This disclosure relates generally to external medical devices, and more specifically, to apparatus and processes that integrate ambulatory medical devices with hospital medical devices.
There are a wide variety of electronic and mechanical medical devices for monitoring and treating patients' medical conditions. The one or more particular medical devices used to monitor and/or treat a patient depend on the underlying medical condition with which the patient is afflicted. For example, where a patient has a medical condition that affects the patient's cardiac function (e.g., a cardiac arrhythmia), medical devices such as cardiac pacemakers or defibrillators may be used to treat the patient. In some cases, these medical devices may be surgically implanted or externally connected to the patient. Such medical devices may be used alone, or in combination with drug therapies, to treat medical conditions such as cardiac arrhythmias.
One of the most deadly cardiac arrhythmias is ventricular fibrillation, which occurs when normal, regular electrical impulses are replaced by irregular and rapid impulses, causing the heart muscle to stop normal contractions and to begin to quiver. Normal blood flow ceases, and organ damage or death can result in minutes if normal heart contractions are not restored. Because the victim has no perceptible warning of the impending fibrillation, death often occurs before the necessary medical assistance can be administered. Other cardiac arrhythmias include excessively slow heart rates known as bradycardia.
Implantable or external pacemakers and defibrillators (such as automated external defibrillators or AEDs) have significantly improved the ability to treat these otherwise life-threatening conditions. Such devices operate by applying corrective electrical pulses directly to the patient's heart. For example, bradycardia can be corrected through the use of an implanted or external pacemaker device. Ventricular fibrillation can be treated by an implanted or external defibrillator.
Some medical devices operate by continuously or substantially continuously monitoring the patient's heart for treatable arrhythmias via one or more sensing electrodes and, when such is detected, applying corrective electrical pulses directly to the heart through one or more therapy electrodes. Patients use these devices while ambulatory and visiting various locations, such as their home or place of work.
An ambulatory medical device stores a wealth of data regarding a patient that is potentially useful to a hospital practitioner when caring for the patient. Examples of this patient data include data descriptive of patient activity, compliance, body position, electrocardiogram (ECG) readings, heart sounds, respiration, blood oxygen level, and other patient parameters. Patient data may also include patient demographic data (e.g., name, address, insurance provider, etc.), data descriptive of healthcare provider observations of the patient, and images of the patient. Both the hospital practitioner and patient may further benefit from granting control of the ambulatory medical device upon the patient's entry into the hospital. This is especially true where the ambulatory medical device is configured to provide treatment to the patient that may be manually initiated by the hospital practitioner in an emergency. Further, publication of the data, along with data generated by other medical devices located in the hospital, can be used to construct a patient dashboard summarizing the patient's condition over time and illustrating a chronology of care provided to the patient via the ambulatory medical device and the other medical devices located in the hospital. This chronology may both inform a caregiver's treatment of the patient in an emergency and be studied to prescribe an extended course of treatment to the patient.
In one example, an ambulatory medical device is provided. The ambulatory medical device includes at least one sensor configured to acquire physiological data of a patient, at least one network interface and at least one processor coupled to the at least one sensor and the at least one network interface. The at least one processor is configured to detect, via the at least one network interface, a medical device, to establish a secure communication session with the medical device via the at least one network interface, to detect a data capacity of the secure communication session, to identify a category of patient data associated with the data capacity, and to transmit patient data of the category to the medical device via the secure communication session.
In the ambulatory medical device, the at least one processor may be configured to detect the medical device in response to the ambulatory medical device entering a predefined range of the medical device. The at least one processor may be configured to determine whether the medical device is trusted prior to establishing the secure communication session.
In the ambulatory medical device, the patient data may include a summary based on electrocardiogram data. The summary may describe a heart rate of the patient. The at least one processor may be configured to monitor the data capacity and to include electrocardiogram data within the patient data where the data capacity exceeds a predetermined threshold.
The ambulatory medical device may further include at least one electrode configured to shock the patient. The ambulatory medical device may further include a garment housing the at least one electrode. In the ambulatory medical device, the at least one processor may be configured to determine whether the medical device is within the predefined range based on at least one of a Wi-Fi signal strength, a BLUETOOTH signal strength, and a near field communication signal strength. The at least one processor may be configured to determine that the medical device is within the predefined range based on physical contact between the medical device and at least one of the ambulatory medical device and the patient.
In the ambulatory medical device, the at least one processor may be configured to receive instructions to treat the patient from the medical device and to execute the instructions to treat the patient. The at least one processor may be configured to implement a web server to receive the instructions within the secure communication session. The at least one processor may be configured to receive instructions to execute a diagnostic protocol from the medical device and to execute the diagnostic protocol. The ambulatory medical may further include a user interface coupled to the at least one processor, the diagnostic protocol may include a six-minute walk test and the at least one processor may be configured to prompt the user, via the user interface, to perform the six-minute walk test.
In the ambulatory medical device, the at least one processor may be configured to implement a web server to transmit the patient data to a programmable device distinct from the medical device and the ambulatory medical device. The programmable device may include at least one of a mobile computing device, a remote server, and a hospital data system. The patient data may include compliance data. The at least one processor may be configured to detect a predefined patient condition and to transmit instructions for the medical device to issue an alert via a user interface regarding the patient condition.
In another example, a hospital medical device is provided. The hospital medical device includes at least one network interface and at least one processor coupled to the at least one network interface. The at least one processor is configured to detect, via the at least one network interface, an external ambulatory medical device; to establish a secure communication session with the external ambulatory medical device via the at least one network interface; to receive patient summary data via the secure communication session; and to process the patient summary data.
In the hospital medical device, the at least one processor may be configured to request, in response to processing the patient summary data, detailed data upon which the summary data is based from the external ambulatory medical device via the secure communication session. The at least one processor may be configured to transmit patient data to the external ambulatory medical device via the secure communication session. The hospital medical device may include at least one of a defibrillator, a temperature management system, a ventilator, a resuscitation system, and a telemetry system.
In the hospital medical device, the patient summary data may be based on electrocardiogram data. The patient summary data may describe a heart rate of the patient. The at least one processor may be configured to determine whether the external ambulatory medical device is within a predefined range of the hospital medical device based on at least one of a Wi-Fi signal strength, a BLUETOOTH signal strength, and a near field communication signal strength. The at least one processor may be configured to determine the external ambulatory medical device is within a predefined range based on physical contact between the hospital medical device and at least one of the external ambulatory medical device and the patient.
The hospital medical device may further include a user interface coupled to the at least one processor. The at least one processor may be configured to receive input via the user interface, to generate instructions to treat the patient based on the input, and to transmit the instructions to the external ambulatory medical device. The at least one processor may be configured to implement a web server to transmit the instructions within the secure communication session. The at least one processor may be configured to receive input via the user interface, to generate instructions to execute a diagnostic protocol based on the input, and to transmit the instructions to the external ambulatory medical device. The diagnostic protocol may include a six-minute walk test. The at least one processor may be configured to receive instructions from the external ambulatory medical device to issue an alert via the user interface regarding a patient condition. The at least one processor may be configured to display patient data on the user interface.
In the hospital medical device, wherein the at least one processor may be configured to implement a web server to transmit patient data to a programmable device distinct from the hospital medical device and the external ambulatory medical device. The programmable device may include at least one of a mobile computing device, a remote server, and a hospital information system. The patient data may include compliance data.
In another example, a system of medical devices is provided. The system includes an external ambulatory medical device and a hospital medical device. The external ambulatory medical device includes one or more network interfaces and at least one sensor configured to acquire physiological data of a patient. The hospital medical device includes at least one network interface and at least one processor coupled to the at least one network interface. The at least one processor is configured to detect, via the at least one network interface, the external ambulatory medical device; to establish a secure communication session with the external ambulatory medical device via the at least one network interface; to receive patient summary data via the secure communication session; to process the patient summary data.
In the system of medical devices, the at least one processor of the hospital medical device may be configured to request, in response to processing the patient summary data, detailed data upon which the patient summary data is based from the external ambulatory medical device via the secure communication session. The external ambulatory medical device may include one or more processors configured to limit transmission of patient data at least in part by calculating the patient summary data, transmitting the patient summary data to the hospital medical device, receiving a request for detailed data, and transmitting, in response to receiving the request, the detailed data to the hospital medical device.
In the system, the hospital medical device may include a resuscitation system, the external ambulatory medical device may include an accelerometer, and the at least one processor of the hospital medical device may be configured to receive location tracking data measured by the accelerometer and to detect whether chest compressions are of a correct depth using the location tracking data.
In the system, the hospital medical device may include a temperature management system, the external ambulatory medical device may include a temperature sensor configured to measure a body temperature of the patient, and the at least one processor may be configured to receive body temperature data measured by the temperature sensor and to detect whether the body temperature transgresses a threshold.
In the system, the at least one processor may be configured to receive electrocardiogram data and to process the electrocardiogram data to generate the patient summary data. The hospital medical device may further include a user interface coupled to the at least one processor. The at least one processor may be configured to display, on a screen of the user interface, data originated by the hospital medical device and display, on the screen of the user interface, data originated by the external ambulatory medical device.
In another example, a method of integrating an ambulatory medical device with a hospital medical device is provided. The method includes acts of acquiring, by the ambulatory medical device, physiological data of a patient; detecting, by the ambulatory medical device, the hospital medical device; establishing a secure communication session between the ambulatory medical device and the hospital medical device; detecting, by the ambulatory medical device, a data capacity of the secure communication session; identifying, by the ambulatory medical device, a category of patient data associated with the data capacity; and transmitting, by the ambulatory medical device, patient data of the category to the hospital medical device via the secure communication session.
In the method, the act of detecting the hospital medical device may include an act of detecting the hospital medical device in response to the ambulatory medical device entering a predefined range of the hospital medical device. The method may further include an act of determining whether the hospital medical device is trusted prior to establishing the secure communication session. In the method, the act of transmitting the patient data may include an act of transmitting a summary based on electrocardiogram data.
Still other aspects, examples and advantages of these aspects and examples, are discussed in detail below. Moreover, it is to be understood that both the foregoing information and the following detailed description are merely illustrative examples of various aspects and features, and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and examples. Any example or feature disclosed herein may be combined with any other example or feature. References to different examples are not necessarily mutually exclusive and are intended to indicate that a particular feature, structure, or characteristic described in connection with the example may be included in at least one example. The appearances of such terms herein are not necessarily all referring to the same example.
Various aspects of at least one example are discussed below with reference to the accompanying figures, which are not intended to be drawn to scale. The figures are included to provide an illustration and a further understanding of the various aspects and examples, and are incorporated in and constitute a part of this specification, but are not intended as a definition of the limits of any particular example. The drawings, together with the remainder of the specification, serve to explain principles and operations of the described and claimed aspects and examples. In the figures, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every figure.
Some aspects and examples are directed to apparatus and processes that monitor a hospital environment for the introduction of trusted ambulatory medical devices and integrate the trusted medical devices with hospital medical devices to enhance patient care. In some examples, hospital medical devices and/or ambulatory medical devices monitor for and detect one another when they are brought into close physical proximity. Further, in these examples, the medical devices establish a trusted relationship and execute one or more secure communication sessions in which the medical devices exchange data and/or instructions. As a result of this interoperation, patient data is efficiently shared between the medical devices, thereby enabling the medical device to better treat the patient individually or in combination. In addition, in some examples, the medical devices publish patient data to a distinct programmable device. In these examples, the distinct programmable device processes the patient data to provide a chronology of care that spans multiple medical devices. Such a rapidly assembled set of information may be valuable in some clinical situations, such as where a healthcare professional or other caregiver in an emergency room is presented with a patient whose care is time critical in nature.
Examples of the methods and systems discussed herein are not limited in application to the details of construction and the arrangement of components set forth in the following description or illustrated in the accompanying drawings. The methods and systems are capable of implementation in other examples and of being practiced or of being carried out in various ways. Examples of specific implementations are provided herein for illustrative purposes only and are not intended to be limiting. In particular, acts, components, elements and features discussed in connection with any one or more examples are not intended to be excluded from a similar role in any other examples.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. Any references to examples, components, elements or acts of the systems and methods herein referred to in the singular may also embrace examples including a plurality, and any references in plural to any example, component, element or act herein may also embrace examples including only a singularity. References in the singular or plural form are not intended to limit the presently disclosed systems or methods, their components, acts, or elements. The use herein of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. References to “or” may be construed as inclusive so that any terms described using “or” may indicate any of a single, more than one, and all of the described terms. In addition, in the event of inconsistent usages of terms between this document and documents incorporated herein by reference, the term usage in the incorporated references is supplementary to that of this document; for irreconcilable inconsistencies, the term usage in this document controls.
Hospital Environment
In some examples, the ambulatory medical device 102 is worn by the patient 116 and includes sensors that monitor the physiology of the patient 116 over, in some instances, an extended time period (e.g., a few hours, days, weeks, or even months). The ambulatory medical device 102 may also include treatment components, such as treatment electrodes, that are configured to treat the patient when warranted. Particular examples of the ambulatory medical device 102 include, among other devices, mobile cardiac telemetry devices, sleep apnea devices, drug delivery devices, oxygen concentrators, mobile cardiac telemetry devices and/or wearable defibrillators, such as the LifeVest® brand wearable defibrillator available from ZOLL® Medical Corporation.
The hospital medical device 104 may include any of a variety of hospital equipment used by caregivers (doctors, nurses, medical technicians, etc.) to monitor and/or treat patients in a hospital setting. The hospital medical device 104 includes sensors that detect physiological signals and may, like the ambulatory medical device 102, include treatment components. Particular examples of the hospital medical device 104 include patient monitoring devices and patient treatment devices, for example monitor defibrillators (e.g., R Series® brand monitor defibrillators available from ZOLL® Medical Corporation), resuscitation systems (e.g., AutoPulse® resuscitation systems available from ZOLL® Medical Corporation), temperature management systems (e.g., Thermogard XP® temperature management systems available from ZOLL® Medical Corporation), ventilators (e.g., Eagle II™ portable ventilator), and hospital telemetry systems.
In some examples, the remote device 110 and the programmable device 106 are programmable devices used by caregivers to access data regarding the patients, such as the patient 116. These devices include a processor and memory coupled to the processor. Specific examples of the remote device 110 include a remote server that is a part of the LifeVest® network service provided by ZOLL® Medical Corporation. As such, in some examples, the remote device 110 is configured to receive, store, and provide patient data to other devices (e.g., the programmable device 106) via, for example, a web server. Specific examples of the programmable device 106 include smartphones, tablet computers, laptop computers, and other computing devices. The hospital information system (HIS) 108 may include one or more programmable devices that are configured to provide a hospital with data processing that supports administrative, financial, medical, and legal operations of the hospital.
As shown in
In
Various examples disclosed herein are configured to respond to detection of this transition by executing one or more of a variety of integration processes. These integration processes provide a variety of benefits. By aggregating patient data into a single device and/or user interface, the integration processes provide caregivers with a comprehensive source of information regarding patient history and treatment. Where the single device and/or user interface is familiar to the caregiver (e.g., where the integration processes collocate patient data in a hospital device that the caregiver is trained to operate), the caregiver is able to quickly identify information important to the treatment of the patient. In addition, the integration processes provide for rapid distribution of patient data to, in some cases, experts at remote locations who can use the patient data to help hospital caregivers diagnose and treat the patient.
One of the integration processes disclosed herein implements a secure transfer of patient data from the ambulatory medical device 102 to the hospital medical device 104.
In some examples illustrated by
Another integration process implements a secure control session in which the hospital medical device 104 and/or the programmable device 106 controls operation of the ambulatory medical device 102.
Another integration process implements a secure patient data publication session in which the hospital medical device 104 publishes patient data to the HIS 108, the programmable device 106, and/or the remote device 110.
To meet security requirements of the HIS 108 in some examples, the secure publication session 400 may be conducted via a data hub compliant with one or more security standards, such as the Federal Information Processing Standard (FIPS). In these examples, the hospital medical device 104 and/or the hospital medical device 402 may be configured to communicate sensitive patient data (e.g., compliance data, ECG data, demographic data and images of the patient) to the HIS 108 via a patient data hub as described in U.S. Patent Application Ser. No. 62/315,439, titled PATIENT DATA HUB, filed Mar. 30, 2016, which is hereby incorporated herein by reference in its entirety.
In some examples, the remote device 110 is configured to receive the patient data 302, the processed patient data 404, and/or the additional patient data 406 and provide a user interface including information based on the patient data 302, the processed patient data 404, and/or the additional patient data 406. The user interface may be presented to a caregiver 408 who is available to remotely analyze the patient data and support the caregiver 118 treating of the patient 116. Alternatively or additionally, the user interface may be presented to the caregiver 120 via the programmable device 106. The user interface may present monthly trends and other historical patient data. One example a user interface provided by the remote device 110 is described further below with reference to
Example Ambulatory Medical Device
In some implementations, the ambulatory medical device 102 is an external wearable defibrillator, such as the LifeVest® wearable defibrillator available from ZOLL® Medical Corporation.
The wearable medical device 500 may include the optional patient interface pod 540 that is coupled to the medical device controller 520. For example, the patient interface pod 540 may include patient interface elements such as a speaker, a microphone responsive to patient input, a display, an interactive touch screen responsive to patient input, and/or physical buttons for input. In some implementations, these elements are incorporated into a housing of the controller 520. In one example, the controller 520 is configured to detect whether the patient interface pod 540 is operatively coupled to the controller 520. In this example, the controller is further configured to disable the patient interface elements of the controller 520 and instead communicate with the patient via the patient interface pod 540. In certain examples, the patient interface pod 540 and the patient interface elements of controller 520 may serve as a redundant input mechanism through which the patient may interact with the controller 520. The patient interface pod 540 may be wirelessly coupled with the controller 520. The patient interface pod 540 may take other forms and include additional functionality. For instance, the patient interface pod 540 may be implemented on a smartphone, tablet, or other mobile device carried by the patient. In another example, the patient interface pod 540 may be worn as a watch about the wrist of the patient, or as a band about an upper arm of the patient. In some implementations, the controller 520 may communicate certain alerts and data and/or be responsive to patient input via both the patient interface elements included in the controller 520 and the patient interface pod 540. The patient and/or caregiver can interact with a touch display or the patient interface pod 540 to control the medical device 500.
Example Hospital Medical Device
In some examples, the hospital medical device 104 includes a monitor defibrillator or a patient monitoring device. Monitor defibrillators that are capable of monitoring cardiac rhythms, determining when a defibrillating shock is necessary, and administering the defibrillating shock either automatically, or under the control of a trained caregiver (e.g., the caregiver 118). The monitor defibrillator, in addition, may be configured to provide counseling to a caregiver as to how to perform cardiac resuscitation (CPR).
The monitor defibrillator 600 is configured to detect the cardiac rhythm of a patient using ECG data and provide pacing and defibrillating shocks to the patient as appropriate. As shown in
The examples of hospital medical devices are not limited to the monitor defibrillator 600 described above. Other example hospital medical devices also include patient monitoring devices that are capable of monitoring patient vital signs, e.g. cardiac rhythms, hemodynamic physiological parameters (e.g. blood pressure), respiratory parameter (e.g. respiratory rate, blood oxygen levels and/or saturation, end tidal carbon dioxide, etc.), blood glucose monitoring, body temperature monitoring, etc.
Example Controller
In some examples, the network interface 706 can facilitate the communication of data between the controller 700 and one or more other devices or entities over a communications network, such as the network 112 described above with reference to
In some examples, the controller 700 includes a cardiac event detector 726 to monitor the cardiac activity of the patient, identify cardiac events experienced by the patient based on received cardiac signals, and treat the patient by executing a treatment sequence that culminates in the delivery of one or more defibrillating shocks to the body of the patient. The cardiac signals received by the cardiac event detector 726 may be acquired via electrodes integral to the medical device including the controller 700 or may be acquired by another medical device that is currently integrated with the medical device.
In some examples, the optional user interface 708 includes one or more physical interface devices such as input devices, output devices, and combination input/output devices and a software stack configured to drive operation of the devices. These user interface elements may render visual, audio, and/or tactile content, including content relating to location-specific processing. Thus the user interface 708 may receive input or provide output, thereby enabling a user to interact with the controller 700.
In some implementations, the processor 718 includes one or more processors that each are configured to perform a series of instructions that result in manipulated data and/or control the operation of the other components of the controller 700. In some implementations, when executing a specific software process as provided herein (e.g.,
Is some examples, the integration component 716 is executable by the processor 718 and is configured to execute any of a variety of integration processes, such as any of the integration processes described further below with reference to
In some examples, the integration component 716 includes a communication component that is configured in accordance with the communication component disclosed in U.S. Patent Application Publication No. 2016/0321400, titled CLINICAL DATA HANDOFF IN DEVICE MANAGEMENT AND DATA SHARING, published Nov. 3, 2016, which is hereby incorporated herein by reference in its entirety. Such a communication component may facilitate communication between a first medical device and a second medical device during a medical event. This communication may include transfer, display, and operational use of clinical data collected by the first medical device.
In some examples, the integration component 716 includes a shielding component that is configured in accordance with the shielding component disclosed in U.S. Patent Application Publication No. 2016/0321418, titled CUSTOMER- OR PATIENT-BASED SELECTIVE DATA ENCRYPTION IN MEDICAL DEVICE MANAGEMENT, published Nov. 3, 2016, which is hereby incorporated herein by reference in its entirety. In some examples, the shielding component increases the security of the secure communication sessions established by the integration component 716 by selectively shielding part data elements exchanged between the devices involved in the secure communications sessions.
In various implementations, the controller 700 implements an embedded operating system that supplies file system and networking support. In one example, the controller 700 includes software features that provide relational database functionality, touch screen display drivers, audio generation, BLUETOOTH wireless networking, BLUETOOTH Low Energy (BLE) Beacon technology, networking security and firewalling, and data encryption services.
Example Integration Processes
As described above, some example medical devices execute integration processes that establish and execute secure communication sessions with other medical devices in response to detecting that the other medical devices.
The integration process 800 starts in the act 802 with the first medical device establishing a network connection. This network connection may include a Wi-Fi connection, BLUETOOTH connection, near field communication connection, or any other connection through which programmable devices may exchange data. In act 804, the first medical device prompts a user (e.g., a patient or caregiver) for permission to search for trusted medical devices. In act 806, the first medical device determines whether the user granted permission. If not, the integration process 800 ends. Otherwise, the integration process 800 proceeds to act 808.
In the act 808, the first medical device transmits an integration request via the network connection. For example, in some embodiments, the first medical device may transmit a broadcast message encoded to a predefined format and including a digital certificate via the network connection. In act 810, the first medical device determines whether a response to the request is received within a timeout period. If not, the integration process 800 ends. Otherwise, the integration process 800 proceeds to act 812.
In the act 812, the first medical device determines whether the response is a trusted response. For example, the response may include a digital certificate authenticating the responding device as a trusted device. If the response is trusted, the integration process 800 proceeds to the act 816. Otherwise, the integration process 800 proceeds to the act 814.
In the act 814, the first medical device reports the untrusted response (e.g., to the user via the user interface, to another device via the network connection, etc.), and the integration process 800 ends. In the act 816, the first medical device executes a secure communication session with the second medical device, and the integration process 800 ends. Specific examples of processes executed during the act 816 are described further below with reference to
The integration process 850 starts in the act 852 with the second medical device establishing a network connection. This network connection may include a Wi-Fi connection, BLUETOOTH connection, near field communication connection, or any other connection through which programmable devices may exchange data. In act 854, the second medical device monitors the network connection for integration requests. In act 856, the second medical device receives an integration request. In act 858, the first medical device determines whether the request originated from a trust device. For example, the request may include a digital certificate authenticating the requesting device as a trusted device. If the request is trusted, the integration process 850 proceeds to the act 860. Otherwise, the integration process 800 proceeds to the act 862.
In the act 862, the second medical device reports the untrusted request (e.g., to the user via the user interface, to another device via the network connection, etc.), and the integration process 850 ends. In act 860, the second medical device prompts a user (e.g., a caregiver) for permission to execute a secure communication session. In act 864, the second medical device determines whether the user granted permission. If not, the integration process 850 ends. Otherwise, the integration process 850 proceeds to act 866.
In the act 866, the second medical device executes a secure communication session with the first medical device, and the integration process 850 ends. Specific examples of processes executed during the act 816 are described further below with reference to
Processes in accordance with the integration processes 800 and 850 enable medical devices to execute a variety of integrated functions within a secure environment, thereby enhancing patient care.
As described above, some examples control the amount and type of data transferred between medical devices based on a data capacity measurement of a secure communication session between the medical devices.
The communication process 900 starts in act 902 with the first medical device transmitting an availability message to the second medical device. The availability message includes data descriptive of the types of detailed data and summary data the first medical device has available for transmission to the second medical device. In various examples, the types of detailed and summary data available may include any of the patient data described above.
The communication process 950 starts in act 952 with the second medical device receiving the availability message. In act 954, the second medical device processes the availability message. The processing may include parsing the availability message to identify the types of patient data available to the second medical device and selecting one or more patient data types for transmission. In some examples, the second medical device selects patient data types automatically according to default configuration data. In some examples, the second medical device presents a list of available patient data types to a caregiver via a user interface and selects patient data types that are designated by input received from the caregiver. In act 956, the second medical device transmits a patient data request to the first medical device. The patient data request may include identifiers of one or more requested patient data types.
In act 904, the first medical device receives and parses the patient data request. In act 906, the medical device determines whether patient data exists that is targeted for transmission to the second medical device. In various examples, patient data may be targeted for transmission by default (e.g., via configuration data stored in the first medical device) or by receipt of a patient data request. If patient data exists that is targeted for transmission to the second medical device, the communication process 900 proceeds to the act 908. Otherwise, the communication process 900 ends.
In act 908, the first medical device measures the data capacity of the secure communication session between it and the second medical device. For example, the first medical device may transmit a predefined, limited amount of data to the second medical device and extrapolate a data capacity measurement based on the amount of time to complete the transfer and the amount of data. In some examples, this limited amount of data is the availability message described above in the act 902.
In act 910, the first medical device determines whether the data capacity is less than a first threshold. If so, the first medical device transmits a first category of data in act 912 and returns to the act 906. The first category of data may require low data capacity to be successfully and timely transmitted. For example, the first category of data may be summary data descriptive of a patient (e.g., heart rate data). If the first medical device determines that the data capacity is not less than the first threshold, the communication process 900 proceeds to act 914.
In act 914, the first medical device determines whether the data capacity is less than a second threshold. If so, the first medical device transmits a second category of data in act 916 and returns to the act 906. The second category of data may require a moderate amount of data capacity to be successfully and timely transmitted. For example, the second category of data may be detailed data descriptive of the patient (e.g., ECG strip data). If the first medical device determines that the data capacity is not less than the second threshold, the communication process 900 proceeds to act 918.
In act 918, the first medical device transmits a third category of data and returns to the act 906. The third category of data may require a substantial amount of data capacity to be successfully and timely transmitted. For example, the third category of data may include both summary data descriptive of the patient and detailed data descriptive of the patient. In act 958, the second medical device receives the patient data. In act 960, the second medical device processes the patient data. This processing may include presenting the patient data to a caregiver and/or identifying (via input or automated processing) a need for additional patient data. Additional patient data may be needed, for example, where summary data is not precise enough to complete execution of the act 960. In act 962, the second medical device determines whether additional patient data is needed. If not, the communication process 950 ends. Otherwise, the second medical device returns to the act 956 and requests the additional patient data (e.g., detailed data corresponding to the summary data that was insufficient to complete execution of the act 960).
Processes in accord with the processes 900 and 950 enable medical devices to communicate data securely and effectively given any data capacity constraints present within the connection between them. While
As described above, some examples enable devices to control operations of medical devices.
For example, the control process 1000 starts in the act 1002 with the first medical device calculating summary data by executing a predetermined summary process, e.g., a mobile cardiac telemetry process on detailed data acquired during one or more predetermined time intervals. For example, such time intervals may be a few minutes (e.g., in connection with a patient reported symptom and/or event), hours, days, weeks, or months. For example, the time interval may be specified via a predetermined user-configurable parameter. The summary data generated by such predetermined summary processing may include heartbeat identification, heart rate determinations, arrhythmia detections, etc. Summary data may further include, for example, information regarding the nature of an identified event, a time of occurrence of the event, and/or other information associated with the event, such as device configuration, patient data, and/or actions taken with regard to the information within the predetermined time interval. In act 1004, the first medical device identifies summary data and/or detail data to transmit to the second device as patient data and transmits the patient data to the second device. In some examples, the first medical device identifies the summary data and/or the detail data by processing a request for detailed data received via execution of the act 1056 as described further below. The request for detailed data may include an identifier of a time interval for which detail data is requested. In these examples, absent a specific request for detailed data, the first medical device may identify summary data and/or detailed data using a data capacity based process, such as the communication process described above with reference to
The control process 1050 starts in the act 1052 with the second device receiving the patient data. In act 1054, the second device processes the patient data. Where the patient data received by the second device includes detailed data, the second device may, as part of the act 1054, execute processing to generate summary data from the detailed data, for example predetermined summary processing. Within the act 1054, the second device may also receive input from a caregiver via a user interface of the second device and incorporate and/or act upon data descriptive of the input. For example, the input may specify one or more portions of summary data for which detail data is requested.
For example, the second device is configured to take action based on one or more predetermined triggering events based on the received summary and/or detailed data. For instance, such a triggering event may be the indication of a treatable event as detected within the data stream from the first device. As an example, if the first device is an ambulatory medical device configured to treat the patient, the data from the first device may indicate a treatable condition, e.g., an onset of a cardiac arrhythmia such as Ventricular Fibrillation (VF) or Ventricular Tachycardia (VF). The second device is configured to alert a caregiver to the treatable condition as detected by the first device. For example, the alert provided via the second device may be in the form of one or more audible, tactile, visual, or other notification. The caregiver may review the alert and act on the alert by issuing a command via the user interface of the second device to the first device to initiate a treatment protocol. For example, the second device may instruct a wearable defibrillator to initiate a treatment protocol culminating in delivery of a therapeutic shock to the patient. In other examples, the treatment protocol can include initiation and/or monitoring of cardiac pacing pulses delivered to the patient by the first device.
In some examples, the first device can be configured to monitor one or more physiological parameters of the patient. For example, such a device may be a mobile cardiac telemetry (MCT) and/or a continuous event monitoring (CEM) device. An MCT/CEM device can be triggered, e.g., through the secure control processes described herein, to initiate a diagnostic protocol configured to monitor for certain patient conditions.
In some examples, the caregiver may cause the second device to initiate a request for additional data and/or detailed data from the first device prior to determining whether to initiate a treatment request to the first device.
In act 1056, the second device determines where additional and/or detailed data was requested within the act 1054. If so, the second device transmits a request for detailed data to the first medical device in act 1058. Otherwise, the second device executes the act 1060.
In act 1060, the second device transmits a treatment and/or diagnostic request generated by the act 1054, and the control process 1050 ends. The treatment and/or diagnostic request may request initiation or delay of treatment and/or a diagnostic protocol. In act 1006, the first medical device receives the treatment and/or diagnostic request (e.g., a request to deliver a defibrillating shock). In act 1008, the first medical device executes the treatment and/or diagnostic request (e.g., delivers a defibrillating shock), and the control process 1000 ends. A diagnostic request may request initiation or delay of a diagnostic protocol. For instance, in one example of the act 1006, the first medical device receives the diagnostic request (e.g., a request to initiate monitoring for a patient's heart rate transgressing one or more thresholds). In act 1008, the first medical device executes the diagnostic request (e.g., by adjusting one or more device and/or patient configuration parameters in response to the request).
Processes in accord with the control processes 1000 and 1050 enable medical devices to treat and/or monitor patients in view of a combination of physiological data acquired by two or more medical devices. In this way, these processes provide a caregiver with a variety of approaches to treating and/or monitoring a patient. For instance, execution of the control processes 1000 and 1050 may enable a caregiver to, for example, review patient data, such as ECG data, on a user interface of a monitor defibrillator even though the patient data is acquired by a distinct ambulatory medical device worn by the patient. Review of this patient data may enable the caregiver to control treatment, such as defibrillation and/or pacing, delivered by the ambulatory medical device and/or the monitor defibrillator via a single user interface of the monitor defibrillator. In other examples, execution of the control processes 1000 and 1050 may enable a caregiver to request and monitor a self-administered diagnostic protocol, such as a six-minute walk test.
As described above, some examples publish patient data from a medical device to other devices.
The publication process 1100 starts with the first medical device calculating time internal summary data and transmitting patient data including the summary data to the second medical device by executing the acts 1002 and 1004 described above with reference to
The publication process 1160 starts in act 1162 with the remote device receiving the patient data. In act 1164, the remote device processes the patient data and the processed patient data. This processing may include parsing the data and creating a chronology of care that organizes patient summary data and patient detail data chronologically and identifies key handoff points during a patient overall treatment scenario. One example of a user interface presentation of a chronology of care is described below with reference to
Processes in accordance with the patient data publication processes 1100, 1130, and 1160 enable the efficient and secure distribution of data to disparately located medical devices. In this way, patients may benefit from caregivers both proximal to the patient and distant from the patient.
The processes disclosed herein each depict one particular sequence of acts in a particular example. The acts included in these processes may be performed by, or using, one or more programmable devices specially configured as discussed herein. Some acts are optional and, as such, may be omitted in accord with one or more examples. Additionally, the order of acts can be altered, or other acts can be added, without departing from the scope of the systems and methods discussed herein. Furthermore, as discussed above, in at least one example, the acts are performed on a particular, specially configured machine, namely a medical device configured according to the examples disclosed herein.
Example User Interfaces
Having thus described several aspects of at least one example, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. For instance, examples disclosed herein may also be used in other contexts. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the scope of the examples discussed herein. Accordingly, the foregoing description and drawings are by way of example only.
This application claims priority under 35 U.S.C. § 120 as a continuation of U.S. patent application Ser. No. 15/472,485, titled “SYSTEMS AND METHODS OF INTEGRATING AMBULATORY MEDICAL DEVICES,” filed Mar. 29, 2017. U.S. patent application Ser. No. 15/472,485 claims benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/315,486, titled “SYSTEMS AND METHODS OF INTEGRATING AMBULATORY MEDICAL DEVICES”, filed Mar. 30, 2016. Each of these related applications is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3724455 | Unger | Apr 1973 | A |
3922665 | Curry et al. | Nov 1975 | A |
4576170 | Bradley et al. | Mar 1986 | A |
4580572 | Granek et al. | Apr 1986 | A |
4583547 | Granek et al. | Apr 1986 | A |
4729377 | Granek et al. | Mar 1988 | A |
4928690 | Heilman et al. | May 1990 | A |
4991217 | Garrett et al. | Feb 1991 | A |
5078134 | Heilman et al. | Jan 1992 | A |
5348008 | Bornn et al. | Sep 1994 | A |
5371692 | Draeger et al. | Dec 1994 | A |
5381798 | Burrows | Jan 1995 | A |
5741306 | Glegyak et al. | Apr 1998 | A |
5929601 | Kaib et al. | Jul 1999 | A |
5944669 | Kaib | Aug 1999 | A |
6065154 | Hulings et al. | May 2000 | A |
6097982 | Glegyak et al. | Aug 2000 | A |
6141584 | Rockwell et al. | Oct 2000 | A |
6148233 | Owen et al. | Nov 2000 | A |
6160964 | Imoto | Dec 2000 | A |
6253099 | Oskin et al. | Jun 2001 | B1 |
6280461 | Glegyak et al. | Aug 2001 | B1 |
6304780 | Owen et al. | Oct 2001 | B1 |
6336900 | Alleckson et al. | Jan 2002 | B1 |
6356785 | Snyder et al. | Mar 2002 | B1 |
6374138 | Owen et al. | Apr 2002 | B1 |
6390996 | Halperin et al. | May 2002 | B1 |
6405083 | Rockwell et al. | Jun 2002 | B1 |
6406426 | Reuss et al. | Jun 2002 | B1 |
6418346 | Nelson et al. | Jul 2002 | B1 |
6438417 | Rockwell et al. | Aug 2002 | B1 |
6442433 | Linberg | Aug 2002 | B1 |
6546285 | Owen et al. | Apr 2003 | B1 |
6597948 | Rockwell et al. | Jul 2003 | B1 |
6602191 | Quy | Aug 2003 | B2 |
6681003 | Linder et al. | Jan 2004 | B2 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6804554 | Ujhelyi et al. | Oct 2004 | B2 |
6889078 | Struble et al. | May 2005 | B2 |
6889079 | Bocek et al. | May 2005 | B2 |
6908437 | Bardy | Jun 2005 | B2 |
6920354 | Daynes et al. | Jul 2005 | B2 |
7088233 | Menard | Aug 2006 | B2 |
7149579 | Koh et al. | Dec 2006 | B1 |
7231258 | Moore et al. | Jun 2007 | B2 |
7340296 | Stahmann et al. | Mar 2008 | B2 |
7453354 | Reiter et al. | Nov 2008 | B2 |
7476206 | Palazzolo et al. | Jan 2009 | B2 |
7488293 | Marcovecchio et al. | Feb 2009 | B2 |
7712373 | Nagle et al. | May 2010 | B2 |
7769465 | Matos | Aug 2010 | B2 |
7831303 | Rueter et al. | Nov 2010 | B2 |
7953478 | Vaisnys et al. | May 2011 | B2 |
7974689 | Volpe et al. | Jul 2011 | B2 |
7991460 | Fischell et al. | Aug 2011 | B2 |
8121683 | Bucher et al. | Feb 2012 | B2 |
8140154 | Donnelly et al. | Mar 2012 | B2 |
8271082 | Donnelly et al. | Sep 2012 | B2 |
8319632 | Vaisnys et al. | Nov 2012 | B1 |
8364221 | Mannheimer et al. | Jan 2013 | B2 |
8369944 | Macho et al. | Feb 2013 | B2 |
8406842 | Kaib et al. | Mar 2013 | B2 |
8548584 | Jorgenson | Oct 2013 | B2 |
8644925 | Volpe et al. | Feb 2014 | B2 |
8649861 | Donnelly et al. | Feb 2014 | B2 |
8676313 | Volpe et al. | Mar 2014 | B2 |
8706215 | Kaib et al. | Apr 2014 | B2 |
8768441 | De Zwart et al. | Jul 2014 | B2 |
8774917 | Macho et al. | Jul 2014 | B2 |
8880196 | Kaib | Nov 2014 | B2 |
8897860 | Volpe et al. | Nov 2014 | B2 |
8904214 | Volpe et al. | Dec 2014 | B2 |
9283399 | Donnelly et al. | Mar 2016 | B2 |
9381373 | Geheb et al. | Jul 2016 | B2 |
10674911 | Freeman | Jun 2020 | B2 |
20010031991 | Russial | Oct 2001 | A1 |
20010047140 | Freeman | Nov 2001 | A1 |
20020181680 | Linder et al. | Dec 2002 | A1 |
20030004547 | Owen et al. | Jan 2003 | A1 |
20030032988 | Fincke | Feb 2003 | A1 |
20030095648 | Kaib et al. | May 2003 | A1 |
20030109904 | Silver et al. | Jun 2003 | A1 |
20030158593 | Heilman et al. | Aug 2003 | A1 |
20030212311 | Nova et al. | Nov 2003 | A1 |
20040049233 | Edwards | Mar 2004 | A1 |
20040111122 | Daynes et al. | Jun 2004 | A1 |
20040127774 | Moore et al. | Jul 2004 | A1 |
20040133242 | Chapman et al. | Jul 2004 | A1 |
20050085258 | Ishii et al. | Apr 2005 | A1 |
20050131465 | Freeman et al. | Jun 2005 | A1 |
20050246199 | Futch | Nov 2005 | A1 |
20050283198 | Hau et al. | Dec 2005 | A1 |
20060095091 | Drew et al. | May 2006 | A1 |
20060173498 | Banville et al. | Aug 2006 | A1 |
20060211934 | Hassonjee et al. | Sep 2006 | A1 |
20060259080 | Vaisnys et al. | Nov 2006 | A1 |
20070129769 | Bourget et al. | Jun 2007 | A1 |
20070233199 | Moore et al. | Oct 2007 | A1 |
20070299473 | Matos | Dec 2007 | A1 |
20080004663 | Jorgenson | Jan 2008 | A1 |
20080033495 | Kumar | Feb 2008 | A1 |
20080058884 | Matos | Mar 2008 | A1 |
20080097793 | Dicks et al. | Apr 2008 | A1 |
20080114406 | Hampton et al. | May 2008 | A1 |
20080191893 | Li et al. | Aug 2008 | A1 |
20080233925 | Sun et al. | Sep 2008 | A1 |
20080249591 | Gaw et al. | Oct 2008 | A1 |
20080266118 | Pierson et al. | Oct 2008 | A1 |
20080287749 | Reuter | Nov 2008 | A1 |
20080306560 | Macho et al. | Dec 2008 | A1 |
20080306562 | Donnelly et al. | Dec 2008 | A1 |
20080312709 | Volpe et al. | Dec 2008 | A1 |
20090005827 | Weintraub et al. | Jan 2009 | A1 |
20090058636 | Gaskill et al. | Mar 2009 | A1 |
20090073991 | Landrum et al. | Mar 2009 | A1 |
20090076341 | James et al. | Mar 2009 | A1 |
20090076342 | Amurthur et al. | Mar 2009 | A1 |
20090076343 | James et al. | Mar 2009 | A1 |
20090076346 | James et al. | Mar 2009 | A1 |
20090076349 | Libbus et al. | Mar 2009 | A1 |
20090076350 | Bly et al. | Mar 2009 | A1 |
20090076363 | Bly et al. | Mar 2009 | A1 |
20090076559 | Libbus et al. | Mar 2009 | A1 |
20090146822 | Soliman | Jun 2009 | A1 |
20090232286 | Hurwitz | Sep 2009 | A1 |
20090234410 | Libbus et al. | Sep 2009 | A1 |
20090264792 | Mazar | Oct 2009 | A1 |
20090292194 | Libbus et al. | Nov 2009 | A1 |
20090312650 | Maile et al. | Dec 2009 | A1 |
20100052892 | Allen et al. | Mar 2010 | A1 |
20100052897 | Allen et al. | Mar 2010 | A1 |
20100069735 | Berkner | Mar 2010 | A1 |
20100076533 | Dar et al. | Mar 2010 | A1 |
20100268304 | Matos | Oct 2010 | A1 |
20100295674 | Hsieh et al. | Nov 2010 | A1 |
20100298899 | Donnelly et al. | Nov 2010 | A1 |
20100305462 | Callas et al. | Dec 2010 | A1 |
20100312297 | Volpe et al. | Dec 2010 | A1 |
20100324612 | Matos | Dec 2010 | A1 |
20110022105 | Owen et al. | Jan 2011 | A9 |
20110080294 | Tanishima et al. | Apr 2011 | A1 |
20110170692 | Konrad et al. | Jul 2011 | A1 |
20110172550 | Martin et al. | Jul 2011 | A1 |
20110288604 | Kaib et al. | Nov 2011 | A1 |
20110288605 | Kaib et al. | Nov 2011 | A1 |
20120011382 | Volpe et al. | Jan 2012 | A1 |
20120060030 | Lamb | Mar 2012 | A1 |
20120112903 | Kaib et al. | May 2012 | A1 |
20120116272 | Hampton et al. | May 2012 | A1 |
20120146797 | Oskin et al. | Jun 2012 | A1 |
20120150008 | Kaib et al. | Jun 2012 | A1 |
20120158075 | Kaib et al. | Jun 2012 | A1 |
20120191476 | Reid et al. | Jul 2012 | A1 |
20120283794 | Kaib et al. | Nov 2012 | A1 |
20120289809 | Kaib et al. | Nov 2012 | A1 |
20120293323 | Kaib et al. | Nov 2012 | A1 |
20120302860 | Volpe et al. | Nov 2012 | A1 |
20130013014 | Donnelly et al. | Jan 2013 | A1 |
20130060149 | Song et al. | Mar 2013 | A1 |
20130085538 | Volpe et al. | Apr 2013 | A1 |
20130144355 | Macho et al. | Jun 2013 | A1 |
20130218252 | Kaib et al. | Aug 2013 | A1 |
20130231711 | Kaib | Sep 2013 | A1 |
20130324868 | Kaib et al. | Dec 2013 | A1 |
20130325078 | Whiting et al. | Dec 2013 | A1 |
20130325096 | Dupelle et al. | Dec 2013 | A1 |
20140004814 | Elghazzawi | Jan 2014 | A1 |
20140005736 | Geheb | Jan 2014 | A1 |
20140031885 | Elghazzawi et al. | Jan 2014 | A1 |
20140121717 | Geheb et al. | May 2014 | A1 |
20140163334 | Volpe et al. | Jun 2014 | A1 |
20140206974 | Volpe et al. | Jul 2014 | A1 |
20140277243 | Maskara et al. | Sep 2014 | A1 |
20140303680 | Donnelly et al. | Oct 2014 | A1 |
20140324112 | Macho et al. | Oct 2014 | A1 |
20150035654 | Kaib et al. | Feb 2015 | A1 |
20150039039 | Macho et al. | Feb 2015 | A1 |
20150039042 | Amsler et al. | Feb 2015 | A1 |
20150039053 | Kaib et al. | Feb 2015 | A1 |
20150067769 | Barton et al. | Mar 2015 | A1 |
20150080699 | Kaib et al. | Mar 2015 | A1 |
20150149776 | Chastain et al. | May 2015 | A1 |
20150224330 | Kaib et al. | Aug 2015 | A1 |
20160110567 | Rooyakkers et al. | Apr 2016 | A1 |
20160226865 | Chen et al. | Aug 2016 | A1 |
20170075699 | Narayanan et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
0707825 | Apr 1996 | EP |
0761255 | Mar 1997 | EP |
1642616 | Apr 2006 | EP |
11-149379 | Jun 1999 | JP |
2002509472 | Mar 2002 | JP |
2002-514107 | May 2002 | JP |
2004-318839 | Nov 2004 | JP |
2008-302228 | Dec 2008 | JP |
2008302225 | Dec 2008 | JP |
2009510631 | Mar 2009 | JP |
2009-521865 | Jun 2009 | JP |
2009-528909 | Aug 2009 | JP |
2012-003311 | Jan 2012 | JP |
8304171 | Dec 1983 | WO |
1997022297 | Jun 1997 | WO |
1998039061 | Sep 1998 | WO |
2000030529 | Jun 2000 | WO |
2004078259 | Sep 2004 | WO |
2007019325 | Feb 2007 | WO |
2009034506 | Mar 2009 | WO |
2009122277 | Oct 2009 | WO |
2012006524 | Jan 2012 | WO |
2012100219 | Jul 2012 | WO |
2013130957 | Sep 2013 | WO |
2014018160 | Jan 2014 | WO |
2014097035 | Jun 2014 | WO |
Entry |
---|
“Medical Electrical Equipment—Part 2-4: Particular Requirements for the Safety of Cardiac Defibrillators (including Automated External Defibrillators)”, Association for the Advancement of Medical Instrumentation, 2004, ANSI/AAMI DF80:2003; ISBN 1-57020-210-9; abstract; p. vi, p. 50, section 107.1.2. |
American Journal of Respiratory and Critical Care Medicine, “ATS Statement: Guidelines for the Six-Minute Walk Test” vol. 166, pp. 111-117, 2002, American Thoracic Society, available at URL:http://ajrccm.atsjournals.org/cgi/content/ull/166/1/111. |
C. Shane Reid, “Customer—Or Patient-Based Selective Data Encryption in Medical Device Management”, U.S. Appl. No. 15/084,367, filed Mar. 16, 2016, 83 pages. |
European Search Report for EP Application 13808725.9 dated Jan. 25, 2016, 7 pages. |
Freeman et al., “Establishing Secure Communication at an Emergency Care Scene”, U.S. Appl. No. 15/464,515, filed Mar. 21, 2017, 89 pages. |
http://web.archive.org/web/20030427001846/http:/lifecor.comiimagelib/imageproduct.asp.; Published by LifeCor, Inc., 2002, on a web page owned by LifeCor, Inc. |
Ian Durrant, “Clinical Data Handoff In Device Management and Data Sharing”, U.S. Appl. No. 15/084,249, filed Mar. 29, 2016, 78 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2013/047617 dated Nov. 12, 2013. |
International Search Report and Written Opinion from corresponding PCT Application No. PCT/US2012/030428, dated Nov. 7, 2012. |
International Search Report and Written Opionion from PCT Application No. PCT/US2013/028598 dated May 9, 2013. |
Timothy F. Stever, “Patient Data Hub”, U.S. Appl. No. 62/315,439, filed Mar. 30, 2016, 39 pages. |
Zoll Medical Corporation, “LifeVest Model WCD 3000 Operator's Manual”, Pittsburgh, PA. |
Number | Date | Country | |
---|---|---|---|
20200253477 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62315486 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15472485 | Mar 2017 | US |
Child | 16862752 | US |