Systems and methods of performing surgery using Laplace's law tension retraction during surgery

Information

  • Patent Grant
  • 11173060
  • Patent Number
    11,173,060
  • Date Filed
    Thursday, March 25, 2021
    3 years ago
  • Date Issued
    Tuesday, November 16, 2021
    3 years ago
Abstract
A method for performing a sleeve gastrectomy includes providing a first medical device including a tube for insertion into an interior of a stomach, the tube having a proximal end and a distal end, and a shaping portion positioned at the distal end of the tube, providing an inflation lumen, and providing a second medical device, the second medical device being a stapler or clamp positioned externally on the stomach laterally adjacent to the first medical device. The method also includes introducing positive pressure into the stomach via the inflation lumen, defining a resection line for the sleeve gastrectomy, and clamping the stomach using the second medical device. The resection line is defined at least partially by the position of the second medical device relative to the first medical device when a predetermined positive pressure range is provided via the inflation lumen.
Description
TECHNICAL FIELD

The examples herein may be directed to a sleeve gastrectomy, and more particularly to a bougie or medical tube inserted into the stomach and used in conjunction with a sleeve gastrectomy stapler or clamp. The example devices herein may provide proper tension of the stomach tissue during clamping of the stapler or clamp during the creation of a vertical sleeve gastrectomy.


BACKGROUND

Obesity is a disease that affects a significant portion of the world's population and leads to multiple chronic medical conditions and premature death from cardiovascular events and cancer. In particular, the United States has a current, and worsening obesity epidemic. The U.S. Centers for Disease Control and Prevention (CDC) reports that over 33% of the U.S. population is obese, with a Body Mass Index (BMI) of over 30, and another 35-40% of the US population is overweight, with a BMI of 25-30. The CDC reports that the percent of the US population being either overweight or obese by 2018 will be 75%. The CDC also reports that obesity directly costs the U.S. economy $147 billion currently, and projects that the costs will approach $315 billion by 2020.


Further, obesity has environmental, genetic, and behavioral origins but is intractable to most medical and behavioral interventions. To help reduce obesity and/or facilitate weight loss, bariatric surgery may be an option for some patients that may be overweight. Typically, bariatric surgery may be an effective long-term treatment option for patients with a BMI greater than 35. Despite the 20 million patients who are eligible for weight loss surgery in the U.S., the number of procedures per year has plateaued at about 200 thousand, eliminating any public health effect of surgery.


In recent years, a popular form of bariatric surgery may include a laparoscopic vertical sleeve gastrectomy (e.g., which may remove approximately 80% of the stomach). Laparoscopic vertical sleeve gastrectomy may be a procedure that may be safer and more effective for patients eligible for weight loss surgery. In fact, it has been accepted as the surgery that should be offered to most morbidly obese patients over, for example, laparoscopic adjustable gastric banding and laparoscopic Roux-en-Y gastric bypass. As such, the surgery has been adopted by bariatric surgeons and is now the most commonly performed weight loss surgery.


Vertical sleeve gastrectomy is typically performed using standard laparoscopic equipment. The greater curvature of the stomach is mobilized using vessel-sealing devices, sealing the gastric branches of the gastroepiploic vessels and the short gastric vessels. The posterior adhesions of the stomach are also divided so the stomach is fully mobilized while the blood supply to the lesser curvature remains intact.


Following mobilization of the stomach a calibration tube is typically introduced into the stomach through the mouth. Resection is accomplished by applying a series of staples from a laparoscopic linear surgical stapler, for example, along the calibration tube in a staple line. The staple line may be important in sleeve gastrectomy as the amount of weight lost and complications or consequences may be a direct result of the quality of the resultant sleeve gastrectomy pouch formed from the staple line (e.g., the portion of the stomach not rescinded by the staple line). The complications or consequences may include gastroesophageal reflux disorder (GERD), weight loss failure or weight regain, food intolerance, staple line bleed, leak, and/or the like.


The stomach resection line is long (e.g., up to 22 cm). While the stomach is being stapled, sections of the stomach are retracted. Each section may be, for example, 3 cm in length and requires incorporation of equal amounts of the anterior and posterior sides of the stomach. Stomach tissue can be modelled as a series of ropes or elastic fibers. These must be pulled in the correct traction force vector relative to the clamp or stapler with 4 dimensions or axes of direction (i.e., up/down or anterior/posterior; left/right; caudad/cephalad; and rotation) and 1 dimension of magnitude. Maintaining proper tension during each clamp or staple is important to produce a sleeve gastrectomy pouch (e.g., from the staple line) without negatively affecting or interfering with the natural elasticity of the tissue.


To help produce a repeatable sleeve gastrectomy pouch, a sleeve gastrectomy shaping tube may be used. Unfortunately, the surgeon must still manually manipulate the stomach to apply tension while planning the resection line using existing methods.


SUMMARY

Disclosed are embodiments of an apparatus for performing a sleeve gastrectomy, where the apparatus can include a bougie for insertion into an interior of a stomach, the bougie having a proximal bougie end and a distal bougie end, an inflation lumen having a proximal lumen end and a distal lumen end, the inflation lumen extending from the proximal bougie end through the distal bougie end, a fluid delivery system coupled with the proximal lumen end, the fluid delivery system being operably configured to deliver positive pressure in a predetermined positive pressure range into the stomach, and a monitor coupled with the proximal lumen end operably configured for the monitoring of pressure or volume within the stomach. The bougie can be operably configured to define a resection line for a sleeve gastrectomy when the predetermined positive pressure range is achieved within the stomach.


The bougie can include at least one balloon portion positioned at the distal bougie end. The inflation lumen can be used for both inflation and suction. The fluid delivery system can be a hand pump or a foot pump. The monitor can be a visual indicator or an audible indicator. The monitor can include a control system for metering a fluid delivered through the inflation lumen. The bougie can include at least one sensor coupled with the distal bougie end for monitoring a pressure or volume within the stomach. The distal bougie end can include a shaping portion that can be a balloon or an articulating tip. The distal bougie end can include an overtube. The inflation lumen can be a multi-lumen catheter. The predetermined positive pressure range can be from 15 mmHG to 20 mmHG.


Disclosed are embodiments of an apparatus for performing a sleeve gastrectomy, where the apparatus can include a bougie for insertion into an interior of a stomach, the bougie having a proximal bougie end and a distal bougie end, an inflation lumen having a proximal lumen end and a distal lumen end, the inflation lumen extending from the proximal bougie end through the distal bougie end, a fluid delivery system coupled with the proximal lumen end, the fluid delivery system being operably configured to deliver a predetermined range of positive pressure into the stomach, and a control system coupled with the proximal lumen end for the metering and monitoring of pressure or volume within the stomach. The bougie can be operably configured to cooperate with a stapler or clamp to define a resection line for a sleeve gastrectomy when the predetermined positive pressure range is achieved within the stomach.


Embodiments of a system for performing a sleeve gastrectomy can include a first medical device, the first medical device having a bougie for insertion into an interior of a stomach, the bougie having a proximal bougie end and a distal bougie end, an inflation lumen having a proximal lumen end and a distal lumen end, the inflation lumen extending from the proximal bougie end through the distal bougie end, a pump coupled with the proximal lumen end, the pump being operably configured to deliver a predetermined positive pressure range into the stomach, a monitor coupled with the proximal lumen end for the monitoring of pressure or volume of the stomach, and a shaping portion, the shaping portion being positioned at the distal bougie end, wherein the shaping portion is operably configured to position a portion of the stomach. The system can include a second medical device, the second medical device being a stapler or clamp positioned externally on the stomach laterally adjacent to the first medical device. In the system, the first medical device and the second medical device can be operably configured to define a resection line for a sleeve gastrectomy when the predetermined positive pressure range is achieved within the stomach and the second medical device can be operably configured to clamp the stomach along the resection line.


Example methods for performing a sleeve gastrectomy can include the steps of providing a first medical device including a tube for insertion into an interior of a stomach, the tube having a proximal end and a distal end, the distal end comprising a shaping portion; providing an inflation lumen for the introduction of positive pressure into the stomach; providing a second medical device, the second medical device being a stapler or clamp positioned externally on the stomach laterally adjacent to the first medical device; introducing positive pressure into the stomach via the inflation lumen; defining a resection line for a sleeve gastrectomy, wherein the resection line is defined at least partially by the position of the second medical device relative to the first medical device when a predetermined positive pressure range is provided via the inflation lumen; and clamping the stomach using the second medical device along the resection line.


Methods can include a bougie including the inflation lumen. The first medical device can comprise a bougie having a first balloon portion, the first balloon portion having a first balloon inflation lumen. The first balloon portion can be a non-compliant balloon having a predetermined shape in an inflated configuration. Methods can include an indicator associated with the predetermined positive pressure range of the stomach being achieved. The indicator can be a visual or audible indicator signaling that a positive pressure within the stomach is below the predetermined positive pressure range, above the predetermined positive pressure range, or within the predetermined positive pressure range. The predetermined positive pressure range can be from 1 mmHG to 25 mmHG. The predetermined positive pressure range can be from 15 mmHg to 20 mm Hg. The method can include providing a release for when a pressure within the stomach is greater than the predetermined positive pressure range. The first medical device can include a suction portion and an inflation portion, where the suction portion is operably configured to urge a first portion of the stomach proximate the suction portion and the inflation portion is operably configured to inflate the stomach to the predetermined positive pressure range. The suction portion can be positioned proximate the GE junction of the stomach. The suction portion can be positioned proximate the antrum of the stomach. The suction portion of the first medical device can extend from a portion proximate the GE junction of the stomach to a portion proximate the antrum of the stomach. The inflation lumen can be selectively configured to provide suction. The distal end of the first medical device can include an articulating member, the articulating member being operably configured to position the antrum relative to the second medical device.


Example methods where defining a resection line comprises applying a first amount of compression to the stomach with the second medical device when the positive pressure is introduced into the stomach, and applying a second amount of compression to the stomach when pressure within the stomach has reached the predetermined positive pressure range, wherein the second amount of compression is greater than the first amount of compression and the second amount of compression is operably configured to immovably retain the stomach. Example methods where the step of clamping includes providing a first clamping force with the second medical device prior to the resection line being defined, and a second clamping force with the second medical device after the resection line is defined to immovably secure the stomach therein. Example methods where the step of clamping includes first clamping a lower portion of the stomach, defining the resection line, and clamping the full length of the stomach using the second medical device. Example methods where the step of clamping the stomach with the second medical device comprises stapling the stomach and resecting a portion of the stomach.


In example methods, the first medical device can comprise a plurality of balloon portions. The distal end of the first medical device can be operably configured to articulate. The first medical device can include at least one sensor to measure the pressure or volume within the stomach. The first medical device or the second medical device include a sensor to measure tension, pressure, or volume of the stomach.


Example methods in accordance with embodiments described herein can include the steps of providing a first medical device including a tube for insertion into an interior of a stomach, the tube having a proximal end, a distal end, and at least one balloon portion, the distal end comprising a shaping portion; providing an inflation lumen for the introduction of positive pressure into the stomach, wherein the inflation lumen is coupled with a pump, a pressure gauge, and a pressure release valve; providing a second medical device, the second medical device being a stapler or clamp positioned externally on the stomach laterally adjacent to the first medical device; introducing positive pressure into the stomach via the inflation lumen until a predetermined range of pressure is achieved; defining a resection line for a sleeve gastrectomy, wherein the resection line is defined at least partially by the position of the second medical device relative to the first medical device when the predetermined positive pressure range is achieved; clamping the stomach using the second medical device along the resection line; stapling the stomach using the second medical device along the resection line; and resecting a portion of the stomach using the second medical device to form a sleeve gastrectomy.


Example methods can include a bougie, the bougie including the inflation lumen. The first medical device can comprise a bougie having at least one balloon portion, the at least one balloon portion having at least one balloon inflation lumen. Example methods can include an indicator for determining when the predetermined positive pressure range of the stomach has being achieved. The indicator can be a visual or audible indicator signaling that a positive pressure within the stomach is below the predetermined threshold range, above the predetermined threshold range, or within the predetermined threshold range. The predetermined positive pressure range can be from 1 mmHG to 25 mmHG. The predetermined positive pressure range can be from 15 mmHg to 20 mmHg.


In example methods, the first medical device can include a suction portion and an inflation portion, where the suction portion is operably configured to urge a first portion of the stomach proximate the suction portion and the inflation portion is operably configured to inflate the stomach to the predetermined positive pressure range. The suction portion can be positioned proximate the GE junction of the stomach, proximate the antrum of the stomach, or can extend from a portion proximate the GE junction of the stomach to a portion proximate the antrum of the stomach. The inflation lumen can be selectively configured to provide suction. The distal end of the first medical device can include an articulating member, the articulating member being operably configured to position the antrum relative to the second medical device. The first medical device can include at least one sensor to measure pressure or volume within the stomach.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be more readily understood from a detailed description of some example embodiments taken in conjunction with the following figures:



FIG. 1 depicts a perspective view of a system according to an embodiment, the system including a first medical device and a second medical device positioned relative to a stomach.



FIG. 2A depicts a perspective view of the first medical device of the system of FIG. 1.



FIG. 2B depicts an elevation view of the first medical device of the system of FIG. 1.



FIG. 2C depicts a cross-sectional view of the first medical device of FIG. 2A taken along section 2C-2C.



FIG. 3 is a flow chart depicting a fluid delivery system according to an embodiment.



FIG. 4A is a flow chart depicting a fluid delivery system according to another embodiment.



FIG. 4B is a flow chart depicting a fluid delivery system according to another embodiment.



FIG. 4C depicts a perspective view of a hand pump according to an embodiment.



FIG. 5A depicts a perspective view of the system of FIG. 1 where the first medical device is positioned in the stomach lumen and the second medical device is positioned outside the stomach adjacent to the first medical device in an example method of creating a resection path during a sleeve gastrectomy.



FIG. 5B depicts a perspective view of the system of FIG. 1 where the shaping portion of the first medical device is inflated and the stomach lumen is being pressurized.



FIG. 5C depicts a perspective view of the system of FIG. 1 where the pressure in the stomach has increased to urge the second medical device against the first medical device.



FIG. 5D depicts a perspective view of the system of FIG. 1 where the second medical device has been clamped.



FIG. 5E depicts a perspective view of the system of FIG. 1 where the shaping portion of the first medical device and the stomach lumen have been deflated.



FIG. 6A depicts an elevation view of a distal portion of a first medical device capable of applying suction according to an embodiment.



FIG. 6B depicts an elevation view of a distal portion of a first medical device capable of applying suction according to another embodiment.



FIG. 6C depicts an elevation view of a distal portion of a first medical device capable of applying suction according to another embodiment.



FIG. 7 depicts a perspective view of a first medical device including an overtube in accordance with an embodiment.



FIG. 8A depicts a cross-sectional view of a first medical device including a gastroscope in according to an embodiment.



FIG. 8B depicts a cross-sectional view of a first medical device including a gastroscope in accordance with another embodiment.



FIG. 9 depicts a perspective view of a system according to an embodiment, the system including a first medical device and a second medical device positioned relative to a stomach, and a connector attached to two sections of the stomach tissue.



FIG. 10 depicts a perspective view of a first medical device including an articulating tip in accordance with an embodiment.



FIG. 11A depicts a perspective view of a first medical device including a tissue anchor in accordance with an embodiment.



FIG. 11B depicts a perspective view of the first medical device of FIG. 11B and a stylet used to straighten the first medical device after tissue has been anchored to the tissue anchor.



FIG. 12A depicts an elevation view of a first medical device including a perforated sheath in accordance with an embodiment.



FIG. 12B depicts an elevation view of the first medical device of FIG. 12A with the shaping portion in an expanded state.



FIG. 12C depicts a cross-sectional view of the first medical device of FIG. 12A with the shaping portion in an expanded state.



FIG. 13 depicts a perspective view of a first medical device including an inflatable balloon extending through the pyloric sphincter in accordance with an embodiment.



FIG. 14A depicts a perspective view of the system of FIG. 1 including an inflatable balloon inserted into the stomach lumen on the remnant side.



FIG. 14B depicts a perspective view of the system of FIG. 14A after the balloon has been inflated.



FIG. 15 depicts a perspective view of a first medical device including a segmented shaping portion in accordance with an embodiment.



FIG. 16A depicts a cross-sectional view of a first medical device including suction zones in accordance with an embodiment, where the second medical device is in a first position.



FIG. 16B depicts a cross-sectional view of the first medical device of FIG. 16A, where the second medical device is in a second position.



FIG. 16C depicts a cross-sectional view of the first medical device of FIG. 16A, where the second medical device is in a third position.



FIG. 17A depicts a perspective view of a tube portion of a first medical device including suction zones in accordance with an embodiment.



FIG. 17B depicts a perspective view of the tube portion of FIG. 17A with the cap removed.



FIG. 18A depicts a perspective view of a first medical device including suction zones in accordance with an embodiment.



FIG. 18B depicts a perspective view of a shaping portion of the first medical device of FIG. 18A.



FIG. 18C depicts a perspective view of the shaping portion and the tube portion of the first medical device of FIG. 18A.



FIG. 18D depicts a perspective view of a manifold cap of the first medical device of FIG. 18A.



FIG. 19A depicts a cross-sectional view of a first medical device including suction zones in accordance with another embodiment.



FIG. 19B depicts a cross-sectional view of a first medical device of FIG. 19A with the shaping portion inflated.





DETAILED DESCRIPTION

Various non-limiting embodiments of the present disclosure will now be described to provide an overall understanding of the principles of the structure, function, and use of the apparatuses, systems, methods, and processes disclosed herein. One or more examples of these non-limiting embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that systems and methods specifically described herein and illustrated in the accompanying drawings are non-limiting embodiments. The features illustrated or described in connection with one non-limiting embodiment may be combined with the features of other non-limiting embodiments. Such modifications and variations are intended to be included within the scope of the present disclosure.


Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” “some example embodiments,” “one example embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with any embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” “some example embodiments,” “one example embodiment,” or “in an embodiment” in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.


As described herein, systems and/or methods may be provided for performing a sleeve gastrectomy without disturbing the natural tension lines of the stomach tissue. Additionally, the systems and/or methods described herein may allow for proper sizing of the resulting sleeve gastrectomy pouch. Referring to FIG. 1, some embodiments include a system 10 including a first medical device 100, such as a bougie, and a second medical device 300, such as a clamp or stapler. According to an example herein, the first and second medical devices 100, 300 may be used to perform a vertical sleeve gastrectomy. The sleeve gastrectomy (e.g., resection of part of the stomach) may be performed along a path, such as a resection line, to produce a resultant sleeve gastrectomy pouch (“sleeve”) of the stomach 12. For example, a first medical device 100 may be positioned in an interior of the stomach 12. The first medical device 100 may include or have a first diameter along a first portion thereof (e.g., a bougie or tube, such as an orogastric tube) and a second diameter that may be larger than the first diameter along a second portion thereof (e.g., a shaping portion, an inflated portion, or a radially-outward projecting portion). The first medical device 100 may be positioned, for example, by inserting the first medical device into a mouth of a patient to access the interior of the stomach 12 and positioning the second portion at a landmark of the stomach 12, as discussed further below. The second medical device 300 may be positioned on an exterior of the stomach 12 relative to or based on an interaction with the first medical device 100 (e.g., adjacent to, near, in proximity to, and/or interaction with the second portion of the first medical device) such that the second medical device 300 may be configured to demonstrate or create a path such as a resection line or staple line) along the stomach 12 at which the sleeve gastrectomy may be performed. Positive pressure may be introduced to the lumen of the stomach 12, which is used to generate tension on the stomach wall according to the Law of Laplace (T=P*R where T=tension, P=pressure, R=radius). The tension may be uniform in the anterior/posterior plane (e.g., across a transverse cross-section of the stomach), although the tension would vary along the length of the stomach as the radius varies. The Law of Laplace governs how a balloon inflates. The second medical device 300 may be clamped partially or wholly while the stomach 12 is inflated.


Although some examples herein describe the second medical device 300 as a stapler, the disclosure is not so limited. For example, the second medical device 300 may be a clamp, such as a full length 23 cm clamp configured to extend the full length of the stomach. The second medical device 300 may include a first jaw 302 or first clamp member and a second jaw 304 or second clamp member. The anatomical structure has a first side and a second side. In an embodiment, the first jaw 302 may have a first end, a second end and a cartridge housing a plurality of staples, the cartridge having a cartridge face that may be positionable on the first side of the stomach, and the second jaw 304 may have a first end, a second end, and an anvil having an anvil face that may be positionable on the second side of the stomach. The second medical device may include an end effector (e.g., including the jaws 302, 304) having a distal end 306 and a proximal end 308. Examples of suitable second medical devices are disclosed in U.S. Pat. Nos. 9,936,953, 10,278,707, and 10,548,597, each of which is hereby incorporated herein by reference in its entirety.


The first medical device 100 may be a shaping bougie, catheter, or tube, such as an orogastric tube. With reference to FIGS. 2A-2C, the first medical device 100 includes a tube portion 102 and a shaping portion 104. The tube portion 102 may be generally cylindrical in shape and may be made of, for example, rubber, silicone, polyurethane, a plastic polymer, and/or any other suitable material. In an embodiment, the diameter of the tube portion 102 is constant. In another embodiment, the diameter of the tube portion 102 varies. The tube portion 102 may be hollow, solid, define multiple internal lumen and/or the like in one or more examples. The tube portion 102 may comprise a body 105 including a proximal end 106 that may be closer to a surgeon or other user to a distal end 108 that may be farther away from the surgeon. A section of the tube portion 102, ending at the distal end 108, or the distal bougie end, may be long enough to allow for easy insertion into the mouth, esophagus, and stomach, and/or may enable or allow the distal end 108 to be navigated down towards the pylorus 14 of the stomach. The first medical device 100 may include an intragastric section 110 that, when in use, is positioned in the stomach 12 adjacent the lesser curvature 16. The intragastric section 110 may include a proximal end 112 (i.e., distal of the proximal end 106 of the tube portion 102). The location of the proximal end 112 may not be fixed along the length of the tube portion 102. The distal end 108 of the tube portion 102 may also be the distal end of the intragastric section 110. In some embodiments, the first medical device 100 may include lights or other visualization features to improve the use of the first medical device 100 as a guide (e.g., to aid with visualization through the stomach wall). The size of the tube portion may be, in various examples, in a range of 16 French (Fr) to 40 Fr, 16 Fr to 20 Fr, or 32 Fr to 40 Fr. Examples of a suitable tube portion 102 is a 18 Fr bougie, a 34 Fr bougie, or a 38 Fr bougie.


Still referring to FIGS. 2A-2C, in an embodiment, the shaping portion 104 may comprise, for example, one or more inflatable balloons 114 or collapsible portions. In various embodiments, the shaping portion 104 may be adjustable between a first state having a first average diameter and a second state having a second average diameter. Where embodiments discussed herein refer to a balloon that may have an inflated or deflated state, the balloon may be interchangeable with a collapsible portion that may have an expanded or retracted state. The balloon 114 may be relaxed or deflated prior to use and insertion of the first medical device 100 in the stomach. In such an example (e.g., prior to insertion and use), the tube portion 102 and the balloon 114 in the relaxed or deflated state may have a substantially constant diameter. The balloon 114 may be inflated to an inflated state after insertion of the first medical device 100 into the stomach to the appropriate position. For example, a proximal end 116 of the shaping portion 104 may be positioned adjacent to the GE junction 18 or the incisura angularis (IA) 20. The distal end 118 of the shaping portion 104 may be, for example, positioned adjacent to the antrum 22. According to an example, the balloon 114 in the inflated state may have the second average diameter. In some embodiments, when the shaping portion 104 is inflated or expanded, the diameter of the shaping portion 104 may vary along the length. For example, the inflated diameter at the distal end 118 of the shaping portion 104 may be greater than the diameter at the proximal end 116. The size of the inflated or expanded shaping portion 104 may, in an embodiment, be determined based on the desired size of the resulting sleeve. An example of a suitable shaping portion 104 is a balloon with a maximum diameter of 2.5 cm. In another example, the maximum diameter of the shaping portion 104 may be about 3.2 cm. In an embodiment, the area of the shaping portion 104 configured to have the maximum diameter may be located adjacent the distal end 108 of the tube portion 102. For example, the area of the shaping portion 104 configured to have the maximum diameter may be located about 20 mm or less from the distal end 108 of the tube portion 102. The minimum diameter of the shaping portion may be, in an embodiment, about the diameter of the tube portion 102 (e.g., slightly larger than the tube portion 102 diameter to allow the shaping portion 104 to extend around the tube portion 102). In an example embodiment, the tube portion 102 is a 34 Fr catheter, and the shaping portion 104 includes a tapered balloon 114 having a minimum diameter at the proximal end 116 of slightly greater than the diameter of the 34 Fr catheter, which increases along a length of 21 cm to the distal end 118 where the maximum diameter is 3.2 cm. The length of the shaping portion 104 may vary. In an embodiment, the length of the shaping portion 104 may be in a range of about 4 cm to about 21 cm, 15 cm to to 20 cm, or about 21 cm.


The shaping portion 104, in combination with positive pressure in the stomach lumen, may enable the stomach tissue to have a proper and uniform tension applied to the stomach wall when the second medical device 300 is clamped to the stomach. The tension may be uniform or symmetric around a diameter (e.g., a transverse cross-section) of the resultant sleeve. For example, the first medical device 100 may be placed with the balloon 114 adjacent the incisura angularis 20 in the deflated state. The second medical device 300 may then be placed in apposition but not fully clamped, the balloon 114, which may be compliant or non-compliant, may be inflated to the inflated state. The stomach lumen is also inflated, as described further below, which creates uniform tension in the stomach tissue of the intended sleeve prior to clamping. Once the desired tension is reached, at a pressure of 20 mm HG for example, the second medical device 300 is clamped. After clamping, the balloon 114 may be deflated such that the first medical device 100 may be removed before or after stapling. In some embodiments, the cross-sectional area of the IA 20 in the resulting sleeve may be maintained or increased in comparison with a sleeve formed by prior methods that may cause a narrowing in the cross-sectional area of the IA 20.


According to one embodiment, the shaping portion 104 may be integrally formed as a unitary monolithic structure as part of the tube portion 102, for example, during manufacturing. In additional or alternative examples, the shaping portion 104 may be separately coupled and/or fixedly attached to the tube portion 102 and/or may include multiple separate pieces. The shaping portion 104 may be unitary or may be segmented. In various embodiments, the one or more balloons 114 can be compliant, semi-compliant, noncompliant, or combinations thereof. If the shaping portion 104 is segmented, each segment may vary in shape and size.


In use, the shaping portion 104 may be placed relative to one or more desired anatomic landmarks. The desired landmark may vary based on the type of first medical device or application. Examples of desired landmarks include the incisura angularis 20, the pylorus 14, and the gastroesophageal (GE) junction 18. The shape of the shaping portion 104 may vary based on the desired landmark. In various embodiments, the shaping portion 104 may be a cylinder positioned at the incisura angularis 20, a frustrum positioned at the pylorus 14, or a long cone or teardrop shape that can be considered a sleeve mold, although the shapes are not so limited.


In an embodiment, the system may include one or more fluid circuits, such as a fluid delivery system, to provide positive pressure to the shaping portion and/or the stomach lumen. One or both of the tube portion 102 and the shaping portion 104 may be coupled to a fluid source such as a foot pump or hand pump. For example, the tube portion 102 may define a lumen 120 extending between a distal aperture 122 or distal lumen end and a proximal aperture 124 or proximal lumen end. When in use, the distal aperture 122 may open into the stomach lumen, and the proximal aperture 124 may be coupled to a fluid source (e.g., via a connecting tube 126). The tube portion 102 may also define a lumen 128 fluidically coupling the interior of the balloon 114 (e.g., via an aperture 130) and a fluid source (e.g., via a coupling 132). The fluid may be a gas (e.g., ambient air, central air, CO2, or nitrogen) or a liquid (e.g., an aqueous solution, such as saline, or water). Where the tube portion 102 and the shaping portion 104 are coupled to separate fluid sources, the fluid sources may be the same or different. As described below, components other than the first medical device 100 may be coupled to a fluid circuit.


In various embodiments, the one or more fluid circuits or fluid delivery systems may be coupled to a pump system. For example, the tube portion 102, the shaping portion 104, and/or a separate catheter in communication with the stomach lumen can be coupled with a pneumatic pump to provide positive pressure and/or suction. For example, as shown in FIG. 3, a system including a multi-lumen catheter (e.g., the tube portion 102) is coupled to an inflation pump 134 and a suction pump 136 through a three-way valve 138. The pumps 134, 136 may be controllable by mechanical means, such as an inflation foot pedal 139 and a suction foot pedal 140. The pump may also be configured to control suction. Suitable pumps include, without limitation, a foot pump, a hand pump, an electric motor pump, or a combination thereof. A mechanical foot pump may include, for example, a bellows and one or more pedals. A hand pump may include a stopcock that may be turned after clamping. A motorized pump may include switches or pedals for positive pressure or suction. In an example, the pump system may include a pump configured to apply both inflation and suction. As shown in FIG. 4A, a system including a multi-lumen catheter (e.g., the tube portion 102) is coupled to a pump 142 through a three-way valve 138. The three-way valve 138 may be a part of the pump 142 or a separate component. The pump 142 may be controllable by mechanical means, such as a foot pedal 144. Although one pedal 144 is shown and may be configured to control both suction and inflation, more than one may be included. FIG. 4B illustrates an embodiment including a first and second fluid delivery system. The first fluid delivery system is coupled to the tube portion (e.g., lumen 120) including a sensor 160, a hand pump 134 (see FIG. 4C), and a sensor 160. The second fluid delivery system includes an inflation/suction pump 142 and a sensor 160 coupled to the balloon 114 of the shaping portion. FIG. 4C depicts an example hand pump 134 including a bulb 134a coupled to a 2-way stopcock 134b via tubing 134c. The 2-way stopcock 134b is also coupled to an adapter 134d to be connected to a suction source and an adapter 134e to be coupled to the first medical device 100. The hand pump 134 may also include a pressure gauge 134f. Alternative to pedals, in an embodiment, buttons may be incorporated into the second medical device 300 to inflate and deflate the stomach, as discussed further below.


The pump 142 can be associated with a monitor or control system for the monitoring and metering of the fluid to be delivered such that the stomach is not overinflated. The monitor can include a visual or audible indicator of when the stomach pressure or stomach volume if, for example, above a desirable predetermined range, below a predetermined range, or within the predetermined range. The monitor or control system can include a release valve set at a pressure above the desirable predetermined range to offgas fluid to return the stomach volume or pressure to an acceptable range. The control system may include any suitable features to provide a constant volume or pressure within the stomach, which may differ from prior techniques that insufflate the stomach to test for leaks and the like. Prior insufflation testing methods may use relatively high pressures, such as above 25 mm Hg, to test for leaks without the need to meter or maintain such a pressure within a defined range. Such pressures in insufflation test applications, which can exceed 50 mmHg to 75 mmHg may be too high for use with the presently described systems. Embodiments described herein can include suitable feedback sensors and the like with the first medical device or bougie to allow the control system to adjust pressure or volume in accordance with embodiments described herein.


In an embodiment, the first medical device may be configured to maintain a higher pressure in the shaping portion 104 than the stomach lumen during the sleeve gastrectomy procedure. The maximum pressure of the shaping portion 104 may be in a range of, for example, 40 mmHg to 70 mmHg. The maximum pressure of the stomach lumen may be, for example, up to 20 mmHg (the physiologic ‘pain’ pressure of the stomach), in a range of about 20 mmHg to about 100 mmHg, or up to 100 mmHg. If the surgery is being performed laparoscopically, the pneumoperitoneum will need to be accounted for (e.g., 10 mmHg to 20 mmHg). This pressure allows the stomach to inflate but not be unnaturally deformed. Further, the tension provided by the pressure has a direction and magnitude natural to the stomach tissue. The tension relieves the surgeon from the necessity of manipulating the tissue and potentially disrupting the natural tension pattern of the stomach tissue, although the surgeon may still manipulate the tissue manually if desired. The direction of the tension vector is generally at a right angle to the longitudinal axis of the second medical device 300 (e.g., longitudinal axis of the jaws 302, 304), which may provide a better resection line. The pressure used to inflate the shaping portion 104 may vary. In an example, the pressure used to inflate a balloon with water may be about 115 mmHg.


Referring now to FIGS. 5A-5E, an example method or procedure that may be performed using the first medical device 100 and second medical device 300 is shown. In an example method of creating a sleeve gastrectomy, the first medical device 100 is inserted in a stomach 12. The first medical device 100 is placed along the lesser curvature 16 adjacent to one or more desired anatomic landmarks. Next, a second medical device 300, such as a full-length 23 cm clamp or stapler, is placed across the length of the stomach (FIG. 5A). The lumen 120 is connected to positive pressure. The positive pressure may be applied to begin inflating the stomach (FIG. 5B). The positive pressure generates the most tension in the widest portion of the stomach according to the Law of Laplace (T=PR). The first medical device 100 may also include a shaping portion 104 that is inflated using positive pressure. Methods of controlling and monitoring the positive pressure are described above.


Once more than half of the inflated stomach radius resides lateral to the second medical device 300 (i.e., in a direction away from the first medical device 100), the balloon-like stomach urges the second medical device 300 to become adjacent and snug against the shaping portion 104 of the first medical device 100. As the stomach inflates (FIG. 5C), the growing pressure in the larger portion of the stomach causes the second medical device 300 to move towards the first medical device 100 and pushes the tissue between the first and second medical devices 100, 300 against the shaping portion 104, while uniform tension is applied to the stomach wall. The tissue along the lesser curvature 16 of the stomach may also be drawn towards the shaping portion 104. If too much tissue moves to the remnant side of the stomach due to the increasing pressure, the pressure may be reduced manually or automatically to allow proper sizing of the desired sleeve before clamping. If desired, the surgeon may manipulate the tissue during inflation to control the shape and size of the resulting sleeve. The second medical device 300 may then be partially or fully clamped (FIG. 5D). The stomach lumen may be suctioned (FIG. 5E) before or after fully clamping the second medical device 300. The first medical device 100 may be removed from the stomach after clamping but before stapling. If the stomach is suctioned, positive pressure may be reintroduced to perform a leak test. The stomach may be stapled and cut (i.e., resected) along the resection line defined by the second medical device 300. Embodiments herein may allow for stapling and cutting along a straight resection line while the resulting sleeve is curved along the staple line. While examples herein may describe the second medical device 300 as a full-length stapler, the disclosure is not so limited. In an embodiment, the second medical device is a less-than-full-length stapler. The first activation of the stapler may be done before or after the positive pressure is applied to the stomach lumen. The stapler may then be advanced across the length of the stomach while the stomach is inflated. The first medical device 100 acts as a guide to the surgeon.


Laplace retraction allows for each ‘rope’ or ‘elastic band’ of the stomach to be pulled in the correct direction as the positive pressure provides tension along the natural stomach distension vectors, preventing the surgeon from having to manually manipulate the stomach (e.g., using a laparoscopic grasper) in an attempt to create the desired tension. The pressure also pulls every gastric fiber simultaneously, not relying on the segments of tissue that a laparoscopic grasper can grab at one time. Additionally, if the second medical device 300 was initially positioned over a folded piece of stomach, the positive pressure can flatten out all parts of the stomach, preventing the clamping/stapling of folded stomach. Stapling folded stomach tissue can lead to staple line failure and leak. The resultant sleeve may have, for example, a diameter of 1 to 3 cm near a first landmark (e.g., the IA), 2 to 6 cm near a second landmark (e.g., the size of the antrum measured from the pylorus), and 0 to 2 cm near a third landmark (e.g., measured from the edge of the GE junction notch) of the stomach. In another example, the resultant sleeve may have a diameter of 1 cm to 2 cm at the fundus, a diameter of 2 cm to 3 cm at the body at the incisura angularis, and a diameter of 3 cm to 6 cm at the antrum.


With reference to FIGS. 6A-6C, in various embodiments, the first medical device 100 may be configured to provide suction. The first medical device 100 may include a lumen opening to the outside of the first medical device 100 (e.g., lumen 120). One or more suction apertures may be distributed along the length of the catheter. Alternatively, the lumen may extend through the first medical device 100, and suction openings may be provided at a distal end of the lumen. The first medical device 100 or other component providing suction may include a suction control valve that may be used to regulate when and how suction may be applied. Embodiments may incorporate the serial or simultaneous use of suction and inflation to create a desired sleeve geometry.


With further reference to FIGS. 6A-6C, in some embodiments, the shaping portion 104 may include an area in communication with the stomach lumen configured to allow for inflation or suction between two balloons 114. For example, the shaping portion 104 may include a first balloon 114a and a second balloon 114b separated by a section of the tube portion 102. The shape of the first and second balloons 114a,b may be the same or may be different. In an example embodiment, the first balloon 114a may have a tapered shape (e.g., conical frustum shape) and the second balloon 114b may have, for example, a disc shape. When positioned in the stomach, the first balloon 114a may extend from the GE junction 18 to the IA 20, and the second balloon 114b may be adjacent the antrum 22. The section of the tube portion 102 between the first and second balloons 114a,b may be in communication with the stomach lumen. For example, as shown in FIG. 6A, the section may include suction apertures 146, such as holes, mesh, or other porous features, that allow air to pass in and out of the tube portion 102. The tube portion 102 may have multiple lumens including, in an embodiment, a lumen coupling the holes, mesh, or other porous features with an inflation and/or suction pump (e.g., lumen 120). Referring to FIG. 6B, in an embodiment, one or both of the balloons 114a,b may also include suction apertures 148 and be coupled to a suction pump. Additionally, the section of the tube portion 102 between the first and second balloons 114a,b may also be coupled to a pump capable of applying positive pressure in addition to applying suction. In an embodiment, as shown in FIG. 6C, a section of the tube portion 102 distal of the second balloon 114b may include suction apertures 150. The suction apertures 150 may be independently operable from the suction apertures 146. For example, suction may be applied through the suction apertures 150 while positive pressure is applied through the suction apertures 146 or vice versa.


Still referring to FIGS. 6A-6C, suction may be applied to the section between the first and second balloons when the balloons are in a deflated state, an inflated state, or when the balloons are transitioning between those two states. For example, suction may be applied between the first and second balloons 114a,b to help bring tissue closer to the first and second balloons 114a,b while the stomach lumen is being inflated and the second medical device 300 is being urged by the balloon-like stomach to become snug against the first medical device 100. In another example, suction may be applied between the first and second balloons 114a,b to help deflate the stomach lumen before the second medical device 300 has been clamped or the lumen of the desired sleeve after the second medical device 300 has been clamped.


In some embodiments, an additional catheter or other tube separate from the first medical device 100 is in fluid communication with the stomach lumen. The catheter may provide positive pressure in the stomach lumen. In various embodiments, the catheter may also be configured to provide a suction force. For example, a needle may be inserted into the portion of the stomach to be removed during the gastrectomy procedure (“remnant portion”), where the needle is coupled to a pump capable of suction and/or inflation. A grasper may be used to control the position of the stomach, for example, when a catheter or needle is inserted other than through the esophagus.


Referring now to FIG. 7, in some embodiments, the first medical device 100 may include an overtube 152. The overtube 152 can be more rigid than the shaping portion 104 and may be slid over the exterior of the shaping portion 104. The overtube 152 may be used during insertion of the first medical device 100 into the stomach. In an embodiment, the overtube 152 is flexible enough to act as an introducer sheath. Additionally, in some embodiments, the overtube 152 may optionally include peel-away handles 154 for the surgeon or other user to pull. The handles 154 can be small finger grips, such as those commonly used on transcatheter cardiovascular devices, which allow the overtube 152 to be removed by pulling it back. The peel-away function can allow the overtube 152 to slide back over a catheter bifurcation hub. If the overtube 152 is still positioned on the shaping portion 104 when it is inflated, the overtube 152 can alter the shape and pressure distribution of the shaping portion 104. The overtube 152 may be used to ensure that the stapler is positioned about 1 cm from the GE junction 18 at the top of the resection line.


With reference to FIGS. 8A and 8B, in some embodiments, the first medical device 100 is configured to allow another device, such as a gastroscope 156, to pass through the first medical device 100. For example, the gastroscope 156 may extend through the lumen 120 of the first medical device 100 and out of the distal aperture 122 (FIG. 8A). In another embodiment, the first medical device 100 may include a channel 158 extending through a portion or the entirety of the length through which the gastroscope 156 may pass (FIG. 8B). The channel 158 may be coextensive with the lumen 120. Although not shown in FIG. 8B, in an embodiment, the first medical device 100 may include a separate lumen opening to the stomach lumen to control the pressure therein.


In various embodiments, the system may include one or more sensors 160, such as pressure sensors, flow sensors, volume sensors, etc. The sensors may be digital or mechanical. A sensor may be an in-line sensor. A suitable example pressure sensor is a 0-5 psi Omega™ digital pressure transducer (PX26-005GV). The one or more sensors may include a display or may be in communication with a display 400, monitor, or control system, such as one discussed below. For example, mechanical sensors may use a spring or column of fluid to display the measured pressure (e.g., stomach pressure, back-pressure on the inflated shaping portion, suction, etc.). The display may include an indicator to identify whether the measured pressure is low, high, or in an acceptable range. For example, a color-coded range can be used to correlate the measured pressure or volume in the stomach lumen to the desired tension of the stomach tissue.


In various embodiments, any sensor(s) can communicate data via a wireless or wired connection one or more of the first medical device, the second medical device, or a remote device, such as a display. For example, information collected by the sensor(s) can be transmitted using wireless connections (e.g., Bluetooth, Wi-Fi, a cellular network, a satellite, etc.) or wired connections (e.g., cable, copper or fiber optics, etc.).


The system, in some embodiments, may be configured to control or detect a volume of inflation. As discussed above, the system may include a monitor or control system for the monitoring and metering of the fluid to be delivered. The volume of inflation detected and/or controlled may be the volume of the stomach lumen and/or the volume of the shaping portion. Ultimately, the volume of the resultant sleeve may also be controlled. The fluid source may be a syringe or other container with a known volume of fluid. For example, a 60 mL or 100 mL syringe may be used as a fluid source for the inflation of the stomach lumen. The fluid source may be configured to provide an indication of the volume of fluid used to inflate the stomach lumen (e.g., measurements on a syringe or container). In another embodiment, the pump may be used to apply discrete volumes of fluid. A hand pump, for example, may have a known volume of fluid per application (e.g., squeeze). As another example, an electric pump may have a known flow rate, and the system may be configured to detect the volume used based on the time the pump was activated. In some embodiments, a flow meter or flow sensor may be used to measure the flow of fluid into the stomach lumen. Where a compressed fluid (e.g., compressed air) is used as a fluid source, the system may be configured to measure a pressure drop (e.g., with a pressure sensor) in the compressed fluid container to determine the volume of fluid used. The system may also include, in example embodiments, an integrated valve that discontinues fluid flow when a predetermined volume in the stomach lumen is reached. In an embodiment, the integrated valve may be in communication with the controls or a sensor.


In some embodiments, the system will include controls 402 for controlling the inflation and/or suction. For example, one or more of the first medical device 100, the second medical device 300, or a remote device may include controls in wireless or wired communication with the pump system. In an embodiment, the controls 402 can include a monitor or control system for the monitoring and metering of the fluid to be delivered as discussed above. In an embodiment, the second medical device 300 includes switches or buttons to control the inflation and/or suction of the balloon and inflation and/or suction inflation of the stomach lumen. The controls 402 may include, for example, a power button or a “zero” or tare button.


In various embodiments, the system may include a display 400. The display 400 may be configured to show data, such as pressure data relating to the shaping portion and/or the stomach lumen. The display 400 may be on one of the first medical device 100, the second medical device 300, or a separate display device. In an embodiment, the display device may include controls (e.g., controls 402) in wireless or wired communication with the inflation/suction system. The display 400 may also be configured to show data history (e.g., in a graph updating in real-time) or recent changes in the data. In an embodiment, the display device may have a hook or a handle. For example, the display device may be hangable from an IV pole. The display, in some embodiments, may be in communication with a camera and be configured to show the video feed (e.g., from gastroscope 156). In another embodiment, the display device may be a remote device such as a mobile phone or computer. The display 400 may include an indicator 404 to identify whether the measured pressure is low, high, or in an acceptable range. For example, a color-coded range can be used to correlate the measured pressure in the stomach lumen to the desired tension of the stomach tissue. The display 400 may be configured to provide a signal, such as an audio or visual signal. A signal may be provided for various reasons, such as when the tissue tension is at a predetermined value, if there is too much tension, if there is too little tension, etc.


In some embodiments, the relative maximum pressure of the shaping portion and the stomach lumen may be controlled based on the materials, dimensions, resistance, and fluid flow rates of the system. The system can include one or more relief valves 162. Additionally or alternatively, in an example embodiment, the first medical device 100 may include a first relief valve, such as a pop-off or check valve, set at a predetermined maximum pressure of the shaping portion 104. In an embodiment, the first relief valve may be in fluid communication with the lumen of the stomach as well as the lumen of the shaping portion 104. For example, the first relief valve may open into a lumen that opens into the stomach lumen. The first relief valve may vent the excess fluid into the lumen of the stomach. In this configuration, the shaping portion 104 will fill with fluid until the maximum pressure is reached causing additional fluid to vent into the stomach lumen, thus increasing the pressure in the stomach lumen. Due to the first relief valve, the shaping portion 104 maintains a higher pressure than that in the stomach lumen. Further, in some embodiments, the first medical device 100 or other component providing inflation may include a relief valve to prevent over-pressurization of the stomach lumen. The second relief valve may be set to a predetermined maximum pressure of the stomach. The predetermined maximum pressure of the stomach lumen is lower than the predetermined maximum pressure of the shaping portion. A suitable example of a relief valve is a flutter valve (a.k.a. duckbill or Heimlich valve). In some embodiments, a relief valve may provide an indication (e.g., audible or visible) that the predetermined pressure has been reached (e.g., maximum balloon pressure or maximum pressure in the stomach lumen).


In some embodiments, techniques or devices may be used to move more of the antrum to the remnant portion than would otherwise exist due to the positive pressure in the stomach lumen alone. The size of the antrum in the desired sleeve may be actively reduced. In an embodiment, the second medical device may be partially clamped on a bottom part of the stomach (i.e., distal relative to the first medical device, proximal relative to the second medical device). For example, the proximal end of the second medical device may be clamped from the bottom end of the stomach extending upwardly along a portion of the antrum, while the distal end of the second medical device remains unclamped. The shaping portion of the first medical device may be inflated or expanded before the first, partial clamp is made. The location of the partial clamp may be determined based on the desired size of the antrum in the resulting sleeve. The second medical device may be repositioned or angled such that the distal end of the second medical device is near the GE junction. The stomach lumen may be inflated as described above. The second medical device may be urged against the first medical device, and the remainder of the second medical device may then be clamped. Partially clamping the proximal end of the second medical device before inflating the stomach lumen allows for precise control of the size of the antrum in the resulting sleeve.


In another example embodiment, a bottom portion of the stomach may be stapled along the resection line before the stomach lumen is inflated. For example, the bottom end of the stomach extending upwardly along a portion of the antrum may be stapled. The location of the resection line and stapling may be determined based on the desired size of the antrum in the resulting sleeve. The bottom portion of the stomach may be stapled using the second medical device or a separate stapler. The shaping portion of the first medical device may be inflated or expanded before the initial stapling. Afterwards, the second medical device may be positioned or angled such that the distal end of the second medical device is near the GE junction. The stomach lumen may be inflated as described above. The second medical device may be urged against the first medical device, and the remainder of the second medical device may then be clamped. The remainder of the stomach along the resection line may be stapled. Partially stapling the bottom end of the stomach before inflating the stomach lumen allows for precise control of the size of the antrum in the resulting sleeve. Due to the partial stapling at the bottom of the stomach, the resection line may not be a straight line.


With reference to FIG. 9, in some embodiments, a connector 406 may be coupled to two segments of the stomach to pull the antrum through the second medical device 300. For example, a connector 406 may be coupled at one end 408 to a first section of the stomach (e.g., the fundus 24 or body 26 adjacent or along the greater curvature 28) and at the other end 410 to the antrum 22 (e.g., adjacent or along the greater curvature 28). When the stomach inflates, the first section of the stomach will expand further than the antrum due to the increased volume in the first section. As the first section continues to expand, the connector will pull the antrum tissue along with the first section resulting in a smaller portion of the antrum remaining in the desired sleeve (e.g., to the right of the second medical device). The connector can be rigid (e.g., a suture) or a semi-compliant material. For example, the connector 406 can be an elastomeric material or spring element capable of being anchored to the stomach (e.g., with surgical clips or other mechanical means) either integrated into the connector 406 or applied directly to the connector 406. The connector 406 can be implantable or removable; it will be removed with the remnant portion of the stomach.


In various embodiments, the distal end 306 of the second medical device 300 may be initially clamped from the top end of the stomach (e.g., approximately 1 cm from the GE junction) extending downwardly along a portion of the stomach, while the proximal end 308 of the second medical device 300 remains unclamped. The top end of the stomach may be clamped while the shaping portion 104 of the first medical device 100 is inflated or expanded and while the stomach lumen is inflated. The pressure in the stomach lumen may be increased after the top end of the stomach is clamped. In an embodiment, the positive pressure in the stomach lumen may be in a range of about 1 mmHg to about 5 mmHg when the top of the stomach is partially clamped, and the pressure may be increased to be in a range of about 20 mmHg to about 25 mmHg. For example, the pressure after the top end of the stomach is clamped may be increased to about 20 mmHg or about 25 mmHg. The direction of expansion of the stomach will be affected by the partial clamp at the top of the stomach. The antrum 22 will expand further due to the increased pressure causing more of the tissue to move through the second medical device 300 to the remnant side. Once the desired amount of antrum 22 remains in the sleeve, the second medical device 300 may be fully clamped. Partially clamping the distal end 306 of the second medical device 300 before inflating the stomach lumen further allows for precise control of the size of the antrum 22 in the resulting sleeve.


In some embodiments, the proximal end 112 of the intragastric section 110 of the first medical device 100 may be configured to anchor the tissue at the top end of the stomach. For example, the first medical device 100 may be configured to provide suction at or near the proximal end 112. The suction may allow the first medical device 100 to hold the adjacent tissue in place. While the shaping portion 104 of the first medical device 100 is inflated or expanded and while the stomach lumen is inflated, the top end of the stomach may be suctioned to the proximal end 112 of the first medical device 100. In an embodiment, the negative pressure used to hold the stomach tissue in place may be in a range of about 20 mmHg to about 200 mmHg, in a range of about 115 mmHg to about 135 mmHg, or about 125 mmHg. The pressure in the stomach lumen may be increased after the top end of the stomach is anchored in place. In an embodiment, the positive pressure in the stomach lumen may be in a range of about 1 mmHg to about 5 mmHg when the top of the stomach is suctioned, and the pressure may be increased to be in a range of about 20 mmHg to about 25 mmHg. For example, the pressure after the top end of the stomach is suctioned in place may be increased to about 20 mmHg or about 25 mmHg. The direction of expansion of the stomach will be affected by the suction at the top of the stomach. The antrum 22 will expand further due to the increased pressure causing more of the tissue to move through the jaws 302, 304 of the second medical device 300 to the remnant side. Once the desired amount of antrum 22 remains in the sleeve, the second medical device 300 may be clamped, and the suction at the proximal end 112 of the first medical device 100 may be discontinued. Anchoring the top end of the stomach before inflating the stomach lumen further allows for precise control of the size of the antrum 22 in the resulting sleeve. Examples of suction being applied by the first medical device 100 are described herein (e.g., FIGS. 6B, 6C, and 10).


In various embodiments, the stomach may be overinflated such that a portion of the first medical device 100 moves partially through the jaws 302, 304 of the second medical device 300 before the second medical device 300 is clamped. Initially, the second medical device 300 is in an open position, and the stomach lumen is inflated. The pressure in the stomach lumen is increased until the tissue along the lesser curvature 16 of the stomach is tensioned to the point where it pushes at least a portion of the first medical device 100 through the open jaws 302, 304 of the second medical device 300. For example, a middle portion of the intragastric section 110 of the first medical device 100 may move through the jaws 302, 304. The pressure in the stomach lumen is then reduced, allowing the first medical device 100 to return to the right (or the sleeve side) of the second medical device 300. The shaping portion 104 of the first medical device 100 is then inflated or expanded. The pressure in the stomach lumen is increased to urge the second medical device 300 against the first medical device 100, as described above, and then clamped. When the stomach was inflated to the point where the first medical device 100 partially moves through the open jaws 302, 304, tissue from the antrum 22 also moves through the jaws 302, 304 to the remnant side. This process may result in more antrum tissue in the remnant side than would otherwise exist.


In various embodiments, the first medical device 100 may be configured to anchor a section of the antrum 22 to a distal portion of the first medical device 100. Afterwards, the distal portion of the first medical device 100 may be moved towards the second medical device 300. For example, the first medical device 100 may be configured to apply suction, for example, at a distal portion thereof. An example embodiment is described above in reference to FIG. 6B. As shown in FIG. 10, in an embodiment, the first medical device 100 may include mesh 164 (or other suction apertures) coupled by a lumen 166 to a pump. In an embodiment, the mesh 164 may be about 30 mm to about 70 mm from the distal tip. The mesh 164 may begin, in some embodiments, at the distal end 108 of the tube portion 102. In an embodiment, the mesh 164 may extend about 21 cm from the distal end 108. The mesh 164 may be continuous or segmented. The pump may apply a negative pressure through the lumen 166 causing tissue adjacent to the mesh 164 to be suctioned against the mesh 164. In an embodiment, the negative pressure used to hold the stomach tissue in place may be in a range of about 20 mmHg to about 200 mmHg, in a range of about 115 mmHg to about 135 mmHg, or about 125 mmHg. The suction may anchor the tissue, such as antrum tissue, to the distal portion of the first medical device 100. As described further below, the distal portion of the first medical device 100 may be moved towards the second medical device 300 before the second medical device 300 is clamped, which allows for more precise control of the size and shape of the resulting sleeve.


Still referring to FIG. 10, the first medical device 100 may include an articulating tip 168 in various embodiments. The first medical device 100 may include an elongate arm 170 including a plurality of ribs 172. The ribs 172 define a plurality of spaces 174 that allow the elongate arm 170 to bend in at least one direction. The first medical device 100 also includes a tensioning element 176 coupled to a distal portion of the elongate arm 170. The tensioning element 176 may be flexible, such as a wire, thread, rod, etc. In an embodiment, the tensioning element 176 extends through the ribs 172, as well as the spaces 174 between the ribs 172. The elongate arm 170 and/or the tensioning element 176 may extend through a conduit 178 that extends through the tube portion 102. For example, the proximal end of the tensioning element 176 may extend out of the tube portion 102 to be manipulated by a surgeon. The distal end of the tensioning element 176 may move between a first position and a second position. For example, the distal end of the tensioning element 176 may be pulled proximally from the first position to the second position, which causes the ribs 172 to move closer to one another (i.e., the spaces 174 between the ribs 172 become smaller or disappear). The second position of the articulating tip 168 is shown in dashed line in FIG. 10. When the tensioning element 176 is allowed to move distally towards its first position, the ribs 172 move away from each other (i.e., the spaces 174 between the ribs 172 become larger). Those skilled in the art will appreciate that other articulating techniques may be used.


For clarity purposes, a shaping portion 104 is not shown in FIG. 10, although it is contemplated that the mesh 164 may be distal of the shaping portion 104 or may extend over the shaping portion 104. For example, in an embodiment, the mesh 164 may cover at least a portion of a balloon 114 and may be flexible such that it expands when the balloon 114 is inflated. Additionally, as discussed above, the first medical device 100 may also include a lumen (e.g., lumen 120) that is configured to control inflation of the stomach lumen. In use, the first medical device 100 may be inserted into the stomach lumen. The articulating tip 168 may be tensioned such that the articulating tip 168 bends towards the lesser curvature 16 of the stomach. Suction may be applied to the mesh 164 to anchor antrum tissue to the articulating tip 168. Suction may be applied before or after the shaping portion 104 is inflated or expanded. Inflating or expanding the shaping portion 104 after the tissue has been anchored may help move the antrum tissue further due to the changing shape of the shaping portion 104. The articulating tip 168 may then be released to its first position. As the articulating tip 168 moves away from the lesser curvature 16 (i.e., towards the second medical device 300), the anchored tissue of the antrum 22 moves at the same time. The stomach lumen may then be inflated to urge the second medical device 300 against the first medical device 100, and the second medical device 100 may be clamped. As described above, anchoring the antrum tissue and moving it towards the second medical device 300 allows for more precise control of the size of the antrum in the resulting sleeve.


In addition or alternative to the articulating tip 168 described above, various techniques may be used to straighten the first medical device after tissue has been anchored to it. In an embodiment, the shaping portion of the first medical device may be a non-compliant balloon material (e.g., nylon, polyester, etc.) or a semi-compliant balloon material (e.g., Pebax®, high-durometer polyurethane, etc.). Initially, while the shaping portion 104 is deflated, the tube portion 102 is inserted into the stomach and positioned against the lesser curvature 16 of the stomach through tissue manipulation. The balloon 114 may be uninflated or inflated to a low or medium pressure before suction is applied at the distal portion to anchor the tissue. In an embodiment, the initial low or medium pressure may be enough pressure to demonstrate the correct sleeve size but not enough to straighten out the balloon 114. After the tissue is anchored, the balloon may be inflated to a high pressure, which may straighten the balloon 114 and moves the antrum tissue further through the jaws 302, 402. A non-compliant or semi-compliant balloon may be used, for example, in combination with an articulating tip 168 as described above.


In some embodiments, an additional device may be used to straighten the first medical device after tissue has been anchored to it. As shown in FIGS. 11A and 11B, in an example embodiment, the first medical device 100 may have a naturally curved distal portion, and a stylet 412 may be inserted through the first medical device 100 to straighten or move the curved portion towards the second medical device 300. In use, the first medical device 100 may be inserted into the stomach lumen where the distal portion curves toward the lesser curvature 16 of the stomach. The tissue, such as antrum tissue, may be anchored to the distal portion (e.g., using suction as described above). A stylet 412 or other rigid component (e.g., more rigid than the tube portion 102) may be inserted through the first medical device 100. As the stylet 412 enters the distal portion of the first medical device 100, the distal portion will straighten out or move towards the second medical device 300 (as shown in FIG. 11B). As described above, anchoring the antrum tissue and moving it towards the second medical device 300 allows for more precise control of the size of the antrum 22 in the resulting sleeve.


In various embodiments, techniques other than suction may be used to anchor tissue to a portion of the first medical device. As shown in FIGS. 11A and 11B, in an embodiment, an anchor 180 may be positioned on a distal portion of the first medical device 100. The anchor 180 may be configured to “grab” adjacent tissue (e.g., the mucosa). The anchor 180 may include, without limitation, hooks (e.g., similar to those used in hook-and-loop fasteners), a barb, a clip, a magnet, a suture, or a combination thereof. An overtube or introducer sheath may be used when inserting a first medical device 100 including an anchor 180, which can reduce the chance of unintentionally anchoring tissue before the first medical device is in proper position 100.


In various embodiments, alternative techniques may be used to apply suction to anchor tissue to a portion of the first medical device. As shown in FIGS. 12A-12C, the first medical device 100 may include a perforated sheath 182. The perforated sheath 182 may extend from the distal end 108 of the first medical device 100 proximally along a length of the first medical device 100. Suction apertures 184 (e.g., holes, or other openings, e.g., mesh) may be positioned along a portion or an entirety of the perforated sheath 182. In example embodiments, the perforations can extend between about 30 mm to about 70 mm from the distal end or about 21 cm from the distal end. The perforations may begin, in some embodiments, at the distal end of the perforated sheath 182. In an embodiment, the perforations may extend about 21 cm from the distal end of the perforated sheath 182. The perforated sheath 182 may be continuous or segmented. The suction apertures 184 are coupled to a pump. The perforated sheath 182 may extend over the shaping portion 104 or a portion thereof. At least a portion of the perforated sheath 182 may be flexible or expandable such that, when the shaping portion 104 is inflated or expanded, the adjacent portions of the perforated sheath 182 also expand (FIG. 12B). In an embodiment, as shown in FIG. 12C, the perforated sheath 182 may include grooves 186 (e.g., channels or other lumens) coupling the suction apertures 184 to the pump. The grooves 186 may be rigid to maintain the connection between the suction apertures 184 and the pump when the perforated sheath 182 is expanded by the shaping portion 104. In other words, the expansion of the shaping portion 104 does not cause the grooves 186 to collapse thereby cutting off the suction. After the antrum tissue is anchored to the first medical device 100 by suction, the distal portion of the first medical device 100 may be moved towards the second medical device. For example, the first medical device may include an articulating tip 168 or a stylet 412 may be used, as discussed above. An overtube, such as overtube 152, may be positioned over the perforated sheath 182. For example, an overtube may be used as an introducer sheath when inserting or removing the first medical device 100 from the stomach lumen.


In addition or alternative to the suction or anchors described above, various techniques may be used to anchor tissue to a portion of the first medical device. In various embodiments, a temporary soluble adhesive coating may be included on a portion of the first medical device (e.g., on a portion of a balloon that, when expanded, is adjacent the antrum). In other embodiments, a temporary soluble adhesive may be exuded through pores on the first medical device. As shown in FIG. 13, in another embodiment, the first medical device 100 may include an inflatable or expandable portion 188 in addition to and separate from the shaping portion 104 (not shown). The inflatable or expandable portion 188 may be extended through the pyloric sphincter 30 and inflated or expanded such that it cannot be easily removed through the pyloric sphincter 30. As the distal portion of the first medical device 100 is moved towards the second medical device 300, the inflatable or expandable portion 188 pulls the pyloric sphincter 30 and the surrounding tissue in the same direction. It will be appreciated that any techniques described herein to anchor tissue to the first medical device may be used with techniques described herein to move a portion of the first medical device toward the second medical device. It will also be appreciated that other techniques may be used to perform the anchoring or the movement.


In some embodiments, inflation of the stomach may be at least partially controlled from the desired remnant portion of the stomach. For example, a needle may be inserted in the stomach lumen on the opposite side of the second medical device 300 from the first medical device 100 (e.g., through the fundus 24 or body 26 near the greater curvature 28) to apply inflation or suction. As shown in FIGS. 14A and 14B, in another embodiment, an inflatable or expandable component, such as a balloon 414, may be inserted into the stomach lumen on the opposite side of the second medical device 300 from the first medical device 100. The balloon 414 may be inserted through a needle 416 or catheter. The balloon 414 may be inflated to urge the second medical device 300 towards the first medical device 100. In an embodiment, the shape of the balloon 414 may be determined based on the shape of the desired sleeve. For example, the portion of the balloon 414 adjacent the antrum 22 may be shaped to move a desired portion of the antrum tissue through the jaws 302, 304 of the second medical device 300. Graspers 418 may be used to control the stomach to prevent unintentional injury (e.g., unintentionally pulling out the needle 416 before the balloon 414 is fully deflated).


In various embodiments, the system may use dynamic feedback. The system may be configured, in some embodiments, to automatically control pressurization of the stomach lumen based on the feedback. As an example, the system may use dynamic feedback to determine when to clamp the second medical device. The second medical device may be clamped manually or automatically based on the feedback. In an embodiment, as shown in FIG. 15, the shaping portion 104 can include one or more segments 104a. Each segment 104a of the shaping portion 104 may be coupled with a fluid source, for example, through separate lumens (e.g., lumen 128). Each segment 104a may also be in communication with one or more sensors 160 (e.g., shown in FIGS. 4A and 4B), such as a pressure transducer coupled to the respective fluid source or lumen. After the first medical device 100 is positioned in the stomach, each segment may be independently filled with a fluid under pressure. A catheter in communication with the stomach lumen (e.g., part of the first medical device 100 or a separate component as described above) is coupled to a pump. Fluid is introduced to the stomach lumen thus increasing the pressure and tension according to the Law of Laplace, as described above.


Still referring to FIG. 15, as the stomach lumen is pressurized and the second medical device is urged against the first medical device, the tissue surrounding the first medical device 100 will press against each segment 104a. The backpressure at each segment 104a will vary based upon the magnitude of the tissue tension as a function of the inflation pressure and as the second medical device is clamped. Each segment 104a may have a predetermined backpressure value that indicates that the desired tissue tension has been achieved for the respective segment 104a and related area of the sleeve. Once the predetermined pressure is reached, the second medical device 300 is closed for that segment 104a of the desired sleeve. Where the shaping portion 104 includes more than one segment 104a, the stomach continues to be tensioned with positive pressure in the lumen until the predetermined pressure of the next shaping portion segment 104a is reached (again indicating the desired tissue tension has been achieved in that segment 104a of the sleeve). When that desired tension is reached, that portion of the second medical device 300 is closed. This is continued until the entire second medical device 300 is closed, thus ensuring the entire sleeve was formed to have the desired tension lines. Having multiple segments 104a allows for different shapes for different portions of stomach (e.g., body 26, IA 20, antrum 22). In an embodiment where the pressure data is being displayed to the surgeon, the pressure of the shaping portion 104 or individual segments 104a may be ‘zeroed’ after inflating the shaping portion and before inflating the stomach lumen. This may all the surgeon or other user to easily visualize small changes in backpressure, which may be small relative to the overall pressure keeping the balloon inflated.


Referring now to FIGS. 16A-16C, in an example embodiment, the shaping portion 104 may be segmented along the length thereof. Each segment 104a may be coupled to a pump and one or more sensors, as discussed above. Based on the magnitude of the backpressure each segment 104a is experiencing, the system and/or the surgeon may be able to determine the position of the surrounding tissue before clamping the second medical device. For example, the segments 104a adjacent the lesser curvature 16 experiencing a relatively high backpressure may indicate that the lesser curvature 16 of the stomach is in the desired position relative to the first medical device 100 (FIG. 16B). Additionally, all of the segments 104a experiencing a relatively high backpressure may be an indication that the tissue surrounding the first medical device 100 is in the desired position and the second medical device 300 may be clamped (FIG. 16C).


In various embodiments, the system may use dynamic feedback to reach the desired pressure in both the shaping portion and the stomach lumen. For example, the system may adjust the inflation (e.g., add more pressure or use suction to reduce pressure) of the stomach lumen and/or the shaping portion based on feedback from the first medical device. The pressure may be adjusted manually or automatically based on the feedback. The first medical device could include one or more segments coupled to one or more sensors, such as with the configurations in FIGS. 15-16C. The measured backpressure at the one or more segments may be used in determining whether to increase, maintain, or reduce pressure in the stomach lumen. In some embodiments, inflation and suction may be alternated to position portions of the stomach tissue relative to the second medical device as desired. The backpressure on the shaping portion may slightly increase after the second medical device is clamped.


In various embodiments, feedback other than backpressure on the first medical device may be used to determine when to clamp the second medical device. For example, the first medical device may be configured to determine whether the tissue surrounding the first medical device is properly tensioned. The first medical device may be configured to measure suction in zones along the length of the first medical device. The shaping portion, for example, can include more than one sets of suction apertures (or other openings as discussed above). The suctions apertures may be arranged in zones or separate segments. For example, as shown in FIGS. 17A and 17B, four zones of suction apertures 187 are arranged around a diameter of the tube portion 102 of the first medical device 100. The suction apertures 187 may extend along the first medical device 100 for about the length of the stomach (e.g., about 21 cm). Each of the suction apertures 187 in the same zone are collectively coupled to a pump (e.g., a single pump or individual pumps) and a sensor. For example, a lumen 189 may couple each suction aperture 187 in a respective zone with the pump. Although not shown, the shaping portion 104 may define channels for each of the suction apertures 187 such that the shaping portion 104 does not interfere with suction from the tube portion 102. As the stomach is inflated and the second medical device 300 is being urged against the first medical device 100, suction may be applied to each zone. An example negative pressure may be in a range of about 20 mmHg to about 200 mmHg, in a range of about 115 mmHg to about 135 mmHg, or about 125 mmHg. The system may be configured to determine when the suction apertures 187 in each zone become occluded (e.g., by adjacent tissue). The suction may be discontinued in a zone where the suction apertures 187 have become occluded. Based on the number of zones that are occluded or which specific zones are occluded, the system and/or the surgeon may be able to determine the position of the surrounding tissue before clamping the second medical device. For example, two of four zones being occluded may indicate that the lesser curvature 16 of the stomach is grounded to the first medical device. Additionally, all of the zones being occluded may be an indication that the tissue surrounding the first medical device 100 is in the desired position and the second medical device 300 may be clamped.


It will be recognized that the number and configuration of suction zones may vary. For example, with reference to FIGS. 18A-18D, the first medical device may include 8 suction zones. The shaping portion 104 of the first medical device 100 may include a separate lumen 190 for each zone. The lumens 190 may each extend from a closed proximal end 192 to an open distal end 194 and be in communication with a plurality of suction apertures 196. The tube portion 102 of the first medical device 100 may include tube openings 198, each of which correspond to a separate lumen 190. The tube openings 198 may be collectively coupled to a pump. In an embodiment, the tube openings 198 are positioned on a sidewall 200 of the tube portion 102 adjacent the distal end 108. Each tube opening 198 and corresponding lumen 190 are in fluid communication with each other. For example, the shaping portion 104 may include a manifold cap 202 that couples each tube opening 198 to the corresponding lumen 190. The manifold cap 202 may be segmented, and the number of segments may correspond to the number of suction zones. The manifold cap 202 may include an inner wall 204 defining a channel 206 sized to receive the distal end 108 of the tube portion 102. The inner wall 204 also defines apertures 207 configured to align with the tube openings 198 when the tube portion 102 extends into the channel 206. Extending from the inner wall 204 are dividers 208 that define a series of chambers 210, each chamber 210 corresponding to one of the apertures 207. When assembled, each chamber 210 fluidly couples each aperture 207 with a corresponding open distal end 194 of a lumen 190. The dividers 208 prevent or substantially prevent airflow between each chamber 210. With such a configuration, one source of suction is coupled to multiple independent zones. The manifold cap 202 may also include an outlet 212 at its distal end. The outlet 212 may allow the lumen 120 in the tube portion 102 to be in communication with the stomach lumen (e.g., to control the pressure in the stomach lumen). As described above, the zones of suction may be used by the surgeon or system to determine the position of tissue surrounding the first medical device 100 and/or when to clamp the second medical device 300.


With reference to FIGS. 19A and 19B, in various embodiments, the first medical device 100 may include suction lumens 214 positioned on an exterior of the shaping portion 104. Each suction lumen 214 may include one or more suction apertures (not shown for clarity purposes). The suction lumens 214 may each be coupled to a pump. The system may be configured to measure the suction applied through each lumen 214. For example, each lumen 214 may be coupled to a sensor. In an embodiment, the suction lumens 214 are positioned longitudinally around a diameter of the shaping portion 104. The suction lumens 214 may be flexible to allow for expansion when the shaping portion 104 is inflated or expanded. In various embodiments, the suction lumens 214 may be coupled to the shaping portion 104 or held in position on the shaping portion 104 by, for example, an outer elastic sheath 216. The elastic sheath 216 is porous or otherwise perforated to allow suction from the suction lumens 214 through the elastic sheath 216. As discussed above, the system may be configured to determine when the suction apertures in each lumen 214 become occluded (e.g., by adjacent tissue), which can be used to inform the system or the surgeon about the current state of the procedure or whether it is time to clamp the second medical device.


While several devices and components thereof have been discussed in detail above, it should be understood that the components, features, configurations, and methods of using the devices discussed are not limited to the contexts provided above. In particular, components, features, configurations, and methods of use described in the context of one of the devices may be incorporated into any of the other devices. Furthermore, not limited to the further description provided below, additional and alternative suitable components, features, configurations, and methods of using the devices, as well as various ways in which the teachings herein may be combined and interchanged, will be apparent to those of ordinary skill in the art in view of the teachings herein.


Versions of the devices described above may be actuated mechanically or electromechanically (e.g., using one or more electrical motors, solenoids, etc.). However, other actuation modes may be suitable as well including but not limited to pneumatic and/or hydraulic actuation, etc. Various suitable ways in which such alternative forms of actuation may be provided in a device as described above will be apparent to those of ordinary skill in the art in view of the teachings herein.


Versions of the devices described above may have various types of construction. By way of example only, any of the devices described herein, or components thereof, may be constructed from a variety of metal and/or plastic materials.


Having shown and described various versions in the present disclosure, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, versions, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.

Claims
  • 1. A method for performing a sleeve gastrectomy, the method comprising the steps of: providing a first medical device including a tube for insertion into an interior of a stomach, the tube having a proximal end and a distal end, and a shaping portion positioned at the distal end of the tube;providing an inflation lumen for the introduction of positive pressure into the stomach;providing a second medical device, the second medical device being a stapler or clamp positioned externally on the stomach laterally adjacent to the first medical device;introducing positive pressure into the stomach via the inflation lumen;defining a resection line for the sleeve gastrectomy, wherein the resection line is defined at least partially by the position of the second medical device relative to the first medical device when a predetermined positive pressure range is provided via the inflation lumen; andclamping the stomach using the second medical device along the resection line,wherein the step of defining a resection line comprises applying a first amount of compression to the stomach with the second medical device when the positive pressure is introduced into the stomach, and applying a second amount of compression to the stomach when pressure within the stomach has reached the predetermined positive pressure range, wherein the second amount of compression is greater than the first amount of compression and the second amount of compression is operably configured to immovably retain the stomach.
  • 2. A method for performing a sleeve gastrectomy, the method comprising the steps of: providing a first medical device including a tube for insertion into an interior of a stomach, the tube having a proximal end and a distal end, and a shaping portion positioned at the distal end of the tube and having at least one balloon portion, the first medical device further comprising a suction portion and an inflation portion, wherein the suction portion is operably configured to urge a first portion of the stomach proximate the suction portion and the inflation portion is operably configured to inflate the stomach to a predetermined positive pressure range;providing an inflation lumen for the introduction of positive pressure into the stomach, wherein the inflation lumen is coupled with a pump, a pressure gauge, and a pressure release valve;providing a second medical device, the second medical device being a stapler or clamp positioned externally on the stomach laterally adjacent to the first medical device;introducing positive pressure into the stomach via the inflation lumen until the predetermined positive pressure range is achieved;defining a resection line for the sleeve gastrectomy, wherein the resection line is defined at least partially by the position of the second medical device relative to the first medical device when the predetermined positive pressure range is achieved;clamping the stomach using the second medical device along the resection line;stapling the stomach using the second medical device along the resection line; andresecting a portion of the stomach using the second medical device to form a sleeve.
  • 3. The method of claim 2, wherein the first medical device comprises a bougie, the bougie including the inflation lumen.
  • 4. The method of claim 2, wherein the first medical device comprises a bougie having at least one balloon portion, the at least one balloon portion having at least one balloon inflation lumen.
  • 5. The method of claim 2, further comprising an indicator for determining when the predetermined positive pressure range of the stomach has being achieved.
  • 6. The method of claim 5, wherein the indicator is a visual or audible indicator signaling that a positive pressure within the stomach is below the predetermined positive pressure range, above the predetermined positive pressure range, or within the predetermined positive pressure range.
  • 7. The method of claim 2, wherein the predetermined positive pressure range is from 1 mmHG to 25 mmHG.
  • 8. The method of claim 7, wherein the predetermined positive pressure range is from 15 mmHg to 20 mmHg.
  • 9. The method of claim 2, wherein the suction portion is positioned proximate the GE junction of the stomach.
  • 10. The method of claim 2, wherein the suction portion is positioned proximate the antrum of the stomach.
  • 11. The method of claim 2, wherein the suction portion of the first medical device extends from a portion proximate the GE junction of the stomach to a portion proximate the antrum of the stomach.
  • 12. The method of claim 2, wherein the inflation lumen is selectively configured to provide suction.
  • 13. The method of claim 2, wherein the distal end of the first medical device includes an articulating member, the articulating member being operably configured to position the antrum relative to the second medical device.
  • 14. The method of claim 2, wherein the first medical device includes at least one sensor to measure pressure or volume within the stomach.
  • 15. The method of claim 1, wherein the first medical device comprises a bougie, the bougie including the inflation lumen.
  • 16. The method of claim 1, wherein the first medical device comprises a bougie having at least one balloon portion, the at least one balloon portion having at least one balloon inflation lumen.
  • 17. The method of claim 1, wherein the inflation lumen is selectively configured to provide suction.
  • 18. The method of claim 1, wherein a distal end of the first medical device includes an articulating member, the articulating member being operably configured to position the antrum of the stomach relative to the second medical device.
  • 19. The method of claim 1, wherein the first medical device includes at least one sensor to measure pressure or volume within the stomach.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/089,619, filed Nov. 4, 2020, which claims the priority benefit of U.S. Provisional Patent Application No. 62/930,254, filed Nov. 4, 2019, each of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (701)
Number Name Date Kind
848126 Roosevelt Mar 1907 A
1413896 Brix Apr 1922 A
2659371 Schnee Nov 1953 A
2686520 Jarvis et al. Aug 1954 A
3017637 Sampson Jan 1962 A
3490675 Green et al. Jan 1970 A
3551987 Wilkinson Jan 1971 A
3877434 Ferguson Apr 1975 A
4216891 Behlke Aug 1980 A
4269190 Behney May 1981 A
4319576 Rothfuss Mar 1982 A
4354628 Green Oct 1982 A
4442964 Becht Apr 1984 A
4458681 Hopkins Jul 1984 A
4494057 Hotta Jan 1985 A
4520817 Green Jun 1985 A
4527724 Chow et al. Jul 1985 A
4558699 Bashour Dec 1985 A
4605001 Rothfuss et al. Aug 1986 A
4605004 Di Giovanni et al. Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4632290 Green et al. Dec 1986 A
4633861 Chow et al. Jan 1987 A
4676774 Semm et al. Jun 1987 A
4679557 Opie et al. Jul 1987 A
4705038 Sjostrom et al. Nov 1987 A
4784137 Kulik et al. Nov 1988 A
4803985 Hill Feb 1989 A
4819853 Green Apr 1989 A
4848637 Pruitt Jul 1989 A
4930503 Pruitt Jun 1990 A
4941623 Pruitt Jul 1990 A
4951861 Schulze et al. Aug 1990 A
4976721 Blasnik et al. Dec 1990 A
4978049 Green Dec 1990 A
5040715 Green et al. Aug 1991 A
5136220 Philipp Aug 1992 A
5152744 Krause et al. Oct 1992 A
5176651 Allgood et al. Jan 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5219111 Bilotti et al. Jun 1993 A
5221036 Takase Jun 1993 A
5222961 Nakao et al. Jun 1993 A
5258009 Conners Nov 1993 A
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5312410 Miller et al. May 1994 A
5327914 Shlain Jul 1994 A
5333772 Rothfuss et al. Aug 1994 A
5345949 Shlain Sep 1994 A
5389098 Tsuruta et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5413267 Solyntjes et al. May 1995 A
5415334 Williamson et al. May 1995 A
5431323 Smith et al. Jul 1995 A
5443475 Auerbach et al. Aug 1995 A
5452836 Huitema et al. Sep 1995 A
5452837 Williamson et al. Sep 1995 A
5456401 Green et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5465896 Allen et al. Nov 1995 A
5469840 Tanii et al. Nov 1995 A
5470006 Rodak Nov 1995 A
5470009 Rodak Nov 1995 A
5480089 Blewett Jan 1996 A
5485952 Fontayne Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5496333 Sackier et al. Mar 1996 A
5503638 Cooper et al. Apr 1996 A
5507426 Young et al. Apr 1996 A
5507773 Huitema et al. Apr 1996 A
5514098 Pfoslgraf et al. May 1996 A
5531744 Nardella et al. Jul 1996 A
5549621 Bessler et al. Aug 1996 A
5551622 Yoon Sep 1996 A
5554169 Green et al. Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5571131 Ek et al. Nov 1996 A
5586711 Plyley et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5630540 Blewett May 1997 A
5632432 Schulze et al. May 1997 A
5636780 Green et al. Jun 1997 A
5662667 Knodel Sep 1997 A
5676674 Bolanos et al. Oct 1997 A
5689159 Culp et al. Nov 1997 A
5697542 Knodel et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5732871 Clark et al. Mar 1998 A
5762256 Mastri et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5797538 Heaton et al. Aug 1998 A
5810240 Robertson Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5819240 Kara Oct 1998 A
5820009 Melling et al. Oct 1998 A
5865361 Milliman et al. Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5901895 Heaton et al. May 1999 A
5902312 Frater et al. May 1999 A
5954259 Viola et al. Sep 1999 A
5964394 Robertson Oct 1999 A
5980248 Kusakabe et al. Nov 1999 A
5988479 Palmer Nov 1999 A
6032849 Mastri et al. Mar 2000 A
6048330 Atala Apr 2000 A
6099551 Gabbay Aug 2000 A
6264087 Whitman Jul 2001 B1
6270507 Callicrate Aug 2001 B1
6315184 Whitman Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6488196 Fenton Dec 2002 B1
6505768 Whitman Jan 2003 B2
6511490 Robert Jan 2003 B2
6616446 Schmid Sep 2003 B1
6716233 Whitman Apr 2004 B1
6793652 Whitman et al. Sep 2004 B1
6835199 McGuckin et al. Dec 2004 B2
RE38708 Bolanos et al. Mar 2005 E
6953138 Dworak et al. Oct 2005 B1
6978921 Shelton, IV et al. Dec 2005 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7025791 Levine et al. Apr 2006 B2
7032799 Viola et al. Apr 2006 B2
7037344 Kagan et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7070083 Jankowski Jul 2006 B2
7128253 Mastri et al. Oct 2006 B2
7134587 Schwemberger et al. Nov 2006 B2
7175648 Nakao Feb 2007 B2
7207472 Wukusick et al. Apr 2007 B2
7225964 Mastri et al. Jun 2007 B2
7229428 Gannoe et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7258262 Mastri et al. Aug 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7288100 Molina Trigueros Oct 2007 B2
7308998 Mastri et al. Dec 2007 B2
RE40237 Bilotti et al. Apr 2008 E
7398908 Holsten et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407076 Racenet et al. Aug 2008 B2
7422138 Bilotti et al. Sep 2008 B2
7434716 Viola Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7455676 Holsten et al. Nov 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7500979 Hueil et al. Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7549564 Boudreaux Jun 2009 B2
7549654 Anderson et al. Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7617961 Viola Nov 2009 B2
7635074 Olson et al. Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7645285 Cosgrove et al. Jan 2010 B2
7658312 Vidal et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7690547 Racenet et al. Apr 2010 B2
7694864 Okada et al. Apr 2010 B2
7704264 Ewers et al. Apr 2010 B2
7708684 Demarais et al. May 2010 B2
7717312 Beetel May 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7744613 Ewers et al. Jun 2010 B2
7758493 Gingras Jul 2010 B2
7770774 Mastri et al. Aug 2010 B2
7775967 Gertner Aug 2010 B2
D624182 Thouement Sep 2010 S
7793812 Moore et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7815092 Whitman et al. Oct 2010 B2
7819896 Racenet Oct 2010 B2
7828188 Jankowski Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7846149 Jankowski Dec 2010 B2
7857184 Viola Dec 2010 B2
7866525 Scirica Jan 2011 B2
7866528 Olson et al. Jan 2011 B2
7871416 Phillips Jan 2011 B2
7891531 Ward Feb 2011 B1
7891533 Green et al. Feb 2011 B2
7913893 Mastri et al. Mar 2011 B2
7918869 Saadat et al. Apr 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7955340 Michlitsch et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7963907 Gertner Jun 2011 B2
7966799 Morgan et al. Jun 2011 B2
7992757 Wheeler et al. Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
8016176 Kasvikis et al. Sep 2011 B2
8020741 Cole et al. Sep 2011 B2
8028884 Sniffin et al. Oct 2011 B2
8033442 Racenet et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8052697 Phillips Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8061577 Racenet et al. Nov 2011 B2
8062236 Soltz Nov 2011 B2
8066168 Vidal et al. Nov 2011 B2
8070034 Knodel Dec 2011 B1
8070036 Knodel Dec 2011 B1
8087563 Milliman et al. Jan 2012 B2
8091756 Viola Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8113406 Holsten et al. Feb 2012 B2
8132704 Whitman et al. Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8147506 Ortiz et al. Apr 2012 B2
8167186 Racenet et al. May 2012 B2
8172122 Kasvikis et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8196795 Moore et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8210415 Ward Jul 2012 B2
8216159 Leiboff Jul 2012 B1
8220690 Hess et al. Jul 2012 B2
8226602 Quijana et al. Jul 2012 B2
8245898 Smith et al. Aug 2012 B2
8252009 Weller et al. Aug 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8292153 Jankowski Oct 2012 B2
8308725 Bell et al. Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328064 Racenet et al. Dec 2012 B2
8343175 Ewers et al. Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8353436 Kasvikis Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8365973 White et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8382775 Bender et al. Feb 2013 B1
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8403956 Thompson et al. Mar 2013 B1
8408442 Racenet et al. Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8439244 Holcomb et al. May 2013 B2
8439246 Knodel May 2013 B1
8449560 Roth et al. May 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453913 Laurent et al. Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8465507 Cosgrove et al. Jun 2013 B2
8469252 Holcomb et al. Jun 2013 B2
8469977 Balbierz et al. Jun 2013 B2
8479969 Shelton, IV Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8496155 Knodel Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8523041 Ishitsuki et al. Sep 2013 B2
8529585 Jacobs et al. Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8544712 Jankowski Oct 2013 B2
8561872 Wheeler et al. Oct 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574243 Saadat et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579178 Holsten et al. Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8596513 Olson et al. Dec 2013 B2
8608043 Scirica Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8613384 Pastorelli et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8617185 Bonutti et al. Dec 2013 B2
8628544 Farascioni Jan 2014 B2
8628547 Weller et al. Jan 2014 B2
8647350 Mohan et al. Feb 2014 B2
8663245 Francischelli et al. Mar 2014 B2
8668130 Hess et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8672830 Dlugos, Jr. et al. Mar 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8714429 Demmy May 2014 B2
8720766 Hess et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727199 Wenchell May 2014 B2
8733613 Huitema et al. May 2014 B2
8740035 Mastri et al. Jun 2014 B2
8758392 Crainich Jun 2014 B2
8763875 Morgan et al. Jul 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8801732 Harris et al. Aug 2014 B2
8808325 Hess et al. Aug 2014 B2
8840004 Holsten et al. Sep 2014 B2
8852218 Hughett, Sr. et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8899465 Shelton, IV et al. Dec 2014 B2
8925788 Hess et al. Jan 2015 B2
8945163 Voegele et al. Feb 2015 B2
8956390 Shah et al. Feb 2015 B2
8973804 Hess et al. Mar 2015 B2
8978956 Schall et al. Mar 2015 B2
8991676 Hess et al. Mar 2015 B2
8991677 Moore et al. Mar 2015 B2
8998058 Moore et al. Apr 2015 B2
9016541 Viola et al. Apr 2015 B2
9033203 Woodard, Jr. et al. May 2015 B2
9066721 Ichihara et al. Jun 2015 B2
9084600 Knodel et al. Jul 2015 B1
9084601 Moore et al. Jul 2015 B2
9095339 Moore et al. Aug 2015 B2
9113862 Morgan et al. Aug 2015 B2
9113868 Felder et al. Aug 2015 B2
9119627 Cosgrove et al. Sep 2015 B2
9138226 Racenet et al. Sep 2015 B2
9149325 Worrell et al. Oct 2015 B2
9155528 Bender et al. Oct 2015 B2
9168039 Knodel Oct 2015 B1
9179911 Morgan et al. Nov 2015 B2
9180035 Stack et al. Nov 2015 B2
9216019 Schmid et al. Dec 2015 B2
9254131 Soltz et al. Feb 2016 B2
9289206 Hess et al. Mar 2016 B2
9289207 Shelton, IV Mar 2016 B2
9307981 Mikkaichi et al. Apr 2016 B2
9314362 Bender et al. Apr 2016 B2
9326768 Shelton, IV May 2016 B2
9339442 Tai et al. May 2016 B2
9345478 Knodel May 2016 B2
9364225 Sniffin et al. Jun 2016 B2
9370362 Petty et al. Jun 2016 B2
9398917 Whitfield et al. Jul 2016 B2
9408604 Shelton, IV et al. Aug 2016 B2
9433411 Racenet et al. Sep 2016 B2
9439633 O'Dea Sep 2016 B2
9498219 Moore et al. Nov 2016 B2
9549733 Knodel Jan 2017 B2
9561032 Shelton, IV et al. Feb 2017 B2
9603595 Shelton, IV et al. Mar 2017 B2
9603598 Shelton, IV et al. Mar 2017 B2
9615952 Scott et al. Apr 2017 B2
9636114 Cole et al. May 2017 B2
9675355 Shelton, IV et al. Jun 2017 B2
9687233 Fernandez et al. Jun 2017 B2
9700321 Shelton, IV et al. Jul 2017 B2
9706991 Hess et al. Jul 2017 B2
9724091 Shelton, IV et al. Aug 2017 B2
9724093 Farascioni et al. Aug 2017 B2
9724096 Thompson et al. Aug 2017 B2
9730692 Shelton, IV et al. Aug 2017 B2
9775613 Shelton, IV et al. Oct 2017 B2
9801627 Harris et al. Oct 2017 B2
9801628 Harris et al. Oct 2017 B2
9808246 Shelton, IV et al. Nov 2017 B2
9808257 Armenteros et al. Nov 2017 B2
9820742 Covach et al. Nov 2017 B2
9827002 Hausen et al. Nov 2017 B2
9844370 Viola et al. Dec 2017 B2
9848873 Shelton, IV Dec 2017 B2
9848875 Aronhalt et al. Dec 2017 B2
9848878 Racenet et al. Dec 2017 B2
9855040 Kostrzewski Jan 2018 B2
9861366 Aranyi Jan 2018 B2
9872682 Hess et al. Jan 2018 B2
9901344 Moore et al. Feb 2018 B2
9901346 Moore et al. Feb 2018 B2
9913646 Shelton, IV Mar 2018 B2
9924947 Shelton, IV et al. Mar 2018 B2
9936953 Thompson et al. Apr 2018 B2
9980729 Moore et al. May 2018 B2
9999426 Moore et al. Jun 2018 B2
9999431 Shelton, IV et al. Jun 2018 B2
10004505 Moore et al. Jun 2018 B2
10045780 Adams et al. Aug 2018 B2
10085754 Sniffin et al. Oct 2018 B2
10130360 Olson et al. Nov 2018 B2
10130363 Huitema et al. Nov 2018 B2
10172616 Murray et al. Jan 2019 B2
10194912 Scheib et al. Feb 2019 B2
10226250 Beckman et al. Mar 2019 B2
10231734 Thompson et al. Mar 2019 B2
10238517 Gingras Mar 2019 B2
10245032 Shelton, IV Apr 2019 B2
10258334 Adams et al. Apr 2019 B2
10265073 Scheib et al. Apr 2019 B2
10278695 Milo May 2019 B2
10278699 Thompson et al. May 2019 B2
10278707 Thompson et al. May 2019 B2
10285712 Cosgrove, III et al. May 2019 B2
10285837 Thompson et al. May 2019 B1
10292706 Jankowski May 2019 B2
10307161 Jankowski Jun 2019 B2
10307163 Moore et al. Jun 2019 B2
10314580 Scheib et al. Jun 2019 B2
10314589 Shelton, IV et al. Jun 2019 B2
10342538 Racenet et al. Jul 2019 B2
10383628 Kang et al. Aug 2019 B2
10390826 Badawi Aug 2019 B2
10405856 Knodel Sep 2019 B2
10405860 Thompson et al. Sep 2019 B2
10420559 Marczyk et al. Sep 2019 B2
10420560 Shelton, IV et al. Sep 2019 B2
10441283 Thompson et al. Oct 2019 B1
10456571 Cairns Oct 2019 B2
10470911 Thompson et al. Nov 2019 B2
10499912 Scheib et al. Dec 2019 B2
10537325 Bakos et al. Jan 2020 B2
10542986 Thompson et al. Jan 2020 B2
10548597 Dunki-Jacobs et al. Feb 2020 B2
10624638 Thompson et al. Apr 2020 B2
10687807 Simms et al. Jun 2020 B2
10687810 Shelton, IV et al. Jun 2020 B2
10687814 Dunki-Jacobs et al. Jun 2020 B2
10716564 Shelton, IV et al. Jul 2020 B2
10758231 Harris et al. Sep 2020 B2
10849623 Dunki-Jacobs et al. Dec 2020 B2
10912562 Dunki-Jacobs et al. Feb 2021 B2
10966721 Dunki-Jacobs et al. Apr 2021 B2
20010044656 Williamson, IV et al. Nov 2001 A1
20020143346 Mcguckin, Jr. et al. Oct 2002 A1
20030125734 Mollenauer Jul 2003 A1
20030220660 Kortenbach et al. Nov 2003 A1
20040006351 Gannoe et al. Jan 2004 A1
20040006372 Racenet et al. Jan 2004 A1
20040068267 Harvie et al. Apr 2004 A1
20040181239 Dorn et al. Sep 2004 A1
20050006432 Racenet et al. Jan 2005 A1
20050080444 Kraemer et al. Apr 2005 A1
20050139633 Wukusick et al. Jun 2005 A1
20050203547 Weller et al. Sep 2005 A1
20060011698 Okada et al. Jan 2006 A1
20060016853 Racenet Jan 2006 A1
20060020277 Gostout et al. Jan 2006 A1
20060036267 Saadat et al. Feb 2006 A1
20060085030 Bettuchi et al. Apr 2006 A1
20060151568 Weller et al. Jul 2006 A1
20060229665 Wales et al. Oct 2006 A1
20060241692 McGuckin et al. Oct 2006 A1
20070023477 Whitman et al. Feb 2007 A1
20070027469 Smith et al. Feb 2007 A1
20070029364 Kruszynski et al. Feb 2007 A1
20070034666 Holsten et al. Feb 2007 A1
20070034667 Holsten et al. Feb 2007 A1
20070039997 Mather et al. Feb 2007 A1
20070056932 Whitman et al. Mar 2007 A1
20070075114 Shelton et al. Apr 2007 A1
20070083233 Ortiz et al. Apr 2007 A1
20070131732 Holsten et al. Jun 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194080 Swayze et al. Aug 2007 A1
20070194081 Hueil et al. Aug 2007 A1
20070213743 McGuckin, Jr. Sep 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20070262116 Hueil et al. Nov 2007 A1
20080015631 Lee et al. Jan 2008 A1
20080023522 Olson et al. Jan 2008 A1
20080033457 Francischelli et al. Feb 2008 A1
20080035702 Holsten et al. Feb 2008 A1
20080041918 Holsten et al. Feb 2008 A1
20080078800 Hess et al. Apr 2008 A1
20080082124 Hess et al. Apr 2008 A1
20080087707 Jankowski Apr 2008 A1
20080097332 Greenhalgh et al. Apr 2008 A1
20080149684 Viola Jun 2008 A1
20080164297 Holsten et al. Jul 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080190990 Holsten et al. Aug 2008 A1
20080203134 Shah et al. Aug 2008 A1
20080249404 Mikkaichi et al. Oct 2008 A1
20080275480 Jacobs et al. Nov 2008 A1
20080294179 Balbierz et al. Nov 2008 A1
20080308602 Timm et al. Dec 2008 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090012556 Boudreaux et al. Jan 2009 A1
20090020584 Soltz et al. Jan 2009 A1
20090078739 Viola Mar 2009 A1
20090134200 Tarinelli et al. May 2009 A1
20090173766 Wenchell Jul 2009 A1
20090209946 Swayze et al. Aug 2009 A1
20090209986 Stewart et al. Aug 2009 A1
20090212088 Okada et al. Aug 2009 A1
20090255974 Viola Oct 2009 A1
20090261144 Sniffin et al. Oct 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20100010512 Taylor et al. Jan 2010 A1
20100072255 Olson et al. Mar 2010 A1
20100072258 Farascioni et al. Mar 2010 A1
20100108739 Holsten et al. May 2010 A1
20100114124 Kelleher et al. May 2010 A1
20100121356 Hartmann et al. May 2010 A1
20100137904 Wenchell Jun 2010 A1
20100145324 Nihalani Jun 2010 A1
20100213240 Kostrzewski Aug 2010 A1
20100256634 Voegele et al. Oct 2010 A1
20100282820 Kasvikis Nov 2010 A1
20100331866 Surti et al. Dec 2010 A1
20110004062 Asai et al. Jan 2011 A1
20110017800 Viola Jan 2011 A1
20110071555 McBrayer et al. Mar 2011 A1
20110084113 Bedi et al. Apr 2011 A1
20110087279 Shah et al. Apr 2011 A1
20110152895 Nyuli et al. Jun 2011 A1
20110160752 Aguirre Jun 2011 A1
20110178454 Gagner et al. Jul 2011 A1
20110186614 Kasvikis Aug 2011 A1
20110190791 Jacobs et al. Aug 2011 A1
20110208211 Whitfield et al. Aug 2011 A1
20110226837 Baxter, III et al. Sep 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110290851 Shelton, IV Dec 2011 A1
20110315739 Sniffin et al. Dec 2011 A1
20120059400 Williamson, IV et al. Mar 2012 A1
20120080494 Thompson et al. Apr 2012 A1
20120123463 Jacobs May 2012 A1
20120175398 Sandborn et al. Jul 2012 A1
20120203247 Shelton, IV et al. Aug 2012 A1
20120234899 Scheib et al. Sep 2012 A1
20120234900 Swayze Sep 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120277525 O'Dea Nov 2012 A1
20120286022 Olson et al. Nov 2012 A1
20130062394 Smith et al. Mar 2013 A1
20130075447 Weisenburgh, II et al. Mar 2013 A1
20130075450 Schmid et al. Mar 2013 A1
20130092718 Soltz et al. Apr 2013 A1
20130105549 Holsten et al. May 2013 A1
20130131440 Gabriel May 2013 A1
20130146638 Mandakolathur Vasudevan et al. Jun 2013 A1
20130146641 Shelton, IV et al. Jun 2013 A1
20130146642 Shelton, IV et al. Jun 2013 A1
20130153625 Felder et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153642 Felder et al. Jun 2013 A1
20130161374 Swayze et al. Jun 2013 A1
20130165774 Nocca Jun 2013 A1
20130172929 Hess et al. Jul 2013 A1
20130193190 Carter et al. Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130245652 Cosgrove et al. Sep 2013 A1
20130256372 Baxter, III et al. Oct 2013 A1
20130256375 Shelton, IV et al. Oct 2013 A1
20130256377 Schmid et al. Oct 2013 A1
20130284791 Olson et al. Oct 2013 A1
20130306704 Balbierz et al. Nov 2013 A1
20130327809 Shelton, IV et al. Dec 2013 A1
20130334288 Shelton, IV Dec 2013 A1
20130341374 Shelton, IV et al. Dec 2013 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140027493 Jankowski Jan 2014 A1
20140046345 Armenteros et al. Feb 2014 A1
20140074131 Armenteros et al. Mar 2014 A1
20140081176 Hassan Mar 2014 A1
20140082497 Chalouhi et al. Mar 2014 A1
20140107698 Inge Apr 2014 A1
20140110457 Zhang et al. Apr 2014 A1
20140114121 Trivedi Apr 2014 A1
20140131418 Kostrzewski May 2014 A1
20140131419 Bettuchi May 2014 A1
20140144968 Shelton, IV May 2014 A1
20140148731 Radl May 2014 A1
20140171744 Racenet et al. Jun 2014 A1
20140183242 Farascioni et al. Jul 2014 A1
20140184519 Benchenaa et al. Jul 2014 A1
20140191015 Shelton, IV Jul 2014 A1
20140214025 Worrell et al. Jul 2014 A1
20140231489 Balbierz et al. Aug 2014 A1
20140239037 Boudreaux et al. Aug 2014 A1
20140257353 Whitman et al. Sep 2014 A1
20140263570 Hopkins et al. Sep 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140291379 Schellin et al. Oct 2014 A1
20150048141 Felder et al. Feb 2015 A1
20150083780 Shelton, IV et al. Mar 2015 A1
20150157318 Beardsley et al. Jun 2015 A1
20150173755 Baxter, III et al. Jun 2015 A1
20150173762 Shelton, IV et al. Jun 2015 A1
20150209034 Viola et al. Jul 2015 A1
20150265276 Huitema et al. Sep 2015 A1
20150297224 Hall et al. Oct 2015 A1
20150297227 Huitema et al. Oct 2015 A1
20150320423 Aranyi Nov 2015 A1
20150351764 Shelton, IV Dec 2015 A1
20160058447 Posada et al. Mar 2016 A1
20160058594 Armenteros et al. Mar 2016 A1
20160066916 Overmyer et al. Mar 2016 A1
20160067074 Thompson Mar 2016 A1
20160089148 Harris et al. Mar 2016 A1
20160166256 Baxter, III et al. Jun 2016 A1
20160183945 Shelton, IV et al. Jun 2016 A1
20160199061 Shelton, IV et al. Jul 2016 A1
20160199088 Shelton, IV et al. Jul 2016 A1
20160213302 Frushour Jul 2016 A1
20160235409 Shelton, IV et al. Aug 2016 A1
20160242768 Moore et al. Aug 2016 A1
20160242769 Moore et al. Aug 2016 A1
20160242770 Moore et al. Aug 2016 A1
20160242783 Shelton, IV et al. Aug 2016 A1
20160262744 Milo et al. Sep 2016 A1
20160262750 Hausen et al. Sep 2016 A1
20160262921 Balbierz et al. Sep 2016 A1
20160270792 Sniffin et al. Sep 2016 A1
20160324527 Thompson et al. Nov 2016 A1
20160354085 Shelton, IV et al. Dec 2016 A1
20160367250 Racenet et al. Dec 2016 A1
20170007248 Shelton, IV et al. Jan 2017 A1
20170014125 Shelton, IV et al. Jan 2017 A1
20170055991 Kang Mar 2017 A1
20170086847 DiNardo et al. Mar 2017 A1
20170095251 Thompson et al. Apr 2017 A1
20170105728 Scheib et al. Apr 2017 A1
20170172571 Thompson et al. Jun 2017 A1
20170231633 Marczyk et al. Aug 2017 A1
20170290588 Thompson et al. Oct 2017 A1
20170303952 Nativ et al. Oct 2017 A1
20170319210 Moore et al. Nov 2017 A1
20170333041 Moore et al. Nov 2017 A1
20170360447 Armenteros et al. Dec 2017 A1
20170367697 Shelton, IV et al. Dec 2017 A1
20180014826 Scheib et al. Jan 2018 A1
20180036000 Terada et al. Feb 2018 A1
20180036005 Covach et al. Feb 2018 A1
20180092641 Aranyi Apr 2018 A1
20180168620 Huang et al. Jun 2018 A1
20180168633 Shelton, IV et al. Jun 2018 A1
20180199939 Thompson et al. Jul 2018 A1
20180199941 Thompson et al. Jul 2018 A1
20180235625 Shelton, IV et al. Aug 2018 A1
20180235626 Shelton, IV et al. Aug 2018 A1
20180280020 Hess et al. Oct 2018 A1
20180317905 Olson et al. Nov 2018 A1
20190000455 Adams et al. Jan 2019 A1
20190046186 Dunki-Jacobs et al. Feb 2019 A1
20190046189 Dunki-Jacobs et al. Feb 2019 A1
20190046190 Dunki-Jacobs et al. Feb 2019 A1
20190046191 Dunki-Jacobs et al. Feb 2019 A1
20190046192 Dunki-Jacobs et al. Feb 2019 A1
20190046193 Dunki-Jacobs et al. Feb 2019 A1
20190105042 Huitema et al. Apr 2019 A1
20190133577 Weadock et al. May 2019 A1
20190150924 Thompson et al. May 2019 A1
20190209173 Thompson et al. Jul 2019 A1
20190209175 Thompson et al. Jul 2019 A1
20190224029 Thompson et al. Jul 2019 A1
20190261985 Adams et al. Aug 2019 A1
20190261991 Beckman et al. Aug 2019 A1
20190269408 Jankowski Sep 2019 A1
20190274677 Shelton, IV Sep 2019 A1
20190274678 Shelton, IV Sep 2019 A1
20190274679 Shelton, IV Sep 2019 A1
20190274680 Shelton, IV Sep 2019 A1
20190307450 Thompson et al. Oct 2019 A1
20190343519 Thompson et al. Nov 2019 A1
20190380742 Hall et al. Dec 2019 A1
20190388092 Thompson et al. Dec 2019 A1
20200008964 Thompson et al. Jan 2020 A1
20200015822 Marczyk et al. Jan 2020 A1
20200054326 Harris et al. Feb 2020 A1
20200100790 DiNardo et al. Apr 2020 A1
20200205810 Posey et al. Jul 2020 A1
20200205827 Bakos et al. Jul 2020 A1
20200214703 Thompson et al. Jul 2020 A1
20200229818 Thompson et al. Jul 2020 A1
20200268385 Dunki-Jacobs et al. Aug 2020 A1
20200297344 Dunki-Jacobs et al. Sep 2020 A1
20200305865 Shelton, IV Oct 2020 A1
20200305868 Shelton, IV Oct 2020 A1
20200305869 Shelton, IV Oct 2020 A1
20200305873 Dunki-Jacobs et al. Oct 2020 A1
20200390443 Thompson et al. Dec 2020 A1
Foreign Referenced Citations (61)
Number Date Country
2663002 Oct 2009 CA
140552 May 1985 EP
399699 Nov 1990 EP
503662 Sep 1992 EP
666057 Aug 1995 EP
669104 Aug 1995 EP
399699 Nov 1995 EP
503662 Jun 1997 EP
1090592 Apr 2001 EP
1616526 Jan 2006 EP
1769766 Apr 2007 EP
1774916 Apr 2007 EP
1806101 Jul 2007 EP
1875868 Jan 2008 EP
1875870 Jan 2008 EP
1938759 Jul 2008 EP
2005896 Dec 2008 EP
2005897 Dec 2008 EP
2005898 Dec 2008 EP
2005899 Dec 2008 EP
2005900 Dec 2008 EP
2005901 Dec 2008 EP
1774916 Feb 2009 EP
2019633 Feb 2009 EP
2090247 Aug 2009 EP
2111803 Oct 2009 EP
2245993 Nov 2010 EP
2319424 May 2011 EP
2382928 Nov 2011 EP
2019633 Aug 2012 EP
2731895 Sep 1996 FR
2298905 Sep 1996 GB
0154594 Aug 2001 WO
03094747 Nov 2003 WO
2007009099 Jan 2007 WO
2007019268 Feb 2007 WO
2007102152 Sep 2007 WO
2008039238 Apr 2008 WO
2008039249 Apr 2008 WO
2008039250 Apr 2008 WO
2008039270 Apr 2008 WO
2008042021 Apr 2008 WO
2008042022 Apr 2008 WO
2008042043 Apr 2008 WO
2008042044 Apr 2008 WO
2008042045 Apr 2008 WO
2008094210 Aug 2008 WO
2008141288 Nov 2008 WO
2009038550 Mar 2009 WO
2010011661 Jan 2010 WO
2011044032 Apr 2011 WO
2011044032 Jun 2011 WO
2011094700 Aug 2011 WO
2012141679 Oct 2012 WO
2013151888 Oct 2013 WO
2014026170 Feb 2014 WO
2014085099 Jun 2014 WO
2015063609 May 2015 WO
2015153324 Oct 2015 WO
2015153340 Oct 2015 WO
2016033221 Mar 2016 WO
Non-Patent Literature Citations (30)
Entry
AtriCure, Inc.; 510(k) Summary for AtriClip LAA Exclusion System with preloaded Gillinov-Cosgrove Clip; published Jun. 10, 2010; 6 pages.
De Petz, A; Aseptic Technic of Stomach Resections; 86 Annals of Surgery 388; Sep. 1927; 5 pages.
Dept. of Health and Human Services; CMS Description of Open Left Atrial Appendage Occlusion with “U” Fastener Implant; Mar. 9, 2011; 1 page.
European Search Report received in European Application No. 15774247; dated Dec. 23, 2016; 11 pages.
Examination Report received in Australian Application No. 2015241193; dated Dec. 11, 2018; 5 pages.
Examination Report received in Australian Application No. 2015241267; dated Feb. 25, 2019; 6 pages.
Examination Report received in Australian Application No. 2016208416; dated May 18, 2017; 4 pages.
Examination Report received in Australian Application No. 2018203527; dated Oct. 22, 2018; 5 pages.
Examination Report received in European Application No. 15772561; dated Oct. 29, 2018; 7 pages.
Harrah, J. D.; A Lung Clamp for Use with Mechanical Staplers; 28 The Annals of Thoracic Surgery 489; Nov. 1979; 2 pages.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority received in Application No. PCT/US2018/046743; dated Feb. 18, 2020; 17 pages.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority received in International Patent App. No. PCT/US2015/048740; dated Mar. 7, 2017; 8 pages.
International Search Report and Written Opinion of the International Searching Authority received in International Patent App. No. PCT/US2014/070869; dated Apr. 21, 2015; 17 pages.
International Search Report and Written Opinion of the International Searching Authority received in International Patent App. No. PCT/US2015/022904; dated Jun. 25, 2015; 6 pages.
International Search Report and Written Opinion of the International Searching Authority received in International Patent App. No. PCT/US2015/022990; dated Sep. 30, 2015; 10 pages.
International Search Report and Written Opinion of the International Searching Authority received in International Patent App. No. PCT/US2015/048740; dated Feb. 17, 2016; 12 pages.
International Search Report and Written Opinion of the International Searching Authority received in International Patent App. No. PCT/US2018/046743; dated Dec. 4, 2018; 20 pages.
Jacobs, M. et al.; Laparoscopic sleeve gastrectomy: a retrospective review of 1- and 2-year results; Surg Endosc. Apr. 2010; 24(4):781-5; doi: 10.1007/s00464-009-0619-8; Epub Aug. 19, 2009; abstract only; 2 pages.
LAAx, Inc.; 510(k) Summary for TigerPaw(R) System; published Oct. 29, 2010; 6 pages.
Parikh, M. et al.; Surgical Strategies That May Decrease Leak After Laparoscopic Sleeve Gastrectomy; 257 Annals of Surgery 231; Feb. 2013; 7 pages.
Parker, G.; A New Stomach Clamp; 26 Postgrad Med. J. 550; Oct. 1950; 1 page.
Pfiedler Enterprises; Science of Stapling: Urban Legend and Fact; Jun. 4, 2012; 38 pages.
Regan, J. P. et al.; Early Experience with Two-Stage Laparoscopic Roux-en-Y Gastric Bypass as an Alternative in the Super-Super Obese Patient; Obes Surg; 13(6):861-4; Dec. 1, 2003; abstract only; 2 pages.
Search Report received in Chinese Application No. 201480075706.2; dated Nov. 28, 2018; 3 pages.
Steichen, F. M. et al.; Stapling in Surgery; Figures 1-11C; Year Book Medical Publishers, Inc.; 1984; 3 pages.
Supplementary European Search Report received in European Application No. 14872137; dated Mar. 28, 2017; 15 pages.
Supplementary European Search Report received in European Application No. 15772561; dated Mar. 15, 2017; 8 pages.
Supplementary Partial European Search Report received in European Application No. 14872137; dated Dec. 12, 2016; 5 pages.
Zuckerman, B. D., Food and Drug Administration; Letter to AtriCure, Inc. Addressing Indication for Use of AtriClip LAA Exclusion System w/Pre-loaded Gillnov-Cosgrove Clip; Jun. 10, 2010; 3 pages.
International Search Report and Written Opinion of the International Searching Authority received in International Patent App. No. PCT/US2020/058960; dated Feb. 2, 2021; 16 pages.
Related Publications (1)
Number Date Country
20210205106 A1 Jul 2021 US
Provisional Applications (1)
Number Date Country
62930254 Nov 2019 US
Continuations (1)
Number Date Country
Parent 17089619 Nov 2020 US
Child 17212451 US