The disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.
Options for accessing and listening to digital audio in an out-loud setting were limited until in 2003, when SONOS, Inc. filed for one of its first patent applications, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering a media playback system for sale in 2005. The Sonos Wireless HiFi System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a smartphone, tablet, or computer, one can play what he or she wants in any room that has a networked playback device. Additionally, using the controller, for example, different songs can be streamed to each room with a playback device, rooms can be grouped together for synchronous playback, or the same song can be heard in all rooms synchronously.
Given the ever growing interest in digital media, there continues to be a need to develop consumer-accessible technologies to further enhance the listening experience.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:
The drawings are for the purpose of illustrating example embodiments, but it is understood that the inventions are not limited to the arrangements and instrumentality shown in the drawings.
In some examples, one or more playback devices may stream and play audio content according to audio processing algorithms that may be customized for each playback device, or even customized for each transducer of each playback device. For instance, a playback device may include a first woofer, a second woofer, and a tweeter. As such, the playback device may use the audio content to generate a first audio stream for the first woofer, a second audio stream for the second woofer, and a third audio stream for the tweeter. This may further involve operations such as file format conversion, sample rate conversion, bit depth conversion, frequency-dependent amplification or attenuation, volume limiting, phase correction, and the like.
Depending on the capabilities of the playback devices, such audio processing performed by the playback devices may cause undesirable delay time between receiving audio content and playing the audio content, especially in cases where multiple playback devices are playing the audio content in synchrony. This may render the playback devices somewhat unsuited for applications such as lip-syncing audio content with video content, studio recording, and public address and stage monitoring for live performances. One way to alleviate this problem is to process audio using a computing device that is not designated to play the audio content. This may be especially helpful if the computing device has processing capacity superior to that of the playback devices.
In this example, the computing device may receive information about each of the playback devices such as specifications or model designations, frequency or phase response for transducers, volume limits, information regarding the environment or room in which the playback devices are located, or locations of the playback devices relative to each other. Such information may be received via a user-interface of the computing device, from a server associated with the playback devices, or from the one or more playback devices themselves.
The computing device may use this information to determine parameters of the audio processing algorithms. Alternatively, the one or more playback devices may determine the parameters of the audio processing algorithms and provide the parameters to the computing device. In either case, the computing device may generate audio streams according to the respective audio processing algorithms. Lastly, the computing device may send the audio streams to the corresponding playback devices.
When the audio streams are received by the one or more playback devices, the only task remaining might be to convert the received audio streams from digital to analog so that the audio streams may be provided to the respective transducers. In the live audio context, this may reduce the amount of processing time between production of the live audio content and playback of the audio content by the one or more playback devices. Ideally, the processing time might be imperceptible to listeners.
Accordingly, some examples described herein include, among other things, a computing device using information about how one or more playback devices are configured to generate audio streams to be sent to various transducers of the one or more playback devices. Other aspects of the examples will be made apparent in the remainder of the description herein.
In one example, a non-transitory computer readable medium stores instructions that, when executed by a computing device, cause the computing device to perform functions. The functions include receiving data indicating a configuration of one or more playback devices. The one or more playback devices may include one or more transducers. The functions further include, based on the received data, associating each of one or more audio streams respectively with at least one transducer of the one or more transducers. The functions further include generating the one or more audio streams and sending at least one of the generated one or more audio streams to each of the one or more playback devices.
In another example, a method includes receiving data indicating a configuration of one or more playback devices. The one or more playback devices may include one or more transducers. The method further includes, based on the received data, associating each of one or more audio streams respectively with at least one transducer of the one or more transducers. The method further includes generating the one or more audio streams and sending at least one of the generated one or more audio streams to each of the one or more playback devices.
In yet another example, a computing device includes one or more processors and a non-transitory computer readable medium storing instructions that, when executed by the one or more processors, cause the computing device to perform functions. The functions include receiving data indicating a configuration of one or more playback devices. The one or more playback devices may include one or more transducers. The functions further include, based on the received data, associating each of one or more audio streams respectively with at least one transducer of the one or more transducers. The functions further include generating the one or more audio streams and sending at least one of the generated one or more audio streams to each of the one or more playback devices.
It will be understood by one of ordinary skill in the art that this disclosure includes numerous other embodiments. While some examples described herein may refer to functions performed by given actors such as “users” and/or other entities, it should be understood that this is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves.
Further discussions relating to the different components of the example media playback system 100 and how the different components may interact to provide a user with a media experience may be found in the following sections. While discussions herein may generally refer to the example media playback system 100, technologies described herein are not limited to applications within, among other things, the home environment as shown in
a. Example Playback Devices
In one example, the processor 202 may be a clock-driven computing component configured to process input data according to instructions stored in the memory 206. The memory 206 may be a tangible computer readable medium configured to store instructions executable by the processor 202. For instance, the memory 206 may be data storage that can be loaded with one or more of the software components 204 executable by the processor 202 to achieve certain functions. In one example, the functions may involve the playback device 200 retrieving audio data from an audio source or another playback device. In another example, the functions may involve the playback device 200 sending audio data to another device or playback device on a network. In yet another example, the functions may involve pairing of the playback device 200 with one or more playback devices to create a multi-channel audio environment.
Certain functions may involve the playback device 200 synchronizing playback of audio content with one or more other playback devices. During synchronous playback, a listener will preferably not be able to perceive time-delay differences between playback of the audio content by the playback device 200 and the one or more other playback devices. U.S. Pat. No. 8,234,395 entitled, “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is hereby incorporated by reference, provides in more detail some examples for audio playback synchronization among playback devices.
The memory 206 may further be configured to store data associated with the playback device 200, such as one or more zones and/or zone groups the playback device 200 is a part of, audio sources accessible by the playback device 200, or a playback queue that the playback device 200 (or some other playback device) may be associated with. The data may be stored as one or more state variables that are periodically updated and used to describe the state of the playback device 200. The memory 206 may also include the data associated with the state of the other devices of the media system, and shared from time to time among the devices so that one or more of the devices have the most recent data associated with the system. Other embodiments are also possible.
The audio processing components 208 may include one or more digital-to-analog converters (DAC), an audio preprocessing component, an audio enhancement component or a digital signal processor (DSP), and so on. In one embodiment, one or more of the audio processing components 208 may be a subcomponent of the processor 202. In one example, audio content may be processed and/or intentionally altered by the audio processing components 208 to produce audio signals. The produced audio signals may then be provided to the audio amplifier(s) 210 for amplification and playback through speaker(s) 212. Particularly, the audio amplifier(s) 210 may include devices configured to amplify audio signals to a level for driving one or more of the speakers 212. The speaker(s) 212 may include an individual transducer (e.g., a “driver”) or a complete speaker system involving an enclosure with one or more drivers. A particular driver of the speaker(s) 212 may include, for example, a subwoofer (e.g., for low frequencies), a mid-range driver (e.g., for middle frequencies), and/or a tweeter (e.g., for high frequencies). In some cases, each transducer in the one or more speakers 212 may be driven by an individual corresponding audio amplifier of the audio amplifier(s) 210. In addition to producing analog signals for playback by the playback device 200, the audio processing components 208 may be configured to process audio content to be sent to one or more other playback devices for playback.
Audio content to be processed and/or played back by the playback device 200 may be received from an external source, such as via an audio line-in input connection (e.g., an auto-detecting 3.5 mm audio line-in connection) or the network interface 214.
The microphone(s) 220 may include an audio sensor configured to convert detected sounds into electrical signals. The electrical signal may be processed by the audio processing components 208 and/or the processor 202. The microphone(s) 220 may be positioned in one or more orientations at one or more locations on the playback device 200. The microphone(s) 220 may be configured to detect sound within one or more frequency ranges. In one case, one or more of the microphone(s) 220 may be configured to detect sound within a frequency range of audio that the playback device 200 is capable or rendering. In another case, one or more of the microphone(s) 220 may be configured to detect sound within a frequency range audible to humans. Other examples are also possible.
The network interface 214 may be configured to facilitate a data flow between the playback device 200 and one or more other devices on a data network. As such, the playback device 200 may be configured to receive audio content over the data network from one or more other playback devices in communication with the playback device 200, network devices within a local area network, or audio content sources over a wide area network such as the Internet. In one example, the audio content and other signals transmitted and received by the playback device 200 may be transmitted in the form of digital packet data containing an Internet Protocol (IP)-based source address and IP-based destination addresses. In such a case, the network interface 214 may be configured to parse the digital packet data such that the data destined for the playback device 200 is properly received and processed by the playback device 200.
As shown, the network interface 214 may include wireless interface(s) 216 and wired interface(s) 218. The wireless interface(s) 216 may provide network interface functions for the playback device 200 to wirelessly communicate with other devices (e.g., other playback device(s), speaker(s), receiver(s), network device(s), control device(s) within a data network the playback device 200 is associated with) in accordance with a communication protocol (e.g., any wireless standard including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The wired interface(s) 218 may provide network interface functions for the playback device 200 to communicate over a wired connection with other devices in accordance with a communication protocol (e.g., IEEE 802.3). While the network interface 214 shown in
In one example, the playback device 200 and one other playback device may be paired to play two separate audio components of audio content. For instance, playback device 200 may be configured to play a left channel audio component, while the other playback device may be configured to play a right channel audio component, thereby producing or enhancing a stereo effect of the audio content. The paired playback devices (also referred to as “bonded playback devices”) may further play audio content in synchrony with other playback devices.
In another example, the playback device 200 may be sonically consolidated with one or more other playback devices to form a single, consolidated playback device. A consolidated playback device may be configured to process and reproduce sound differently than an unconsolidated playback device or playback devices that are paired, because a consolidated playback device may have additional speaker drivers through which audio content may be rendered. For instance, if the playback device 200 is a playback device designed to render low frequency range audio content (i.e. a subwoofer), the playback device 200 may be consolidated with a playback device designed to render full frequency range audio content. In such a case, the full frequency range playback device, when consolidated with the low frequency playback device 200, may be configured to render only the mid and high frequency components of audio content, while the low frequency range playback device 200 renders the low frequency component of the audio content. The consolidated playback device may further be paired with a single playback device or yet another consolidated playback device.
By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including a “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Any other past, present, and/or future playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, it is understood that a playback device is not limited to the example illustrated in
b. Example Playback Zone Configurations
Referring back to the media playback system 100 of
As shown in
In one example, one or more playback zones in the environment of
As suggested above, the zone configurations of the media playback system 100 may be dynamically modified, and in some embodiments, the media playback system 100 supports numerous configurations. For instance, if a user physically moves one or more playback devices to or from a zone, the media playback system 100 may be reconfigured to accommodate the change(s). For instance, if the user physically moves the playback device 102 from the balcony zone to the office zone, the office zone may now include both the playback device 118 and the playback device 102. The playback device 102 may be paired or grouped with the office zone and/or renamed if so desired via a control device such as the control devices 126 and 128. On the other hand, if the one or more playback devices are moved to a particular area in the home environment that is not already a playback zone, a new playback zone may be created for the particular area.
Further, different playback zones of the media playback system 100 may be dynamically combined into zone groups or split up into individual playback zones. For instance, the dining room zone and the kitchen zone 114 may be combined into a zone group for a dinner party such that playback devices 112 and 114 may render audio content in synchrony. On the other hand, the living room zone may be split into a television zone including playback device 104, and a listening zone including playback devices 106, 108, and 110, if the user wishes to listen to music in the living room space while another user wishes to watch television.
c. Example Control Devices
The processor 302 may be configured to perform functions relevant to facilitating user access, control, and configuration of the media playback system 100. The memory 304 may be configured to store instructions executable by the processor 302 to perform those functions. The memory 304 may also be configured to store the media playback system controller application software and other data associated with the media playback system 100 and the user.
The microphone(s) 310 may include an audio sensor configured to convert detected sounds into electrical signals. The electrical signal may be processed by the processor 302. In one case, if the control device 300 is a device that may also be used as a means for voice communication or voice recording, one or more of the microphone(s) 310 may be a microphone for facilitating those functions. For instance, the one or more of the microphone(s) 310 may be configured to detect sound within a frequency range that a human is capable of producing and/or a frequency range audible to humans. Other examples are also possible.
In one example, the network interface 306 may be based on an industry standard (e.g., infrared, radio, wired standards including IEEE 802.3, wireless standards including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G mobile communication standard, and so on). The network interface 306 may provide a means for the control device 300 to communicate with other devices in the media playback system 100. In one example, data and information (e.g., such as a state variable) may be communicated between control device 300 and other devices via the network interface 306. For instance, playback zone and zone group configurations in the media playback system 100 may be received by the control device 300 from a playback device or another network device, or transmitted by the control device 300 to another playback device or network device via the network interface 306. In some cases, the other network device may be another control device.
Playback device control commands such as volume control and audio playback control may also be communicated from the control device 300 to a playback device via the network interface 306. As suggested above, changes to configurations of the media playback system 100 may also be performed by a user using the control device 300. The configuration changes may include adding/removing one or more playback devices to/from a zone, adding/removing one or more zones to/from a zone group, forming a bonded or consolidated player, separating one or more playback devices from a bonded or consolidated player, among others. Accordingly, the control device 300 may sometimes be referred to as a controller, whether the control device 300 is a dedicated controller or a network device on which media playback system controller application software is installed.
The user interface 308 of the control device 300 may be configured to facilitate user access and control of the media playback system 100, by providing a controller interface such as the controller interface 400 shown in
The playback control region 410 may include selectable (e.g., by way of touch or by using a cursor) icons to cause playback devices in a selected playback zone or zone group to play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode. The playback control region 410 may also include selectable icons to modify equalization settings, and playback volume, among other possibilities.
The playback zone region 420 may include representations of playback zones within the media playback system 100. In some embodiments, the graphical representations of playback zones may be selectable to bring up additional selectable icons to manage or configure the playback zones in the media playback system, such as a creation of bonded zones, creation of zone groups, separation of zone groups, and renaming of zone groups, among other possibilities.
For example, as shown, a “group” icon may be provided within each of the graphical representations of playback zones. The “group” icon provided within a graphical representation of a particular zone may be selectable to bring up options to select one or more other zones in the media playback system to be grouped with the particular zone. Once grouped, playback devices in the zones that have been grouped with the particular zone will be configured to play audio content in synchrony with the playback device(s) in the particular zone. Analogously, a “group” icon may be provided within a graphical representation of a zone group. In this case, the “group” icon may be selectable to bring up options to deselect one or more zones in the zone group to be removed from the zone group. Other interactions and implementations for grouping and ungrouping zones via a user interface such as the user interface 400 are also possible. The representations of playback zones in the playback zone region 420 may be dynamically updated as playback zone or zone group configurations are modified.
The playback status region 430 may include graphical representations of audio content that is presently being played, previously played, or scheduled to play next in the selected playback zone or zone group. The selected playback zone or zone group may be visually distinguished on the user interface, such as within the playback zone region 420 and/or the playback status region 430. The graphical representations may include track title, artist name, album name, album year, track length, and other relevant information that may be useful for the user to know when controlling the media playback system via the user interface 400.
The playback queue region 440 may include graphical representations of audio content in a playback queue associated with the selected playback zone or zone group. In some embodiments, each playback zone or zone group may be associated with a playback queue containing information corresponding to zero or more audio items for playback by the playback zone or zone group. For instance, each audio item in the playback queue may comprise a uniform resource identifier (URI), a uniform resource locator (URL) or some other identifier that may be used by a playback device in the playback zone or zone group to find and/or retrieve the audio item from a local audio content source or a networked audio content source, possibly for playback by the playback device.
In one example, a playlist may be added to a playback queue, in which case information corresponding to each audio item in the playlist may be added to the playback queue. In another example, audio items in a playback queue may be saved as a playlist. In a further example, a playback queue may be empty, or populated but “not in use” when the playback zone or zone group is playing continuously streaming audio content, such as Internet radio that may continue to play until otherwise stopped, rather than discrete audio items that have playback durations. In an alternative embodiment, a playback queue can include Internet radio and/or other streaming audio content items and be “in use” when the playback zone or zone group is playing those items. Other examples are also possible.
When playback zones or zone groups are “grouped” or “ungrouped,” playback queues associated with the affected playback zones or zone groups may be cleared or re-associated. For example, if a first playback zone including a first playback queue is grouped with a second playback zone including a second playback queue, the established zone group may have an associated playback queue that is initially empty, that contains audio items from the first playback queue (such as if the second playback zone was added to the first playback zone), that contains audio items from the second playback queue (such as if the first playback zone was added to the second playback zone), or a combination of audio items from both the first and second playback queues. Subsequently, if the established zone group is ungrouped, the resulting first playback zone may be re-associated with the previous first playback queue, or be associated with a new playback queue that is empty or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Similarly, the resulting second playback zone may be re-associated with the previous second playback queue, or be associated with a new playback queue that is empty, or contains audio items from the playback queue associated with the established zone group before the established zone group was ungrouped. Other examples are also possible.
Referring back to the user interface 400 of
The audio content sources region 450 may include graphical representations of selectable audio content sources from which audio content may be retrieved and played by the selected playback zone or zone group. Discussions pertaining to audio content sources may be found in the following section.
d. Example Audio Content Sources
As indicated previously, one or more playback devices in a zone or zone group may be configured to retrieve for playback audio content (e.g. according to a corresponding URI or URL for the audio content) from a variety of available audio content sources. In one example, audio content may be retrieved by a playback device directly from a corresponding audio content source (e.g., a line-in connection). In another example, audio content may be provided to a playback device over a network via one or more other playback devices or network devices.
Example audio content sources may include a memory of one or more playback devices in a media playback system such as the media playback system 100 of
In some embodiments, audio content sources may be regularly added or removed from a media playback system such as the media playback system 100 of
The above discussions relating to playback devices, controller devices, playback zone configurations, and media content sources provide only some examples of operating environments within which functions and methods described below may be implemented. Other operating environments and configurations of media playback systems, playback devices, and network devices not explicitly described herein may also be applicable and suitable for implementation of the functions and methods.
As discussed above, some examples described herein include, among other things, a computing device using information about how one or more playback devices are configured to generate audio streams to be sent to various transducers of the one or more playback devices. Other aspects of the examples will be made apparent in the remainder of the description herein.
The method 500 shown in
In addition, for the method 500 and other processes and methods disclosed herein, the flowcharts show functionality and operation of one possible implementation of present embodiments. In this regard, each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by a processor for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk(s) or hard drive(s). In some embodiments, the program code may be stored in memory (e.g., disks or disk arrays) associated with and/or connected to a server system that makes the program code available for download (e.g., an application store or other type of server system) to desktop/laptop computers, smart phones, tablet computers, or other types of computing devices. The computer readable medium may include non-transitory computer readable media, for example, such as computer readable media that stores data for short periods of time like register memory, processor cache, and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long-term storage, like read-only memory (ROM), optical or magnetic disks, compact-disc read-only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device. In addition, for the method 500 and other processes and methods disclosed herein, each block in
The computing device 609 may be an instance of the playback device 200 or the control device 300, however the computing device 609 may also include any general-purpose computing device or specific-purpose computing device that is configured to communicate with the playback devices 605-608 and/or the control device 623 via a wired or wireless connection. The computing device 609 may be a desktop or laptop computer, for example.
Herein, any reference to the computing device 609 may include any peripheral device connected to the computing device 609 via a wired or wireless connection. That is, any function described as performed by the computing device 609 herein may, in some examples, be performed in concert with, or independently by, a peripheral device connected to the computing device 609.
The control device 623 may be an instance of the control device 300 that is configured to control the playback devices 605-608.
Referring to
The data 621 may be received via a user-interface (e.g., keyboard, keypad, and/or mouse) of the computing device 609, from any of the playback devices 605-608, from the control device 623, or from a server (not shown), among other possibilities. In some cases, the computing device 609 may, from time to time, receive new data reflecting changes to user-selected frequency equalization settings of the playback devices 605-608 and/or changes within the environment of the playback devices 605-608 detected by one or more of the playback devices 605-608.
At block 504, the method 500 includes, based on the received data, associating each of one or more audio streams respectively with at least one transducer of the one or more playback devices. For instance, the computing device 609 may associate the audio streams depicted in
Table 1 indicates that the computing device 609 may use a first channel (e.g., left) of the audio content to generate the audio streams 611A and 612A, a second channel (e.g., center) of the audio content to generate the audio streams 611B and 612B, and a third channel (e.g., right) of the audio content to generate the audio streams 611C and 612C. Table 1 further indicates that the computing device 609 may mix the first channel and the second channel to generate the audio streams 611D and 612D. Table 1 further indicates that the computing device 609 may mix the second channel and the third channel to generate the audio streams 611E and 612E. Table 1 further indicates that the computing device may use a fourth channel of the audio content to generate the audio stream 617.
In some examples, the data 621 may include the associations between channels of audio content, audio streams, and transducers as shown in Table 1. The data 621 may also include sets of one or more parameters of audio processing algorithms that correspond respectively to the audio streams 611A, 612A, 611B, 612B, 611C, 612C, 611D, 612D, 611E, 612E, and 617. In this context, the data 621 may also map the audio processing algorithms to the respective transducers of the playback devices 605-608. For example, the data 621 may map parameters of a particular audio processing algorithm to the transducers 601A and 603A, and the computing device 609 may analyze the data 621 and responsively generate the audio stream 611A by using the particular audio processing algorithm to process the audio content. The computing device 609 may send the generated audio stream 611A to the playback device 605 to be routed to the transducers 601A and 603A by the playback device 605.
In other examples, the computing device 609 may associate the audio streams with the transducers without receiving explicit information regarding the associations. For instance, the data 621 may include information such as model designation or specifications of the respective playback devices 605-608. In addition, the data 621 may include information regarding how many transducers and which type of transducers (e.g., tweeter, woofer, subwoofer) the respective playback devices 605-608 include. The data 621 may further include frequency response, phase response, and/or volume limits for each of the transducers of the playback devices 605-608. Further, the data 621 may include information regarding the locations of the respective playback devices 605-608 within an environment (e.g., a room), or information characterizing the environment. The computing device 609 may use this information to determine a quantity of audio streams to be generated and to associate the audio streams with the transducers as shown in Table 1, for example.
For instance, the data 621 may indicate that the playback device 605 (e.g., a “soundbar”) is located near a front end of a room and that the playback device 605 is configurable to play three channels of audio content via respective sets of transducers 601A-603A, 601B-603B, and 601C-603C. The data 621 may also indicate that transducers 601A-C and 603A-C are woofers configured to play mid-range audio frequencies (e.g., 120 Hz-2 kHz). The data 621 may also indicate that the transducers 602A-C are tweeters configured to play high-range frequencies (e.g., 2 kHz-20 kHz). The data 621 may indicate any information about the playback device 605 implicitly or explicitly. For instance, the computing device 609 might infer the quantity and type transducers included in the playback device 605 based on the model designation of the playback device 605 represented by the data 621.
By further example, the data 621 may indicate that the transducer 604 of the playback device 606 is configured to play low-range frequencies (e.g., <120 Hz). The data 621 may indicate any information about the playback device 606 implicitly or explicitly.
In addition, the data 621 may indicate that the playback device 607 is located near a rear left portion of the room and that the playback device 607 is configured to play one or two channels of audio content via the transducers 601D-603D. The data 621 may also indicate that transducers 601D and 603D are woofers configured to play mid-range audio frequencies (e.g., 120 Hz-2 kHz). The data 621 may also indicate that the transducer 602D is a tweeter configured to play high-range frequencies (e.g., 2 kHz-20 kHz). The data 621 may indicate any information about the playback device 607 implicitly or explicitly.
In addition, the data 621 may indicate that the playback device 608 is located near a rear right portion of the room and that the playback device 608 is configured to play one or two channels of audio content via the transducers 601E-603E. The data 621 may also indicate that transducers 601E and 603E are woofers configured to play mid-range audio frequencies (e.g., 120 Hz-2 kHz). The data 621 may also indicate that the transducer 602E is a tweeter configured to play high-range frequencies (e.g., 2 kHz-20 kHz). The data 621 may indicate any information about the playback device 608 implicitly or explicitly.
In some examples, the computing device 609 may, based on the data 621, determine a quantity of audio streams to be generated by the computing device 609. For instance, the data 621 may indicate the quantity and types of transducers included in each of the playback devices 605-608. As described below, the computing device 609 may determine that four-channel audio content (e.g., 3.1 channel surround) is to be played by the playback devices 605-608 in the form of eleven audio streams 611A, 612A, 611B, 612B, 611C, 612C, 611D, 612D, 611E, 612E, and 617.
The computing device 609 may associate the audio streams with the transducers as shown in Table 1 based on the data 621 characterizing the playback devices 605-608 as described above. For example, the computing device 609 may recognize that, based on the configuration of the playback devices 605-608, the first channel of audio content may be provided to the transducers 601A-603A (e.g., because the transducers 601A-603A may be located at the front left portion of the room and the first channel may be a left channel). Furthermore, the computing device 609 may recognize that the first channel of the audio content may be processed using low pass filtering and/or high pass filtering and provided to the transducers 601A and 603A as the audio stream 611A (e.g., because the transducers 601A and 603A may be mid-range woofers). Additionally, the computing device 609 may recognize that the first channel of the audio content may be processed using high pass filtering and provided to the transducer 602A as the audio stream 612A (e.g., because the transducer 602A may be a high-range tweeter.)
By further example, the computing device 609 may recognize that, based on the configuration of the playback devices 605-608, the second channel of audio content may be provided to the transducers 601B-603B (e.g., because the transducers 601B-603B may be located at the front center portion of the room and the second channel may be a center channel). Furthermore, the computing device 609 may recognize that the second channel of the audio content may be processed using low pass filtering and/or high pass filtering and provided to the transducers 601B and 603B as the audio stream 611B (e.g., because the transducers 601B and 603B may be mid-range woofers). Additionally, the computing device 609 may recognize that the second channel of the audio content may be processed using high pass filtering and provided to the transducer 602B as the audio stream 612B (e.g., because the transducer 602B may be a high-range tweeter.)
In addition, the computing device 609 may recognize that, based on the configuration of the playback devices 605-608, the third channel of audio content may be provided to the transducers 601C-603C (e.g., because the transducers 601C-603C may be located at the front right portion of the room and the third channel may be a right channel). Furthermore, the computing device 609 may recognize that the third channel of the audio content may be processed using low pass filtering and/or high pass filtering and provided to the transducers 601C and 603C as the audio stream 611C (e.g., because the transducers 601C and 603C may be mid-range woofers). Additionally, the computing device 609 may recognize that the third channel of the audio content may be processed using high pass filtering and provided to the transducer 602C as the audio stream 612C (e.g., because the transducer 602C may be a high-range tweeter.)
Also, the computing device 609 may recognize that, based on the configuration of the playback devices 605-608, the first and second channels of audio content may be mixed and provided to the transducers 601D-603D (e.g., because the transducers 601D-603D may be located at the rear left portion of the room and there might not be a playback device corresponding to the rear center of the room). Furthermore, the computing device 609 may recognize that the first and second channels of the audio content may be mixed and processed using low pass filtering and/or high pass filtering and provided to the transducers 601D and 603D as the audio stream 611D (e.g., because the transducers 601D and 603D may be mid-range woofers). Additionally, the computing device 609 may recognize that the first and second channels of the audio content may be mixed and processed using high pass filtering and provided to the transducer 602D as the audio stream 612D (e.g., because the transducer 602D may be a high-range tweeter.)
Additionally, the computing device 609 may recognize that, based on the configuration of the playback devices 605-608, the second and third channels of audio content may be mixed and provided to the transducers 601E-603E (e.g., because the transducers 601E-603E may be located at the rear right portion of the room and there might not be a playback device corresponding to the rear center of the room). Furthermore, the computing device 609 may recognize that the second and third channels of the audio content may be mixed and processed using low pass filtering and/or high pass filtering and provided to the transducers 601E and 603E as the audio stream 611E (e.g., because the transducers 601E and 603E may be mid-range woofers). Additionally, the computing device 609 may recognize that the second and third channels of the audio content may be mixed and processed using high pass filtering and provided to the transducer 602E as the audio stream 612E (e.g., because the transducer 602E may be a high-range tweeter.)
Lastly, the computing device 609 may recognize that, based on the configuration of the playback devices 605-608, the fourth channel of audio content may be provided to the transducer 604 (e.g., because the transducer 604 is a subwoofer and the fourth channel might not correspond to a particular location of a room). Furthermore, the computing device 609 may recognize that the fourth channel of the audio content may be processed using low pass filtering and provided to the transducer 604 as the audio stream 617.
In some cases, there may be a one-to-one relationship between the audio streams and the transducers of the playback devices 605-608, but in other cases, the same audio stream may be provided to multiple transducers of the playback devices 605-608. By further example, the same audio stream may be provided to multiple transducers of the same playback device. Additionally, there may be a one-to-one relationship between channels of audio content retrieved by the computing device 609 and the audio streams, or the computing device 609 might generate more or less audio streams than there are channels of the retrieved audio content. Generation of audio streams by the computing device 609 is described in more detail below with regard to block 506.
At block 506, the method 500 includes, based on the data, generating the one or more audio streams. For example, the computing device 609 may, based on the data 621, generate the audio streams 611A, 612A, 611B, 612B, 611C, 612C, 611D, 612D, 611E, 612E, and 617. In some examples in which the computing device 609 is a playback device, the computing device 609 may generate its own audio stream(s) for playback by its own transducers.
In some examples, the computing device 609 may receive, from any of the playback devices 605-608 or the control device 623, a command to generate the audio streams. For instance, any of the playback devices 605-608 or the control device 623 may receive input via a user-interface and responsively send the command to generate the audio streams to the computing device 609. In this context, the computing device 609 may generate the audio streams in response to receiving the command.
By further example, the computing device 609 may retrieve digital audio content from memory accessible by the computing device 609 or from another computing device such as a server. The command to generate the audio streams received by the computing device 609 may include a uniform resource locator (URL), a uniform resource indicator (URI), or some other indication of a network location from which the digital audio content is available. The URL or URI may be received by the computing device 609 from another device as well. In this context, the computing device 609 may use the retrieved digital audio content to generate the one or more audio streams.
In another example, the computing device 609 may receive analog audio content via an input port (e.g., line-in port) of the computing device 609 and convert the analog audio content to digital audio content using an analog-to-digital converter. The command received by the computing device 609 may specify that the computing device 609 is to generate audio streams using the analog audio content received by the input port. In this context, the computing device 609 may use the converted digital audio content to generate the one or more audio streams.
In one example, the computing device 609 determines (e.g., calculates), based on the data 621, parameters of audio processing algorithms that correspond respectively to one or more of the transducers of the playback devices 605-608. The computing device 609 may then use the audio processing algorithms to generate audio streams that correspond respectively to one or more of the transducers. In another example, the computing device 609 instead receives (i.e., does not determine) parameters of the audio processing algorithms that correspond respectively to one or more of the transducers of the playback devices 605-608. In this case, the computing device 609 may use the received parameters to generate the audio streams.
Whether the computing device 609 receives or determines parameters of the audio processing algorithms, the computing device 609 may process, for each of the one or more audio streams, audio content according to the respective audio processing algorithms. As an example, the computing device 609 may first translate the retrieved audio content from one file format to another (e.g., mp3 to pulse code modulation (PCM) format). In some examples, the computing device 609 may “downconvert” a sample rate of the retrieved audio content, for example, from 96 kHz to 44.1 kHz. The computing device 609 may also downconvert the bit depth of the retrieved audio content. Generally, the computing device 609 may perform file format conversion, sample rate conversion, and bit depth conversion prior to performing transducer-specific audio processing, but other examples are possible.
Next, the computing device 609 may perform one or more of the following to the audio content in order to generate each of the audio streams: frequency-dependent amplification, frequency-dependent attenuation (e.g., low-pass or high-pass filtering), volume limiting, phase delay, mixing one or more channels of the retrieved audio content, or adding a reverberation effect.
For instance, for a given audio stream, the computing device 609 might boost low-end frequencies and/or attenuate high-end frequencies. The computing device 609 might “clip” the retrieved audio content such that no portion of the given audio stream exceeds a given level of volume. Further, the computing device 609 might add a delay effect to a particular frequency range with respect to another frequency range of the audio content. Any or all of these processes, if applicable, might be applied by the computing device 609 uniquely for each of the audio streams generated by the computing device 609. Any of the above processes may be related to user-selected equalization settings and/or compensating an otherwise undesirable response that would be heard by a listener due to particularities of the environment and/or positioning of the playback devices 605-608.
By further example, the computing device 609 may again perform file format conversion upon the audio streams (e.g., PCM to mp3), before the audio streams are sent to the playback devices 605-608.
At block 508, the method 500 includes sending at least one of the generated one or more audio streams to each of the one or more playback devices. For example, the computing device 609 may send the audio streams 611A-E, 612A-E, and 617 to the corresponding playback devices 605-608.
In the example depicted in
In various examples, the computing device 609 may “unicast” or “multicast” the audio streams to the playback devices 605-608. In the “unicast” example, the computing device 609 may send, with the audio stream 611A, a network address of the playback device 605. Accordingly, if the playback device 606 were to receive the audio stream 611A, the playback device 606 may forward the audio stream 611A to the playback device 605 based on the network address.
In a “multicast” example, each of the playback devices 605-608 might receive all of the audio streams sent by the computing device 609, but the audio streams might each include an indication of which playback devices are to play that particular audio stream. In this way, each playback device may use the indications included in each audio stream to parse the audio streams and play the audio streams that are intended for that particular playback device.
In another example, any or all of the audio streams may be sent to corresponding playback devices using one of the playback devices 605-608 (e.g., a group coordinator device) or the control device 632 as an intermediary. For instance, the computing device 609 may send the audio streams 611A-611E, 612A-612E, and 617 to the playback device 607, and the playback device 607 may send the audio streams 611A-611C and 612A-612C to the playback device 605, send the audio stream 617 to the playback device 606, send the audio streams 611E and 612E to the playback device 608, and play the audio streams 611D and 612D.
In addition, the computing device 609 may send timing data to one or more of the playback devices 605-608 so that one or more of the playback devices 605-608 may play the audio streams in synchrony. Furthermore, the timing data may allow the playback devices 605-608 to play audio content in synchrony with video content played by a video playback device (not shown).
The computing device 609 may also send, to the playback devices 605-608, data mapping the audio streams 611A-611E, 612A-612E, and 617 to one or more respective transducers of the playback devices 605-608. For instance, along with the audio streams 611A and 612A, the computing device 609 may send, to the playback device 605, information indicating that the audio stream 611A is to be played by the transducers 601A and 603A and information indicating that the audio stream 612A is to be played by the transducer 602A.
In some examples, the computing device 609 may process audio for the playback devices 605-608 after the playback devices 605-608 are reconfigured. Also, the computing device 609 may process audio for other playback devices in addition to or instead of the playback devices 605-608. For example, the playback devices 605-608 may be reconfigured so that all of the woofers 601A-E and 603A-E receive identical (e.g., monaural) mid-range audio streams and all of the tweeters 602A-E receive identical (e.g., monaural) high-range audio streams. As such, the computing device 609 may receive new data reflecting changes to the configuration of the playback devices 605-608 and/or reflecting the configuration of additional playback devices.
Referring to
The computing device 609 may, based on the received data 721, associate audio streams 711D, 712D, 711E, and 712E respectively with at least one transducer of the transducers 601D, 602D, 603D, 601E, 602E, or 603E. More specifically, the computing device 609 may associate audio streams with transducers as shown below in Table 2.
In the example depicted in Table 2, the audio content may be four-channel audio content (e.g., 3.1 surround sound) retrieved by the computing device 609. For example, the audio content might include a first (e.g., left) channel, a second (e.g., center) channel, a third (e.g., right) channel, and a fourth (e.g., subwoofer) channel. However, based on the data 721 indicating that only the playback devices 607 and 608 might be available for playing audio content, the computing device 609 may determine that the audio stream 711D may be generated by mixing the first, second, and fourth channels. The computing device 609 may generate the audio stream 711D and provide the audio stream 711D to the playback device 607, which may provide the audio stream 711D to the transducers 601D and 603D. The computing device 609 may also, as shown by Table 2, generate the audio stream 712D by mixing the first and second channels, and provide the audio stream 712D to the playback device 607 so that the playback device 607 may provide the audio stream 712D to the transducer 602D. The computing device 609 may also generate the audio stream 711E by mixing the second, third, and fourth channels, and provide the audio stream 711E to the playback device 608 so that the playback device 608 may provide the audio stream 711E to the transducers 601E and 603E. The computing device 609 may also generate the audio stream 712E by mixing the second and third channels, and provide the audio stream 712E to the playback device 608 so that the playback device 608 may provide the audio stream 712E to the transducer 602E.
The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only way(s) to implement such systems, methods, apparatus, and/or articles of manufacture.
Additionally, references herein to “embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one example embodiment of an invention. The appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. As such, the embodiments described herein, explicitly and implicitly understood by one skilled in the art, can be combined with other embodiments.
The Specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
This application claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 15/888,789, filed on Feb. 5, 2018, entitled “SYSTEMS AND METHODS OF DISTRIBUTING AUDIO TO ONE OR MORE PLAYBACK DEVICES,” which is incorporated herein by reference in its entirety. U.S. non-provisional patent application Ser. No. 15/888,789 claims priority under 35 U.S.C. § 120 to, and is a continuation of, U.S. non-provisional patent application Ser. No. 15/009,319, filed on Jan. 28, 2016, entitled “SYSTEMS AND METHODS OF DISTRIBUTING AUDIO TO ONE OR MORE PLAYBACK DEVICES,” and issued as U.S. Pat. No. 9,886,234 on Feb. 6, 2018, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4296278 | Cullison et al. | Oct 1981 | A |
4816989 | Finn et al. | Mar 1989 | A |
4995778 | Bruessel | Feb 1991 | A |
5182552 | Paynting | Jan 1993 | A |
5218710 | Yamaki et al. | Jun 1993 | A |
5239458 | Suzuki | Aug 1993 | A |
5299266 | Lumsden | Mar 1994 | A |
5406634 | Anderson et al. | Apr 1995 | A |
5440644 | Farinelli et al. | Aug 1995 | A |
5467342 | Logston et al. | Nov 1995 | A |
5491839 | Schotz | Feb 1996 | A |
5553222 | Milne et al. | Sep 1996 | A |
5668884 | Clair, Jr. et al. | Sep 1997 | A |
5673323 | Schotz et al. | Sep 1997 | A |
5751819 | Dorrough | May 1998 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
5808662 | Kinney et al. | Sep 1998 | A |
5815689 | Shaw et al. | Sep 1998 | A |
5867691 | Shiraishi | Feb 1999 | A |
5875354 | Charlton et al. | Feb 1999 | A |
5887143 | Saito et al. | Mar 1999 | A |
5910991 | Farrar | Jun 1999 | A |
5923902 | Inagaki | Jul 1999 | A |
5946343 | Schotz et al. | Aug 1999 | A |
5956088 | Shen et al. | Sep 1999 | A |
6009457 | Moller | Dec 1999 | A |
6026150 | Frank et al. | Feb 2000 | A |
6031818 | Lo et al. | Feb 2000 | A |
6032202 | Lea et al. | Feb 2000 | A |
6108686 | Williams, Jr. | Aug 2000 | A |
6128318 | Sato | Oct 2000 | A |
6157957 | Berthaud | Dec 2000 | A |
6175872 | Neumann et al. | Jan 2001 | B1 |
6185737 | Northcutt et al. | Feb 2001 | B1 |
6195436 | Scibora et al. | Feb 2001 | B1 |
6199169 | Voth | Mar 2001 | B1 |
6255961 | Van Ryzin et al. | Jul 2001 | B1 |
6256554 | Dilorenzo | Jul 2001 | B1 |
6308207 | Tseng et al. | Oct 2001 | B1 |
6324586 | Johnson | Nov 2001 | B1 |
6332147 | Moran et al. | Dec 2001 | B1 |
6349339 | Williams | Feb 2002 | B1 |
6351821 | Voth | Feb 2002 | B1 |
6404811 | Cvetko et al. | Jun 2002 | B1 |
6430353 | Honda et al. | Aug 2002 | B1 |
6469633 | Wachter et al. | Oct 2002 | B1 |
6487296 | Allen et al. | Nov 2002 | B1 |
6522886 | Youngs et al. | Feb 2003 | B1 |
6526325 | Sussman et al. | Feb 2003 | B1 |
6587127 | Leeke et al. | Jul 2003 | B1 |
6598172 | Vandeusen et al. | Jul 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6611678 | Zweig | Aug 2003 | B1 |
6631410 | Kowalski et al. | Oct 2003 | B1 |
6674803 | Kesselring | Jan 2004 | B1 |
6704421 | Kitamura | Mar 2004 | B1 |
6757517 | Chang et al. | Jun 2004 | B2 |
6778869 | Champion | Aug 2004 | B2 |
6826283 | Wheeler et al. | Nov 2004 | B1 |
6836788 | Kim et al. | Dec 2004 | B2 |
6898642 | Chafle et al. | May 2005 | B2 |
6912610 | Spencer | Jun 2005 | B2 |
6920373 | Xi et al. | Jul 2005 | B2 |
6934766 | Russell | Aug 2005 | B1 |
6985694 | De Bonet et al. | Jan 2006 | B1 |
7007106 | Flood | Feb 2006 | B1 |
7020791 | Aweya et al. | Mar 2006 | B1 |
7043651 | Aweya et al. | May 2006 | B2 |
7047308 | Deshpande | May 2006 | B2 |
7072477 | Kincaid | Jul 2006 | B1 |
7113999 | Pestoni et al. | Sep 2006 | B2 |
7115017 | Laursen et al. | Oct 2006 | B1 |
7130608 | Hollstrom et al. | Oct 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7143141 | Morgan et al. | Nov 2006 | B1 |
7143939 | Henzerling | Dec 2006 | B2 |
7162315 | Gilbert | Jan 2007 | B2 |
7185090 | Kowalski et al. | Feb 2007 | B2 |
7187947 | White et al. | Mar 2007 | B1 |
7206367 | Moore et al. | Apr 2007 | B1 |
7209795 | Sullivan et al. | Apr 2007 | B2 |
7218708 | Berezowski et al. | May 2007 | B2 |
7236739 | Chang et al. | Jun 2007 | B2 |
7236773 | Thomas | Jun 2007 | B2 |
7293060 | Komsi | Nov 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7312785 | Tsuk et al. | Dec 2007 | B2 |
7324857 | Goddard | Jan 2008 | B2 |
7333519 | Sullivan et al. | Feb 2008 | B2 |
7372846 | Zwack | May 2008 | B2 |
7391791 | Balassanian et al. | Jun 2008 | B2 |
7392102 | Sullivan et al. | Jun 2008 | B2 |
7483538 | McCarty | Jan 2009 | B2 |
7483958 | Elabbady | Jan 2009 | B1 |
7490044 | Kulkarni | Feb 2009 | B2 |
7496623 | Szeto et al. | Feb 2009 | B2 |
7496633 | Szeto et al. | Feb 2009 | B2 |
7519188 | Berardi et al. | Apr 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7574274 | Holmes | Aug 2009 | B2 |
7599685 | Goldberg et al. | Oct 2009 | B2 |
7630500 | Beckman et al. | Dec 2009 | B1 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7657224 | Goldberg et al. | Feb 2010 | B2 |
7657644 | Zheng | Feb 2010 | B1 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7668990 | Krzyzanowski et al. | Feb 2010 | B2 |
7669219 | Scott, III | Feb 2010 | B2 |
7675943 | Mosig et al. | Mar 2010 | B2 |
7676142 | Hung | Mar 2010 | B1 |
7702279 | Ko et al. | Apr 2010 | B2 |
7720096 | Klemets | May 2010 | B2 |
7725533 | Szeto et al. | May 2010 | B2 |
7725551 | Szeto et al. | May 2010 | B2 |
7742740 | Goldberg et al. | Jun 2010 | B2 |
7835689 | Goldberg et al. | Nov 2010 | B2 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7865137 | Goldberg et al. | Jan 2011 | B2 |
7885622 | Krampf et al. | Feb 2011 | B2 |
7916877 | Goldberg et al. | Mar 2011 | B2 |
7917082 | Goldberg et al. | Mar 2011 | B2 |
7934239 | Dagman | Apr 2011 | B1 |
7987294 | Bryce et al. | Jul 2011 | B2 |
8014423 | Thaler et al. | Sep 2011 | B2 |
8023663 | Goldberg | Sep 2011 | B2 |
8028038 | Weel | Sep 2011 | B2 |
8028323 | Weel | Sep 2011 | B2 |
8045952 | Qureshey et al. | Oct 2011 | B2 |
8050652 | Qureshey et al. | Nov 2011 | B2 |
8063698 | Howard | Nov 2011 | B2 |
8074253 | Nathan | Dec 2011 | B1 |
8086752 | Millington et al. | Dec 2011 | B2 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8112032 | Ko et al. | Feb 2012 | B2 |
8131390 | Braithwaite et al. | Mar 2012 | B2 |
8139774 | Berardi et al. | Mar 2012 | B2 |
8160281 | Kim et al. | Apr 2012 | B2 |
8169938 | Duchscher et al. | May 2012 | B2 |
8175292 | Aylward et al. | May 2012 | B2 |
8214873 | Weel | Jul 2012 | B2 |
8229125 | Short | Jul 2012 | B2 |
8230099 | Weel | Jul 2012 | B2 |
8233632 | Macdonald et al. | Jul 2012 | B1 |
8234395 | Millington et al. | Jul 2012 | B2 |
8238578 | Aylward | Aug 2012 | B2 |
8243961 | Morrill | Aug 2012 | B1 |
8265310 | Berardi et al. | Sep 2012 | B2 |
8290185 | Kim | Oct 2012 | B2 |
8290603 | Lambourne | Oct 2012 | B1 |
8306235 | Mahowald | Nov 2012 | B2 |
8315555 | Ko et al. | Nov 2012 | B2 |
8325935 | Rutschman | Dec 2012 | B2 |
8331585 | Hagen et al. | Dec 2012 | B2 |
8370678 | Millington et al. | Feb 2013 | B2 |
8391501 | Khawand et al. | Mar 2013 | B2 |
8423659 | Millington | Apr 2013 | B2 |
8452020 | Gregg et al. | May 2013 | B2 |
8483853 | Lambourne | Jul 2013 | B1 |
8521316 | Louboutin | Aug 2013 | B2 |
8577045 | Gibbs | Nov 2013 | B2 |
8588949 | Lambourne et al. | Nov 2013 | B2 |
8600075 | Lim | Dec 2013 | B2 |
8620006 | Berardi et al. | Dec 2013 | B2 |
8775546 | Millington | Jul 2014 | B2 |
8855319 | Liu et al. | Oct 2014 | B2 |
8879761 | Johnson et al. | Nov 2014 | B2 |
8914559 | Kalayjian et al. | Dec 2014 | B2 |
8934647 | Joyce et al. | Jan 2015 | B2 |
8934655 | Breen et al. | Jan 2015 | B2 |
8942252 | Balassanian et al. | Jan 2015 | B2 |
8965546 | Visser et al. | Feb 2015 | B2 |
8977974 | Kraut | Mar 2015 | B2 |
8984442 | Pirnack et al. | Mar 2015 | B2 |
9020153 | Britt, Jr. | Apr 2015 | B2 |
9367283 | Kuper | Jun 2016 | B2 |
20010009604 | Ando et al. | Jul 2001 | A1 |
20010022823 | Renaud | Sep 2001 | A1 |
20010032188 | Miyabe et al. | Oct 2001 | A1 |
20010042107 | Palm | Nov 2001 | A1 |
20020002039 | Qureshey et al. | Jan 2002 | A1 |
20020002562 | Moran et al. | Jan 2002 | A1 |
20020003548 | Krusche et al. | Jan 2002 | A1 |
20020022453 | Balog et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020034374 | Barton | Mar 2002 | A1 |
20020042844 | Chiazzese | Apr 2002 | A1 |
20020049843 | Barone et al. | Apr 2002 | A1 |
20020065926 | Hackney et al. | May 2002 | A1 |
20020072816 | Shdema et al. | Jun 2002 | A1 |
20020073228 | Cognet et al. | Jun 2002 | A1 |
20020090914 | Kang et al. | Jul 2002 | A1 |
20020093478 | Yeh | Jul 2002 | A1 |
20020109710 | Holtz et al. | Aug 2002 | A1 |
20020112244 | Liou et al. | Aug 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20020129156 | Yoshikawa | Sep 2002 | A1 |
20020143998 | Rajagopal et al. | Oct 2002 | A1 |
20020163361 | Parkin | Nov 2002 | A1 |
20020165921 | Sapieyevski | Nov 2002 | A1 |
20020188762 | Tomassetti et al. | Dec 2002 | A1 |
20030002609 | Faller et al. | Jan 2003 | A1 |
20030020763 | Mayer et al. | Jan 2003 | A1 |
20030023741 | Tomassetti et al. | Jan 2003 | A1 |
20030035444 | Zwack | Feb 2003 | A1 |
20030041173 | Hoyle | Feb 2003 | A1 |
20030041174 | Wen et al. | Feb 2003 | A1 |
20030043924 | Haddad et al. | Mar 2003 | A1 |
20030066094 | Van Der Schaar et al. | Apr 2003 | A1 |
20030099212 | Anjum | May 2003 | A1 |
20030099221 | Rhee | May 2003 | A1 |
20030126211 | Anttila et al. | Jul 2003 | A1 |
20030157951 | Hasty | Aug 2003 | A1 |
20030195964 | Mane | Oct 2003 | A1 |
20030198257 | Sullivan et al. | Oct 2003 | A1 |
20030210796 | McCarty et al. | Nov 2003 | A1 |
20030231871 | Ushimaru | Dec 2003 | A1 |
20030235304 | Evans et al. | Dec 2003 | A1 |
20040001484 | Ozguner | Jan 2004 | A1 |
20040001591 | Mani et al. | Jan 2004 | A1 |
20040008852 | Also et al. | Jan 2004 | A1 |
20040010727 | Fujinami | Jan 2004 | A1 |
20040015252 | Aiso et al. | Jan 2004 | A1 |
20040024478 | Hans et al. | Feb 2004 | A1 |
20040024925 | Cypher et al. | Feb 2004 | A1 |
20040027166 | Mangum et al. | Feb 2004 | A1 |
20040032348 | Lai et al. | Feb 2004 | A1 |
20040066736 | Kroeger | Apr 2004 | A1 |
20040075767 | Neuman et al. | Apr 2004 | A1 |
20040131192 | Metcalf | Jul 2004 | A1 |
20040170383 | Mazur | Sep 2004 | A1 |
20040203378 | Powers | Oct 2004 | A1 |
20040237750 | Smith et al. | Dec 2004 | A1 |
20040249965 | Huggins et al. | Dec 2004 | A1 |
20040249982 | Arnold et al. | Dec 2004 | A1 |
20040252400 | Blank et al. | Dec 2004 | A1 |
20050010691 | Oyadomari et al. | Jan 2005 | A1 |
20050013394 | Rausch et al. | Jan 2005 | A1 |
20050021590 | Debique et al. | Jan 2005 | A1 |
20050047605 | Lee et al. | Mar 2005 | A1 |
20050058149 | Howe | Mar 2005 | A1 |
20050081213 | Suzuoki et al. | Apr 2005 | A1 |
20050114538 | Rose | May 2005 | A1 |
20050125357 | Saadat et al. | Jun 2005 | A1 |
20050157885 | Olney et al. | Jul 2005 | A1 |
20050177643 | Xu | Aug 2005 | A1 |
20050181348 | Carey et al. | Aug 2005 | A1 |
20050195205 | Abrams, Jr. | Sep 2005 | A1 |
20050201254 | Looney et al. | Sep 2005 | A1 |
20050281255 | Davies et al. | Dec 2005 | A1 |
20050283820 | Richards et al. | Dec 2005 | A1 |
20050288805 | Moore et al. | Dec 2005 | A1 |
20050289224 | Deslippe et al. | Dec 2005 | A1 |
20060095516 | Wijeratne | May 2006 | A1 |
20060119497 | Miller et al. | Jun 2006 | A1 |
20060143236 | Wu | Jun 2006 | A1 |
20070038999 | Millington | Feb 2007 | A1 |
20070048713 | Plastina et al. | Mar 2007 | A1 |
20070054680 | Mo et al. | Mar 2007 | A1 |
20070136778 | Birger et al. | Jun 2007 | A1 |
20070142022 | Madonna et al. | Jun 2007 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20070143493 | Mullig et al. | Jun 2007 | A1 |
20070169115 | Ko et al. | Jul 2007 | A1 |
20070180137 | Rajapakse | Aug 2007 | A1 |
20070224937 | Jung et al. | Sep 2007 | A1 |
20070226530 | Celinski | Sep 2007 | A1 |
20070271388 | Bowra et al. | Nov 2007 | A1 |
20070299778 | Haveson et al. | Dec 2007 | A1 |
20080002839 | Eng | Jan 2008 | A1 |
20080022320 | Ver Steeg | Jan 2008 | A1 |
20080052371 | Partovi et al. | Feb 2008 | A1 |
20080059510 | Cardamore et al. | Mar 2008 | A1 |
20080089268 | Kinder | Apr 2008 | A1 |
20080091771 | Allen et al. | Apr 2008 | A1 |
20080098027 | Aarts | Apr 2008 | A1 |
20080120429 | Millington et al. | May 2008 | A1 |
20080144861 | Melanson et al. | Jun 2008 | A1 |
20080175411 | Greve | Jul 2008 | A1 |
20090024662 | Park et al. | Jan 2009 | A1 |
20090031336 | Chavez et al. | Jan 2009 | A1 |
20090047993 | Vasa | Feb 2009 | A1 |
20090157905 | Davis | Jun 2009 | A1 |
20090222115 | Malcolm et al. | Sep 2009 | A1 |
20090228919 | Zott et al. | Sep 2009 | A1 |
20090298420 | Haartsen | Dec 2009 | A1 |
20100049835 | Ko et al. | Feb 2010 | A1 |
20100076577 | Lee et al. | Mar 2010 | A1 |
20100142735 | Yoon et al. | Jun 2010 | A1 |
20100228740 | Cannistraro et al. | Sep 2010 | A1 |
20100316237 | Elberbaum | Dec 2010 | A1 |
20100318917 | Holladay et al. | Dec 2010 | A1 |
20110040395 | Kraemer et al. | Feb 2011 | A1 |
20110066943 | Brillon et al. | Mar 2011 | A1 |
20110170710 | Son | Jul 2011 | A1 |
20120029671 | Millington et al. | Feb 2012 | A1 |
20120030366 | Collart et al. | Feb 2012 | A1 |
20120051558 | Kim et al. | Mar 2012 | A1 |
20120058727 | Cook | Mar 2012 | A1 |
20120060046 | Millington | Mar 2012 | A1 |
20120070004 | LaBosco | Mar 2012 | A1 |
20120087503 | Watson | Apr 2012 | A1 |
20120117586 | McCoy et al. | May 2012 | A1 |
20120127831 | Gicklhorn et al. | May 2012 | A1 |
20120129446 | Ko et al. | May 2012 | A1 |
20120206623 | Nakama | Aug 2012 | A1 |
20120233639 | Zott et al. | Sep 2012 | A1 |
20120263325 | Freeman et al. | Oct 2012 | A1 |
20130010970 | Hegarty et al. | Jan 2013 | A1 |
20130028443 | Pance et al. | Jan 2013 | A1 |
20130080599 | Ko et al. | Mar 2013 | A1 |
20130191454 | Oliver et al. | Jul 2013 | A1 |
20130246916 | Reimann et al. | Sep 2013 | A1 |
20130259254 | Xiang et al. | Oct 2013 | A1 |
20130279888 | Zeng | Oct 2013 | A1 |
20140016784 | Sen et al. | Jan 2014 | A1 |
20140016786 | Sen | Jan 2014 | A1 |
20140016802 | Sen | Jan 2014 | A1 |
20140023196 | Xiang et al. | Jan 2014 | A1 |
20140112481 | Li et al. | Apr 2014 | A1 |
20140184734 | Nakagawa | Jul 2014 | A1 |
20140219456 | Morrell et al. | Aug 2014 | A1 |
20140226823 | Sen et al. | Aug 2014 | A1 |
20140237361 | Martin et al. | Aug 2014 | A1 |
20140294200 | Baumgarte et al. | Oct 2014 | A1 |
20140310779 | Lof et al. | Oct 2014 | A1 |
20140323036 | Daley | Oct 2014 | A1 |
20140330951 | Sukoff et al. | Nov 2014 | A1 |
20140337959 | Garmark et al. | Nov 2014 | A1 |
20140355768 | Sen et al. | Dec 2014 | A1 |
20140355794 | Morrell et al. | Dec 2014 | A1 |
20150063610 | Mossner | Mar 2015 | A1 |
20150067054 | Yoo et al. | Mar 2015 | A1 |
20150146886 | Baumgarte | May 2015 | A1 |
20150170657 | Thompson | Jun 2015 | A1 |
20150201274 | Ellner et al. | Jul 2015 | A1 |
20150253960 | Lin et al. | Sep 2015 | A1 |
20150281866 | Williams et al. | Oct 2015 | A1 |
20150288824 | Quiers | Oct 2015 | A1 |
20160066116 | Grant | Mar 2016 | A1 |
20160080881 | Dublin | Mar 2016 | A1 |
20160286330 | Kofman | Sep 2016 | A1 |
20160295283 | Avanzi | Oct 2016 | A1 |
20160350067 | Sundaresan | Dec 2016 | A1 |
20180027033 | Kamstrup | Jan 2018 | A1 |
20180027368 | Girardier | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
0251584 | Jan 1988 | EP |
0672985 | Sep 1995 | EP |
1111527 | Jun 2001 | EP |
1133896 | Aug 2002 | EP |
1389853 | Feb 2004 | EP |
1825713 | Oct 2012 | EP |
2860992 | Apr 2015 | EP |
1020070040592 | Apr 2007 | KR |
20100071724 | Jun 2010 | KR |
20100134164 | Dec 2010 | KR |
20110064635 | Jun 2011 | KR |
199525313 | Sep 1995 | WO |
199961985 | Dec 1999 | WO |
200153994 | Jul 2001 | WO |
2003093950 | Nov 2003 | WO |
2005013047 | Feb 2005 | WO |
2012106269 | Aug 2012 | WO |
2015024881 | Feb 2015 | WO |
Entry |
---|
Akyildiz et al., “Multimedia Group Synchronization Protocols for Integrated Services Networks,” IEEE Journal on Selected Areas in Communications, 1996 pp. 162-173, vol. 14, No. 1. |
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages. |
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages. |
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages. |
Benslimane Abderrahim, “A Multimedia Synchronization Protocol for Multicast Groups,” Proceedings of the 26th Euromicro Conference, 2000, pp. 456-463, vol. 1. |
Biersack et al., “Intra- and Inter-Stream Synchronization for Stored Multimedia Streams,” IEEE International Conference on Multimedia Computing and Systems, 1996, pp. 372-381. |
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages. |
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages. |
Bretl W.E., et al., MPEG2 Tutorial [online], 2000 [retrieved on Jan. 13, 2009] Retrieved from the Internet:(http://www.bretl.com/mpeghtml/MPEGindex.htm), pp. 1-23. |
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages. |
Dell, Inc. “Start Here,” Jun. 2000, 2 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
Final Office Action dated May 22, 2017, issued in connection with U.S. Appl. No. 15/009,319, filed Jan. 28, 2016, 24 pages. |
Huang C.M., et al., “A Synchronization Infrastructure for Multicast Multimedia at the Presentation Layer,” IEEE Transactions on Consumer Electronics, 1997, pp. 370-380, vol. 43, No. 3. |
International Searching Authority, International Search Report and Written Opinion dated May 29, 2015, issued in connection with International Application No. PCT/US2015/018850, filed on Mar. 5, 2015, 13 pages. |
Ishibashi et al., “A Group Synchronization Mechanism for Live Media in Multicast Communications,” IEEE Global Telecommunications Conference, 1997, pp. 746-752, vol. 2. |
Ishibashi et al., “A Group Synchronization Mechanism for Stored Media in Multicast Communications,” IEEE Information Revolution and Communications, 1997, pp. 692-700, vol. 2. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 retrieved Jun. 18, 2014, 2 pages. |
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages. |
Mills David L., “Network Time Protocol (Version 3) Specification, Implementation and Analysis,” Network Working Group, Mar. 1992, 7 pages. |
Mills, David L., “Precision Synchronization of Computer Network Clocks,” ACM SIGCOMM Computer Communication Review, 1994, pp. 28-43, vol. 24, No. 2. |
Motorola, “Simplefi, Wireless Digital Audio Receiver, Installation and User Guide,” Dec. 31, 2001, 111 pages. |
Nilsson, M., “ID3 Tag Version 2,” Mar. 26, 1998, 28 pages. |
Non-Final Office Action dated Sep. 10, 2015, issued in connection with U.S. Appl. No. 14/197,403, filed Mar. 5, 2014, 16 pages. |
Non-Final Office Action dated Dec. 14, 2016, issued in connection with U.S. Appl. No. 15/009,319, filed Jan. 28, 2016, 21 pages. |
Non-Final Office Action dated Oct. 19, 2015, issued in connection with U.S. Appl. No. 14/337,770, filed Jul. 22, 2014, 11 pages. |
Non-Final Office Action dated Oct. 2, 2018, issued in connection with U.S. Appl. No. 15/888,789, filed Apr. 30, 2018, 14 pages. |
North American MPEG-2 Information, “The MPEG-2 Transport Stream,” Retrieved from the Internet: URL: http://www.coolstf.com/mpeg/#ts, 2006, pp. 1-5. |
Notice of Allowance dated Sep. 22, 2017, issued in connection with U.S. Appl. No. 15/009,319, filed Jan. 28, 2016, 8 pages. |
Notice of Allowance dated Jan. 9, 2019, issued in connection with U.S. Appl. No. 15/888,789, filed Feb. 5, 2018, 8 pages. |
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages. |
Park et al., “Group Synchronization in MultiCast Media Communications,” Proceedings of the 5th Research on Multicast Technology Workshop, 2003, 5 pages. |
Polycom Conference Composer User Guide, copyright 2001, 29 pages. |
Presentations at WinHEC 2000, May 2000, 138 pages. |
PRISMIQ, Inc., “PRISMIQ Media Player User Guide,” 2003, 44 pages. |
Rothermel et al., “An Adaptive Stream Synchronization Protocol,” 5th International Workshop on Network and Operating System Support for Digital Audio and Video, 1995, 13 pages. |
Schulzrinne H., et al., “RTP: A Transport Protocol for Real-Time Applications, RFC 3550,” Network Working Group, 2003, pp. 1-89. |
United States Patent and Trademark Office, U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
Van Buskirk, Eliot, “Music Needs ‘Connective Tissue’ and Facebook Wants to Build It,” E http://evolver.fm/2011/09/01/music-needs-connective-tissue-and-facebook-wants-to-build-it, 2011, 6 pages. |
Yamaha DME 32 manual: copyright 2001. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
Number | Date | Country | |
---|---|---|---|
20190317724 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15888789 | Feb 2018 | US |
Child | 16416714 | US | |
Parent | 15009319 | Jan 2016 | US |
Child | 15888789 | US |