The present disclosure relates to the field of monitoring patients through analysis of absorption data. More specifically, the disclosure relates to frequency-domain photo migration spectroscopy.
Frequency-domain photo migration (“FDPM”) spectroscopy is often used to determine optical properties of turbid samples, including the determination of absorption and scattering properties of the samples. In general, FDPM usually includes irradiating a sample at an air-medium interface with light whose intensity is modulated at variable frequencies, often in the MHz range. A photo-detector receives the light after passing through some or all of the sample, and then outputs electrical signals responsive to the intensities of the received light. These output intensity signals are usually amplitude attenuated and phase delayed, and are often referred to as the amplitude and phase frequency response of the sample. In certain situations, bulk absorption and scattering optical properties of the sample can be determined from the frequency response.
Pulse oximetry is a standard-of-care in many patient monitoring environments including surgical, recovery, and general care wards. It is also used in home monitoring, fitness, spot checking, and many other situations where vital signs and blood parameter information is useful for caregiver and/or patient review. In general, a pulse oximetry system includes a sensor with a light source and light detectors. The sensor positions the source and the detector such that when the source irradiates a measurement site with light, the detector can receive the light after attenuation by tissue at the measurement site. The sensor outputs a signal responsive to the attenuation, which is usually preprocessed to, for example, reduce noise, digitize, and in some cases, reduce the amount of available data in the signal. Once preprocessed, one or more microprocessor, controllers or digital signal processors apply one or more processing methodologies to develop, for example, ratio or other data that can be used as an index to organized clinical or other data to determine output measurement values for, for example, oxygen saturation, pulse rate, plethysmographic information, other blood parameters including for example, carboxyhemoglobin, methemoglobin, total hemoglobin, glucose, an indication of hydration, pH, bilirubin, combinations of the same or the like. The indexing or lookup table that associates ratio values with clinical data is often called a calibration curve.
While the foregoing discussion represents a general overview, an artisan will recognize from the disclosure herein many methodologies and monitor technologies capable of developing measurement output data from signals indicative of absorption of light by body tissue. For example, U.S. Pat. No. 6,157,850, owned by Masimo Corp. of Irvine Calif. (“Masimo”) or U.S. Pat. Pub. No. 2010-0030040, owned by Masimo Laboratories, Inc. of Irvine, Calif., discloses many such processing techniques and systems capable of performing those techniques. Moreover, monitoring instruments commercially available from Masimo employ those and other techniques to monitor patients in many of the foregoing monitoring environments.
While pulse oximetry is a proven technology, developers continually seek processing techniques that have the potential to outperform the foregoing processing in special circumstances or even generally across monitoring environments. The present disclosure provides systems and methods of applying FDPM techniques to determine output measurements that in some circumstances may outperform the general pulse oximetry processing techniques disclosed above, whether those oximetry processing techniques are used alone or in parallel, and whether those techniques are employed always, sometimes, or only in predetermined circumstances. Thus, in some embodiments, the FDPM techniques may be part or all of a separate calculation executing in parallel with other calculations, may be part of a system that selects it as a calculation technique from many other techniques available, may stand alone or be incorporated into other parameter calculation techniques, or the like.
In general, instrument components and temperature can adversely affect the FDPM phase response. Thus, FDPM can require instrument specific calibration. Moreover, instrument components, light source intensities and temperature can also adversely affect the FDPM amplitude response. Usually, expensive stable light sources are used to try to create very stable optical power outputs and/or continuous measurement of optical power output. Moreover, traditional FDPM can measure only bulk optical properties. For application in patient monitoring, bulk response is less useful, while the absorption by, for example, arterial blood is more desired.
The present disclosure seeks to overcome some or all of the foregoing challenges by advantageously applying FDPM to determine robust amplitude and phase photoplethysmographic data usable as indexes to clinical data to determine output measurement values for one or more physiological parameters of a monitored patient. In an embodiment, normalization of an FDPM amplitude signal can reduce that signal's dependency on instrument specific frequency response, temperature, instrument specific light source intensity and/or patient tissue characteristics, such as depth of pigmentation or the like. In an embodiment, normalization of an FDPM phase signal can reduce that signal's dependency on instrument specific frequency response and temperature. After normalization, averaging or other processing techniques can be use to isolate amplitude and phase plethysmographs, which can then be processed with calibration data to determine output measurement values.
For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the disclosure have been described herein. Of course, it is to be understood that not necessarily all such aspects, advantages or features will be embodied in any particular embodiment of the disclosure.
A general architecture that implements the various features of the disclosure will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the disclosure and not to limit the scope of the disclosure.
While the sensor 208 is shown as a finger sensor positioning the light sources 210 and detector(s) 212 proximate the tissue of a finger, usually such that light shines through the nail bed from the top of the finger through to the bottom, an artisan will recognize from the disclosure herein that the sensor may comprise a wide variety of optical sensors, including for example, a disposable digit, ear or other sensor, a reflectance sensor such as a forehead or other sensor, a partially disposable, partially reusable sensor, or any sensor technology commercially available from Masimo or other well-known oximetry sensor providers.
After irradiation by the light sources 210, the detector 212 outputs a signal 222 responsive to attenuated light from the light sources 210 to a front end 224. In an embodiment, the detector output 222, the emitter or light source driving signal(s) 220 and the optional temperature and memory signals may travel along conductors of a cable 226. An artisan will recognize that some or all of the foregoing signals may be communicated wirelessly or the like.
The front end 224 communicates with one or more digital signal processors, microprocessors, microcontrollers, or the like (hereinafter “processor”) 228. The processor 228 may communicate with the memory 216, the temperature sensor 214, the driver 218, other memory or storage 230, a network interface 232, and the monitor output 206, combinations of the same, or the like. The monitor output 206 may advantageously include one or more displays 234, a user interface 236, or simply format the output for input into external systems.
In general, the processor 228 outputs drive signals to a driver circuit 218, often to control the current applied to the light source 210. The output is combined with a modulation signal comprising a variable frequency, a frequency range, a frequency range above about 100 MHz, a frequency range around 200 MHz, or the like. The output modulated drive signal drives the light source 210, such as, for example, a plurality of same or different LEDs producing light at the same or different wavelengths. In a preferred embodiment, the light source 210 is time division multiplexed such that a single wavelength of light (or OFF) is emitted at any one point in time. The light source may also or alternatively comprise side emitting LEDs, super luminescent LEDs, or the like. As shown in
In other embodiments recognizable to an artisan from the disclosure herein, the sensor 208 may comprises a transmittance sensor applied to a digit, an ear or ear concha, a septum, the forehead, or the like. In any event, the sensor 210 positions the emitter with respect to the detector 212 where the detector 212 is irradiated by light after attenuation and scattering by body tissue, such as, for example, the illustrated forehead 250.
The detector 212 outputs a signal responsive to the light received, which is communicated to the front end 224. The front end 224 preprocess the signal and communicates the same to the processor 228 that determines, for example, output measurements for the desired physiological parameters of the measurement site.
Although disclosed with reference to the foregoing elements, an artisan will recognize from the disclosure herein other circuits, systems, or processing boards capable of processing sensor output data to display or forward measurement results.
To determine the amplitude response at a given modulated frequency, it is noteworthy that the response is a function of the light source intensity, the instrument attenuation at the modulated frequency, the bulk tissue attenuation at the measurement site, and the pulsating arterial blood attenuation at the modulated frequency. Normalization can remove or at least greatly reduce the effects of differences in source intensity across differing sensors. Operation of the instrument 202 without tissue can provide the frequency response of the instrument 202. After band-pass filtering, the signal represents a normalized plethysmograph at the modulated frequency, which is non-zero and thus, will include phase information. The foregoing normalized plethysmograph at the modulated frequency has been shown to be sensitive to absorption and have better signal quality than traditional pulse oximetry processing by itself. However, with the addition of the phase information, which is sensitive to scattering, the combination of information advantageously reduces errors in determined measurement values.
To determine the phase response at a given modulated frequency, it is noteworthy that the response is a function of the instrument phase shift at the modulated frequency, the bulk tissue phase shift at the measurement site, and the pulsating arterial blood phase shift at the modulated frequency. Normalization can remove or at least greatly reduce the effects of differences in the response across differing instruments. After band-pass filtering, the signal represents a normalized phase plethysmograph at the modulated frequency. The foregoing normalized plethysmograph at the modulated frequency has been shown to be sensitive to scattering.
For example,
Although the FDPM system 200 is disclosed with reference to its preferred embodiment, the disclosure is not intended to be limited thereby. Rather, a skilled artisan will recognize from the disclosure herein a wide number of alternatives. Accordingly, the present disclosure is not intended to be limited by the reaction of the preferred embodiments, but is to be defined by reference to the appended claims.
Additionally, all publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
The present application claims priority benefit under 35 U.S.C. §119(e) from U.S. Provisional Application No. 61/388,545, filed Sep. 30, 2010, entitled “Systems and Methods of Monitoring a Patient Through Frequency-Domain Photo Migration Spectroscopy,” which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61388545 | Sep 2010 | US |