof which are within the spirit of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3704345 | Coker et al. | Nov 1972 | A |
3828132 | Flanagan et al. | Aug 1974 | A |
3979557 | Schulman et al. | Sep 1976 | A |
4278838 | Antonov | Jul 1981 | A |
4282405 | Taguchi | Aug 1981 | A |
4310721 | Manley et al. | Jan 1982 | A |
4348553 | Baker et al. | Sep 1982 | A |
4653021 | Takagi | Mar 1987 | A |
4688195 | Thompson et al. | Aug 1987 | A |
4692941 | Jacks et al. | Sep 1987 | A |
4718094 | Bahl et al. | Jan 1988 | A |
4724542 | Williford | Feb 1988 | A |
4726065 | Froessl | Feb 1988 | A |
4727354 | Lindsay | Feb 1988 | A |
4776016 | Hansen | Oct 1988 | A |
4783807 | Marley | Nov 1988 | A |
4811243 | Racine | Mar 1989 | A |
4819271 | Bahl et al. | Apr 1989 | A |
4827520 | Zeinstra | May 1989 | A |
4829576 | Porter | May 1989 | A |
4833712 | Bahl et al. | May 1989 | A |
4839853 | Deerwester et al. | Jun 1989 | A |
4852168 | Sprague | Jul 1989 | A |
4862504 | Nomura | Aug 1989 | A |
4878230 | Murakami et al. | Oct 1989 | A |
4903305 | Gillick et al. | Feb 1990 | A |
4905163 | Garber et al. | Feb 1990 | A |
4914586 | Swinehart et al. | Apr 1990 | A |
4944013 | Gouvianakis et al. | Jul 1990 | A |
4965763 | Zamora | Oct 1990 | A |
4974191 | Amirghodsi et al. | Nov 1990 | A |
4977598 | Doddington et al. | Dec 1990 | A |
4992972 | Brooks et al. | Feb 1991 | A |
5010574 | Wang | Apr 1991 | A |
5020112 | Chou | May 1991 | A |
5021971 | Lindsay | Jun 1991 | A |
5022081 | Hirose et al. | Jun 1991 | A |
5027406 | Roberts et al. | Jun 1991 | A |
5031217 | Nishimura | Jul 1991 | A |
5032989 | Tornetta | Jul 1991 | A |
5040218 | Vitale et al. | Aug 1991 | A |
5072452 | Brown et al. | Dec 1991 | A |
5091945 | Kleijn | Feb 1992 | A |
5127053 | Koch | Jun 1992 | A |
5127055 | Larkey | Jun 1992 | A |
5128672 | Kaehler | Jul 1992 | A |
5133011 | McKiel, Jr. | Jul 1992 | A |
5142584 | Ozawa | Aug 1992 | A |
5164900 | Bernath | Nov 1992 | A |
5165007 | Bahl et al. | Nov 1992 | A |
5179652 | Rozmanith et al. | Jan 1993 | A |
5194950 | Murakami et al. | Mar 1993 | A |
5199077 | Wilcox et al. | Mar 1993 | A |
5202952 | Gillick et al. | Apr 1993 | A |
5208862 | Ozawa | May 1993 | A |
5216747 | Hardwick et al. | Jun 1993 | A |
5220639 | Lee | Jun 1993 | A |
5220657 | Bly et al. | Jun 1993 | A |
5222146 | Bahl et al. | Jun 1993 | A |
5230036 | Akamine et al. | Jul 1993 | A |
5235680 | Bijnagte | Aug 1993 | A |
5267345 | Brown et al. | Nov 1993 | A |
5268990 | Cohen et al. | Dec 1993 | A |
5282265 | Rohra Suda et al. | Jan 1994 | A |
RE34562 | Murakami et al. | Mar 1994 | E |
5291286 | Murakami et al. | Mar 1994 | A |
5293448 | Honda | Mar 1994 | A |
5293452 | Picone et al. | Mar 1994 | A |
5297170 | Eyuboglu et al. | Mar 1994 | A |
5301109 | Landauer et al. | Apr 1994 | A |
5303406 | Hansen et al. | Apr 1994 | A |
5317507 | Gallant | May 1994 | A |
5317647 | Pagallo | May 1994 | A |
5325297 | Bird et al. | Jun 1994 | A |
5325298 | Gallant | Jun 1994 | A |
5327498 | Hamon | Jul 1994 | A |
5333236 | Bahl et al. | Jul 1994 | A |
5333275 | Wheatley et al. | Jul 1994 | A |
5345536 | Hoshimi et al. | Sep 1994 | A |
5349645 | Zhao | Sep 1994 | A |
5353377 | Kuroda et al. | Oct 1994 | A |
5377301 | Rosenberg et al. | Dec 1994 | A |
5384892 | Strong | Jan 1995 | A |
5384893 | Hutchins | Jan 1995 | A |
5386494 | White | Jan 1995 | A |
5386556 | Hedin et al. | Jan 1995 | A |
5390279 | Strong | Feb 1995 | A |
5392419 | Walton | Feb 1995 | A |
5396625 | Parkes | Mar 1995 | A |
5400434 | Pearson | Mar 1995 | A |
5424947 | Nagao et al. | Jun 1995 | A |
5434777 | Luciw | Jul 1995 | A |
5455888 | Iyengar et al. | Oct 1995 | A |
5469529 | Bimbot et al. | Nov 1995 | A |
5475587 | Anick et al. | Dec 1995 | A |
5479488 | Lenning et al. | Dec 1995 | A |
5491772 | Hardwick et al. | Feb 1996 | A |
5502790 | Yi | Mar 1996 | A |
5502791 | Nishimura et al. | Mar 1996 | A |
5515475 | Gupta et al. | May 1996 | A |
5536902 | Serra et al. | Jul 1996 | A |
5548507 | Martino et al. | Aug 1996 | A |
5574823 | Hassanein et al. | Nov 1996 | A |
5577241 | Spencer | Nov 1996 | A |
5579436 | Chou et al. | Nov 1996 | A |
5581655 | Cohen et al. | Dec 1996 | A |
5596676 | Swaminathan et al. | Jan 1997 | A |
5608624 | Luciw | Mar 1997 | A |
5613036 | Strong | Mar 1997 | A |
5617507 | Lee et al. | Apr 1997 | A |
5621859 | Schwartz et al. | Apr 1997 | A |
5642464 | Yue et al. | Jun 1997 | A |
5642519 | Martin | Jun 1997 | A |
5664055 | Kroon | Sep 1997 | A |
5675819 | Schuetze | Oct 1997 | A |
5682539 | Conrad et al. | Oct 1997 | A |
5687077 | Gough, Jr. | Nov 1997 | A |
5712957 | Waibel et al. | Jan 1998 | A |
5727950 | Cook et al. | Mar 1998 | A |
5729694 | Holzrichter et al. | Mar 1998 | A |
5732390 | Katayanagi et al. | Mar 1998 | A |
5734791 | Acero et al. | Mar 1998 | A |
5748974 | Johnson | May 1998 | A |
5790978 | Olive et al. | Aug 1998 | A |
5794050 | Dahlgren et al. | Aug 1998 | A |
5794182 | Manduchi et al. | Aug 1998 | A |
5799276 | Komissarchik et al. | Aug 1998 | A |
5826261 | Spencer | Oct 1998 | A |
5828999 | Bellegarda et al. | Oct 1998 | A |
5835893 | Ushioda | Nov 1998 | A |
5839106 | Bellegarda | Nov 1998 | A |
5860063 | Gorin et al. | Jan 1999 | A |
5860064 | Henton | Jan 1999 | A |
5864806 | Mokbel et al. | Jan 1999 | A |
5867799 | Lang et al. | Feb 1999 | A |
5873056 | Liddy et al. | Feb 1999 | A |
5878396 | Henton | Mar 1999 | A |
5895466 | Goldberg et al. | Apr 1999 | A |
5899972 | Miyazawa et al. | May 1999 | A |
5913193 | Huang et al. | Jun 1999 | A |
5915249 | Spencer | Jun 1999 | A |
5943670 | Prager | Aug 1999 | A |
5987404 | Della Pietra et al. | Nov 1999 | A |
6016471 | Kuhn et al. | Jan 2000 | A |
6029132 | Kuhn et al. | Feb 2000 | A |
6038533 | Buchsbaum et al. | Mar 2000 | A |
6052656 | Suda et al. | Apr 2000 | A |
6064960 | Bellegarda et al. | May 2000 | A |
6081750 | Hoffberg et al. | Jun 2000 | A |
6088731 | Kiraly et al. | Jul 2000 | A |
6108627 | Sabourin | Aug 2000 | A |
6122616 | Henton | Sep 2000 | A |
6144938 | Surace et al. | Nov 2000 | A |
6167369 | Schulze | Dec 2000 | A |
6173261 | Arai et al. | Jan 2001 | B1 |
6188999 | Moody | Feb 2001 | B1 |
6195641 | Loring et al. | Feb 2001 | B1 |
6208971 | Bellegarda et al. | Mar 2001 | B1 |
6216102 | Martino et al. | Apr 2001 | B1 |
6233559 | Balakrishnan | May 2001 | B1 |
6246981 | Papineni et al. | Jun 2001 | B1 |
6266637 | Donovan et al. | Jul 2001 | B1 |
6272456 | de Campos | Aug 2001 | B1 |
6285786 | Seni et al. | Sep 2001 | B1 |
6292772 | Kantrowitz | Sep 2001 | B1 |
6308149 | Gaussier et al. | Oct 2001 | B1 |
6317594 | Gossman et al. | Nov 2001 | B1 |
6317707 | Bangalore et al. | Nov 2001 | B1 |
6317831 | King | Nov 2001 | B1 |
6321092 | Fitch et al. | Nov 2001 | B1 |
6334103 | Surace et al. | Dec 2001 | B1 |
6356854 | Schubert et al. | Mar 2002 | B1 |
6366883 | Campbell et al. | Apr 2002 | B1 |
6366884 | Bellegarda et al. | Apr 2002 | B1 |
6415250 | van den Akker | Jul 2002 | B1 |
6421672 | McAllister et al. | Jul 2002 | B1 |
6434524 | Weber | Aug 2002 | B1 |
6446076 | Burkey et al. | Sep 2002 | B1 |
6453292 | Ramaswamy et al. | Sep 2002 | B2 |
6460015 | Hetherington et al. | Oct 2002 | B1 |
6466654 | Cooper et al. | Oct 2002 | B1 |
6477488 | Bellegarda | Nov 2002 | B1 |
6487534 | Thelen et al. | Nov 2002 | B1 |
6499013 | Weber | Dec 2002 | B1 |
6501937 | Ho et al. | Dec 2002 | B1 |
6505158 | Conkie | Jan 2003 | B1 |
6513063 | Julia et al. | Jan 2003 | B1 |
6523061 | Halverson et al. | Feb 2003 | B1 |
6526395 | Morris | Feb 2003 | B1 |
6532444 | Weber | Mar 2003 | B1 |
6532446 | King | Mar 2003 | B1 |
6553344 | Bellegarda et al. | Apr 2003 | B2 |
6598039 | Livowsky | Jul 2003 | B1 |
6601026 | Appelt et al. | Jul 2003 | B2 |
6604059 | Strubbe et al. | Aug 2003 | B2 |
6615172 | Bennett et al. | Sep 2003 | B1 |
6615175 | Gazdzinski | Sep 2003 | B1 |
6631346 | Karaorman et al. | Oct 2003 | B1 |
6633846 | Bennett et al. | Oct 2003 | B1 |
6647260 | Dusse et al. | Nov 2003 | B2 |
6650735 | Burton et al. | Nov 2003 | B2 |
6654740 | Tokuda et al. | Nov 2003 | B2 |
6665639 | Mozer et al. | Dec 2003 | B2 |
6665640 | Bennett et al. | Dec 2003 | B1 |
6665641 | Coorman et al. | Dec 2003 | B1 |
6684187 | Conkie | Jan 2004 | B1 |
6691111 | Lazaridis et al. | Feb 2004 | B2 |
6691151 | Cheyer et al. | Feb 2004 | B1 |
6697780 | Beutnagel et al. | Feb 2004 | B1 |
6704698 | Paulsen et al. | Mar 2004 | B1 |
6735632 | Kiraly et al. | May 2004 | B1 |
6742021 | Halverson et al. | May 2004 | B1 |
6757362 | Cooper et al. | Jun 2004 | B1 |
6757718 | Halverson et al. | Jun 2004 | B1 |
6778951 | Contractor | Aug 2004 | B1 |
6778952 | Bellegarda | Aug 2004 | B2 |
6778962 | Kasai et al. | Aug 2004 | B1 |
6792082 | Levine | Sep 2004 | B1 |
6794566 | Pachet | Sep 2004 | B2 |
6807574 | Partovi et al. | Oct 2004 | B1 |
6810379 | Vermeulen et al. | Oct 2004 | B1 |
6813491 | McKinney | Nov 2004 | B1 |
6832194 | Mozer et al. | Dec 2004 | B1 |
6842767 | Partovi et al. | Jan 2005 | B1 |
6847966 | Sommer et al. | Jan 2005 | B1 |
6851115 | Cheyer et al. | Feb 2005 | B1 |
6859931 | Cheyer et al. | Feb 2005 | B1 |
6895380 | Sepe, Jr. | May 2005 | B2 |
6895558 | Loveland | May 2005 | B1 |
6912499 | Sabourin et al. | Jun 2005 | B1 |
6928614 | Everhart | Aug 2005 | B1 |
6937975 | Elworthy | Aug 2005 | B1 |
6937986 | Denenberg et al. | Aug 2005 | B2 |
6964023 | Maes et al. | Nov 2005 | B2 |
6980949 | Ford | Dec 2005 | B2 |
6980955 | Okutani et al. | Dec 2005 | B2 |
6985865 | Packingham et al. | Jan 2006 | B1 |
6988071 | Gazdzinski | Jan 2006 | B1 |
6996531 | Korall et al. | Feb 2006 | B2 |
6999927 | Mozer et al. | Feb 2006 | B2 |
7020685 | Chen et al. | Mar 2006 | B1 |
7027974 | Busch et al. | Apr 2006 | B1 |
7035801 | Jimenez-Feltstrom | Apr 2006 | B2 |
7036128 | Julia et al. | Apr 2006 | B1 |
7050977 | Bennett | May 2006 | B1 |
7058569 | Coorman et al. | Jun 2006 | B2 |
7062428 | Hogenhout et al. | Jun 2006 | B2 |
7069560 | Cheyer et al. | Jun 2006 | B1 |
7092887 | Mozer et al. | Aug 2006 | B2 |
7092928 | Elad et al. | Aug 2006 | B1 |
7093693 | Gazdzinski | Aug 2006 | B1 |
7107204 | Liu et al. | Sep 2006 | B1 |
7127046 | Smith et al. | Oct 2006 | B1 |
7136710 | Hoffberg et al. | Nov 2006 | B1 |
7137126 | Coffman et al. | Nov 2006 | B1 |
7139697 | Hakkinen et al. | Nov 2006 | B2 |
7139714 | Bennett et al. | Nov 2006 | B2 |
7139722 | Perrella et al. | Nov 2006 | B2 |
7162482 | Dunning | Jan 2007 | B1 |
7177798 | Hsu et al. | Feb 2007 | B2 |
7197460 | Gupta et al. | Mar 2007 | B1 |
7200550 | Menezes et al. | Apr 2007 | B2 |
7200559 | Wang | Apr 2007 | B2 |
7203646 | Bennett | Apr 2007 | B2 |
7216073 | Lavi et al. | May 2007 | B2 |
7216080 | Tsiao et al. | May 2007 | B2 |
7225125 | Bennett et al. | May 2007 | B2 |
7233790 | Kjellberg et al. | Jun 2007 | B2 |
7233904 | Luisi | Jun 2007 | B2 |
7266496 | Wang et al. | Sep 2007 | B2 |
7277854 | Bennett et al. | Oct 2007 | B2 |
7290039 | Lisitsa et al. | Oct 2007 | B1 |
7299033 | Kjellberg et al. | Nov 2007 | B2 |
7310600 | Garner et al. | Dec 2007 | B1 |
7324947 | Jordan et al. | Jan 2008 | B2 |
7349953 | Lisitsa et al. | Mar 2008 | B2 |
7359851 | Tong et al. | Apr 2008 | B2 |
7376556 | Bennett | May 2008 | B2 |
7376645 | Bernard | May 2008 | B2 |
7379874 | Schmid et al. | May 2008 | B2 |
7386449 | Sun et al. | Jun 2008 | B2 |
7392185 | Bennett | Jun 2008 | B2 |
7398209 | Kennewick et al. | Jul 2008 | B2 |
7403938 | Harrison et al. | Jul 2008 | B2 |
7409337 | Potter et al. | Aug 2008 | B1 |
7415100 | Cooper et al. | Aug 2008 | B2 |
7418392 | Mozer et al. | Aug 2008 | B1 |
7426467 | Nashida et al. | Sep 2008 | B2 |
7427024 | Gazdzinski et al. | Sep 2008 | B1 |
7447635 | Konopka et al. | Nov 2008 | B1 |
7454351 | Jeschke et al. | Nov 2008 | B2 |
7467087 | Gillick et al. | Dec 2008 | B1 |
7467164 | Marsh | Dec 2008 | B2 |
7475010 | Chao | Jan 2009 | B2 |
7477238 | Fux et al. | Jan 2009 | B2 |
7483894 | Cao | Jan 2009 | B2 |
7487089 | Mozer | Feb 2009 | B2 |
7496498 | Chu et al. | Feb 2009 | B2 |
7496512 | Zhao et al. | Feb 2009 | B2 |
7502738 | Kennewick et al. | Mar 2009 | B2 |
7508373 | Lin et al. | Mar 2009 | B2 |
7522927 | Fitch et al. | Apr 2009 | B2 |
7523108 | Cao | Apr 2009 | B2 |
7526466 | Au | Apr 2009 | B2 |
7529671 | Rockenbeck et al. | May 2009 | B2 |
7529676 | Koyama | May 2009 | B2 |
7539656 | Fratkina et al. | May 2009 | B2 |
7546382 | Healey et al. | Jun 2009 | B2 |
7548895 | Pulsipher | Jun 2009 | B2 |
7552045 | Barliga et al. | Jun 2009 | B2 |
7555431 | Bennett | Jun 2009 | B2 |
7562007 | Hwang | Jul 2009 | B2 |
7571106 | Cao et al. | Aug 2009 | B2 |
7599918 | Shen et al. | Oct 2009 | B2 |
7620549 | Di Cristo et al. | Nov 2009 | B2 |
7624007 | Bennett | Nov 2009 | B2 |
7634409 | Kennewick et al. | Dec 2009 | B2 |
7636657 | Ju et al. | Dec 2009 | B2 |
7640160 | Di Cristo et al. | Dec 2009 | B2 |
7647225 | Bennett et al. | Jan 2010 | B2 |
7657424 | Bennett | Feb 2010 | B2 |
7672841 | Bennett | Mar 2010 | B2 |
7676026 | Baxter, Jr. | Mar 2010 | B1 |
7676365 | Hwang et al. | Mar 2010 | B2 |
7680649 | Park | Mar 2010 | B2 |
7684985 | Dominach et al. | Mar 2010 | B2 |
7689408 | Chen et al. | Mar 2010 | B2 |
7689409 | Heinecke | Mar 2010 | B2 |
7693715 | Hwang et al. | Apr 2010 | B2 |
7693720 | Kennewick et al. | Apr 2010 | B2 |
7698131 | Bennett | Apr 2010 | B2 |
7702500 | Blaedow | Apr 2010 | B2 |
7702508 | Bennett | Apr 2010 | B2 |
7707027 | Balchandran et al. | Apr 2010 | B2 |
7707032 | Wang et al. | Apr 2010 | B2 |
7707267 | Lisitsa et al. | Apr 2010 | B2 |
7711565 | Gazdzinski | May 2010 | B1 |
7711672 | Au | May 2010 | B2 |
7716056 | Weng et al. | May 2010 | B2 |
7720674 | Kaiser et al. | May 2010 | B2 |
7720683 | Vermeulen et al. | May 2010 | B1 |
7725307 | Bennett | May 2010 | B2 |
7725318 | Gavalda et al. | May 2010 | B2 |
7725320 | Bennett | May 2010 | B2 |
7725321 | Bennett | May 2010 | B2 |
7729904 | Bennett | Jun 2010 | B2 |
7729916 | Coffman et al. | Jun 2010 | B2 |
7734461 | Kwak et al. | Jun 2010 | B2 |
7752152 | Paek et al. | Jul 2010 | B2 |
7774204 | Mozer et al. | Aug 2010 | B2 |
7783486 | Rosser et al. | Aug 2010 | B2 |
7801729 | Mozer | Sep 2010 | B2 |
7809570 | Kennewick et al. | Oct 2010 | B2 |
7809610 | Cao | Oct 2010 | B2 |
7818165 | Carlgren et al. | Oct 2010 | B2 |
7818176 | Freeman et al. | Oct 2010 | B2 |
7822608 | Cross, Jr. et al. | Oct 2010 | B2 |
7826945 | Zhang et al. | Nov 2010 | B2 |
7831426 | Bennett | Nov 2010 | B2 |
7840400 | Lavi et al. | Nov 2010 | B2 |
7840447 | Kleinrock et al. | Nov 2010 | B2 |
7840581 | Ross et al. | Nov 2010 | B2 |
7873519 | Bennett | Jan 2011 | B2 |
7873654 | Bernard | Jan 2011 | B2 |
7881936 | Longé et al. | Feb 2011 | B2 |
7912702 | Bennett | Mar 2011 | B2 |
7917367 | Di Cristo et al. | Mar 2011 | B2 |
7917497 | Harrison et al. | Mar 2011 | B2 |
7920678 | Cooper et al. | Apr 2011 | B2 |
7925525 | Chin | Apr 2011 | B2 |
7930168 | Weng et al. | Apr 2011 | B2 |
7949529 | Weider et al. | May 2011 | B2 |
7974844 | Sumita | Jul 2011 | B2 |
7974972 | Cao | Jul 2011 | B2 |
7983915 | Knight et al. | Jul 2011 | B2 |
7983917 | Kennewick et al. | Jul 2011 | B2 |
7983997 | Allen et al. | Jul 2011 | B2 |
7987151 | Schott et al. | Jul 2011 | B2 |
8000453 | Cooper et al. | Aug 2011 | B2 |
8005679 | Jordan et al. | Aug 2011 | B2 |
8015006 | Kennewick et al. | Sep 2011 | B2 |
8024195 | Mozer et al. | Sep 2011 | B2 |
8036901 | Mozer | Oct 2011 | B2 |
8041570 | Mirkovic et al. | Oct 2011 | B2 |
8041611 | Kleinrock et al. | Oct 2011 | B2 |
8055708 | Chitsaz et al. | Nov 2011 | B2 |
8065155 | Gazdzinski | Nov 2011 | B1 |
8065156 | Gazdzinski | Nov 2011 | B2 |
8069046 | Kennewick et al. | Nov 2011 | B2 |
8073681 | Baldwin et al. | Dec 2011 | B2 |
8078473 | Gazdzinski | Dec 2011 | B1 |
8082153 | Coffman et al. | Dec 2011 | B2 |
8095364 | Longé et al. | Jan 2012 | B2 |
8099289 | Mozer et al. | Jan 2012 | B2 |
8107401 | John et al. | Jan 2012 | B2 |
8112275 | Kennewick et al. | Feb 2012 | B2 |
8112280 | Lu | Feb 2012 | B2 |
8117037 | Gazdzinski | Feb 2012 | B2 |
8140335 | Kennewick et al. | Mar 2012 | B2 |
8165886 | Gagnon et al. | Apr 2012 | B1 |
8166019 | Lee et al. | Apr 2012 | B1 |
8190359 | Bourne | May 2012 | B2 |
8195467 | Mozer et al. | Jun 2012 | B2 |
8204238 | Mozer | Jun 2012 | B2 |
8205788 | Gazdzinski et al. | Jun 2012 | B1 |
8219407 | Roy et al. | Jul 2012 | B1 |
8285551 | Gazdzinski | Oct 2012 | B2 |
8285553 | Gazdzinski | Oct 2012 | B2 |
8290778 | Gazdzinski | Oct 2012 | B2 |
8290781 | Gazdzinski | Oct 2012 | B2 |
8296146 | Gazdzinski | Oct 2012 | B2 |
8296153 | Gazdzinski | Oct 2012 | B2 |
8301456 | Gazdzinski | Oct 2012 | B2 |
8311834 | Gazdzinski | Nov 2012 | B1 |
8370158 | Gazdzinski | Feb 2013 | B2 |
8371503 | Gazdzinski | Feb 2013 | B2 |
8447612 | Gazdzinski | May 2013 | B2 |
20020032564 | Ehsani et al. | Mar 2002 | A1 |
20020046025 | Hain | Apr 2002 | A1 |
20020069063 | Buchner et al. | Jun 2002 | A1 |
20020077817 | Atal | Jun 2002 | A1 |
20040006467 | Anisimovich et al. | Jan 2004 | A1 |
20040054541 | Kryze et al. | Mar 2004 | A1 |
20040135701 | Yasuda et al. | Jul 2004 | A1 |
20040138869 | Heinecke | Jul 2004 | A1 |
20040252604 | Johnson et al. | Dec 2004 | A1 |
20050071332 | Ortega et al. | Mar 2005 | A1 |
20050080625 | Bennett et al. | Apr 2005 | A1 |
20050119897 | Bennett et al. | Jun 2005 | A1 |
20050143972 | Gopalakrishnan et al. | Jun 2005 | A1 |
20050154578 | Tong et al. | Jul 2005 | A1 |
20050182629 | Coorman et al. | Aug 2005 | A1 |
20050196733 | Budra et al. | Sep 2005 | A1 |
20060018492 | Chiu et al. | Jan 2006 | A1 |
20060095848 | Naik | May 2006 | A1 |
20060122834 | Bennett | Jun 2006 | A1 |
20060143007 | Koh et al. | Jun 2006 | A1 |
20060168150 | Naik et al. | Jul 2006 | A1 |
20070055493 | Lee | Mar 2007 | A1 |
20070055529 | Kanevsky et al. | Mar 2007 | A1 |
20070058832 | Hug et al. | Mar 2007 | A1 |
20070088556 | Andrew | Apr 2007 | A1 |
20070100790 | Cheyer et al. | May 2007 | A1 |
20070118377 | Badino et al. | May 2007 | A1 |
20070174188 | Fish | Jul 2007 | A1 |
20070185917 | Prahlad et al. | Aug 2007 | A1 |
20070198273 | Hennecke | Aug 2007 | A1 |
20070219777 | Chu et al. | Sep 2007 | A1 |
20070282595 | Tunning et al. | Dec 2007 | A1 |
20080015864 | Ross et al. | Jan 2008 | A1 |
20080021708 | Bennett et al. | Jan 2008 | A1 |
20080034032 | Healey et al. | Feb 2008 | A1 |
20080052063 | Bennett et al. | Feb 2008 | A1 |
20080120112 | Jordan et al. | May 2008 | A1 |
20080129520 | Lee | Jun 2008 | A1 |
20080140657 | Azvine et al. | Jun 2008 | A1 |
20080221880 | Cerra et al. | Sep 2008 | A1 |
20080221903 | Kanevsky et al. | Sep 2008 | A1 |
20080228496 | Yu et al. | Sep 2008 | A1 |
20080247519 | Abella et al. | Oct 2008 | A1 |
20080249770 | Kim et al. | Oct 2008 | A1 |
20080300878 | Bennett | Dec 2008 | A1 |
20080312909 | Hermansen et al. | Dec 2008 | A1 |
20090006097 | Etezadi et al. | Jan 2009 | A1 |
20090006100 | Badger et al. | Jan 2009 | A1 |
20090006343 | Platt et al. | Jan 2009 | A1 |
20090030800 | Grois | Jan 2009 | A1 |
20090058823 | Kocienda | Mar 2009 | A1 |
20090076796 | Daraselia | Mar 2009 | A1 |
20090100049 | Cao | Apr 2009 | A1 |
20090112677 | Rhett | Apr 2009 | A1 |
20090150156 | Kennewick et al. | Jun 2009 | A1 |
20090157401 | Bennett | Jun 2009 | A1 |
20090164441 | Cheyer | Jun 2009 | A1 |
20090171664 | Kennewick et al. | Jul 2009 | A1 |
20090290718 | Kahn et al. | Nov 2009 | A1 |
20090299745 | Kennewick et al. | Dec 2009 | A1 |
20090299849 | Cao et al. | Dec 2009 | A1 |
20090306985 | Roberts et al. | Dec 2009 | A1 |
20100005081 | Bennett | Jan 2010 | A1 |
20100023320 | Di Cristo et al. | Jan 2010 | A1 |
20100036660 | Bennett | Feb 2010 | A1 |
20100042400 | Block et al. | Feb 2010 | A1 |
20100088020 | Sano et al. | Apr 2010 | A1 |
20100145700 | Kennewick et al. | Jun 2010 | A1 |
20100204986 | Kennewick et al. | Aug 2010 | A1 |
20100217604 | Baldwin et al. | Aug 2010 | A1 |
20100228540 | Bennett | Sep 2010 | A1 |
20100235341 | Bennett | Sep 2010 | A1 |
20100257160 | Cao | Oct 2010 | A1 |
20100277579 | Cho et al. | Nov 2010 | A1 |
20100280983 | Cho et al. | Nov 2010 | A1 |
20100286985 | Kennewick et al. | Nov 2010 | A1 |
20100299142 | Freeman et al. | Nov 2010 | A1 |
20100312547 | van Os et al. | Dec 2010 | A1 |
20100318576 | Kim | Dec 2010 | A1 |
20100332235 | David | Dec 2010 | A1 |
20100332348 | Cao | Dec 2010 | A1 |
20110060807 | Martin et al. | Mar 2011 | A1 |
20110082688 | Kim et al. | Apr 2011 | A1 |
20110112827 | Kennewick et al. | May 2011 | A1 |
20110112921 | Kennewick et al. | May 2011 | A1 |
20110119049 | Ylonen | May 2011 | A1 |
20110125540 | Jang et al. | May 2011 | A1 |
20110130958 | Stahl et al. | Jun 2011 | A1 |
20110131036 | Di Cristo et al. | Jun 2011 | A1 |
20110131045 | Cristo et al. | Jun 2011 | A1 |
20110144999 | Jang et al. | Jun 2011 | A1 |
20110161076 | Davis et al. | Jun 2011 | A1 |
20110175810 | Markovic et al. | Jul 2011 | A1 |
20110184730 | LeBeau et al. | Jul 2011 | A1 |
20110218855 | Cao et al. | Sep 2011 | A1 |
20110231182 | Weider et al. | Sep 2011 | A1 |
20110231188 | Kennewick et al. | Sep 2011 | A1 |
20110264643 | Cao | Oct 2011 | A1 |
20110279368 | Klein et al. | Nov 2011 | A1 |
20110306426 | Novak et al. | Dec 2011 | A1 |
20120002820 | Leichter | Jan 2012 | A1 |
20120016678 | Gruber et al. | Jan 2012 | A1 |
20120020490 | Leichter | Jan 2012 | A1 |
20120022787 | LeBeau et al. | Jan 2012 | A1 |
20120022857 | Baldwin et al. | Jan 2012 | A1 |
20120022860 | Lloyd et al. | Jan 2012 | A1 |
20120022868 | LeBeau et al. | Jan 2012 | A1 |
20120022869 | Lloyd et al. | Jan 2012 | A1 |
20120022870 | Kristjansson et al. | Jan 2012 | A1 |
20120022874 | Lloyd et al. | Jan 2012 | A1 |
20120022876 | LeBeau et al. | Jan 2012 | A1 |
20120023088 | Cheng et al. | Jan 2012 | A1 |
20120034904 | LeBeau et al. | Feb 2012 | A1 |
20120035908 | LeBeau et al. | Feb 2012 | A1 |
20120035924 | Jitkoff et al. | Feb 2012 | A1 |
20120035931 | LeBeau et al. | Feb 2012 | A1 |
20120035932 | Jitkoff et al. | Feb 2012 | A1 |
20120042343 | Laligand et al. | Feb 2012 | A1 |
20120271676 | Aravamudan et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
3837590 | May 1990 | DE |
EP 1909263 | Feb 2006 | DE |
198 41 541 | Dec 2007 | DE |
0138061 | Sep 1984 | EP |
0138061 | Apr 1985 | EP |
0218859 | Apr 1987 | EP |
0262938 | Apr 1988 | EP |
0293259 | Nov 1988 | EP |
0299572 | Jan 1989 | EP |
0313975 | May 1989 | EP |
0314908 | May 1989 | EP |
0327408 | Aug 1989 | EP |
0389271 | Sep 1990 | EP |
0411675 | Feb 1991 | EP |
0559349 | Sep 1993 | EP |
0559349 | Sep 1993 | EP |
0570660 | Nov 1993 | EP |
1245023 | Oct 2002 | EP |
06 019965 | Jan 1994 | JP |
2001 125896 | May 2001 | JP |
2002 024212 | Jan 2002 | JP |
2003517158 | May 2003 | JP |
2009 036999 | Feb 2009 | JP |
10-0776800 | Nov 2007 | KR |
10-0810500 | Mar 2008 | KR |
10 2008 109322 | Dec 2008 | KR |
10 2009 086805 | Aug 2009 | KR |
10-0920267 | Oct 2009 | KR |
10 2011 0113414 | Oct 2011 | KR |
2006133571 | Dec 2006 | WO |
WO 2006129967 | Dec 2006 | WO |
WO 2011088053 | Jul 2011 | WO |
Entry |
---|
Jose P. G. Mahedero, Pedro Cano, Alvaro Martinez. 2005. Natural language processing of lyrics. In Proceedings of the 13th annual ACM international conference on Multimedia (Multimedia '05). ACM, New York, NY, USA, 475-478. |
Glass, J., et al., “Multilingual Spoken-Language Understanding in the MIT Voyager System,” Aug. 1995, http://groups.csail.mit.edu/sls/publications/1995/speechcomm95-voyager.pdf, 29 pages. |
Goddeau, D., et al., “A Form-Based Dialogue Manager for Spoken Language Applications,” Oct. 1996, http://phasedance.com/pdf/icslp96.pdf, 4 pages. |
Goddeau, D., et al., “Galaxy: A Human-Language Interface to On-Line Travel Information,” 1994 International Conference on Spoken Language Processing, Sep. 18-22, 1994, Pacific Convention Plaza Yokohama, Japan, 6 pages. |
Meng, H., et al., “Wheels: A Conversational System in the Automobile Classified Domain,” Oct. 1996, httphttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3022, 4 pages. |
Phoenix Solutions, Inc. v. West Interactive Corp., Document 40, Declaration of Christopher Schmandt Regarding the MIT Galaxy System dated Jul. 2, 2010, 162 pages. |
Seneff, S., et al., “A New Restaurant Guide Conversational System: Issues in Rapid Prototyping for Specialized Domains,” Oct. 1996, citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16...rep . . . , 4 pages. |
Vlingo InCar, “Distracted Driving Solution with Vlingo InCar,” 2:38 minute video uploaded to YouTube by Vlingo Voice on Oct. 6, 2010, http://www.youtube.com/watch?v=Vqs8XfXxgz4, 2 pages. |
Zue, V., “Conversational Interfaces: Advances and Challenges,” Sep. 1997, http://www.cs.cmu.edu/˜dod/papers/zue97.pdf, 10 pages. |
Zue, V. W., “Toward Systems that Understand Spoken Language,” Feb. 1994, ARPA Strategic Computing Institute, © 1994 IEEE, 9 pages. |
Acero, A., et al., “Environmental Robustness in Automatic Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages. |
Acero, A., et al., “Robust Speech Recognition by Normalization of the Acoustic Space,” International Conference on Acoustics, Speech, and Signal Processing, 1991, 4 pages. |
Ahlbom, G., et al., “Modeling Spectral Speech Transitions Using Temporal Decomposition Techniques,” IEEE International Conference of Acoustics, Speech, and Signal Processing (ICASSP'87), Apr. 1987, vol. 12, 4 pages. |
Aikawa, K., “Speech Recognition Using Time-Warping Neural Networks,” Proceedings of the 1991 IEEE Workshop on Neural Networks for Signal Processing, Sep. 30 to Oct. 1, 1991, 10 pages. |
Anastasakos, A., et al., “Duration Modeling in Large Vocabulary Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages. |
Anderson, R. H., “Syntax-Directed Recognition of Hand-Printed Two-Dimensional Mathematics,” In Proceedings of Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, © 1967, 12 pages. |
Ansari, R., et al., “Pitch Modification of Speech using a Low-Sensitivity Inverse Filter Approach,” IEEE Signal Processing Letters, vol. 5, No. 3, Mar. 1998, 3 pages. |
Anthony, N. J., et al., “Supervised Adaption for Signature Verification System,” Jun. 1, 1978, IBM Technical Disclosure, 3 pages. |
Apple Computer, “Guide Maker User's Guide,” © Apple Computer, Inc., Apr. 27, 1994, 8 pages. |
Apple Computer, “Introduction to Apple Guide,” © Apple Computer, Inc., Apr. 28, 1994, 20 pages. |
Asanović, K., et al., “Experimental Determination of Precision Requirements for Back-Propagation Training of Artificial Neural Networks,” In Proceedings of the 2nd International Conference of Microelectronics for Neural Networks, 1991, www.ICSI.Berkeley.EDU, 7 pages. |
Atal, B. S., “Efficient Coding of LPC Parameters by Temporal Decomposition,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'83), Apr. 1983, 4 pages. |
Bahl, L. R., et al., “Acoustic Markov Models Used in the Tangora Speech Recognition System,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14, 1988, vol. 1, 4 pages. |
Bahl, L. R., et al., “A Maximum Likelihood Approach to Continuous Speech Recognition,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1983, 13 pages. |
Bahl, L. R., et al., “A Tree-Based Statistical Language Model for Natural Language Speech Recognition,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, Issue 7, Jul. 1989, 8 pages. |
Bahl, L. R., et al., “Large Vocabulary Natural Language Continuous Speech Recognition,” In Proceedings of 1989 International Conference on Acoustics, Speech, and Signal Processing, May 23-26, 1989, vol. 1, 6 pages. |
Bahl, L. R., et al, “Multonic Markov Word Models for Large Vocabulary Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 1, No. 3, Jul. 1993, 11 pages. |
Bahl, L. R., et al,, “Speech Recognition with Continuous-Parameter Hidden Markov Models,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14, 1988, vol. 1, 8 pages. |
Banbrook, M., “Nonlinear Analysis of Speech from a Synthesis Perspective,” A thesis submitted for the degree of Doctor of Philosophy, The University of Edinburgh, Oct. 15, 1996, 35 pages. |
Belaid, A., et al., “A Syntactic Approach for Handwritten Mathematical Formula Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, No. 1, Jan. 1984, 7 pages. |
Bellegarda, E. J., et al., “On-Line Handwriting Recognition Using Statistical Mixtures,” Advances in Handwriting and Drawings: A Multidisciplinary Approach, Europia, 6th International IGS Conference on Handwriting and Drawing, Paris—France, Jul. 1993, 11 pages. |
Bellegarda, J. R., “A Latent Semantic Analysis Framework for Large-Span Language Modeling,” 5th European Conference on Speech, Communication and Technology, (EUROSPEECH'97), Sep. 22-25, 1997, 4 pages. |
Bellegarda, J. R., “A Multispan Language Modeling Framework for Large Vocabulary Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 6, No. 5, Sep. 1998, 12 pages. |
Bellegarda, J. R., et al., “A Novel Word Clustering Algorithm Based on Latent Semantic Analysis,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, 4 pages. |
Bellegarda, J. R., et al., “Experiments Using Data Augmentation for Speaker Adaptation,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages. |
Bellegarda, J. R., “Exploiting Both Local and Global Constraints for Multi-Span Statistical Language Modeling,” Proceeding of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'98), vol. 2, May 12-15, 1998, 5 pages. |
Bellegarda, J. R., “Exploiting Latent Semantic Information in Statistical Language Modeling,” In Proceedings of the IEEE, Aug. 2000, vol. 88, No. 8, 18 pages. |
Bellegarda, J. R., “Interaction-Driven Speech Input—A Data-Driven Approach to the Capture of Both Local and Global Language Constraints,” 1992, 7 pages, available at http://old.sigchi.org/bulletin/1998.2/bellegarda.html. |
Bellegarda, J. R., “Large Vocabulary Speech Recognition with Multispan Statistical Language Models,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 1, Jan. 2000, 9 pages. |
Bellegarda, J. R., et al., “Performance of the IBM Large Vocabulary Continuous Speech Recognition System on the ARPA Wall Street Journal Task,” Signal Processing VII: Theories and Applications, © 1994 European Association for Signal Processing, 4 pages. |
Bellegarda, J. R., et al., “The Metamorphic Algorithm: A Speaker Mapping Approach to Data Augmentation,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 8 pages. |
Black, A. W., et al., “Automatically Clustering Similar Units for Unit Selection in Speech Synthesis,” In Proceedings of Eurospeech 1997, vol. 2, 4 pages. |
Blair, D. C., et al., “An Evaluation of Retrieval Effectiveness for a Full-Text Document-Retrieval System,” Communications of the ACM, vol. 28, No. 3, Mar. 1985, 11 pages. |
Briner, L. L., “Identifying Keywords in Text Data Processing,” In Zelkowitz, Marvin V., Ed, Directions and Challenges,15th Annual Technical Symposium, Jun. 17, 1976, Gaithersbury, Maryland, 7 pages. |
Bulyko, I., et al., “Joint Prosody Prediction and Unit Selection for Concatenative Speech Synthesis,” Electrical Engineering Department, University of Washington, Seattle, 2001, 4 pages. |
Bussey, H. E., et al., “Service Architecture, Prototype Description, and Network Implications of a Personalized Information Grazing Service,” INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Jun. 3-7, 1990, http://slrohall.com/publications/, 8 pages. |
Buzo, A., et al., “Speech Coding Based Upon Vector Quantization,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. Assp-28, No. 5, Oct. 1980, 13 pages. |
Caminero-Gil, J., et al., “Data-Driven Discourse Modeling for Semantic Interpretation,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, May 7-10, 1996, 6 pages. |
Cawley, G. C., “The Application of Neural Networks to Phonetic Modelling,” PhD Thesis, University of Essex, Mar. 1996, 13 pages. |
Chang, S., et al., “A Segment-based Speech Recognition System for Isolated Mandarin Syllables,” Proceedings TENCON '93, IEEE Region 10 conference on Computer, Communication, Control and Power Engineering, Oct. 19-21, 1993, vol. 3, 6 pages. |
Conklin, J., “Hypertext: An Introduction and Survey,” Computer Magazine, Sep. 1987, 25 pages. |
Connolly, F. T., et al., “Fast Algorithms for Complex Matrix Multiplication Using Surrogates,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1989, vol. 37, No. 6, 13 pages. |
Deerwester, S., et al., “Indexing by Latent Semantic Analysis,” Journal of the American Society for Information Science, vol. 41, No. 6, Sep. 1990, 19 pages. |
Deller, Jr., J. R., et al., “Discrete-Time Processing of Speech Signals,” © 1987 Prentice Hall, ISBN: 0-02-328301-7, 14 pages. |
Digital Equipment Corporation, “Open VMS Software Overview,” Dec. 1995, software manual, 159 pages. |
Donovan, R. E., “A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers,” 2001, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6398, 4 pages. |
Frisse, M. E., “Searching for Information in a Hypertext Medical Handbook,” Communications of the ACM, vol. 31, No. 7, Jul. 1988, 8 pages. |
Goldberg, D., et al., “Using Collaborative Filtering to Weave an Information Tapestry,” Communications of the ACM, vol. 35, No. 12, Dec. 1992, 10 pages. |
Gorin, A. L., et al., “On Adaptive Acquisition of Language,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), vol. 1, Apr. 3-6, 1990, 5 pages. |
Gotoh, Y., et al., “Document Space Models Using Latent Semantic Analysis,” In Proceedings of Eurospeech, 1997, 4 pages. |
Gray, R. M., “Vector Quantization,” IEEE ASSP Magazine, Apr. 1984, 26 pages. |
Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” In Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, 34 pages. |
Helm, R., et al., “Building Visual Language Parsers,” In Proceedings of CHI'91 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 8 pages. |
Hermansky, H., “Perceptual Linear Predictive (PLP) Analysis of Speech,” Journal of the Acoustical Society of America, vol. 87, No. 4, Apr. 1990, 15 pages. |
Hermansky, H., “Recognition of Speech in Additive and Convolutional Noise Based on Rasta Spectral Processing,” In proceedings of IEEE International Conference on Acoustics, speech, and Signal Processing (ICASSP'93), Apr. 27-30, 1993, 4 pages. |
Hoehfeld M., et al., “Learning with Limited Numerical Precision Using the Cascade-Correlation Algorithm,” IEEE Transactions on Neural Networks, vol. 3, No. 4, Jul. 1992, 18 pages. |
Holmes, J. N., “Speech Synthesis and Recognition—Stochastic Models for Word Recognition,” Speech Synthesis and Recognition, Published by Chapman & Hall, London, ISBN 0 412 53430 4, © 1998 J. N. Holmes, 7 pages. |
Hon, H.W., et al., “CMU Robust Vocabulary-Independent Speech Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP—91), Apr. 14-17, 1991, 4 pages. |
IBM Technical Disclosure Bulletin, “Speech Editor,” vol. 29, No. 10, Mar. 10, 1987, 3 pages. |
IBM Technical Disclosure Bulletin, “Integrated Audio-Graphics User Interface,” vol. 33, No. 11, Apr. 1991, 4 pages. |
IBM Technical Disclosure Bulletin, “Speech Recognition with Hidden Markov Models of Speech Waveforms,” vol. 34, No. 1, Jun. 1991, 10 pages. |
Iowegian International, “FIR Filter Properties,” dspGuro, Digital Signal Processing Central, http://www.dspguru.com/dsp/taqs/fir/properties, downloaded on Jul. 28, 2010, 6 pages. |
Jacobs, P. S., et al., “Scisor: Extracting Information from On-Line News,” Communications of the ACM, vol. 33, No. 11, Nov. 1990, 10 pages. |
Jelinek, F., “Self-Organized Language Modeling for Speech Recognition,” Readings in Speech Recognition, edited by Alex Waibel and Kai-Fu Lee, May 15, 1990, © 1990 Morgan Kaufmann Publishers, Inc., ISBN: 1-55860-124-4, 63 pages. |
Jennings, A., et al., “A Personal News Service Based on a User Model Neural Network,” IEICE Transactions on Information and Systems, vol. E75-D, No. 2, Mar. 1992, Tokyo, JP, 12 pages. |
Ji, T., et al., “A Method for Chinese Syllables Recognition based upon Sub-syllable Hidden Markov Model,” 1994 International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 4 pages. |
Jones, J., “Speech Recognition for Cyclone,” Apple Computer, Inc., E.R.S., Revision 2.9, Sep. 10, 1992, 93 pages. |
Katz, S. M., “Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35, No. 3, Mar. 1987, 3 pages. |
Kitano, H., “PhiDM-Dialog, An Experimental Speech-to-Speech Dialog Translation System,” Jun. 1991 Computer, vol. 24, No. 6, 13 pages. |
Klabbers, E., et al., “Reducing Audible Spectral Discontinuities,” IEEE Transactions on Speech and Audio Processing, vol. 9, No. 1, Jan. 2001, 13 pages. |
Klatt, D. H., “Linguistic Uses of Segmental Duration in English: Acoustic and Perpetual Evidence,” Journal of the Acoustical Society of America, vol. 59, No. 5, May 1976, 16 pages. |
Kominek, J., et al., “Impact of Durational Outlier Removal from Unit Selection Catalogs,” 5th ISCA Speech Synthesis Workshop, Jun. 14-16, 2004, 6 pages. |
Kubala, F., et al., “Speaker Adaptation from a Speaker-Independent Training Corpus,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages. |
Kubala, F., et al., “The Hub and Spoke Paradigm for CSR Evaluation,” Proceedings of the Spoken Language Technology Workshop, Mar. 6-8, 1994, 9 pages. |
Lee, K.F., “Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The Sphinx System,” Apr. 18, 1988, Partial fulfillment of the requirements for the degree of Doctor of Philosophy, Computer Science Department, Carnegie Mellon University, 195 pages. |
Lee, L., et al., “A Real-Time Mandarin Dictation Machine for Chinese Language with Unlimited Texts and Very Large Vocabulary,” International Conference on Acoustics, Speech and Signal Processing, vol. 1, Apr. 3-6, 1990, 5 pages. |
Lee, L, et al., “Golden Mandarin(II)—An Improved Single-Chip Real-Time Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary,” 0-7803-0946-4/93 © 1993IEEE, 4 pages. |
Lee, L, et al., “Golden Mandarin(II)—An Intelligent Mandarin Dictation Machine for Chinese Character Input with Adaptation/Learning Functions,” International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 5 pages. |
Lee, L., et al., “System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters,” International Conference on Computer Processing of Chinese & Oriental Languages, vol. 5, Nos. 3 & 4, Nov. 1991, 16 pages. |
Lin, C.H., et al., “A New Framework for Recognition of Mandarin Syllables With Tones Using Sub-syllabic Unites,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP—93), Apr. 27-30, 1993, 4 pages. |
Linde, Y., et al., “An Algorithm for Vector Quantizer Design,” IEEE Transactions on Communications, vol. 28, No. 1, Jan. 1980, 12 pages. |
Liu, F.H., et al., “Efficient Joint Compensation of Speech for the Effects of Additive Noise and Linear Filtering,” IEEE International Conference of Acoustics, Speech, and Signal Processing, ICASSP—92, Mar. 23-26, 1992, 4 pages. |
Logan, B., “Mel Frequency Cepstral Coefficients for Music Modeling,” In International Symposium on Music Information Retrieval, 2000, 2 pages. |
Lowerre, B. T., “The-HARPY Speech Recognition System,” Doctoral Dissertation, Department of Computer Science, Carnegie Mellon University, Apr. 1976, 20 pages. |
Maghbouleh, A., “An Empirical Comparison of Automatic Decision Tree and Linear Regression Models for Vowel Durations,” Revised version of a paper presented at the Computational Phonology in Speech Technology workshop, 1996 annual meeting of the Association for Computational Linguistics in Santa Cruz, California, 7 pages. |
Markel, J. D., et al., “Linear Prediction of Speech,” Springer-Verlag, Berlin Heidelberg New York 1976, 12 pages. |
Morgan, B., “Business Objects,” (Business Objects for Windows) Business Objects Inc., DBMS Sep. 1992, vol. 5, No. 10, 3 pages. |
Mountford, S. J., et al., “Talking and Listening to Computers,” The Art of Human-Computer Interface Design, Copyright © 1990 Apple Computer, Inc. Addison-Wesley Publishing Company, Inc., 17 pages. |
Murty, K. S. R., et al., “Combining Evidence from Residual Phase and MFCC Features for Speaker Recognition,” IEEE Signal Processing Letters, vol. 13, No. 1, Jan. 2006, 4 pages. |
Murveit H. et al., “Integrating Natural Language Constraints into HMM-based Speech Recognition,” 1990 International Conference on Acoustics, Speech, and Signal Processing, Apr. 3-6, 1990, 5 pages. |
Nakagawa, S., et al., “Speaker Recognition by Combining MFCC and Phase Information,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Mar. 14-19, 2010, 4 pages. |
Niesler, T. R., et al., “A Variable-Length Category-Based N-Gram Language Model,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, May 7-10, 1996, 6 pages. |
Papadimitriou, C. H., et al., “Latent Semantic Indexing: A Probabilistic Analysis,” Nov. 14, 1997, http://citeseerx.ist.psu.edu/messages/downloadsexceeded.html, 21 pages. |
Parsons, T. W., “Voice and Speech Processing,” Linguistics and Technical Fundamentals, Articulatory Phonetics and Phonemics, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 5 pages. |
Parsons, T. W., “Voice and Speech Processing,” Pitch and Formant Estimation, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 15 pages. |
Picone, J., “Continuous Speech Recognition Using Hidden Markov Models,” IEEE ASSP Magazine, vol. 7, No. 3, Jul. 1990, 16 pages. |
Rabiner, L. R., et al., “Fundamental of Speech Recognition,” © 1993 AT&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 17 pages. |
Rabiner, L. R., et al., “Note on the Properties of a Vector Quantizer for LPC Coefficients,” The Bell System Technical Journal, vol. 62, No. 8, Oct. 1983, 9 pages. |
Ratcliffe, M., “ClearAccess 2.0 allows SQL searches off-line,” (Structured Query Language), ClearAcess Corp., MacWeek Nov. 16, 1992, vol. 6, No. 41, 2 pages. |
Remde, J. R., et al., “SuperBook: An Automatic Tool for Information Exploration—Hypertext?,” In Proceedings of Hypertext'87 papers, Nov. 13-15, 1987, 14 pages. |
Reynolds, C. F., “On-Line Reviews: A New Application of the HICOM Conferencing System,” IEE Colloquium on Human Factors in Electronic Mail and Conferencing Systems, Feb. 3, 1989, 4 pages. |
Rigoll, G., “Speaker Adaptation for Large Vocabulary Speech Recognition Systems Using Speaker Markov Models,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'89), May 23-26, 1989, 4 pages. |
Riley, M. D., “Tree-Based Modelling of Segmental Durations,” Talking Machines Theories, Models, and Designs, 1992 © Elsevier Science Publishers B.V., North-Holland, ISBN: 08-444-89115.3, 15 pages. |
Rivoira, S., et al., “Syntax and Semantics in a Word-Sequence Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'79), Apr. 1979, 5 pages. |
Rosenfeld, R., “A Maximum Entropy Approach to Adaptive Statistical Language Modelling,” Computer Speech and Language, vol. 10, No. 3, Jul. 1996, 25 pages. |
Roszkiewicz, A., “Extending your Apple,” Back Talk—Lip Service, A+ Magazine, The Independent Guide for Apple Computing, vol. 2, No. 2, Feb. 1984, 5 pages. |
Sakoe, H., et al., “Dynamic Programming Algorithm Optimization for Spoken Word Recognition,” IEEE Transactins on Acoustics, Speech, and Signal Processing, Feb. 1978, vol. ASSP-26 No. 1, 8 pages. |
Salton, G., et al., “On the Application of Syntactic Methodologies in Automatic Text Analysis,” Information Processing and Management, vol. 26, No. 1, Great Britain 1990, 22 pages. |
Savoy, J., “Searching Information in Hypertext Systems Using Multiple Sources of Evidence,” International Journal of Man-Machine Studies, vol. 38, No. 6, Jun. 1993, 15 pages. |
Scagliola, C., “Language Models and Search Algorithms for Real-Time Speech Recognition,” International Journal of Man-Machine Studies, vol. 22, No. 5, 1985, 25 pages. |
Schmandt, C., et al., “Augmenting a Window System with Speech Input,” IEEE Computer Society, Computer Aug. 1990, vol. 23, No. 8, 8 pages. |
Schütze, H., “Dimensions of Meaning,” Proceedings of Supercomputing'92 Conference, Nov. 16-20, 1992, 10 pages. |
Sheth B., et al., “Evolving Agents for Personalized Information Filtering,” In Proceedings of the Ninth Conference on Artificial Intelligence for Applications, Mar. 1-5, 1993, 9 pages. |
Shikano, K., et al., “Speaker Adaptation Through Vector Quantization,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'86), vol. 11, Apr. 1986, 4 pages. |
Sigurdsson, S., et al., “Mel Frequency Cepstral Coefficients: An Evaluation of Robustness of MP3 Encoded Music,” In Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR), 2006, 4 pages. |
Silverman, K. E. A., et al., “Using a Sigmoid Transformation for Improved Modeling of Phoneme Duration,” Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 15-19, 1999, 5 pages. |
Tenenbaum, A.M., et al., “Data Structure Using Pascal,” 1981 Prentice-Hall, Inc., 34 pages. |
Tsai, W.H., et al., “Attributed Grammar—A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-10, No. 12, Dec. 1980, 13 pages. |
Udell, J., “Computer Telephony,” Byte, vol. 19, No. 7, Jul. 1, 1994, 9 pages. |
van Santen, J. P. H., “Contextual Effects on Vowel Duration,” Journal Speech Communication, vol. 11, No. 6, Dec. 1992, 34 pages. |
Vepa, J., et al., “New Objective Distance Measures for Spectral Discontinuities in Concatenative Speech Synthesis,” In Proceedings of the IEEE 2002 Workshop on Speech Synthesis, 4 pages. |
Verschelde, J., “MATLAB Lecture 8. Special Matrices in MATLAB,” Nov. 23, 2005, UIC Dept. of Math., Stat.. & C.S., MCS 320, Introduction to Symbolic Computation, 4 pages. |
Vingron, M. “Near-Optimal Sequence Alignment,” Deutsches Krebsforschungszentrum (DKFZ), Abteilung Theoretische Bioinformatik, Heidelberg, Germany, Jun. 1996, 20 pages. |
Werner, S., et al., “Prosodic Aspects of Speech,” Université de Lausanne, Switzerland, 1994, Fundamentals of Speech Synthesis and Speech Recognition: Basic Concepts, State of the Art, and Future Challenges, 18 pages. |
Wikipedia, “Mel Scale,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Mel—scale, 2 pages. |
Wikipedia, “Minimum Phase,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Minimum—phase, 8 pages. |
Wolff, M., “Poststructuralism and the ARTFUL Database: Some Theoretical Considerations,” Information Technology and Libraries, vol. 13, No. 1, Mar. 1994, 10 pages. |
Wu, M., “Digital Speech Processing and Coding,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture-2 course presentation, University of Maryland, College Park, 8 pages. |
Wu, M., “Speech Recognition, Synthesis, and H.C.I.,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture-3 course presentation, University of Maryland, College Park, 11 pages. |
Wyle, M. F., “A Wide Area Network Information Filter,” In Proceedings of First International Conference on Artificial Intelligence on Wall Street, Oct. 9-11, 1991, 6 pages. |
Yankelovich, N., et al., “Intermedia: The Concept and the Construction of a Seamless Information Environment,” Computer Magazine, Jan. 1988, © 1988 IEEE, 16 pages. |
Yoon, K., et al., “Letter-to-Sound Rules for Korean,” Department of Linguistics, The Ohio State University, 2002, 4 pages. |
Zhao, Y., “An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 15 pages. |
Zovato, E., et al., “Towards Emotional Speech Synthesis: A Rule Based Approach,” 2 pages. |
International Search Report dated Nov. 9, 1994, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 8 pages (Robert Don Strong). |
International Preliminary Examination Report dated Mar. 1, 1995, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 5 pages (Robert Don Strong). |
International Preliminary Examination Report dated Apr. 10, 1995, received in International Application No. PCT/US1993/12637, which corresponds to U.S. Appl. No. 07/999,354, 7 pages (Alejandro Acero). |
International Search Report dated Feb. 8, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 7 pages (Yen-Lu Chow). |
International Preliminary Examination Report dated Feb. 28, 1996, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow). |
Written Opinion dated Aug. 21, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow). |
International Search Report dated Nov. 8, 1995, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 6 pages (Peter V. De Souza). |
International Preliminary Examination Report dated Oct. 9, 1996, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 4 pages (Peter V. De Souza). |
Alfred App, 2011, http://www.alfredapp.com/, 5 pages. |
Ambite, JL., et al., “Design and Implementation of the CALO Query Manager,” Copyright © 2006, American Association for Artificial Intelligence, (www.aaai.org), 8 pages. |
Ambite, JL., et al., “Integration of Heterogeneous Knowledge Sources in the CALO Query Manager,” 2005, The 4th International Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE), Agia Napa, Cyprus, ttp://www.isi.edu/people/ambite/publications/integration—heterogeneous—knowledge—sources—calo—query—manager, 18 pages. |
Belvin, R. et al., “Development of the HRL Route Navigation Dialogue System,” 2001, In Proceedings of the First International Conference on Human Language Technology Research, Paper, Copyright © 2001 HRL Laboratories, LLC, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.6538, 5 pages. |
Berry, P. M., et al. “PTIME: Personalized Assistance for Calendaring,” ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Publication date: Jul. 2011, 40:1-22, 22 pages. |
Butcher, M., “EVI arrives in town to go toe-to-toe with Siri,” Jan. 23, 2012, http://techcrunch.com/2012/01/23/evi-arrives-in-town-to-go-toe-to-toe-with-siri/, 2 pages. |
Chen, Y., “Multimedia Siri Finds and Plays Whatever You Ask for,” Feb. 9, 2012, http://www.psfk.com/2012/02/multimedia-siri.html, 9 pages. |
Cheyer, A. et al., “Spoken Language and Multimodal Applications for Electronic Realties,” © Springer-Verlag London Ltd, Virtual Reality 1999, 3:1-15, 15 pages. |
Cutkosky, M. R. et al., “PACT: An Experiment in Integrating Concurrent Engineering Systems,” Journal, Computer, vol. 26 Issue 1, Jan. 1993, IEEE Computer Society Press Los Alamitos, CA, USA, http://dl.acm.org/citation.cfm?id=165320, 14 pages. |
Elio, R. et al., “On Abstract Task Models and Conversation Policies,” http://webdocs.cs.ualberta.ca/˜ree/publications/papers2/ATS.AA99.pdf, 10 pages. |
Ericsson, S. et al., “Software illustrating a unified approach to multimodality and multilinguality in the in-home domain,” Dec. 22, 2006, Talk and Look: Tools for Ambient Linguistic Knowledge, http://www.talk-project.eurice.eu/fileadmin/talk/publications—public/deliverables—public/D1—6.pdf, 127 pages. |
Evi, “Meet Evi: the one mobile app that provides solutions for your everyday problems,” Feb. 8, 2012, http://www.evi.com/, 3 pages. |
Feigenbaum, E., et al., “Computer-assisted Semantic Annotation of Scientific Life Works,” 2007, http://tomgruber.org/writing/stanford-cs300.pdf, 22 pages. |
Gannes, L., “Alfred App Gives Personalized Restaurant Recommendations,” allthingsd.com, Jul. 18, 2011, http://allthingsd.conn/20110718/alfred-app-gives-personalized-restaurant-recommendations!, 3 pages. |
Gautier, P. O., et al. “Generating Explanations of Device Behavior Using Compositional Modeling and Causal Ordering,” 1993, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8394, 9 pages. |
Gervasio, M. T., et al., Active Preference Learning for Personalized Calendar Scheduling Assistancae, Copyright © 2005, http://www.ai.sri.com/˜gervasio/pubs/gervasio-iui05.pdf, 8 pages. |
Glass, A., “Explaining Preference Learning,” 2006, http://cs229.stanford.edu/proj2006/Glass-ExplainingPreferenceLearning.pdf, 5 pages. |
Gruber, T. R., et al., “An Ontology for Engineering Mathematics,” In Jon Doyle, Piero Torasso, & Erik Sandewall, Eds., Fourth International Conference on Principles of Knowledge Representation and Reasoning, Gustav Stresemann Institut, Bonn, Germany, Morgan Kaufmann, 1994, http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html, 22 pages. |
Gruber, T. R., “A Translation Approach to Portable Ontology Specifications,” Knowledge Systems Laboratory, Stanford University, Sep. 1992, Technical Report KSL 92-71, Revised Apr. 1993, 27 pages. |
Gruber, T. R., “Automated Knowledge Acquisition for Strategic Knowledge,” Knowledge Systems Laboratory, Machine Learning, 4, 293-336 (1989), 44 pages. |
Gruber, T. R., “(Avoiding) the Travesty of the Commons,” Presentation at NPUC 2006, New Paradigms for User Computing, IBM Almaden Research Center, Jul. 24, 2006. http://tomgruber.org/writing/avoiding-travestry.htm, 52 pages. |
Gruber, T. R., “Big Think Small Screen: How semantic computing in the cloud will revolutionize the consumer experience on the phone,” Keynote presentation at Web 3.0 conference, Jan. 27, 2010, http://tomgruber.org/writing/web30jan2010.htm, 41 pages. |
Gruber, T. R., “Collaborating around Shared Content on the WWW,” W3C Workshop on WWW and Collaboration, Cambridge, MA, Sep. 11, 1995, http://www.w3.org/Collaboration/Workshop/Proceedings/P9.html, 1 page. |
Gruber, T. R., “Collective Knowledge Systems: Where the Social Web meets the Semantic Web,” Web Semantics: Science, Services and Agents on the World Wide Web (2007), doi:10.1016/j.websem.2007.11.011, keynote presentation given at the 5th International Semantic Web Conference, Nov. 7, 2006, 19 pages. |
Gruber, T. R., “Where the Social Web meets the Semantic Web,” Presentation at the 5th International Semantic Web Conference, Nov. 7, 2006, 38 pages. |
Gruber, T. R., “Despite our Best Efforts, Ontologies are not the Problem,” AAAI Spring Symposium, Mar. 2008, http://tomgruber.org/writing/aaai-ss08.htm, 40 pages. |
Gruber, T. R., “Enterprise Collaboration Management with Intraspect,” Intraspect Software, Inc., Instraspect Technical White Paper Jul. 2001, 24 pages. |
Gruber, T. R., “Every ontology is a treaty—a social agreement—among people with some common motive in sharing,” Interview by Dr. Miltiadis D. Lytras, Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, Issue 3, 2004, http://www.sigsemis.org 1, 5 pages. |
Gruber, T. R., et al., “Generative Design Rationale: Beyond the Record and Replay Paradigm,” Knowledge Systems Laboratory, Stanford University, Dec. 1991, Technical Report KSL 92-59, Updated Feb. 1993, 24 pages. |
Gruber, T. R., “Helping Organizations Collaborate, Communicate, and Learn,” Presentation to NASA Ames Research, Mountain View, CA, Mar. 2003, http://tomgruber.org/writing/organizational-intelligence-talk.htm, 30 pages. |
Gruber, T. R., “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience,” Presentation at Semantic Technologies conference (SemTech08), May 20, 2008, http://tomgruber.org/writing.htm, 40 pages. |
Gruber, T. R., Interactive Acquisition of Justifications: Learning “Why” by Being Told “What” Knowledge Systems Laboratory, Stanford University, Oct. 1990, Technical Report KSL 91-17, Revised Feb. 1991, 24 pages. |
Gruber, T. R., “It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing,” (c) 2000, 2003, http://www.cidoc-crm.org/docs/symposium—presentations/gruber—cidoc-ontology-2003.pdf, 21 pages. |
Gruber, T. R., et al., “Machine-generated Explanations of Engineering Models: A Compositional Modeling Approach,” (1993) In Proc. International Joint Conference on Artificial Intelligence, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.930, 7 pages. |
Gruber, T. R., “2021: Mass Collaboration and the Really New Economy,” TNTY Futures, the newsletter of The Next Twenty Years series, vol. 1, Issue 6, Aug. 2001, http://www.tnty.com/newsletter/futures/archive/v01-05business.html, 5 pages. |
Gruber, T. R., et al.,“NIKE: A National Infrastructure for Knowledge Exchange,” Oct. 1994, http://www.eit.com/papers/nike/nike.html and nike.ps, 10 pages. |
Gruber, T. R., “Ontologies, Web 2.0 and Beyond,” Apr. 24, 2007, Ontology Summit 2007, http://tomgruber.org/writing/ontolog-social-web-keynote.pdf, 17 pages. |
Gruber, T. R., “Ontology of Folksonomy: A Mash-up of Apples and Oranges,” Originally published to the web in 2005, Int'l Journal on Semantic Web & Information Systems, 3(2), 2007, 7 pages. |
Gruber, T. R., “Siri, a Virtual Personal Assistant—Bringing Intelligence to the Interface,” Jun. 16, 2009, Keynote presentation at Semantic Technologies conference, Jun. 2009. http://tomgruber.org/writing/semtech09.htm, 22 pages. |
Gruber, T. R., “TagOntology,” Presentation to Tag Camp, www.tagcamp.org, Oct. 29, 2005, 20 pages. |
Gruber, T. R., et al., “Toward a Knowledge Medium for Collaborative Product Development,” In Artificial Intelligence in Design 1992, from Proceedings of the Second International Conference on Artificial Intelligence in Design, Pittsburgh, USA, Jun. 22-25, 1992, 19 pages. |
Gruber, T. R., “Toward Principles for the Design of Ontologies Used for Knowledge Sharing,” In International Journal Human-Computer Studies 43, p. 907-928, substantial revision of paper presented at the International Workshop on Formal Ontology, Mar. 1993, Padova, Italy, available as Technical Report KSL 93-04, Knowledge Systems Laboratory, Stanford University, further revised Aug. 23, 1993, 23 pages. |
Guzzoni, D., et al., “Active, A Platform for Building Intelligent Operating Rooms,” Surgetica 2007 Computer-Aided Medical Interventions: tools and applications, pp. 191-198, Paris, 2007, Sauramps Médical, http://lsro.epfl.ch/page-68384-en.html, 8 pages. |
Guzzoni, D., et al., “Active, A Tool for Building Intelligent User Interfaces,” ASC 2007, Palma de Mallorca, http://lsro.epfl.ch/page-34241.html, 6 pages. |
Guzzoni, D., et al., “Modeling Human-Agent Interaction with Active Ontologies,” 2007, AAAI Spring Symposium, Interaction Challenges for Intelligent Assistants, Stanford University, Palo Alto, California, 8 pages. |
Hardawar, D., “Driving app Waze builds its own Siri for hands-free voice control,” Feb. 9, 2012, http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/, 4 pages. |
Intraspect Software, “The Intraspect Knowledge Management Solution: Technical Overview,” http://tomgruber.org/writing/intraspect-whitepaper-1998.pdf, 18 pages. |
Julia, L., et al., Un éditeur interactif de tableaux dessinés à main levée (An Interactive Editor for Hand-Sketched Tables), Traitement du Signal 1995, vol. 12, No. 6, 8 pages. No English Translation Available. |
Karp, P. D., “A Generic Knowledge-Base Access Protocol,” May 12, 1994, http://lecture.cs.buu.ac.th/˜f50353/Document/gfp.pdf, 66 pages. |
Lemon, O., et al., “Multithreaded Context for Robust Conversational Interfaces: Context-Sensitive Speech Recognition and Interpretation of Corrective Fragments,” Sep. 2004, ACM Transactions on Computer-Human Interaction, vol. 11, No. 3, 27 pages. |
Leong, L., et al., “CASIS: A Context-Aware Speech Interface System,” IUI'05, Jan. 9-12, 2005, Proceedings of the 10th international conference on Intelligent user interfaces, San Diego, California, USA, 8 pages. |
Lieberman, H., et al., “Out of context: Computer systems that adapt to, and learn from, context,” 2000, IBM Systems Journal, vol. 39, Nos. 3/4, 2000, 16 pages. |
Lin, B., et al., “A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History,” 1999, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.272, 4 pages. |
McGuire, J., et al., “SHADE: Technology for Knowledge-Based Collaborative Engineering,” 1993, Journal of Concurrent Engineering: Applications and Research (CERA), 18 pages. |
Milward, D., et al., “D2.2: Dynamic Multimodal Interface Reconfiguration,” Talk and Look: Tools for Ambient Linguistic Knowledge, Aug. 8, 2006, http://www.ihmc.us/users/nblaylock/Pubs/Files/talk—d2.2.pdf, 69 pages. |
Mitra, P., et al., “A Graph-Oriented Model for Articulation of Ontology Interdependencies,” 2000, http://ilpubs.stanford.edu:8090/442/1/2000-20.pdf, 15 pages. |
Moran, D. B., et al., “Multimodal User Interfaces in the Open Agent Architecture,” Proc. of the 1997 International Conference on Intelligent User Interfaces (IUI97), 8 pages. |
Mozer, M., “An Intelligent Environment Must be Adaptive,” Mar./Apr. 1999, IEEE Intelligent Systems, 3 pages. |
Mühlhäuser, M., “Context Aware Voice User Interfaces for Workflow Support,” Darmstadt 2007, http://tuprints.ulb.tu-darmstadt.de/876/1/PhD.pdf, 254 pages. |
Naone, E., “TR10: Intelligent Software Assistant,” Mar.-Apr. 2009, Technology Review, http://www.technologyreview.com/printer—friendly—article.aspx?id=22117, 2 pages. |
Neches, R., “Enabling Technology for Knowledge Sharing,” Fall 1991, AI Magazine, pp. 37-56, (21 pages). |
Nöth, E., et al., “Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 5, Sep. 2000, 14 pages. |
Rice, J., et al., “Monthly Program: Nov. 14, 1995,” The San Francisco Bay Area Chapter of ACM SIGCHI, http://www.baychi.org/calendar/19951114/, 2 pages. |
Rice, J., et al., “Using the Web Instead of a Window System,” Knowledge Systems Laboratory, Stanford University, http://tomgruber.org/writing/ksl-95-69.pdf, 14 pages. |
Rivlin, Z., et al., “Maestro: Conductor of Multimedia Analysis Technologies,” 1999 SRI International, Communications of the Association for Computing Machinery (CACM), 7 pages. |
Sheth, A., et al., “Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships,” Oct. 13, 2002, Enhancing the Power of the Internet: Studies in Fuzziness and Soft Computing, SpringerVerlag, 38 pages. |
Simonite, T., “One Easy Way to Make Siri Smarter,” Oct. 18, 2011, Technology Review, http:// www.technologyreview.com/printer—friendly—article.aspx?id=38915, 2 pages. |
Stent, A., et al., “The CommandTalk Spoken Dialogue System,” 1999, http://acl.ldc.upenn.edu/P/P99/P99-1024.pdf, 8 pages. |
Tofel, K., et al., “SpeakTolt: A personal assistant for older iPhones, iPads,” Feb. 9, 2012, http://gigaom.com/apple/speaktoit-siri-for-older-iphones-ipads/, 7 pages. |
Tucker, J., “Too lazy to grab your TV remote? Use Siri instead,” Nov. 30, 2011, http://www.engadget.com/2011/11/30/too-lazy-to-grab-your-tv-remote-use-siri-instead/, 8 pages. |
Tur, G., et al., “The CALO Meeting Speech Recognition and Understanding System,” 2008, Proc. IEEE Spoken Language Technology Workshop, 4 pages. |
Tur, G., et al., “The-CALO-Meeting-Assistant System,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 6, Aug. 2010, 11 pages. |
Vlingo, “Vlingo Launches Voice Enablement Application on Apple App Store,” Vlingo press release dated Dec. 3, 2008, 2 pages. |
YouTube, “Knowledge Navigator,” 5:34 minute video uploaded to YouTube by Knownav on Apr. 29, 2008, http://www.youtube.com/watch?v=QRH8eimU—20on Aug. 3, 2006, 1 page. |
YouTube,“Send Text, Listen to and Send E-Mail ‘By Voice’ www.voiceassist.com,” 2:11 minute video uploaded to YouTube by VoiceAssist on Jul 30, 2009, http://www.youtube.com/watch?v=0tEU61nHHA4, 1 page. |
YouTube,“Text'nDrive App Demo—Listen and Reply to your Messages by Voice while Driving!,” 1:57 minute video uploaded to YouTube by TextnDrive on Apr. 27, 2010, http://www.youtube.com/watch?v=WaGfzoHsAMw, 1 page. |
YouTube, “Voice on the Go (BlackBerry),” 2:51 minute video uploaded to YouTube by VoiceOnTheGo on Jul. 27, 2009, http://www.youtube.com/watch?v=pJqpWgQS98w, 1 page. |
International Search Report and Written Opinion dated Nov. 29, 2011, received in International Application No. PCT/US2011/20861, which corresponds to U.S. Appl. No. 12/987,982, 15 pages (Thomas Robert Gruber). |
Bussler, C., et al., “Web Service Execution Environment (WSMX),” Jun. 3, 2005, W3C Member Submission, http://www.w3.org/Submission/WSMX, 29 pages. |
Cheyer, A., “About Adam Cheyer,” Sep. 17, 2012, http://www.adam.cheyer.com/about.html, 2 pages. |
Cheyer, A., “A Perspective on AI & Agent Technologies for SCM,” VerticalNet, 2001 presentation, 22 pages. |
Domingue, J., et al., “Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services,” Jun. 9-10, 2005, position paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, 6 pages. |
Guzzoni, D., et al., “A Unified Platform for Building Intelligent Web Interaction Assistants,” Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Computer Society, 4 pages. |
Martin, D., et al., “The Open Agent Architecture: A Framework for building distributed software systems,” Jan.-Mar. 1999, Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, http://adam.cheyer.com/papers/oaa.pdf, 38 pages. |
Roddy, D., et al., “Communication and Collaboration in a Landscape of B2B eMarketplaces,” VerticalNet Solutions, white paper, Jun. 15, 2000, 24 pages. |
Number | Date | Country | |
---|---|---|---|
20100082329 A1 | Apr 2010 | US |