Systems and methods of machine learning for digital assets and message creation

Information

  • Patent Grant
  • 11256867
  • Patent Number
    11,256,867
  • Date Filed
    Tuesday, October 9, 2018
    6 years ago
  • Date Issued
    Tuesday, February 22, 2022
    2 years ago
Abstract
Systems and methods of machine learning for digital assets and message creation are provided herein. The present disclosure includes mechanisms for receiving one or more assets that include textual content, performing machine learning on the one or more assets in order to determine relevant words, phrases, and statistics included in the textual content, and displaying segments of data on a graphical user interface that also includes an interface that is used to create a message using content of the segments of the textual content that have been extracted from the one or more assets.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

N/A


FIELD OF THE INVENTION

The present disclosure pertains to machine learning within the context of digital asset processing and message creation. Systems and methods disclosed herein are configured to ingest digital assets from a variety of sources, evaluate textual content of these digital assets, and automate (either partially or entirely) the creation of messages for distribution across one or more digital distribution platforms.


SUMMARY

A system of one or more computers can be configured to perform particular operations or actions by virtue of having software, firmware, hardware, or a combination of them installed on the system that in operation cause or causes the system to perform the actions. One or more computer programs can be configured to perform particular operations or actions by virtue of including instructions that, when executed by data processing apparatus, cause the apparatus to perform the actions. One general aspect includes a method, including: receiving one or more assets that comprise textual content; performing machine learning on the one or more assets in order to determine relevant words, phrases, and statistics included in the textual content, and generate a summary of the textual content; displaying on a graphical user interface: the relevant words based on frequency of occurrence in the one or more assets, each of the relevant words being selectable; the phrases, each of the phrases being selectable; the statistics, each of the statistics being selectable; segments of the textual content that have been extracted from the one or more assets based on selected ones of the relevant words, the phrases and the statistics; and an interface that is used to create a message using content from the segments of the textual content that have been extracted from the one or more assets. Other embodiments of this aspect include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each configured to perform the actions of the methods.


Another general aspect the method includes: performing machine learning on one or more assets having textual content in order to determine relevant words, phrases, and statistics included in the textual content, and generate a summary of the textual content; and displaying, on a graphical user interface, segments of the textual content that have been extracted from the one or more assets based on selected ones of the relevant words, the phrases and the statistics, and an interface that is used to create a message using content from the segments of the textual content that have been extracted from the one or more assets.


One general aspect includes a system, including: an asset analyzer module configured to receive one or more assets that comprise textual content; a machine learning module configured to perform machine learning on the one or more assets in order to determine relevant words, phrases, and statistics included in the textual content, and generate a summary of the textual content; a graphical user interface module configured to display on a graphical user interface: the relevant words based on frequency of occurrence in the one or more assets, each of the relevant words being selectable; the phrases, each of the phrases being selectable; the statistics, each of the statistics being selectable; segments of the textual content that have been extracted from the one or more assets based on selected ones of the relevant words, the phrases and the statistics; and an interface that is used to create a message using content from the segments of the textual content that have been extracted from the one or more assets.


Other embodiments of this aspect include corresponding computer methods and computer programs recorded on one or more computer storage devices, each configured to perform the actions of the methods.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed disclosure, and explain various principles and advantages of those embodiments.


The methods and systems disclosed herein have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.



FIG. 1 is a schematic diagram of a system for use in practicing aspects of the present disclosure.



FIG. 2 is a graphical user interface that allows a message author to input or select an input asset.



FIGS. 3A-3E collectively illustrate the use of a graphical user interface that displays various content extracted from input asset(s) and the automated (either partial or complete) authoring of messages based on the content extracted from input asset(s).



FIG. 4 is a flowchart of an example method of the present disclosure.



FIG. 5 is a flowchart of another example method of the present disclosure.



FIG. 6 is a schematic diagram of an example computing system that may be used to implement embodiments disclosed in accordance with the present disclosure.





DETAILED DESCRIPTION

While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated.


As noted above, the present disclosure is directed to systems and methods that are configured to ingest digital assets from a variety of sources, evaluate textual content of these digital assets, and automate (either partially or entirely) the creation of messages for distribution across one or more digital distribution platforms.


In general, the systems and methods herein provide an artificial intelligence (AI) or machine learning driven content creation assistant (referred to generally as a copyrighting assistant) that enables the automated creation of messages for distribution across one or more channels of communication. Example communications channels include, but are not limited to, social networks (such as Twitter™, Facebook™, and so forth), email, blogs, and webpage—just to name a few.


The systems and methods disclosed herein provide a technical solution to a problem within the field of automated content creation. To be sure, content creation is a cumbersome and time consuming process. Often times, messages for use on social media or other mediums are created from more comprehensive digital assets such as technical papers or website content. As such, the content of messages created from these more comprehensive digital assets are controlled by the subjective biases of the author. That is, the author uses their best judgement in order to create compelling content for their messages. This is especially difficult when the content author is not a subject matter expert relative to the content in the comprehensive digital asset(s).


The systems and methods herein overcome these subjective drawbacks by incorporating machine learning/AI capabilities that can utilize a ruleset or model in order to pre-process comprehensive digital assets (referred to generally as input assets) and automatically convert (either partly created or wholly) those assets into messages that can be automatically distributed to one or more publishing targets.


The systems and methods enable the generation of relevant content and variations thereof without requiring an author to possess the full subject matter expertise of the author who created the comprehensive digital assets. This allows for efficient and quick creation of relevant content that is distributed to various channels and/or to various audiences. These and other advantages of the present disclosure are provided in greater detail infra with reference to the collective drawings.



FIG. 1 is a schematic diagram of an example system 100 that can be utilized to practice aspects of the present disclosure. The system 100 generally comprises an asset analyzer module 102, a machine learning module 104, and a graphical user interface module 106. It will be understood that the modules of the system 100 can be aggregated into a single physical or virtual machine in some embodiments, such as a server. In other embodiments, the modules of the system 100 can be distributed across a plurality of physical or virtual machines, such as a cloud.


In some embodiments, the system 100 is configured for interaction with one or more client devices, such as client device 108. The client device 108 can include any end-user computing device such as a laptop or smartphone. The client device 108 can interact with the system 100 in a server/client relationship, in some embodiments, through the use of graphical user interfaces (GUIs) as disclosed herein. The GUIs can be delivered through an application that resides and executes on the client device 108. Alternatively, the GUIs can be accessed by the client device 108 through a web-based form provided by the graphical user interface module 106.


As noted above, the system 100 is configured generally to utilize AI/machine learning in order to allow an author to partially or completely automate the creation of message content based on one or more input assets. For example, if a company creates a technical document that describes a new offering or service, the system 100 can ingest that input asset 110 and perform a variety of machine learning processes on that input asset 110 in order to convert that input asset 110 into one or more messages 112 that are then published to one or more publishing targets 114.


Content of one or more messages 112 created by the system 100 is created from content extracted from an input asset 110 and processed by the system 100 using machine learning. The input asset 110 is ingested and analyzed by the system 100 to extract information such as key topics (words/phrases), facts, statistics, quotes, and so forth. These extracted data are used to pre-populate the content of the one or more messages 112 in some embodiments. In other embodiments, the information extracted from the input asset 110 can be placed into various windows of a GUI that a message author uses to create the one or more messages 112. To be sure, in some embodiments, the system 100 can evaluate more than one input asset 110 at a time using machine learning.


Referring now collectively to FIGS. 1 and 2, in more detail, the graphical user interface module 106 can be executed to generate a GUI 200 that allows a message author to input or select the input asset 110, which in this example includes a technical document titled “Global Content Operating Manual” reflected in the name dialogue area. Documents are selected using a button 202. The button 202 allows the message author to search and select documents either locally (on the client device 108) or remotely. The GUI 200 allows the user to select one or more channels 204 for distribution of any messages generated in response to the processing of the input asset 110 by the system 100.


In general the input asset 110 (e.g., one or more assets) comprises textual content. The input asset 110 or assets can be obtained from a third party resource 116 (see FIG. 1). In some instances, a third party resource can include any repository of assets having content that is related to the content included in the input asset 110. That is, a user can select the input asset 110. The machine learning module 104 can process textual content of the input asset 110 and use content extracted from the input asset 110 such as keywords/phases, statistics, facts, quotes, and other data as the basis for searching the Internet or another third party document repository for additional input asset(s) that have content which is similar in subject matter to the input asset 110 selected by the user.


In one specific example, content extracted from the input asset 110 selected by the user can be used as a query that is searched against the one or more publishing targets 114 that will ultimately receive the message created through the system 100. For example, content such as keywords extracted from the Global Content Operating Manual can be used as the basis of a query that is executed against a social network where a message will eventually be published. The asset analyzer module 102 of the system 100 can utilize an application programming interface (API) to connect to the third party resource 116 (or one or more publishing targets 114), which in this example is a social network. Results from the query can include content found on the social network that corresponds to the keywords extracted from the input asset 110. The content obtained from the social network by the asset analyzer module 102 can be combined with the input asset 110 and analyzed collectively by the machine learning module 104. In sum, the corpus of content that is used to generate messages by the system 100 can be extended by searching various third party resources, some of which can include the channels (e.g., publishing targets) where messages are published by the system 100.


Stated otherwise, the system 100 can utilize an application programming interface (or equivalent) to search social networks (or other third party sites) for third party content that matches the one or more input assets. The system 100 will effectively incorporate the third party content with the one or more input assets during the machine learning such that the relevant words, phrases, and statistics (or other types of extracted content) are based on both the one or more input assets and the third party content in combination.


The textual content extracted from the one or more input assets (whether selected by the user and/or found in a search) is ultimately processed using the machine learning module 104. In more detail, the machine learning module 104 is configured to perform AI processing on the one or more assets in order to determine content that is indicative of subject matter included in the one or more assets. In some embodiments, the machine learning module 104 can utilize a ruleset in order to define types of content that are located and/or extracted from within the one or more assets.


In some embodiments, the machine learning module 104 is utilized to determine content such as relevant words, phrases, quotes facts, statistics included in the textual content of the machine learning module 104. In various embodiments, the machine learning module 104 can generate a summary of the textual content included in each discrete input asset.


In one embodiment, relevant words or phrases can be determined from a frequency or word count. That is, if a word is repeated numerous times in a document it is likely to be important and indicative of the subject matter of the input asset. The machine learning module 104 can exclude nonce words such as articles and other repetitive content that are not likely to be indicative of the subject matter included in the asset(s).


Other rules can be used that search for quotations or facts/statistics that are determined by looking for numerical characters in combination with certain words or phrases or even symbols. Using a sentence “45% of users experienced latency”, the number 45 is located near a phrase “users experienced.” Thus it can be inferred that the number in combination with phrase is relevant as a statistic. The presence of the % symbol also adds weight to this inference. Additional examples of content extracted from the example input asset are illustrated and described in greater detail with respect to FIGS. 3A-3E, each of which is disclosed infra.


Once the various types of content have been extracted from the one or more assets, the graphical user interface module 106 is then executed to provide a copyrighting assistant interface (herein after GUI 300) as illustrated in FIG. 3A. Generally, the GUI 300 generally comprises various windows that include extracted content and/or mechanisms for selecting and otherwise interacting with said extracted content.


In one embodiment, the GUI 300 includes a first window 302, a second window 304, a third window 306, a fourth window 308, a fifth window 310, and a sixth window 312. Each of these windows and their corresponding extracted content are disclosed in greater detail below.


In general, relevant words and phrases are displayed in the first window 302 of the GUI 300 and other specific phrases such as quotes are displayed in the second window 304 of the GUI 300. In some embodiments, the keywords displayed in the first window 302 are extracted from the one or more input assets and are displayed according to a frequency of occurrence in the underlying assets. Thus, in the Global Content Operating Manual, the words “content” and “companies” are found more frequently than any other words. Instead of displaying the keywords and phrases in an ordered list, such content can be displayed as a word cloud, with more frequently occurring words/phrases being larger in font size or color. Each of the items listed in the first window 302 are selectable using, for example a check box 314. Moreover, based on machine learning, one or more of the items listed in the first window 302 can be associated with an icon. For example, a relevant word of “Forrester” that is indicative of a person's name is provided with a human icon. This name appears frequently in the input asset.


The quotes located in the second window 304 are also each associated with a selectable check box. These quotes include individual, stand-alone phrases that reflect valuable textual information included in the underlying assets. Often, these quotes comprise one or more of the keywords/phrases found in the first window 302. In some embodiments, the quotes included in the second window 304 are updated in real-time based on the selections of keywords/phrases in the first window 302.


In some embodiments, statistics are displayed in the third window 306. The statistics include content that is indicative of or associated with a numerical value, but the items listed in the third window 306 include additional characters in a string in which the numerical value is found. As noted above, the machine learning module 104 includes rules that identify words or phrases that are indicative of a statistic. Once found the graphical user interface module 106 can list strings of words, such as sentences or sub-sentence phrases that include the statistics. The relevant statistic of a sentence or sub-sentence phrase can be set off in bold. Moreover, each of the items in the list of third window 306 is selectable through a check box.


Various embodiments include the fourth window 308 that includes segments of content. As noted above, the content displayed in the various windows 302-306 is selectable by a user of the GUI 300. The segments of content displayed in the fourth window 308 are populated in response to the items selected from one or more of the windows 302-306. That is, the user can select which items from the various windows are of interest. Once selected, the system 100 (see FIG. 1) will populate the fourth window 308 with segments of content as illustrated in FIG. 3B, which will be described in greater detail below.


Generally, the GUI 300 also includes a smart channel editor 316 in the fifth window 310. The smart channel editor 316 is a mechanism configured to allow a user to compose a message (either in whole or in part) based on the content provided in the various windows of the GUI 300. Users can base the content of the message on segments of content displayed in the fourth window 308. In some instances, the message that is composed is created using the machine learning module 104.


For example, in FIG. 3B, the phrase “a global content operating model” is selected by the user from the first window 302. This selection causes the system 100 (through cooperation of the machine learning module 104 and the graphical user interface module 106) to display segments of content 318 in the fourth window 308. The segments of content 318 include quotations of content extracted from the underlying input asset that correspond to the selection of the user. This action fine-tunes the most relevant content found in the underlying input asset that is of interest to the user. The segments of content 318 are listed in order of relevancy to the items selected by the user. That is, the machine learning module 104 can generate a relevancy score for each segment selected for the fourth window 308. In some embodiments, the relevancy score is represented as a series of dots placed by a segment. A segment having all five dots darkened is a highly relevant (high relevancy score) segment. Again, the relevancy score is related to how well content extracted from the input asset(s) matches the items selected by the user. For example, the segment of “A global content operating model can alleviate challenges and provide clear benefits” was found to be highly relevant to the select item of “a global content operating model” selected by the user from the first window 302.


In some embodiments, the content of the message is populated, in whole or in part, by the machine learning module 104 (see FIG. 1) of the system 100 based on the selections of the user. That is, once the user has selected items from any of the various windows, the machine learning module 104 can pre-populate the smart channel editor 316 with textual content from the segments of content 318. As a default setting, the machine learning module 104 can select the most relevant item in the segments of content 318 as an initial message. In some embodiments, rather than copying content verbatim from the segments of content 318, the machine learning module 104 can also apply natural language processing rules to convert content in a segment to a more linguistically appropriate format. For example, if the content in a segment is a fragment or run-on, the machine learning module 104 can utilize natural language processing rules to convert such content into a well-formed sentence. The machine learning module 104 could also use native knowledge regarding the site to which the message will be published in order to reformat the segment. For example, if the site to which a message is published is a social network with a character limit, the machine learning module 104 can truncate or reword a segment to comply with that character limit.


In sum, the machine learning module 104 is configured to automatically generate a message through use of a message creation ruleset. This message creation ruleset can define format, layout, style, linguistic, or other parameters of an automated message that define how relevant content from the input asset(s) are converted into a message.


The automation of message creation from more comprehensive input assets allows for rapid dissemination of the messages into social media or other platforms that benefit from rapid or frequent content sharing in order to drive customer or viewer engagement without the use of human input (or very limited human input). In some embodiments, the system 100 populates automatically generated messages to a queue for subsequent distribution (see FIG. 3E). Thus, a human may only be required to review AI generated messages in the queue before publishing. If messages are edited prior to publishing, the message can be processed by the machine learning module 104 in order to update the message creation ruleset in order to produce more suitable messages in the future. Thus, the machine learning module 104 learns from user feedback and edits in order to improve the future format or content of messages.


Also, part of the message creation ruleset used by the machine learning module 104 can include message scheduling which determines how often messages are created and disseminated by the system 100. This type of information can be determined through analysis of trends of competitors and other suitable information sources or corporate policies.


In some embodiments, the machine learning module 104 can not only generate segments of interest, but the machine learning module 104 can also create ancillary or collateral content for use in a message. These can also be based on native knowledge regarding the site to which the message will be published. For example, the machine learning module 104 can create hashtags 320 based on the relevant segments provided in the fourth window 308.


In some embodiments, the sixth window 312 of the GUI 300 comprises a summary of the input assets (user selected and/or third party content) that provide a user with a summary of the subject matter included in the input assets. This allows a user with limited domain knowledge to effectively create messages. This can also assist a user who is reviewing automatically generated AI messages produced by the system 100.


In various embodiments, the GUI 300 can also include a seventh window 322 that identifies the input assets used to generate the content included in the GUI 300. The user can remove or add input assets as desired through this seventh window 322.



FIG. 3C illustrates the GUI 300 and specifically the use of the smart channel editor 316. The smart channel editor 316 includes a text input box 324 that can be filled with content either by the system 100 or by a user. For example, the text input box 324 can be filled with message content 326. As the text input box 324 box is filled with message content, the system 100 (and specifically the machine learning module 104) generates a real-time relevancy score that indicates how relevant the message content is relative to the items selected by the user from the various windows of the GUI 300 (note that the items selected in FIG. 3C vary from those selected in FIGS. 3A-3B). FIG. 3C illustrates the message content as it is being created with a relatively mid-range relevancy score as notated or illustrated by way of a relevancy progress bar 328. This is in contrast with the completed message content 330 illustrated in FIG. 3D. As noted above, the completed message content 330 illustrated in FIG. 3D includes an AI generated hashtag 320. This completed message content 330 is added to a queue 332 as illustrated in FIG. 3E.



FIG. 4 is a flowchart of an example method of the present disclosure. The method includes a step 402 of receiving one or more assets that comprise textual content. Again, this can include assets identified by a user and/or assets obtained from a third party resource as well. Next, the method includes a step 404 of performing machine learning on the one or more assets in order to determine relevant words, phrases, and statistics included in the textual content. The method can also include a step 406 of generating a summary of the textual content.


In various embodiments, the method can include a step 408 of displaying on a graphical user interface the relevant words found in the textual content based on frequency of occurrence. To be sure each of the relevant words is selectable by the user. Next, the method includes a step 410 of displaying on the graphical user interface the phrases found in the textual content. Again, each of the phrases is selectable. The phrases can include quotes in some embodiments.


In one or more embodiments, the method includes a step 412 of displaying on the graphical user interface the statistics selected from the textual content. The statistics can be displayed in the context of the sentence or word string in which they appear in the textual content.


The method includes a step 414 of displaying on the graphical user interface the segments of the textual content that have been extracted from the one or more assets based on selected ones of the relevant words, the phrases and the statistics.


As noted above, the method can also include a step 416 of displaying on the graphical user interface an interface (e.g., smart channel editor) that is used to create a message using content from the segments of the textual content that have been extracted from the one or more assets. To be sure, the message content created in the smart channel editor includes either AI or user generated messages. In one or more embodiments, the method can also include a step 418 of publishing the message to one or more publishing targets.



FIG. 5 is a flowchart of another example method of the present disclosure. The method generally includes a step 502 of performing machine learning on one or more assets having textual content in order to determine relevant words, phrases, and statistics included in the textual content, and generate a summary of the textual content. The method also includes a step 504 of displaying, on a graphical user interface, segments of the textual content that have been extracted from the one or more assets based on selected ones of the relevant words, the phrases and the statistics.


The method further includes a step of 506 composing a message based on the segments of the textual content that have been extracted from the one or more assets using machine learning. In some embodiments an interface is presented that (e.g., smart channel editor) is used to create or edit an AI generated message prior to publishing.



FIG. 6 illustrates an example computer system 1 that can be utilized for machine learning for digital assets and message creation. That is, the computer system 1 can implement the AI/machine learning of the present disclosure.


The computer system 1, within which a set of instructions for causing the machine to perform any one or more of the methodologies discussed herein may be executed. In various example embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine may be a robotic construction marking device, a base station, a personal computer (PC), a tablet PC, a set-top box (STB), a personal digital assistant (PDA), a cellular telephone, a portable music player (e.g., a portable hard drive audio device such as an Moving Picture Experts Group Audio Layer 3 (MP3) player), a web appliance, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.


The example computer system 1 includes a processor or multiple processors 5 (e.g., a central processing unit (CPU), a graphics processing unit (GPU), or both), and a main memory 10 and static memory 15, which communicate with each other via a bus 20. The computer system 1 may further include a video display 35 (e.g., a liquid crystal display (LCD)). The computer system 1 may also include an alpha-numeric input device(s) 30 (e.g., a keyboard), a cursor control device (e.g., a mouse), a voice recognition or biometric verification unit (not shown), a drive unit 37 (also referred to as disk drive unit), a signal generation device 40 (e.g., a speaker), and a network interface device 45. The computer system 1 may further include a data encryption module (not shown) to encrypt data.


The drive unit 37 includes a computer or machine-readable medium 50 on which is stored one or more sets of instructions and data structures (e.g., instructions 55) embodying or utilizing any one or more of the methodologies or functions described herein. The instructions 55 may also reside, completely or at least partially, within the main memory 10 and/or within the processors 5 during execution thereof by the computer system 1. The main memory 10 and the processors 5 may also constitute machine-readable media.


The instructions 55 may further be transmitted or received over a network via the network interface device 45 utilizing any one of a number of well-known transfer protocols (e.g., Hyper Text Transfer Protocol (HTTP)). While the machine-readable medium 50 is shown in an example embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding, or carrying a set of instructions for execution by the machine and that causes the machine to perform any one or more of the methodologies of the present application, or that is capable of storing, encoding, or carrying data structures utilized by or associated with such a set of instructions. The term “computer-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic media, and carrier wave signals. Such media may also include, without limitation, hard disks, floppy disks, flash memory cards, digital video disks, random access memory (RAM), read only memory (ROM), and the like. The example embodiments described herein may be implemented in an operating environment comprising software installed on a computer, in hardware, or in a combination of software and hardware.


Not all components of the computer system 1 are required and thus portions of the computer system 1 can be removed if not needed, such as Input/Output (I/O) devices (e.g., input device(s) 30). One skilled in the art will recognize that the Internet service may be configured to provide Internet access to one or more computing devices that are coupled to the Internet service, and that the computing devices may include one or more processors, buses, memory devices, display devices, input/output devices, and the like. Furthermore, those skilled in the art may appreciate that the Internet service may be coupled to one or more databases, repositories, servers, and the like, which may be utilized in order to implement any of the embodiments of the disclosure as described herein.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” or “according to one embodiment” (or other phrases having similar import) at various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Furthermore, depending on the context of discussion herein, a singular term may include its plural forms and a plural term may include its singular form. Similarly, a hyphenated term (e.g., “on-demand”) may be occasionally interchangeably used with its non-hyphenated version (e.g., “on demand”), a capitalized entry (e.g., “Software”) may be interchangeably used with its non-capitalized version (e.g., “software”), a plural term may be indicated with or without an apostrophe (e.g., PE's or PEs), and an italicized term (e.g., “N+1”) may be interchangeably used with its non-italicized version (e.g., “N+1”). Such occasional interchangeable uses shall not be considered inconsistent with each other.


Also, some embodiments may be described in terms of “means for” performing a task or set of tasks. It will be understood that a “means for” may be expressed herein in terms of a structure, such as a processor, a memory, an I/O device such as a camera, or combinations thereof. Alternatively, the “means for” may include an algorithm that is descriptive of a function or method step, while in yet other embodiments the “means for” is expressed in terms of a mathematical formula, prose, or as a flow chart or signal diagram.


The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the technology in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the technology. Exemplary embodiments were chosen and described in order to best explain the principles of the present disclosure and its practical application, and to enable others of ordinary skill in the art to understand the technology for various embodiments with various modifications as are suited to the particular use contemplated.


Aspects of the present disclosure are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the technology. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.


These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.


The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the technology. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present disclosure. As such, some of the components may have been distorted from their actual scale for pictorial clarity.


While the present disclosure has been described in connection with a series of preferred embodiment, these descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. It will be further understood that the methods of the technology are not necessarily limited to the discrete steps or the order of the steps described. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art.

Claims
  • 1. A method, comprising: receiving one or more assets that comprise textual content;performing machine learning on the one or more assets in order to determine relevant words, phrases, and statistics included in the textual content, and generating a summary of the textual content, the summary comprising a textual narrative created from the relevant words, the phrases, and the statistics;receiving feedback from an editor with respect to the summary;incorporating the feedback into the machine learning;automatically generating a message using the machine learning through use of a message creation ruleset; anddisplaying on a graphical user interface: the relevant words based on frequency of occurrence in the one or more assets, each of the relevant words being selectable;the phrases, each of the phrases being selectable;the statistics, each of the statistics being selectable;segments of the textual content that have been extracted from the one or more assets based on selected ones of the relevant words, the phrases and the statistics; andan interface that is used to create the message using content from the segments of the textual content that have been extracted from the one or more assets, wherein the machine learning applies natural language processing rules to convert a run-on or a fragment, in at least one of the segments of the textual content, into a sentence, and further wherein the feedback is incorporated by the machine learning to improve a future format or content of future summaries and based on the feedback, the message is further processed by the machine learning to update the message creation ruleset.
  • 2. The method according to claim 1, wherein the relevant words are displayed in a first window of the graphical user interface and the phrases are displayed in a second window of the graphical user interface.
  • 3. The method according to claim 2, wherein the statistics are displayed in a third window, the segments are displayed in a fourth window, and the interface is displayed in a fifth window.
  • 4. The method according to claim 3, wherein the graphical user interface further comprises a sixth window that comprises the summary of the textual content.
  • 5. The method according to claim 4, wherein the machine learning is configured to generate relevancy scores for each of the segments based on the selected ones of the relevant words, the phrases and the statistics.
  • 6. The method according to claim 5, wherein the machine learning is configured to generate hashtags from the relevant words, the hashtags being displayed in the fourth window, further wherein the hashtags are incorporated into a message in the interface when selected from the fourth window.
  • 7. The method according to claim 6, further comprising adding the message to a queue for distribution.
  • 8. The method according to claim 1, further comprising: utilizing an application programming interface to search social networks for third party content that matched to the one or more assets; andincorporating the third party content with the one or more assets during the machine learning such that the relevant words, the phrases, and the statistics are based on both the one or more assets and the third party content.
  • 9. The method of claim 1, further comprising generating a real-time relevancy score that indicates how relevant the content of the message is relative to a user's selections made through the graphical user interface.
  • 10. The method of claim 1, wherein the machine learning further creates ancillary or collateral content for use in the message.
  • 11. A system, comprising: an asset analyzer module configured to receive one or more assets that comprise textual content;a machine learning module configured to:perform machine learning on the one or more assets in order to determine relevant words, phrases, and statistics included in the textual content, and generate a summary of the textual content, the summary comprising a textual narrative created from the relevant words, the phrases, and the statistics;receive feedback from an editor with respect to the summary;incorporate the feedback into the machine learning; andautomatically generate a message using the machine learning through use of a message creation ruleset; and a graphical user interface module configured to display on a graphical user interface:the relevant words based on frequency of occurrence in the one or more assets, each of the relevant words being selectable;the phrases, each of the phrases being selectable;the statistics, each of the statistics being selectable;segments of the textual content that have been extracted from the one or more assets based on selected ones of the relevant words, the phrases and the statistics; andan interface that is used to create the message using content from the segments of the textual content that have been extracted from the one or more assets, wherein the machine learning applies natural language processing rules to convert a run-on or a fragment, in at least one of the segments of the textual content, into a sentence, and further wherein the feedback is incorporated by the machine learning to improve a future format or content of future summaries and based on the feedback, the message is further processed by the machine learning to update the message creation ruleset.
  • 12. The system according to claim 11, wherein the relevant words are displayed in a first window of the graphical user interface and the phrases are displayed in a second window of the graphical user interface.
  • 13. The system according to claim 12, wherein the statistics are displayed in a third window, the segments are displayed in a fourth window, and the interface is displayed in a fifth window.
  • 14. The system according to claim 13, wherein the graphical user interface further comprises a sixth window that comprises the summary of the textual content.
  • 15. The system according to claim 14, wherein the machine learning module is further configured to generate relevancy scores for each of the segments based on the selected ones of the relevant words, the phrases and the statistics.
  • 16. The system according to claim 15, wherein the machine learning module is further configured to generate hashtags from the relevant words, the hashtags being displayed in the fourth window, further wherein the hashtags are incorporated into a message in the interface when selected from the fourth window.
  • 17. The system according to claim 16, wherein the graphical user interface module is further configured to add the message to a queue for distribution.
  • 18. The system according to claim 17, wherein the asset analyzer module is further configured to: utilize an application programming interface to search social networks for third party content that matched to the one or more assets; andincorporate the third party content with the one or more assets during the machine learning such that the relevant words, the phrases, and the statistics are based on both the one or more assets and the third party content.
  • 19. The system according to claim 18, wherein the machine learning module further utilizes native knowledge regarding a site to which the message will be published in order to reformat a segment of textual content.
  • 20. A method, comprising: performing machine learning on one or more assets having textual content in order to determine relevant words, phrases, and statistics included in the textual content, and generate a summary of the textual content, the summary comprising a textual narrative created from the relevant words, the phrases, and the statistics;displaying, on a graphical user interface, segments of the textual content that have been extracted from the one or more assets based on selected ones of the relevant words, the phrases and the statistics, and an interface that is used to create a message using content from the segments of the textual content that have been extracted from the one or more assets;receiving feedback from an editor with respect to the summary;incorporating the feedback into the machine learning to improve a future format or content of future messages;automatically generating the message using the machine learning through use of a message creation ruleset;applying natural language processing rules by the machine learning to convert a run-on or a fragment, in at least one of the segments of the textual content, into a sentence; andbased on the feedback, processing the message, using the machine learning, to update the message creation ruleset for the future messages.
  • 21. The method of claim 20, further comprising reformatting a segment by the machine learning utilizing native knowledge regarding a site to which the message will be published.
US Referenced Citations (414)
Number Name Date Kind
4661924 Okamoto et al. Apr 1987 A
4674044 Kalmus et al. Jun 1987 A
4677552 Sibley, Jr. Jun 1987 A
4789928 Fujisaki Dec 1988 A
4845658 Gifford Jul 1989 A
4903201 Wagner Feb 1990 A
4916614 Kaji et al. Apr 1990 A
4920499 Skeirik Apr 1990 A
4962452 Nogami et al. Oct 1990 A
4992940 Dworkin Feb 1991 A
5005127 Kugimiya et al. Apr 1991 A
5020021 Kaji et al. May 1991 A
5075850 Asahioka et al. Dec 1991 A
5093788 Shiotani et al. Mar 1992 A
5111398 Nunberg et al. May 1992 A
5140522 Ito et al. Aug 1992 A
5146405 Church Sep 1992 A
5168446 Wiseman Dec 1992 A
5224040 Tou Jun 1993 A
5243515 Lee Sep 1993 A
5243520 Jacobs et al. Sep 1993 A
5283731 Lalonde et al. Feb 1994 A
5295068 Nishino et al. Mar 1994 A
5301109 Landauer et al. Apr 1994 A
5325298 Gallant Jun 1994 A
5349368 Takeda et al. Sep 1994 A
5351189 Doi Sep 1994 A
5408410 Kaji Apr 1995 A
5418717 Su et al. May 1995 A
5423032 Byrd et al. Jun 1995 A
5477451 Brown et al. Dec 1995 A
5490061 Tolin et al. Feb 1996 A
5497319 Chong et al. Mar 1996 A
5510981 Berger et al. Apr 1996 A
5541836 Church et al. Jul 1996 A
5548508 Nagami Aug 1996 A
5555343 Luther Sep 1996 A
5587902 Kugimiya Dec 1996 A
5640575 Maruyama et al. Jun 1997 A
5642522 Zaenen et al. Jun 1997 A
5644775 Thompson et al. Jul 1997 A
5687384 Nagase Nov 1997 A
5708780 Levergood et al. Jan 1998 A
5708825 Sotomayor Jan 1998 A
5710562 Gormish et al. Jan 1998 A
5715314 Payne et al. Feb 1998 A
5715402 Popolo Feb 1998 A
5724424 Gifford Mar 1998 A
5724593 Hargrave, III et al. Mar 1998 A
5751957 Hiroya et al. May 1998 A
5764906 Edelstein et al. Jun 1998 A
5765138 Aycock et al. Jun 1998 A
5794219 Brown Aug 1998 A
5799269 Schabes et al. Aug 1998 A
5802502 Gell et al. Sep 1998 A
5802525 Rigoutsos Sep 1998 A
5812776 Gifford Sep 1998 A
5818914 Fujisaki Oct 1998 A
5819265 Ravin et al. Oct 1998 A
5826244 Huberman Oct 1998 A
5842204 Andrews et al. Nov 1998 A
5844798 Uramoto Dec 1998 A
5845143 Yamauchi et al. Dec 1998 A
5845306 Schabes et al. Dec 1998 A
5848386 Motoyama Dec 1998 A
5850442 Muftic Dec 1998 A
5850561 Church et al. Dec 1998 A
5864788 Kutsumi Jan 1999 A
5873056 Liddy Feb 1999 A
5884246 Boucher et al. Mar 1999 A
5895446 Takeda et al. Apr 1999 A
5909492 Payne et al. Jun 1999 A
5917484 Mullaney Jun 1999 A
5950194 Bennett et al. Sep 1999 A
5956711 Sullivan et al. Sep 1999 A
5956740 Nosohara Sep 1999 A
5960382 Steiner Sep 1999 A
5966685 Flanagan et al. Oct 1999 A
5974371 Hirai et al. Oct 1999 A
5974372 Barnes Oct 1999 A
5974413 Beauregard et al. Oct 1999 A
5987401 Trudeau Nov 1999 A
5987403 Sugimura Nov 1999 A
6044344 Kanevsky Mar 2000 A
6044363 Mori et al. Mar 2000 A
6047299 Kaijima Apr 2000 A
6049785 Gifford Apr 2000 A
6070138 Iwata May 2000 A
6085162 Cherny Jul 2000 A
6092034 McCarley et al. Jul 2000 A
6092035 Kurachi et al. Jul 2000 A
6131082 Hargrave, III et al. Oct 2000 A
6139201 Carbonell et al. Oct 2000 A
6154720 Onishi et al. Nov 2000 A
6161082 Goldberg et al. Dec 2000 A
6163785 Carbonell et al. Dec 2000 A
6195649 Gifford Feb 2001 B1
6199051 Gifford Mar 2001 B1
6205437 Gifford Mar 2001 B1
6212634 Geer et al. Apr 2001 B1
6260008 Sanfilippo Jul 2001 B1
6278969 King et al. Aug 2001 B1
6279112 O'toole, Jr. et al. Aug 2001 B1
6285978 Bernth et al. Sep 2001 B1
6301574 Thomas et al. Oct 2001 B1
6304846 George et al. Oct 2001 B1
6338033 Bourbonnais et al. Jan 2002 B1
6341372 Datig Jan 2002 B1
6345244 Clark Feb 2002 B1
6345245 Sugiyama et al. Feb 2002 B1
6347316 Redpath Feb 2002 B1
6353824 Boguraev et al. Mar 2002 B1
6356865 Franz et al. Mar 2002 B1
6385568 Brandon et al. May 2002 B1
6393389 Chanod et al. May 2002 B1
6401105 Carlin et al. Jun 2002 B1
6415257 Junqua Jul 2002 B1
6442524 Ecker et al. Aug 2002 B1
6449599 Payne et al. Sep 2002 B1
6470306 Pringle et al. Oct 2002 B1
6473729 Gastaldo et al. Oct 2002 B1
6477524 Taskiran Nov 2002 B1
6490358 Geer et al. Dec 2002 B1
6490563 Hon Dec 2002 B2
6526426 Lakritz Feb 2003 B1
6622121 Crepy et al. Sep 2003 B1
6623529 Lakritz Sep 2003 B1
6658627 Gallup et al. Dec 2003 B1
6687671 Gudorf et al. Feb 2004 B2
6731625 Eastep et al. May 2004 B1
6782384 Sloan et al. Aug 2004 B2
6865528 Huang Mar 2005 B1
6920419 Kitamura Jul 2005 B2
6952691 Drissi et al. Oct 2005 B2
6976207 Rujan Dec 2005 B1
6990439 Xun Jan 2006 B2
6993473 Cartus Jan 2006 B2
7013264 Dolan Mar 2006 B2
7020601 Hummel et al. Mar 2006 B1
7031908 Huang Apr 2006 B1
7050964 Menzes May 2006 B2
7089493 Hatori et al. Aug 2006 B2
7100117 Chwa et al. Aug 2006 B1
7110938 Cheng et al. Sep 2006 B1
7124092 O'toole, Jr. et al. Oct 2006 B2
7155440 Kronmiller et al. Dec 2006 B1
7177792 Knight Feb 2007 B2
7185276 Keswa Feb 2007 B2
7191447 Ellis et al. Mar 2007 B1
7194403 Okura et al. Mar 2007 B2
7207005 Laktritz Apr 2007 B2
7209875 Quirk et al. Apr 2007 B2
7249013 Al-Onaizan Jul 2007 B2
7266767 Parker Sep 2007 B2
7272639 Levergood et al. Sep 2007 B1
7295962 Marcu Nov 2007 B2
7295963 Richardson Nov 2007 B2
7333927 Lee Feb 2008 B2
7340388 Soricut Mar 2008 B2
7343551 Bourdev Mar 2008 B1
7353165 Zhou et al. Apr 2008 B2
7369984 Fairweather May 2008 B2
7389222 Langmead Jun 2008 B1
7389223 Atkin Jun 2008 B2
7448040 Ellis et al. Nov 2008 B2
7454326 Marcu Nov 2008 B2
7509313 Colledge Mar 2009 B2
7516062 Chen et al. Apr 2009 B2
7533013 Marcu May 2009 B2
7533338 Duncan et al. May 2009 B2
7580828 D'Agostini Aug 2009 B2
7580960 Travieso et al. Aug 2009 B2
7587307 Cancedda et al. Sep 2009 B2
7594176 English Sep 2009 B1
7596606 Codignotto Sep 2009 B2
7620538 Marcu Nov 2009 B2
7620549 Di Cristo Nov 2009 B2
7624005 Koehn Nov 2009 B2
7627479 Travieso et al. Dec 2009 B2
7640158 Detlef et al. Dec 2009 B2
7668782 Reistad et al. Feb 2010 B1
7680647 Moore Mar 2010 B2
7693717 Kahn et al. Apr 2010 B2
7698124 Menezes et al. Apr 2010 B2
7716037 Precoda May 2010 B2
7734459 Menezes Jun 2010 B2
7739102 Bender Jun 2010 B2
7739286 Sethy Jun 2010 B2
7788087 Corston-Oliver Aug 2010 B2
7813918 Muslea Oct 2010 B2
7865358 Green Jan 2011 B2
7925493 Watanabe Apr 2011 B2
7925494 Cheng et al. Apr 2011 B2
7945437 Mount et al. May 2011 B2
7983896 Ross et al. Jul 2011 B2
7983897 Chin Jul 2011 B2
7983903 Gao Jul 2011 B2
8050906 Zimmerman et al. Nov 2011 B1
8078450 Anisimovich et al. Dec 2011 B2
8135575 Dean Mar 2012 B1
8195447 Anismovich Jun 2012 B2
8214196 Yamada Jul 2012 B2
8239186 Chin Aug 2012 B2
8239207 Seligman Aug 2012 B2
8244519 Bicici et al. Aug 2012 B2
8249855 Zhou et al. Aug 2012 B2
8275604 Jiang et al. Sep 2012 B2
8286185 Ellis et al. Oct 2012 B2
8296127 Marcu Oct 2012 B2
8352244 Gao et al. Jan 2013 B2
8364463 Miyamoto Jan 2013 B2
8386234 Uchimoto et al. Feb 2013 B2
8407217 Zhang Mar 2013 B1
8423346 Seo et al. Apr 2013 B2
8442812 Ehsani May 2013 B2
8521506 Lancaster et al. Aug 2013 B2
8527260 Best Sep 2013 B2
8548794 Koehn Oct 2013 B2
8554591 Reistad et al. Oct 2013 B2
8594992 Kuhn et al. Nov 2013 B2
8600728 Knight Dec 2013 B2
8606900 Levergood et al. Dec 2013 B1
8612203 Foster Dec 2013 B2
8615388 Li Dec 2013 B2
8620793 Knyphausen et al. Dec 2013 B2
8635327 Levergood et al. Jan 2014 B1
8635539 Young Jan 2014 B2
8666725 Och Mar 2014 B2
8688454 Zheng Apr 2014 B2
8725496 Zhao May 2014 B2
8768686 Sarikaya et al. Jul 2014 B2
8775154 Clinchant Jul 2014 B2
8818790 He et al. Aug 2014 B2
8843359 Lauder Sep 2014 B2
8862456 Krack et al. Oct 2014 B2
8874427 Ross et al. Oct 2014 B2
8898052 Waibel Nov 2014 B2
8903707 Zhao Dec 2014 B2
8930176 Li Jan 2015 B2
8935148 Christ Jan 2015 B2
8935149 Zhang Jan 2015 B2
8935150 Christ Jan 2015 B2
8935706 Ellis et al. Jan 2015 B2
8972268 Waibel Mar 2015 B2
9026425 Nikoulina May 2015 B2
9053202 Viswanadha Jun 2015 B2
9081762 Wu Jul 2015 B2
9128929 Albat Sep 2015 B2
9141606 Marciano Sep 2015 B2
9176952 Aikawa Nov 2015 B2
9183192 Ruby, Jr. Nov 2015 B1
9183198 Shen et al. Nov 2015 B2
9201870 Jurach Dec 2015 B2
9208144 Abdulnasyrov Dec 2015 B1
9262403 Christ Feb 2016 B2
9342506 Ross et al. May 2016 B2
9396184 Roy Jul 2016 B2
9400786 Lancaster et al. Jul 2016 B2
9465797 Ji Oct 2016 B2
9471563 Trese Oct 2016 B2
9519640 Perez Dec 2016 B2
9552355 Dymetman Jan 2017 B2
9600472 Cheng et al. Mar 2017 B2
9600473 Leydon Mar 2017 B2
9613026 Hodson Apr 2017 B2
10198438 Cheng et al. Feb 2019 B2
10216731 Cheng et al. Feb 2019 B2
10248650 Ross et al. Apr 2019 B2
10635863 de Vrieze et al. Apr 2020 B2
10817676 Vlad et al. Oct 2020 B2
20020002461 Tetsumoto Jan 2002 A1
20020046018 Marcu Apr 2002 A1
20020083103 Ballance Jun 2002 A1
20020093416 Goers et al. Jul 2002 A1
20020099547 Chu et al. Jul 2002 A1
20020103632 Dutta et al. Aug 2002 A1
20020107684 Gao Aug 2002 A1
20020110248 Kovales et al. Aug 2002 A1
20020111787 Knyphausen et al. Aug 2002 A1
20020124109 Brown Sep 2002 A1
20020138250 Okura et al. Sep 2002 A1
20020165708 Kumhyr Nov 2002 A1
20020169592 Aityan Nov 2002 A1
20020188439 Marcu Dec 2002 A1
20020198701 Moore Dec 2002 A1
20030004702 Higinbotham Jan 2003 A1
20030009320 Furuta Jan 2003 A1
20030016147 Evans Jan 2003 A1
20030040900 D'Agostini Feb 2003 A1
20030069879 Sloan et al. Apr 2003 A1
20030078766 Appelt et al. Apr 2003 A1
20030105621 Mercier Jun 2003 A1
20030110023 Bangalore et al. Jun 2003 A1
20030120479 Parkinson et al. Jun 2003 A1
20030125928 Lee et al. Jul 2003 A1
20030158723 Masuichi et al. Aug 2003 A1
20030182279 Willows Sep 2003 A1
20030194080 Michaelis et al. Oct 2003 A1
20030200094 Gupta Oct 2003 A1
20030229622 Middelfart Dec 2003 A1
20030233222 Soricut et al. Dec 2003 A1
20040024581 Koehn et al. Feb 2004 A1
20040034520 Langkilde-Geary Feb 2004 A1
20040044517 Palmquist Mar 2004 A1
20040102201 Levin May 2004 A1
20040122656 Abir Jun 2004 A1
20040172235 Pinkham et al. Sep 2004 A1
20040255281 Imamura et al. Dec 2004 A1
20050021323 Li Jan 2005 A1
20050055212 Nagao Mar 2005 A1
20050075858 Pournasseh et al. Apr 2005 A1
20050076342 Levins et al. Apr 2005 A1
20050094475 Naoi May 2005 A1
20050149316 Ushioda et al. Jul 2005 A1
20050171758 Palmquist Aug 2005 A1
20050171944 Palmquist Aug 2005 A1
20050197827 Ross et al. Sep 2005 A1
20050222837 Deane Oct 2005 A1
20050222973 Kaiser Oct 2005 A1
20050273314 Chang et al. Dec 2005 A1
20060015320 Och Jan 2006 A1
20060095526 Levergood et al. May 2006 A1
20060095848 Naik May 2006 A1
20060136277 Perry Jun 2006 A1
20060256139 Gikandi Nov 2006 A1
20060282255 Lu Dec 2006 A1
20060287844 Rich Dec 2006 A1
20070043553 Dolan Feb 2007 A1
20070112553 Jacobson May 2007 A1
20070118378 Skuratovsky May 2007 A1
20070136470 Chikkareddy et al. Jun 2007 A1
20070150257 Cancedda et al. Jun 2007 A1
20070192110 Mizutani et al. Aug 2007 A1
20070230729 Naylor et al. Oct 2007 A1
20070233460 Lancaster et al. Oct 2007 A1
20070233463 Sparre Oct 2007 A1
20070244702 Kahn et al. Oct 2007 A1
20070294076 Shore et al. Dec 2007 A1
20080077395 Lancaster et al. Mar 2008 A1
20080086298 Anismovich Apr 2008 A1
20080109374 Levergood et al. May 2008 A1
20080141180 Reed et al. Jun 2008 A1
20080147378 Hall Jun 2008 A1
20080154577 Kim Jun 2008 A1
20080201344 Levergood et al. Aug 2008 A1
20080243834 Rieman et al. Oct 2008 A1
20080270930 Slosar Oct 2008 A1
20080288240 D'Agostini et al. Nov 2008 A1
20080294982 Leung et al. Nov 2008 A1
20090094017 Chen et al. Apr 2009 A1
20090132230 Kanevsky et al. May 2009 A1
20090187577 Reznik et al. Jul 2009 A1
20090204385 Cheng et al. Aug 2009 A1
20090217196 Neff et al. Aug 2009 A1
20090240539 Slawson Sep 2009 A1
20090248182 Logan et al. Oct 2009 A1
20090248482 Knyphausen et al. Oct 2009 A1
20090313005 Jaquinta Dec 2009 A1
20090326917 Hegenberger Dec 2009 A1
20100057439 Ideuchi et al. Mar 2010 A1
20100057561 Gifford Mar 2010 A1
20100121630 Mende et al. May 2010 A1
20100138213 Bicici et al. Jun 2010 A1
20100179803 Sawaf Jul 2010 A1
20100223047 Christ Sep 2010 A1
20100241482 Knyphausen et al. Sep 2010 A1
20100262621 Ross et al. Oct 2010 A1
20110066469 Kadosh Mar 2011 A1
20110077933 Miyamoto et al. Mar 2011 A1
20110097693 Crawford Apr 2011 A1
20110184719 Christ Jul 2011 A1
20120022852 Tregaskis Jan 2012 A1
20120046934 Cheng et al. Feb 2012 A1
20120095747 Ross et al. Apr 2012 A1
20120185235 Albat Jul 2012 A1
20120330990 Chen et al. Dec 2012 A1
20130173247 Hodson Jul 2013 A1
20130325442 Dahlmeier Dec 2013 A1
20130346062 Lancaster et al. Dec 2013 A1
20140006006 Christ Jan 2014 A1
20140012565 Lancaster et al. Jan 2014 A1
20140058718 Kunchukuttan Feb 2014 A1
20140142917 D'Penha May 2014 A1
20140142918 Dotterer May 2014 A1
20140229257 Reistad et al. Aug 2014 A1
20140297252 Prasad et al. Oct 2014 A1
20140358519 Mirkin Dec 2014 A1
20140358524 Papula Dec 2014 A1
20140365201 Gao Dec 2014 A1
20150032645 Mckeown Jan 2015 A1
20150051896 Simard Feb 2015 A1
20150142415 Cheng et al. May 2015 A1
20150169554 Ross et al. Jun 2015 A1
20150186362 Li Jul 2015 A1
20160162473 Cogley et al. Jun 2016 A1
20160162478 Blassin et al. Jun 2016 A1
20160170974 Martinez Corria et al. Jun 2016 A1
20160253319 Ross et al. Sep 2016 A1
20170046333 Mirkin et al. Feb 2017 A1
20170052954 State Feb 2017 A1
20170068664 Martinez Corria et al. Mar 2017 A1
20170083523 Philip Mar 2017 A1
20170132214 Cheng et al. May 2017 A1
20170169015 Huang Jun 2017 A1
20180060287 Srinivasan Mar 2018 A1
20180137108 Martinez Corria et al. May 2018 A1
20180300218 Lipka et al. Oct 2018 A1
20180300318 Sittel et al. Oct 2018 A1
20180307683 Lipka et al. Oct 2018 A1
20190129946 de Vrieze et al. May 2019 A1
20190171717 Cheng et al. Jun 2019 A1
20190197116 Vlad et al. Jun 2019 A1
20200175234 de Vrieze et al. Jun 2020 A1
20210042476 Vlad et al. Feb 2021 A1
Foreign Referenced Citations (102)
Number Date Country
5240198 May 1998 AU
694367 Jul 1998 AU
5202299 Oct 1999 AU
199938259 Nov 1999 AU
761311 Sep 2003 AU
2221506 Dec 1996 CA
2331184 Jul 2009 CA
1179289 Dec 2004 CN
1770144 May 2006 CN
101019113 Aug 2007 CN
101826072 Sep 2010 CN
101248415 Oct 2010 CN
102053958 May 2011 CN
102193914 Sep 2011 CN
102662935 Sep 2012 CN
102902667 Jan 2013 CN
69525374 Aug 2002 DE
69431306 May 2003 DE
69633564 Nov 2005 DE
0262938 Apr 1988 EP
0668558 Aug 1995 EP
0830774 Feb 1998 EP
0830774 Mar 1998 EP
0887748 Dec 1998 EP
1076861 Feb 2001 EP
1128301 Aug 2001 EP
1128302 Aug 2001 EP
1128303 Aug 2001 EP
0803103 Feb 2002 EP
1235177 Aug 2002 EP
0734556 Sep 2002 EP
1266313 Dec 2002 EP
1489523 Dec 2004 EP
1076861 Jun 2005 EP
1787221 May 2007 EP
1889149 Feb 2008 EP
2226733 Sep 2010 EP
2299369 Mar 2011 EP
2317447 May 2011 EP
2336899 Jun 2011 EP
2317447 Jan 2014 EP
3732592 Nov 2020 EP
2241359 Aug 1991 GB
2433403 Jun 2007 GB
2468278 Sep 2010 GB
2474839 May 2011 GB
H04152466 May 1992 JP
H05135095 Jun 1993 JP
H05197746 Aug 1993 JP
H06035962 Feb 1994 JP
H06259487 Sep 1994 JP
H07093331 Apr 1995 JP
H08055123 Feb 1996 JP
H09114907 May 1997 JP
H10063747 Mar 1998 JP
H10097530 Apr 1998 JP
H10509543 Sep 1998 JP
H11507752 Jul 1999 JP
3190881 Jul 2001 JP
3190882 Jul 2001 JP
3260693 Feb 2002 JP
2002513970 May 2002 JP
3367675 Jan 2003 JP
2003150623 May 2003 JP
2003157402 May 2003 JP
2004318510 Nov 2004 JP
2005107597 Apr 2005 JP
3762882 Apr 2006 JP
2006216073 Aug 2006 JP
2007042127 Feb 2007 JP
2007249606 Sep 2007 JP
2008152670 Jul 2008 JP
2008152760 Jul 2008 JP
4485548 Jun 2010 JP
4669373 Apr 2011 JP
4669430 Apr 2011 JP
2011095841 May 2011 JP
4718687 Jul 2011 JP
5473533 Apr 2014 JP
WO199406086 Mar 1994 WO
WO9516971 Jun 1995 WO
WO9613013 May 1996 WO
WO9642041 Dec 1996 WO
WO9715885 May 1997 WO
WO9804061 Jan 1998 WO
WO9819224 May 1998 WO
WO9952626 Oct 1999 WO
WO199957651 Nov 1999 WO
WO2000057320 Sep 2000 WO
WO200101289 Jan 2001 WO
WO200129696 Apr 2001 WO
WO2002029622 Apr 2002 WO
WO2002039318 May 2002 WO
WO2006016171 Feb 2006 WO
WO2006121849 Nov 2006 WO
WO2007068123 Jun 2007 WO
WO2008055360 May 2008 WO
WO2008083503 Jul 2008 WO
WO2008147647 Dec 2008 WO
WO2010062540 Jun 2010 WO
WO2010062542 Jun 2010 WO
WO2019133506 Jul 2019 WO
Non-Patent Literature Citations (128)
Entry
First Examination Report dated Nov. 26, 2009 for European Patent Application 05772051.8, filed May 8, 2006, 8 pages.
Second Examination Report dated Feb. 19, 2013 for European Patent Application 06759147.9, filed May 8, 2006, 5 pages.
Langlais, et al. “TransType: a Computer-Aided Translation Typing System”, in Conference on Language Resources and Evaluation, 2000, pp. 46-51.
First Notice of Reasons for Rejection dated Jun. 18, 2013 for Japanese Patent Application 2009-246729, filed Oct. 27, 2009, 3 pages.
First Notice of Reasons for Rejection dated Jun. 4, 2013 for Japanese Patent Application 2010-045531, filed Oct. 27, 2009, 4 pages.
Rejection Decision dated May 14, 2013 for Chinese Patent Application 200910253192.6, filed Dec. 14, 2009, 9 pages.
Matsunaga, et al. “Sentence Matching Algorithm of Revised Documents with Considering Context Information,” IEICE Technical Report, 2003, pp. 43-48.
Pennington, Paula K. Improving Quality in Translation Through an Awareness of Process and Self-Editing Skills. Eastern Michigan University, ProQuest, UMI Dissertations Publishing, 1994, 115 pages.
Notice of Allowance dated Jan. 7, 2014 for Japanese Patent Application 2009-246729, filed Oct. 27, 2009, 3 pages.
Kumano et al., “Japanese-English Translation Selection Using Vector Space Model,” Journal of Natural Language Processing; vol. 10; No. 3; (2003); pp. 39-59.
Final Rejection and a Decision to Dismiss the Amendment dated Jan. 7, 2014 for Japanese Patent Application 2010-045531, filed Mar. 2, 2010, 4 pages.
Office Action dated Feb. 24, 2014 for Chinese Patent Application No. 201010521841.9, filed Oct. 25, 2010, 30 pages.
Extended European Search Report dated Oct. 24, 2014 for European Patent Application 10185842.1, filed Oct. 1, 2010, 8 pages.
Summons to attend oral proceeding pursuant to Rule 115(1)(EPC) mailed Oct. 13, 2014 in European Patent Application 00902634.5 filed Jan. 26, 2000, 8 pages.
Summons to attend oral proceeding pursuant to Rule 115(1)(EPC) mailed Feb. 3, 2015 in European Patent Application 06759147.9 filed May 8, 2006, 5 pages.
Decision to Refuse mailed Mar. 2, 2015 in European Patent Application 00902634.5 filed Jan. 26, 2000, 15 pages.
Brief Communication mailed Jun. 17, 2015 in European Patent Application 06759147.9 filed May 8, 2006, 20 pages.
Somers, H. “EBMT Seen as Case-based Reasoning” Mt Summit VIII Workshop on Example-Based Machine Translation, 2001, pp. 56-65, XP055196025.
Minutes of Oral Proceedings mailed Mar. 2, 2015 in European Patent Application 00902634.5 filed Jan. 26, 2000, 19 pages.
Notification of Reexamination mailed Aug. 18, 2015 in Chinese Patent Application 200910253192.6, filed Dec. 14, 2009, 24 pages.
Decision to Refuse mailed Aug. 24, 2015 in European Patent Application 06759147.9, filed May 8, 2006, 26 pages.
Papineni, Kishore, et al., “BLEU: A Method for Automatic Evaluation of Machine Translation,” Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2002, pp. 311-318.
“Office Action,” European Patent Application No. 10185842.1, dated Dec. 8, 2016, 7 pages.
Nepveu et al. “Adaptive Language and Translation Models for Interactive Machine Translation” Conference on Empirical Methods in Natural Language Processing, Jul. 25, 2004, 8 pages. Retrieved from: http://www.cs.jhu.edu/˜yarowsky/sigdat.html.
Ortiz-Martinez et al. “Online Learning for Interactive Statistical Machine Translation” Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, Jun. 10, 2010, pp. 546-554. Retrieved from: https://www.researchgate.net/publication/220817231_Online_Learning_for_Interactive_Statistical_Machine_Translation.
Callison-Burch et al. “Proceedings of the Seventh Workshop on Statistical Machine Translation” [W12-3100] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 10-51. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Lopez, Adam. “Putting Human Assessments of Machine Translation Systems in Order” [W12-3101] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 1-9. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Avramidis, Eleftherios. “Quality estimation for Machine Translation output using linguistic analysis and decoding features” [W12-3108] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 84-90. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Buck, Christian. “Black Box Features for the WMT 2012 Quality Estimation Shared Task” [W12-3109] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 91-95. Retrieved from: Proceedings of the Seventh Workshop on Statistical Machine Translation. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Felice et al. “Linguistic Features for Quality Estimation” [W12-3110] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 96-103. Retrieved at: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Gonzalez-Rubio et al. “PRHLT Submission to the WMT12 Quality Estimation Task” [W12-3111] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 104-108. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Hardmeier et al. “Tree Kernels for Machine Translation Quality Estimation” [W12-3112] Proceedings of the Seventh Workshop on Statistical Machine Translation,Jun. 7, 2012, pp. 109-113. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Langlois et al. “LORIA System for the WMT12 Quality Estimation Shared Task” [W12-3113] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 114-119. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Moreau et al. “Quality Estimation: an experimental study using unsupervised similarity measures” [W12-3114] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 120-126. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Gonzalez et al. “The UPC Submission to the WMT 2012 Shared Task on Quality Estimation” [W12-3115] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 127-132. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Popovic, Maja. “Morpheme- and POS-based IBM1 and language model scores for translation quality estimation” Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 133-137. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Rubino et al. “DCU-Symantec Submission for the WMT 2012 Quality Estimation Task” [W12-3117] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 138-144. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Soricut et al. “The SDL Language Weaver Systems in the WMT12 Quality Estimation Shared Task” [W12-3118] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 145-151. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Wu et al. “Regression with Phrase Indicators for Estimating MT Quality” [W12-3119] Proceedings of the Seventh Workshop on Statistical Machine Translation, Jun. 7, 2012, pp. 152-156. Retrieved from: http://aclanthology.info/volumes/proceedings-of-the-seventh-workshop-onstatistical-machine-translation.
Wuebker et al. “Hierarchical Incremental Adaptation for Statistical Machine Translation” Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1059-1065, Lisbon, Portugal, Sep. 17-21, 2015.
“Best Practices—Knowledge Base,” Lilt website [online], Mar. 6, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/best-practices>, 2 pages.
“Data Security—Knowledge Base,” Lilt website [online], Oct. 14, 2016 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/security>, 1 pages.
“Data Security and Confidentiality,” Lilt website [online], 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet: <https://lilt.com/security>, 7 pages.
“Memories—Knowledge Base,” Lilt website [online], Jun. 7, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/project-managers/memory>, 4 pages.
“Memories (API)—Knowledge Base,” Lilt website [online], Jun. 2, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/api/memories>, 1 page.
“Quoting—Knowledge Base,” Lilt website [online], Jun. 7, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet: <https://lilt.com/kb/project-managers/quoting>, 4 pages.
“The Editor—Knowledge Base,” Lilt website [online], Aug. 15, 2017 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/editor>, 5 pages.
“Training Lilt—Knowledge Base,” Lilt website [online], Oct. 14, 2016 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/troubleshooting/training-lilt>, 1 page.
“What is Lilt—Knowledge Base,” Lilt website [online],Dec. 15, 2016 [retrieved on Oct. 19, 2017], Retrieved from the Internet:<https://lilt.com/kb/what-is-lilt>, 1 page.
“Getting Started—Knowledge Base,” Lilt website [online], Apr. 11, 2017 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/getting-started>, 2 pages.
Komatsu, H et al, “Corpus-based predictive text input”, “Proceedings of the 2005 International Conference on Active Media Technology”, 2005, IEEE, pp. 75 80, ISBN 0-7803-9035-0.
Saiz, Jorge Civera: “Novel statistical approaches to text classification, machine translation and computer-assisted translation” Doctor En Informatica Thesis, May 22, 2008, XP002575820 Universidad Polit'ecnica de Valencia, Spain. Retrieved from Internet: http://dspace.upv.es/manakin/handle/10251/2502 [retrieved on Mar. 30, 2010]. p. 111 131.
De Gispert, A., Marino, J.B. and Crego, J.M.: “Phrase-Based Alignment Combining Corpus Cooccurrences and Linguistic Knowledge” Proc. of the Int. Workshop on Spoken Language Translation (IWSLT'04), Oct. 1, 2004, XP002575821 Kyoto, Japan, pp. 107-114. Retrieved from the Internet: http://mi.eng.cam.ac.uk/˜ad465/agispert/docs/papers/TP_gispert.pdf [retrieved on Mar. 30, 2010].
Planas, Emmanuel: “SIMILIS Second-generation translation memory software,” Translating and the Computer 27, Nov. 2005 [London: Aslib, 2005], 7 pages.
Net Auction, www.netauction.net/dragonart.html, “Come bid on original illustrations,” by Greg & Tim Hildebrandt, Feb. 3, 2001. (last accessed Nov. 16, 2011), 3 pages.
Web Pages—BidNet, www.bidnet.com, “Your link to the State and Local Government Market,” including Bid Alert Service, Feb. 7, 2009. (last accessed Nov. 16, 2011), 1 page.
Web Pages Christie's, www.christies.com, including “How to Buy,” and “How to Sell,” Apr. 23, 2009. (last accessed Nov. 16, 2011), 1 page.
Web Pages Artrock Auction, www.commerce.com, Auction Gallery, Apr. 7, 2007. (last accessed Nov. 16, 2011), 1 page.
Trados Translator's Workbench for Windows, 1994-1995, Trados GbmH, Stuttgart, Germany, pp. 9-13 and 27-96. Copy unavailable.
Notification of Reasons for Refusal for Japanese Application No. 2000-607125 dated Nov. 10, 2009 (Abstract Only), 3 pages.
Ross et al., U.S. Appl. No. 11/071,706, filed Mar. 3, 2005, Office Communication dated Dec. 13, 2007, 19 pages.
Ross et al., U.S. Appl. No. 11/071,706, filed Mar. 3, 2005, Office Communication dated Oct. 6, 2008, 36 pages.
Ross et al., U.S. Appl. No. 11/071,706, filed Mar. 3, 2005, Office Communication dated Jun. 9, 2009, 37 pages.
Ross et al., U.S. Appl. No. 11/071,706, filed Mar. 3, 2005, Office Communication dated Feb. 18, 2010, 37 pages.
Colucci, Office Communication for U.S. Appl. No. 11/071,706 dated Sep. 24, 2010, 18 pages.
Och, et al., “Improved Alignment Models for Statistical Machine Translation,” In: Proceedings of the Joint Workshop on Empirical Methods in NLP and Very Large Corporations, 1999, p. 20-28, downloaded from http://www.actweb.org/anthology-new/W/W99/W99-0604.pdf.
International Search Report and Written Opinion dated Sep. 4, 2007 in Patent Cooperation Treaty Application No. PCT/US06/17398, 9 pages.
XP 002112717 Machine translation software for the Internet, Harada K.; et al., vol. 28, Nr:2, pp. 66-74. Sanyo Technical Review San'yo Denki Giho, Hirakata, JP ISSN 0285-516X, Oct. 1, 1996.
XP 000033460 Method to Make a Translated Text File Have the Same Printer Control Tags as the Original Text File, vol. 32, Nr:2, pp. 375-377, IBM Technical Disclosure Bulletin, International Business Machines Corp. (Thornwood), US ISSN 0018-8689, Jul. 1, 1989.
XP 002565038—Integrating Machine Translation into Translation Memory Systems, Matthias Heyn, pp. 113-126, TKE. Terminology and Knowledge Engineering. Proceedings International Congress On Terminology and Knowledge Engineering, Aug. 29-30, 1996.
XP 002565039—Linking translation memories with example-based machine translation, Michael Carl; Silvia Hansen, pp. 617-624, Machine Translation Summit. Proceedings, Sep. 1, 1999.
XP 55024828 TransType2 An Innovative Computer-Assisted Translation System, ACL 2004, Jul. 21, 2004, Retrieved from the Internet: http://www.mt-archive.info/ACL-2004-Esteban.pdf [retrieved on Apr. 18, 2012], 4 pages.
Bourigault, Surface Grammatical Analysis for the Extraction of Terminological Noun Phrases, Proc. of Coling-92, Aug. 23, 1992, pp. 977-981, Nantes, France.
Thurmair, Making Term Extraction Tools Usable, The Joint Conference of the 8th International Workshop of the European Association for Machine Translation, May 15, 2003, Dublin, Ireland, 10 pages.
Sanfillipo, Section 5.2 Multiword Recognition and Extraction, Eagles LE3-4244, Preliminary Recommendations on Lexical Semantic Encoding, Jan. 7, 1999, pp. 176-186.
Hindle et al., Structural Ambiguity and lexical Relations, 1993, Association for Computational Linguistics, vol. 19, No. 1, pp. 103-120.
Ratnaparkhi, A Maximum Entropy Model for Part-Of-Speech Tagging, 1996, Proceedings for the conference on empirical methods in natural language processing, V.1, pp. 133-142.
Somers, H. “Review Article: Example-based Machine Translation,” Machine Translation, Issue 14, pp. 113-157, 1999.
Civera, et al. “Computer-Assisted Translation Tool Based on Finite-State Technology,” In: Proc. of EAMT, 2006, pp. 33-40 (2006).
Okura, Seiji et al., “Translation Assistance by Autocomplete,” The Association for Natural Language Processing, Publication 13th Annual Meeting Proceedings, Mar. 2007, p. 678-679.
Soricut, R, et al., “Using a Large Monolingual Corpus to Improve Translation Accuracy,” Proc. of the Conference of the Association for Machine Translation in the Americas (Amta-2002), Aug. 10, 2002, pp. 155-164, XP002275656.
Fung et al. “An IR Approach for Translating New Words from Nonparallel, Comparable Texts,” Proceeding COLING '998 Proceedings of the 17th International Conference on Computational Linguistics, 1998, pp. 414-420.
First Office Action dated Dec. 26, 2008 in Chinese Patent Application 200580027102.1, filed Aug. 11, 2005, 7 pages.
Second Office Action dated Aug. 28, 2009 in Chinese Patent Application 200580027102.1, filed Aug. 11, 2005, 8 pages.
Third Office Action dated Apr. 28, 2010 in Chinese Patent Application 200580027102.1, filed Aug. 11, 2005, 8 pages.
Summons to attend oral proceeding pursuant to Rule 115(1)(EPC) mailed Mar. 20, 2012 in European Patent Application 05772051.8 filed Aug. 11, 2005, 7 pages.
Notification of Reasons for Rejection dated Jan. 9, 2007 for Japanese Patent Application 2000-547557, filed Apr. 30, 1999, 2 pages.
Decision of Rejection dated Jul. 3, 2007 for Japanese Patent Application 2000-547557, filed Apr. 30, 1999, 2 pages.
Extended European Search Report and Written Opinion dated Jan. 26, 2011 for European Patent Application 10189145.5, filed on Oct. 27, 2010, 9 pages.
Notice of Reasons for Rejection dated Jun. 26, 2012 for Japanese Patent Application P2009-246729. filed Oct. 27, 2009, 8 pages.
Search Report dated Jan. 22, 2010 for United Kingdom Application GB0918765.9, filed Oct. 27, 2009, 5 pages.
Notice of Reasons for Rejection dated Mar. 30, 2010 for Japanese Patent Application 2007-282902. filed Apr. 30, 1999, 5 pages.
Decision of Rejection dated Mar. 15, 2011 for Japanese Patent Application 2007-282902, filed Apr. 30, 1999, 5 pages.
First Office Action dated Oct. 18, 2011 for Chinese Patent Application 2009102531926, filed Dec. 14, 2009, 7 pages.
Second Office Action dated Aug. 14, 2012 for Chinese Patent Application 2009102531926, filed Dec. 14, 2009, 6 pages.
European Search Report dated Apr. 12, 2010 for European Patent Application 09179150.9, filed Dec. 14, 2009, 6 pages.
First Examination Report dated Jun. 16, 2011 for European Patent Application 09179150.9, filed Dec. 14, 2009, 6 pages.
Notice of Reasons for Rejection dated Jul. 31, 2012 for Japanese Patent Application 2010-045531, filed Mar. 2, 2010, 10 pages.
First Examination Report dated Oct. 26, 2012 for United Kingdom Patent Application GB0903418.2, filed Mar. 2, 2009, 6 pages.
First Office Action dated Jun. 19, 2009 for Chinese Patent Application 200680015388.6, filed May 8, 2006, 15 pages.
“The Lexicon—Knowledge Base,” Lilt website [online], Jun. 7, 2017 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/lexicon>, 4 pages.
“Simple Translation—Knowledge Base,” Lilt website [online], Aug. 17, 2017 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/api/simple-translation>, 3 pages.
“Split and Merge—Knowledge Base,” Lilt website [online], Oct. 14, 2016 [retrieved on Oct. 20, 2017], Retrieved from the Internet:<https://lilt.com/kb/translators/split-merge>, 4 pages.
“Lilt API _ API Reference,” Lilt website [online], retrieved on Oct. 20, 2017, Retrieved from the Internet:<https://lilt.com/docs/api>, 53 pages.
“Automatic Translation Quality—Knowledge Base”, Lilt website [online], Dec. 1, 2016, retrieved on Oct. 20, 2017, Retrieved from the Internet:<https://lilt.com/kb/evaluation/evaluate-mt>, 4 pages.
“Projects—Knowledge Base,”Lilt website [online], Jun. 7, 2017, retrieved on Oct. 20, 2017, Retrieved from the Internet: <https://lilt.com/kb/project-managers/projects>, 3 pages.
“Getting Started with lilt,” Lilt website [online], May 30, 2017, retrieved on Oct. 20, 2017, Retrieved from the Internet: <https://lilt.com/kb/api/lilt-js>, 6 pages.
“Interactive Translation—Knowledge Base,” Lilt website [online], Aug. 17, 2017, retrieved on Oct. 20, 2017, Retrieved from the Internet:<https://lilt.com/kb/api/interactive-translation>, 2 pages.
Hildebrand et al., “Adaptation of the Translation Model for Statistical Machine Translation based on Information Retrieval,” EAMT 2005 Conference Proceedings, May 2005, pp. 133-142. Retrieved from https://www.researchgate.net/publication/228634956_Adaptation_of_the_translation_model_for_statistical_machine_translation_based_on_information_retrieval.
Och et al., “The Alignment Template Approach to Statistical Machine Translation Machine Translation,” Computational Linguistics, vol. 30. No. 4, Dec. 1, 2004, pp. 417-442 (39 pages with citations). Retrieved from http://dl.acm.org/citation.cfm?id=1105589.
Sethy et al., “Building Topic Specific Language Models Fromwebdata Using Competitive Models,” Interspeech 2005—Eurospeech, 9th European Conference on Speech Communication and Technology, Lisbon, Portugal, Sep. 4-8, 2005, 4 pages. Retrieved from https://www.researchgate.net/publication/221490916_Building_topic_specific_language_models_from_webdata_using_competitive_models.
Dobrinkat, “Domain Adaptation in Statistical Machine Translation Systems via User Feedback,” Master's Thesis, University of Helsinki, Nov. 25, 2008, 103 pages. Retrieved from http://users.ics.aalto.fi/mdobrink/online-papers/dobrinkat08mt.pdf.
Business Wire, “Language Weaver Introduces User-Managed Customization Tool,” Oct. 25, 2005, 3 pages. Retrieved from http: ProQuest.
Winiwarter, W., “Learning Transfer Rules for Machine Translation from Parallel Corpora,” Journal of Digital Information Management, vol. 6 No. 4, Aug. 2008, pp. 285-293. Retrieved from https://www.researchgate.net/publication/220608987_Learning_Transfer_Rules_for_Machine_Translation_from_Parallel_Corpora.
Potet et al., “Preliminary Experiments on Using Users' Post-Editions to Enhance a SMT System,” Proceedings of the European Association for Machine Translation (EAMT), May 2011, pp. 161-168. Retreived from Retrieved at http://www.mt-archive.info/EAMT-2011-Potet.pdf.
Ortiz-Martinez et al., “An Interactive Machine Translation System with Online Learning” Proceedings of the ACL-HLT 2011 System Demonstrations, Jun. 21, 2011, pp. 68-73. Retrieved from http://www.aclweb.org/anthology/P11-4012.
Lopez-Salcedo et al.,“Online Learning of Log-Linear Weights in Interactive Machine Translation,” Communications in Computer and Information Science, vol. 328, 2011, pp. 1-10. Retrieved from http://www.casmacat.eu/uploads/Main/iberspeech2.pdf.
Blanchon et al., “A Web Service Enabling Gradable Post-edition of Pre-translations Pro duced by Existing Translation Tools: Practical Use to Provide High quality Translation of an Online Encyclopedia” Jan. 2009, 9 pages. Retrieved from http://www.mt-archive.info/MTS-2009-Blanchon.pdf.
Levenberg et al.“Stream-based Translation Models for Statistical Machine Translation” Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, Dec. 31, 2010, pp. 394-402.
Lagarda et al. “Statistical Post-Editing of a Rule Based Machine Translation System” Proceedings of NAACL HLT 2009: Short Papers, Jun. 2009, pp. 217-220.
Ehara, “Rule Based Machine Translation Combined with Statistical Post Editor for Japanese to English Patent Translation,” MT Summit XI, 2007, pp. 13-18.
Bechara et al. “Statistical Post-Editing for a Statistical MT System” Proceedings of the 13th Machine Translation Summit, 2011, pp. 308-315.
“Summons to attend oral proceeding pursuant to Rule 115(1)(EPC),” European Patent Application 10185842.1, Aug. 11, 2017, 9 pages.
Westfall, Edith R., “Integrating Tools with the Translation Process North American Sales and Support,” Jan. 1, 1998, pp. 501-505, XP055392884. Retrieved from the Internet: <URL:https://rd.springer.com/content/pdf/10.1007/3-540-49478-2_46.pdf>.
“Summons to attend oral proceeding pursuant to Rule 115(1)(EPC),” European Patent Application 09179150.9, Dec. 14, 2017, 17 pages.
“Decision to Refuse,” European Patent Application 10185842.1, Mar. 22, 2018, 16 pages.
“International Search Report” and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2018/067213, dated Mar. 25, 2019, 7 pages.
“Extended European Search Report”, European Patent Application No. 18895751.8, dated Aug. 24, 2021, 8 pages.
Related Publications (1)
Number Date Country
20200110802 A1 Apr 2020 US